IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 5, MAY 1994

353

Automatically Generating Test Data
from a Boolean Specification

Elaine Weyuker, Tarak Goradia, and Ashutosh Singh

Abstract—This paper presents a family of strategies for auto-
matically generating test data for any implementation intended
to satisfy a given specification that is a Boolean formula. The
fault detection effectiveness of these strategies is investigated both
analytically and empirically, and the costs, assessed in terms of
test set size, are compared.

Index Terms— Automatic test case generation, black-box test-
ing, software testing

I. INTRODUCTION

EVESON et al. [8] describe a formal specification tech-

nique that uses a modified Statechart notation to specify
TCAS 11, an aircraft collision avoidance system. This specifi-
cation represents an example of a formally specified real-world
process-control system. Motivated by this work, we used
the AND-OR table representation of the conditions for state
transitions in this specification as the basis for designing
algorithms to automatically generate test cases. Because these
tables are simply one way of representing a Boolean formula,
we investigated the advantages of having such a regimented
form of a specification from the perspective of automatic
generation of test data.

Even for a formal specification of such rigid and simple
format, exhaustive testing is typically prohibitively expensive,
because a formula of n variables would require 2™ distinct test
cases—too many for any formula of even modest complexity,
especially when one considers the number of formulas that
comprise the specification of an entire system. Therefore, our
goal was to define algorithms to automatically generate test
sets that would be substantially smaller than exhaustive test
sets, but would nonetheless be highly effective at detecting
faults. Once that was accomplished, we developed a tool to
implement these algorithms and devised an empirical study
to determine how well the algorithms worked using selected
parts of the TCAS II specification.

An important question we addressed is, How should we
evaluate effectiveness? This is a difficult issue that has been

Manuscript received August 30, 1993; revised February 1994. This work
was supported in part by the National Aeronautics and Space Administration
(NASA) under Grant NAG-1-1238, and in part by the National Science Foun-
dation (NSF) under Grant CCR-8920701. Recommended by J. D. Gannon.

E.J. Weyuker is with AT&T Bell Laboratories, Murray Hill, NJ 07974,
USA, and the Courant Institute of Mathematical Sciences, New York Univer-
sity, New York, NY 10012, USA. E-mail: weyuker@research.att.com.

T. Goradia is with Siemens Corporate Research, Princeton, NJ 08540, USA.
e-mail: tarak@scr.siemens.com.

A. Singh is with the Courant Institute of Mathematical Sciences, New York
University, New York, NY 10012, USA.

IEEE Log Number 9400540.

addressed in a number of recent papers [4], [6], [10], [11],
[12]. Although the importance of this question has begun to
be acknowledged, there is, at this time, far from universal
agreement about the answer. In this paper, we use mutation
analysis [2] as the basis for this assessment of effectiveness.

Mutation analysis is a fault-based testing strategy that starts
with a program to be tested and makes numerous small
syntactic changes to it, creating a set of mutant programs. Each
mutant is then run on a test set that is being evaluated to see
whether the test data are comprehensive enough to distinguish
the original program from each inequivalent mutant. The
intuition is that each such mutant represents a “buggy” version
of the program, and, if the test set cannot distinguish the
two versions (i.e. if both versions produce the same output
for every input), then the inserted bug (mutation) would
go undetected by the test set. If many mutants are not
distinguished by the test set, then many bugs would go
undetected. If almost all mutants are distinguished, then almost
all of the bugs represented by the mutations would be detected.
If the mutations really represent “typical” faults, then a high
ratio of distinguished mutants to total inequivalent mutants
would indicate an effective testing strategy. This ratio x 100
is known as the mutation score.

In Section III, we present a basic testing technique for
generating test data for programs that implement specifications
represented by Boolean formulas. This basic strategy is nonde-
terministic. Section IV investigates the fault detection ability
of the basic strategy analytically. In Section V, we present a
family of testing strategies that represent enhancements of the
basic strategy. In Section VI, we describe our experience in
using these strategies to test parts of the TCAS II specification.
We have selected 20 of the larger Boolean formulas from the
specification, and have used the tool we built to automatically
generate test sets using each of the new strategies. Our
empirical results are summarized in that section. Section VII
presents our conclusions.

II. DEFINITIONS

The following notation is used throughout this paper. +, -,
and — represent the “or,” “and,” and “not,” Boolean opera-
tions, respectively. Usually, the “-” is omitted. We use 1 and 0
to denote “true” and “false,” respectively. ¢ is used to denote
a “don’t care” value (i.e., a value that can be either O or 1).

A given Boolean formula F' can be represented in various
standard formats, including sum-of-products form or product-
of-sums form. These are also known, respectively, as disjunc-
tive normal form and conjunctive normal form. For example,

0098-5589/94$04.00 © 1994 IEEE



354 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 5, MAY 1994

consider the formula a(bc+d). In disjunctive normal form, this
can be represented as abé+ ad. In conjunctive normal form, it
can be represented as (a)(b+ d)(Z+ d). These representations
are not unique, but there exist canonical representations that
are unique for a given Boolean formula up to commutativity.
One such representation is known as canonical disjunctive
normal form. If a product-term contains every variable of F,
either in the complemented or uncomplemented form, it is
called a minterm. The canonical disjunctive normal form of
formula F is the unique sum-of-products representation of
F in which each product-term is a minterm. The canonical
disjunctive normal form representation for the above formula
is as follows:

abéd + abed + abed + abed + abéd.

Each occurrence of a variable or its negation in a Boolean
formula is called a literal. A test case is an assignment of
values to variables of a formula. A formula in disjunctive
normal form is said to be irreducible, provided that none of
its literals or terms can be deleted without altering the value
of the formula for some test case. Let F' be a Boolean formula
in irreducible disjunctive normal form, containing n variables
and m product-terms: p; +p2+ - - -+ Pm. The ith product-term
is denoted by p; = (l; 1li,2 - - - li x, ), where [; ; denotes the jth
literal in the ¢th term.

A literal occurrence in a Boolean formula is said to have
meaningful impact on the value of the formula for a given
test case if, everything else being the same,! a different truth
value assignment to that literal would have resulted in the
formula evaluating to a different value. We will sometimes
speak of a test case demonstrating that the literal occurrence
has meaningful impact on the specified output of a Boolean
formula, meaning that the literal occurrence has meaningful
impact on that output for that test case. For example, consider
the formula (ab + ac). To facilitate the discussion, we refer
to the first occurrence of the variable a as a1, and the second
occurrence as ag. Consider the test case a = 0,b=1,¢ = 0.
This causes the formula to evaluate to 0. If a; had the value
1, however, the formula would have evaluated to 1. Hence,
a; has meaningful impact on the O value for this test case.
However, this test case does not demonstrate that b, az or
¢ have meaningful impact on the 0 value, because a change
in the value of any one of them alone would not change the
value of the expression. Consider another test case for this
formula,a = 0,b = 1, ¢ = 1, which also causes it to evaluate
to 0. Both a; and a; have meaningful impact on the 0 value
for this test case, because a change in the value of either one
would cause the value of the expression to change from O
to 1. Our strategies involve the selection of test cases that
demonstrate the meaningful impact of each literal occurrence
on each possible value of the formula.

To test an implementation of a given formula, test cases
have to be picked from n-dimensional Boolean space, where
n is the number of distinct variables in F'. Test cases generated
by our strategies fall into two general categories: true points

T All other literal occurrences except the one under examination have the
same values as during the original evaluation.

and false points. True points are those that cause the formula
to evaluate to 1. We denote the set of all true points by R.
False points are those that cause the formula to evaluate to 0.
We denote the set of all false points by R'.

We first consider true points. Letting p; denote the ith
product-term in the disjunctive normal form representation of
the formula F, the points of the input space that cause p; to
evaluate to 1 constitute the true points associated with p;. We
denote these points by R;. Since the sum-of-products form is
assumed to be irreducible, the true points associated with a
given term are not a subset of the true points associated with
any other term.

In the remainder of this section, we consider the Boolean
formula (a(b + &)d + €) to illustrate our terminology. This
formula can be represented in irreducible disjunctive nor-
mal form as abd + aéd + e. Note that abd represents four
minterms: abcde, abedé, abéde, and abede. Each of these
minterms can be represented by a five-digit binary number,
with a O representing a negated variable and a 1 repre-
senting a non-negated variable. Then these four minterms
can be represented as 10111,10110,10011,10010, respec-
tively, or, using decimal notation, 23, 22, 19, and 18. These
four points are the true points for abd. Similarly, the true
points for acd can be represented by 18, 19, 26, and 27,
and the true points for e can be represented by 1,3,5,
7,9,11,13,15,17,19, 21, 23, 25, 27, 29, and 31.

Note that the union of the sets of all the true points
of the product-terms of F is simply the set of true
points of F. The true points for our example formula
are therefore represented by the set {1,3,5,7,9,11,13,
15,17,18,19,21,22,23,25,26,27,29, and 31}. This is
just the minterm representation of the original formula
F = (a(b+&)d + e).

We distinguish between two types of true points for a given
term p; of F. The unique true points for the term p; are those
points that are in R;, but do not belong to any other R;. We
denote these points by U;. These points are of interest because
they demonstrate the meaningful impact of each literal of a
term on the evaluation of the formula to true. Each of the
strategies that we introduce in Section V, therefore, require
the selection of at least one point from the set of unique true
points associated with each term.

There is one unique true point for abd, namely, 22, be-
cause 18 and 19 are also true points for the term acd,
and 23 is a true point for e. There is also just one unique
true point for aéd: 26. For e, the unique true points are
1,3,5,7,9,11,13,15,17,21,25, 29, and 31.

The other type of true point is known as an overlapping true
point. We denote this set of points by O. O consists of those
points that are true points for at least two terms. Thus, the set
of true points for a formula can be viewed as consisting of

disjoint subsets Uy, - -, Up,, O. For our example, O consists
of the points 18, 19, 23, and 27.
We next define different types of false points.

The false points of F can be represented by the set

{0,2,4,6,8,10,12, 14, 16, 20, 24, 28, 30} for our example.
Let p; ; denote the product-term obtained by complementing

the jth literal of the product-term p;. For example, if p; is abd,



WEYUKER er al.: AUTOMATICALLY GENERATING TEST DATA

then p; 3 is abd. Let k; be the number of literals in term pi, and
let n be the number of distinct variables in the formula F. We
denote the set of true points for p; ; by D; ;. The number of
points in such a set is 2" ~%i, corresponding to all combinations
of the values of the (n — k;) variables missing in the product-
term p;, denoted p; 1, - -, pi k. Since the product-term p; has
k; literals, there are k; such sets associated with p;.

For example, consider again the formula abd+aéd+e, which
contains five variables: a,b,c,d, and e. The first product-
term p; = abd contains three literals a,b, and d, with
p11 = abd,p12 = abd, and p,s = abd. Each of the
associated sets contains 4 = 2°~3 points, corresponding to
the four possible combinations of truth value assignments
to ¢ and e. Dy contains the points 2,3,6, and 7. D;,
contains the points 26,27,30, and 31, and D, 3 contains
the points 16,17,20, -and 21. Similarly, D, contains the
points 2,3, 10, and 11, D; 5 contains 22,23,30, and 31, and
D33 contains 16,17,24, and 25. D3 ; consists of the points
0,2,4,6,8,10,12, 14, 16, 18, 20, 22, 24, 26, 28, and 30.

Notice that the points in D; ; are true points for p; ;, but
may be either true points or false points for the formula F.
In our example, D;; consists of two true points for F' (3
and 7) and two false points for F' (2 and 6). We now want
to select those points in D; ; that are false points for F. We
denote that set by N; ;. For our example, Ny,1 contains 2 and
6, Ny,2 contains 30, N; 3 contains 16 and 20, N3, contains
2 and 10, N3 contains 30, N2 3 contains 16 and 24, and
N31 =R ={0,2,4,6,8,10,12, 14, 16, 20, 24, 28, 30}.

For a given product-term, p;, the union of all the N; ;’s is
denoted by N;, and will be called the near false points for p;.
For our example, N; contains the points 2,6, 16, 20, and 30.

Finally,

N =UZ,N; = R (u;’;l Uk Di,j),

We will call N the set of near false points for F. For our exam-
ple formula, N = {0,2,4,6,8,10,12, 14, 16, 20, 24, 28, 30}.

The remaining false points for F are those false points that
are not in N. We denote this set by M. Informally, there are
false points that are close to true points (N), and those that
are not (M). For our example, M is empty.

III. THE BASIC STRATEGY

In this section, we present the intuition underlying the
basic meaningful impact strategy, and discuss several related
proposed strategics. We present examples to illustrate the
operation of the strategy, and finally a formal description of the
strategy for Boolean specifications in irreducible disjunctive
normal form.

The intuition underlying our approach is that given a
representation of a Boolean formula, a test set should be
chosen such that each literal occurrence in the representation
demonstrates its meaningful impact on the outcome, if that
is possible. Viewed another way, we argue that whenever
a test set exists that does not contain any test cases that
demonstrate the meaningful impact on the value of the formula
for a given literal occurrence, an unnegated literal can be
changed to a negated one, or a negated literal can be changed

355

to an unnegated one, without noticeable effect. Therefore, if
the implementation is wrong in this way, the fault would go
undetected. In a sense, this strategy is testing directly for one
particular type of fault that we call a Variable Negation Fault.

There have been several other testing approaches, used
in different settings, that use the same underlying approach.
The best known of these are the algorithms traditionally
used to detect so-called stuck-at-0 and stuck-at-1 faults in
combinational circuits. For that purpose, it is argued that it
is reasonable to restrict attention to this class of faults because
“most circuit failures fall into this class, and many other
failures exhibit symptomatically identical effects” [7, p. 219].

Unfortunately, we do not have this type of data for software.
One of the goals of our work, therefore, was to determine
empirically whether test sets that are designed explicitly to
guarantee the absence of variable negation faults will also
detect, with high probability, other classes of faults. We
examine that issue analytically in Section IV and empirically
in Section VI. '

In the software testing literature, Foster [3] proposed a
similar algorithm for testing logical expressions in decision
statements and assignment statements in implementations. His
work was directly motivated by the earlier hardware approach.
He argued that exhaustive testing is generally impractical and
practically unnecessary, provided that test cases are selected
that require “each variable value to individually affect the
result” [3, p. 120] and determine that the operator is correct.
His algorithm is completely deterministic, and represents one
possible way of resolving the nondeterminism in our basic
meaningful impact strategy. In particular, he suggested the
following rule for avoiding nondeterminism: Although gener-
ating a test case to demonstrate the meaningful impact of literal
£, assign 1 to all free variables in “and/nor” relationship with
£ and assign O to all free variables in “or/nand” relationship
with 4.

In [9], Tai proposed a related strategy for testing conditional
statements, provided that they contained only singular Boolean
expressions. These are expressions that contain at most one
occurrence of any variable. Very positive empirical results
are reported in that paper, but only for Boolean expressions
constrained in this way. In addition, the empirical evaluation
considered only expressions containing three or four variables
and did the assessment in terms of any other singular Boolean
expression containing the same set of variables. Although
the mutation scores reported in [9] are impressive, they are
tempered by the severe limitation to singular expressions,
and by the fact that arbitrary faults were included, with no
evaluation of whether they represent faults that might plausibly
be made.

We found that when we assessed our test generation strate-
gies by using arbitrary faults rather than simple faults (repre-
sented by mutation operators), we always had a 100% fault
detection rate. That is, when we randomly generated Boolean
formulas and viewed them as faulty implementations of a
given Boolean specification, all of our strategies detected all
of the inequivalent formulas. This is not surprising, because
it is as if programmers were told to implement a specification
knowing only the name and number of variables. Obviously,



356 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 5, MAY 1994

TABLE 1
TeST CONDITIONS REQUIRED FOR THE FORMULA ab(cd + e)

Direct Effect Test Condition
Row# | Of Literal | On Outcome [a[bTc[d Je
1 a 1 1|1 ecd+e=1
2 a [}] 0]l |cdte=1
3 b 1 11 ]ed+e=1
4 b 0 1]{0]|cdte=1
5 c 1 1]1f1]11}0
6 < 0 1]t1fJo]1]o
7 d 1 1fif1]17]0
8 d 0 1f111]0 |0
9 e 1 1]1[ed=0}1
10 e [ 1[1lad=0]0

the likelihood of implementing a correct program under such
circumstances would be very low, and because the program
would likely differ from the intended program in many places,
even small test sets would be likely to detect the presence of
some fault.

Our empirical results, reported in Section VI, are very en-
couraging and include Boolean formulas without the limitation
to singular formulas. In addition, our empirical studies used
substantially larger-size formulas than those considered by Tai.
Also, our study is fault-based and considers the effectiveness
of the strategies for detecting five particular classes of faults.

Others have recently reported using strategies that are re-
lated to those we describe here. For example, in [1], Chilenski
and Miller discuss the modified condition and/or decision
coverage criterion, which requires that “one must demonstrate
that the outcome of a decision changes as a result of changing
a single condition.” This is used as an adequacy criterion to
assess the comprehensiveness of a given test set. Gelperin [5]
independently proposed the unique cause strategy, which he
describes as being a “requirement-based strategy for choosing
an operationally effective subset” to test complex decision
logic.

In contrast to Foster’s strategy, Tai’s strategy, and the
modified condition and/or decision criterion, our algorithms
are explicitly designed to be used to automatically generate
test sets to test any proposed implementation of a given
Boolean specification, rather than to test a given individual
implementation. Thus, our perspective is different than the
above-cited work. In addition, we have defined six variants of
the basic meaningful impact strategy, and have implemented a
tool that automatically generates test sets for a given Boolean
formula specification by using each of these algorithms. In
our experimental assessment of the meaningful impact strategy
described in Section VI, we evaluated each strategy’s effec-
tiveness at detecting each of five distinct types of faults. These
faults represent all of the mutation faults that we considered
appropriate for programs that are implementations of this type
of specification. We next present an example to illustrate our
basic strategy.

Example: Consider the Boolean formula ab(cd + €). Table
I lists the test conditions required by the basic meaningful
impact strategy for testing an implementation of this formula.
Each row of the table describes the test condition to be satisfied
by a test case in order to guarantee that a literal occurrence has
meaningful impact on the specified outcome. For example, row
1 specifies that for a to have meaningful impact on outcome 1,

the test case should satisfy the following condition:
(a=1b=1cd+e=1).

For each such condition, the test set must contain at least one
test case that satisfies that condition.

Notice that several test conditions may be satisfied by a
single test case. For example, the test conditions in rows 5 and
7 are identical. Also, it is possible to choose a test case that
satisfies two or more different test conditions. For example,
the test case (¢ = 1,b = 1,¢ = 0,d = 1,e = 1) satisfies
the conditions of rows 1,3, and 9. Hence, the cardinality of a
test set that satisfies these test conditions can be less than the
number of test conditions themselves.

Notice, too, that the above strategy is not completely
deterministic, in the sense that it allows choice among test
cases that satisfy a specified condition. Thus, in row 1 of
Table I, any assignments to the variables ¢, d, and e that cause
the expression cd + e to evaluate to 1 is acceptable, and no
preference among the five such assignments is given.

Foster’s strategy resolves this nondeterminism by setting
¢ = 0and d = 0 to satisfy (¢d = 0) in row 9, because ¢
and d are in “or” relationship with e. Similarly, to enforce
(cd + e = 1) in row 1, Foster’s rule would set (c = 1,d =
1,e = 1), because they are in “and” relationship with a.
One problem with always using this algorithm to resolve the
nondeterminism is that it is possible that the test cases required
by Foster’s rule all evaluate correctly, whereas some other test
case that satisfies the test condition evaluates incorrectly and
would thereby expose the presence of a fault. For example,
if the specification was ab(cd + €), Foster would select the
test case (a = 1,b = 1,¢ = 1,d = 1,e = 1) to satisfy row
1 of Table L If the implementation was ab(cd + ce + de),
then this test case would cause both the specification and
the implementation to evaluate to 1. However, there are five
distinct test cases that satisfy the test condition. For one of
those test cases, (a = 1,6 = 1,¢ = 0,d = l,e = 1), the
specification evaluates to 1, and the implementation evaluates
to 0, thereby exposing the presence of the fault. By randomly
sampling the set of all test cases that satisfy a given condition,
it is possible that a much larger class of faults will be detected.

In addition, note that some test cases determined by using
Foster’s rule may be infeasible. For example, if variable ¢ rep-
resented the condition (height > 5) and variable e represented
the condition (height < 4), ¢ and e could not both be 1 in the
same test case. In such a situation, the test cases generated
by Foster’s rule for rows 1,2,3, and 4 would be infeasible,
because they would require both ¢ and e to be 1, whereas the
assignments (c=1,d =1, e=0) and (c =0, d=0,e=1)
satisfy the condition (cd + e = 1) and are both feasible. Thus,
some test cases that satisfy the requirements of the meaningful
impact strategy may be missed if Foster’s rule is applied, and it
is possible that an infeasible test case may be selected by using
the rule, even though a feasible one exists. We have included
Foster’s algorithm as a seventh way of generating test cases
by our tool, and include it in our empirical assessment.

It is interesting to note that when the basic meaningful
impact strategy is applied to textually different, but equivalent,
formulas, it may yield different sets of test cases. Because our



WEYUKER et al.: AUTOMATICALLY GENERATING TEST DATA

TABLE II
TesT CONDITIONS REQUIRED FOR THE FORMULA a1b;c1d) + azbae
Direct Effect Test Condition
Row# | Of Literal | On Outcome faJbJc[d e
1 a 1 [[1j{i[1[r]0
2 a 0 o1 1[1]é
3 b 1 1[i[1[1]0
4 [ 0 T[o{1|1]¢
5 a 1 ijijiJ1]e
6 o 0 1[1{0[1]0
7 d 1 Tj1[1[1]0
B d 0 1[1[1[0]0
9 a 1 1{1|cd=0]1
10 a; 0 0[1]¢] e |1
11 [ 1 11 ]ed=0]1
12 by 0 ijof[¢]e]1
13 e 1 1|1|ed=0]1
14 e 0 T[1{cd=0]0

tool is intended to be used to test any implementation of a
specification, we want the test sets selected by the tool to
be independent of the format of the specification. Therefore,
though the specification can be entered in any form, the tool
first converts the formula to disjunctive normal form, and
uses the resulting formula to generate test cases. Thus, for
the formula ab(cd + ¢) of the above example, the tool would
first convert it to abed + abe and generate test cases for the
selected variant of the basic meaningful impact strategy for
this disjunctive normal form representation of the formula.
Using subscripts to distinguish among literal occurrences, we
represent the formula a;bic1d; + agbze;. The test conditions
for the basic meaningful impact strategy for this representation
of the formula are shown in Table II. Note that the test set
associated with the disjunctive normal form representation
is somewhat different than that associated with the other
representation shown in Table I.

There was a second reason why we chose to have our
tool generate test cases from a disjunctive normal form rep-
resentation of a formula. As mentioned above, our original
motivation for addressing this problem was the availability of
a formal specification for TCAS II, a real aircraft collision
avoidance system. This specification was written in terms of
AND-OR tables, which is simply one way of representing
a disjunctive normal form formula. Thus, the specifiers and
those reading the specification parts were dealing with that
type of representation. In Section VI, we list all of the
specifications considered in our evaluation. They are generally
not in disjunctive normal form, because when we translated
them from the AND-OR table representation to the Boolean
formula representation, in many cases, a nondisjunctive normal
form representation was most natural. In addition, many of
the specifications that we considered contained macros that
we expanded. The inclusion of those expansions always led to
formulas that were not in disjunctive normal form.

The fact that our strategy and tool work on a disjunctive
normal form representation of the specification, which is not
necessarily the form that the specification was written in,
means that even though the strategy was expressly designed
to detect Variable Negation Faults, it may not detect all such
faults in the original version of the specification. Our empirical
results in Section VI indicate, however, that the strategies are,
in practice, extremely successful at detecting them (and most
of the other faults considered).

357

In the above example, we illustrated the basic strategy in
terms of test conditions. We now present the strategy by using
the notation introduced in Section II. When testing a Boolean
formula in irreducible disjunctive normal form, the following
test cases are required by the basic meaningful impact strategy.

1) Select one test point from each nonempty U; of F.
A point selected from U; demonstrates the meaningful
irhpact of each of the literals in product-term p; on the
1 outcome, because all product-terms other than p; will
evaluate to O for that point.

2) Select one test point from each N; ; of F'. A point picked
from N;; demonstrates the meaningful impact of the
literal I; ; on the 0 outcome, because, for such a point,
all other literals in the product-term p; evaluate to 1, and
all product-terms other than p; evaluate to 0.

The definition of the sets U; and N;; define fest con-
ditions that must be satisfied. Although our automatic test
case generation tool forms the sets U; and N; ;, and, when
necessary, O and M, and although it selects points from these
formally defined sets, when human testers use this approach,
it is frequently easier to work in terms of test conditions.
In fact, our original intuition was based on this perspective.
To illustrate the relationship between the two forms of the
definitions for selecting test cases, we present in Fig. 1 the
derived test conditions and all U;’s and NN; ;’s for the formula.

IV. THE FAULT DETECTION ABILITY OF THE BASIC STRATEGY

In this section, we analyze the fault detection ability of the
basic meaningful impact strategy when applied to a disjunctive
normal form representation of a given Boolean formula. We
also discuss the fault detection ability of the strategy when
applied to the canonical disjunctive normal form ‘of a given
Boolean formula. For that case, the strategy is completely
deterministic.

A. Faults Guaranteed to Be Detected

The following categories of incorrect implementations G
of a specification F' are guaranteed to be detected by the
basic meaningful impact testing strategy, and hence all of the
variants presented in Section V will also detect these types
of faults.

1) An implementation G that evaluates to 0 for every
point in at least one nonempty U; is guaranteed to be
recognized as faulty, because each set of unique true
points is sampled at least once. If no point in that
set evaluates to 1, then any point from that set would
cause the implementation to evaluate to 0 while the
specification indicates that it should evaluate to 1, and
hence the fault would be detected. For example, any test
set that satisfies test conditions C; through Cy in Fig.
1 for testing the formula F = ac + ab + &d, will detect
the incorrect implementation G = ab + ¢d, because G
is false for every point of the unique true set associated
with the term ac.

2) An implementation G that evaluates to 1 for every point
in some nonempty N; ; is guaranteed to be recognized



358

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 5, MAY 1994

Specification of Formula ac + ab + ©d Required Test Conditions for True Points:

Product Unique True Points
Term Represented by Required Test Conditions
Cond# |[a| b [c|d
p: ac | U abc = 14, 15 Cy 1|1 1]¢
pa: ab | Ux abcd =8 Cy 1[0 ]o]oO
ps: €d|Us: (a+b)ed=1,513 Cs ab=0]{0]1
Required Test Conditions for False Points:
Product D; ; Nij
Term Represented by Represented by Required Test Conditions
) Cond# [a]| b |c| d
p: ac | Dy ac=2,3,6,7 N ac=2,3,6,7 C, 0| ¢ |1]| ¢
, Dy3: 6€=89,12,13 | Nya: abt d=12 Cs 1{1{0] 0
p2: ab Dz_]t a5=0,1,2,3 Nyy: @ b(c+ d)=0,2,3 Cs o} o cd=0
D'z'zl ab=!2,13,14,l5 Naa: abe d=12 Cy 1 1 o]l o
b <3 cd D;‘l: cd=3,7,11,15 N;_l: acd=3,7 Cs 0 ¢ 1 1
Dya: ©€d=048,12 | N33: (@ +b)ed=04,12 Cop ab=0]0] 0
Example Test Set:
Test Case# | a | b | c | d | Decimal Rep | Test Conditions Satisfied
1 111]11}0 14 C
2 i{ofo]o 8 G
3 of1]of1 5 Cs
4 olof1]0 2 Cv,Cs
5 1{1]o]o 12 C5,C1,Co
6 ojojolo 0 Cy,Cs
7 ofof1]1 3 Cs,C4,Ce

Fig. 1. Example.

as faulty, because each N; ; contains points that should
cause F to evaluate to 0, and each N; ; is sampled at
least once. Whatever point of N; ; is selected, G' will
evaluate to 1, but F specifies that it should evaluate to
0. For example, any test set that satisfies test conditions
C, through Cj in Fig. 1 for testing the specification
F = ac+ab+cd will detect the incorrect implementation
G = ac + ab + &d + ac, because N; 1 = ac, and this is
the extra product-term of G. Hence, this fault would be
guaranteed to be detected.

B. Faults That Will Go Undetected

Any faulty implementation G of a specification F that
satisfies all three of the following conditions will not be
detected by the meaningful impact strategy. )

1) All of the unique true points associated with product-

terms of F cause G to evaluate to 1.
2) All near false points, N of F' cause G to evaluate to 0.
3) Either at least one point in the set of remaining false
points of F' causes G to evaluate to 1, or at least one
overlapping true point of F' causes G to evaluate to 0.

Conditions 1 and 2 guarantee that all of the sampled
points are correct, whereas condition 3 guarantees that some
unsampled set contains a point that fails. The basic strategy
does not sample either of the sets M or O. In Section V,
we introduce two enhanced strategies that do sample these
sets. For example, consider the specification S = ab and
an implementation I = ab + @b. The additional term @b in
the implementation evaluates to O for the only true point of

S, and for the two near false points of S. Therefore, a test
set generated by using the meaningful impact strategy would
not detect the incorrect implementation I. If, however, the
situation were reversed, with § = ab + ab and I = ab, the
fault would be detected by the strategy, because the unique true
point (a = 0,b = 1) for the second term of S must be selected,
and would incorrectly evaluate to O in the implementation.

C. Faults That May or May Not Be Detected

The following categories of incorrect implementations of
the formula F' may or may not be detected by the meaningful
impact strategy.

1) An implementation G that evaluates to 1 for some, but
not all, unique true points for a term of F'. Since points
are randomly selected from each Uj, the test generation
strategy may or may not select a point that exposes the
fault. For example, consider the test set used in Fig. 1
for testing ' = ac + ab+ &d. This test set will detect an
incorrect implementation G = abed + ab + ¢d, because
test case 1 evaluates to O instead of 1. If test case 1 were
instead (@ = 1,b =1,¢ = 1,d = 1), it would still satisfy
test condition C1, but would fail to detect the fault. This
is because this test case evaluates to 1 as specified.

An implementation G that evaluates to 1 for some, but
not all, near false points for a given term of F'. Again, the
problem is that because each N; ; is randomly sampled,
the test generation strategy may or may not select a point
that exposes the fault. For example, consider again the
test set used in Fig. 1 for testing F' = ac + ab + &d.

2




WEYUKER et al.: AUTOMATICALLY GENERATING TEST DATA

This test set will not detect the incorrect implementation
G = ac+ ab+ &d + abcd. Note that N3 ; of F contains
two points: 0011 and 0111. Test case 7 (a = 0,b =
0,c = 1,d = 1) happens to evaluate to 0 for G, and
thus does not expose the fault. If test case 7 were instead
(@ =0,b=1,c=1,d = 1), it would still satisfy test
condition Cg and would successfully detect the fault.

D. Discussion

A little reflection will help to illuminate these categories.
Essentially, they state that if the subdomains that are created
by dividing the domain into the subsets described in Section
II contain only points that evaluate correctly, but if there
are points in subsets that will not be sampled that evaluate
incorrectly, faults will definitely go undetected. If, on the
other hand, every element of a sampled subdomain causes a
failure, the associated fault is guaranteed to be exposed. If the
sampled subdomains contain both failure-causing inputs and
points that evaluate correctly, then the likelihood of detecting
a fault depends on the distribution of points in that subdomain.
We next show that if the test cases are generated by using the
canonical disjunctive normal form representation of formula
F, no probability analysis is required, because all faults are
either definitely detected or definitely missed.

E. Special Case: Canonical Disjunctive Normal Form

Recall that in the canonical disjunctive normal form of a
Boolean formula, all product-terms are minterms. If a product-
term p; in the sum-of-products form of a formula is a minterm,
its associated set of unique true points U; and sets D; ; each
contain only a single point. Therefore, each NV; ; contains at
most one point, because it is a subset of D; ;. As mentioned
above, because our basic test generation strategy requires the
selection of one point from each U; and one point from each
nonempty N; ;, the strategy is completely deterministic. For
this special case, therefore, the fault detection ability of the
test strategy is easy to describe.

The following categories of incorrect implementations of
the formula F' are guaranteed to be detected.

1) An implementation G that evaluates to O for some point
z in the true set of F' will be recognized as faulty,
because the specification indicates that it should evaluate
to 1.

2) An implementation G that evaluates to 1 for some near

false point of F' will be recognized as faulty, because
the specification indicates that it should evaluate to 0.

The following category of incorrect implementations of the
formula F' will not be detected.

An implementation G that evaluates to

1) 1 for all true points of F,

2) and O for all near false points of F,

3) and 1 for at least one false point of F.

Note that because the strategy is completely deterministic,
there can never be a situation in which it is uncertain whether
a fault will be detected. The fault detection ability of the
test set generated by using the canonical disjunctive normal

359

form is superior to that of test sets generated by using any
other irreducible sum-of-products representation. Of course,
this superior fault detection ability comes as a result of
additional test cases. In general, the number of test cases
generated by using the canonical disjunctive normal form of
a formula will be greater than or equal to that using any other
sum-of-products representation of that formula.

V. ENHANCING THE BASIC STRATEGY

With the above analysis in mind, we now introduce a
family of algorithms for automatically generating test cases
for implementations intended to satisfy specifications that are
Boolean formulas. Four of the strategies enhance the basic
meaningful impact strategy by increasing the number of test
cases selected from each set, and two of these strategies
also sample sets not sampled in the basic meaningful impact
strategy. In Section VI, we discuss our experience using these
strategies.

Of course, as the number of test cases required from each
such set increases, the total number of test cases required
by the strategy increases. Our empirical results presented in
Section VI show this tradeoff in terms of effectiveness gains
relative to cost.

In each case, when selecting points from a set, the selection
is done randomly by using a uniform distribution. In addition,
once a point is selected, it is removed from consideration from
all other sets. The first two variants essentially implement the
basic meaningful impact strategy. ONE is a straightforward
implementation of the strategy, and MIN attempts to optimize
the ONE strategy.

MIN: One point is selected from the set of unique true
points associated with each term, and the minimum set of
points needed to satisfy the basic meaningful impact strategy
are selected from the set of near false points for the formula.

ONE: One point is selected from the set of unique true
points associated with each term, and one point is selected
from each set of near false points NV; ;.

In the following variants of the meaningful impact strategy,
more than one point is selected from a given set. In most cases,
the number of points selected is determined by the size of the
set being sampled.

MANY-A: For a set of 2% unique true points associated
with a term, [X] points are selected from the set, and [X]
points are selected from each set of near false points, N; ;, of
size 2X. If X = 0 for some set, then one point is selected
from that set.

MANY-B: For a set of 2% unique true points associated
with a term, [X] points are selected from the set, and [X]
points are selected from each set of near false points, N; ; of
size 2. In addition, [X] points are selected from the set of
overlapping true points of size 2%, and [ X] points are selected
from the set of remaining false points of size 2%X. If X = 0
for some set, then one point is selected from that set.

MAX-A: Every point of the set of unique true points
associated with each term is selected, and every point from
each set of near false points, NV, ;, is selected.



360

. (@) (deF +deJ +de ) ac(d+e)h+a(d+e) +ble+f)
- (a((c+d+e)g+af +elf +g+h+1) +(a+b)(c+d+e)i) (ab) (cd) (ce) (de) (fg) (fh) (f) (gh) (hs)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 5, MAY 1994

.a(b+c)d+e
. a(b+ € +bc(fohi+ ghi) (falk+Gik))+f

. (2b+ab)(cd) (gh) ((ac + bd)e(fg + F b))
. (cd) (Efga(bc+ bd))
10. abcde f(g+ G(h+1)) (jk+ F1+m)

W00 =ML WD N

. (a(d + € +de(Fghi+ Ghi) (Folk+ gik))+ (fghi+ ghi) (Folk+ Gik)(b+cT +f)) (ab&+abc+abe)

. (@b+ad)(cd) (fTh + ok + F 7 R)(5k) ((ac + bd)e(f + (i(g5 + hE))))
. (@b+ab)(cd) (gh) (5k)((ac + bd)e(i + Gk + j(h + k)))

11. aB2({flg+ g (R +1) + flg+ g(h +i)d &) Gk + jIm)

12. aBE(f{g + G(h+9)) (7 +d) + R(jk+ jim)
13.a+b+c+cdefgh +i(j +k)!
14. ac(d + e)h +a(d+e)h +b(e + f)

15. e((c+d+e)g+af+c(f+g+h+i))+(a+bd)c+d+e)

16. a(d + @ +de(Fghi + ghi) (Fglk+ gik))+ (Fghi + ghi) (Folk+ Gik) (b+cm + f)

17. (ac + bd)e(f + (i(gi + hk))) _
18. (ac+bd)e(i + gk + 7 (h + E))
19. (ac + bd)e(fg + fh)

20. €fga(bec+ bd)

Fig. 2. Specifications.

MAX-B: Every point of the set of unique true points
associated with each term is selected, and every point from
each set of near false points, N; ;, is selected. In addition, [ X]
points are selected from the set of overlapping true points of
size 2%, and [ X points are selected from the set of remaining
false points of size 2%. If X = 0 for some set, then one point
is selected from that set.

VI. EMPIRICAL RESULTS

In this section, we consider the cost and effectiveness of
using the meaningful impact strategies. We selected 13 of the
larger transition specifications from the TCAS II specification.
They varied in size from 5 to 14 variables, with the average
containing 10 distinct variables. For each of these specifica-
tions, we checked to see whether there were any dependencies
among variables. For example, if a variable X represented
the altitude of an airplane being within a certain range, and
a different variable Y represented the fact that the airplane
was in some different, disjoint altitude range, then it would be
impossible for both of the variables to be true simultaneously.
A clause (XY) reflecting this fact would therefore be added
to the formula. Whenever such variable dependencies existed,
we represented the specifications in two ways: first adding
clauses to reflect these dependencies, and then ignoring the
dependencies. In seven of the specifications, we identified
variable dependencies, and thus had a set of 20 specifications
to work with. The 20 specifications are listed in Fig. 2.

Our tool automatically generated a test set to satisfy the
selected strategy for each of the 20 Boolean specifications and
for each of the seven strategies supported by our tool (six
variants of the basic meaningful impact strategy plus Foster’s
strategy). Table III shows the size of the generated test set,
represented as a percentage of the size of the exhaustive test
set for that specification. For example, specification 1 contains
seven variables, and hence exhaustive testing would require
27 = 128 test cases. Therefore, because the MIN strategy
generated 26 test cases for this formula, the entry in Table

IIT for this strategy and specification is 12—2% x 100 = 20.3.

TABLE III
PERCENTAGE OF EXHAUSTIVE TEST SET GENERATED
Spec No. | MIN | ONE | FOSTER | MANY-A | MANY-B | MAX-A [ MAX-B | No. of Vars

1 203 | 234 23.4 26.6 29.7 39.1 453 7
11.7 | 188 18.8 18.8 20.1 22.7 25.6 9

3 13 | 54 5.4 234 238 62.0 62.5 12
4 18.8 | 28.1 28.1 46.9 53.1 87.5 96.9 5
5 33 | 64 6.4 145 16.0 69.7 87.3 9
6 22 | 29 2.9 46 438 6.3 6.8 11
7 25 | 64 6.4 13.6 14.3 203 | 221 10
8 125 | 223 223 313 33.2 4338 49.2 8
9 125 | 125 12.5 125 15.6 125 20.3 7
10 05 | 11 11 2.1 2.2 2.9 3.2 13
11 06 | 22 2.2 77 8.0 22.9 253 13
12 01 | 04 0.4 24 2.5 24.7 25.6 14
13 03 | 05 0.5 3.0 33 415 41.8 12
14 86 | 17.2 172 48.4 54.7 711 89.1 7
15 2.7 | 84 84 28.9 311 58.0 93.0 9
16 08 | 31 3.1 15.6 16.1 4738 48.5 12
17 06 | 19 1.9 9.5 101 46.2 49.6 11
18 13 | 45 45 19.0 20.3 482 56.6 10
19 63 | 188 188 46.5 496 672 89.1 B
20 9.4 | 109 10.9 109 133 178 26.6 7
avg 58 | 98 9.8 19.3 21.1 40.6 482 10

Similarly, the entry for specification 12 for the MIN strategy
is 12357 X 100 = 0.1. The other entries are computed similarly.
An average ratio for each strategy is also shown in the table.
These ranged from an average of 5.8% for the MIN strategy,
to an average of 48.2% for MAX-B. We argue, in this case,
that it is meaningful to assess the cost solely on the basis
of the number of test cases generated, because all test case
generation was done automatically. In general, the more test
cases generated, the more time it takes to generate them and
run them.

We also examined the effectiveness of each of the strategies
as assessed in terms of their mutation scores. We considered
five mutation operators, all those we considered applicable to
a Boolean formula. The following are the five operators.

1) Variable Negation Fault (VNF): Replace one occurrence
of a variable by its negation.

2) Expression Negation Fault (ENF): Replace an expres-
sion by its negation.

3) Variable Reference Fault (VRF): Replace one occurrence
of a variable by another, or by a constant.



WEYUKER et al.: AUTOMATICALLY GENERATING TEST DATA

TABLE IV
MUTATION SCORES FOR MEANINGFUL IMPACT STRATEGIES

361

TABLE VI
AVERAGES

Spec. No. [ MIN [ ONE | FOSTER | MANY-A | MANY-B | MAX-A | MAX-B MIN | ONE | FOSTER | MANY-A | MANY-B | MAX-A | MAX-B
1 100.0 | 1000 | 1000 100.0 100.0 1000 | 1000 Mut Scores - D.E. T.S. | 97.9 | 989 | 989 99.5 99.7 99.7 99.7
2 998 | 98 | 998 99.3 100.0 99.8 100.0 Maut Scores - Ran T.5. | 42.7 | 613 | 613 794 80.7 86.7 87.1
3 97.8 | 1000 | 100.0 100.0 100.0 1000 | 1000 Pcig Ex T.S. 58 | 98 9.3 193 21.1 40.6 482
4 100.0 [ 100.0 | 100.0 100.0 100.0 1000 | 1000
5 98.4 | 1000 | 1000 100.0 100.0 1000 | 1000
3 92.7 | 949 | 949 92.7 95.4 95.4 95.4
7 976 | 976 97.6 97.9 97.9 97.9 97.9 TABLE VII
8 1000 [ 100.0 | 1000 100.0 100.0 100.0_| 1000
o 1000 1060 T 1000 %50 1000 o0 | 1000 PERCENTAGES OF EXHAUSTIVE TEST SET GENERATED BY RANGES
10 100.0 | 100.0 | 100.0 100.0 100.0 1000 | 1000 No. of Vars | MIN | ONE | FOSTER | MANY-A | MANY-B | MAX-A | MAX-B
11 982 | 994 | 994 100.0 100.0 1000 | 1000 58 126 | 190 150 319 356 185 59.5
12 96.5 | 97.7 97.7 100.0 100.0 100.0 100.0 911 35 7.0 7.0 15.5 16.7 38.8 48.7
13 95.0 | 975 97.5 100.0 100.0 100.0 | 100.0 1214 o6 1 21 31 9.0 93 336 345
14 94.7 | 97.7 97.7 100.0 100.0 100.0 100.0
15 946 | 950 | 950 100.0 100.0 1000 | 1000
16 92.8 | 99.5 99.5 100.0 100.0 100.0 100.0
17 994 | 994 994 100.0 100.0 1000 | 1000 TABLE VIII
18 100.0 | 100.0 100.0 100.0 100.0 100.0 100.0
m 100671000 1000 1000 1000 1000 | 1000 MUTATION SCORES BY TEST STRATEGY FOR VARIABLE NEGATION FAuLTS (VNF)
20 1000 | 1000 | 100.0 100.0 100.0 1000 | 1000 Spec. No. [ Ineq Muts | MIN | ONE | FOSTER | MANY-A | MANY-B | MAX-A | MAX-B
avg 979 | 989 98.9 99.5 99.7 99.7 99.7 6 25 92.0 | 96.0 96.0 92.0 96.0 96.0 96.0

15 18 94.4 94.4 94.4 100.0 100.0 100.0 100.0
others 546 | 100.0 | 1000 | 1000 100.0 100.0 1000 | 100.0
avg 99.3 99.5 99.5 99.6 99.8 99.8 99.8
TABLE V
MUTATION SCORES FOR SiZE-EQUIVALENT RANDOM TEST SETS

Spec. No. | MIN [ ONE | FOSTER | MANY-A | MANY-B | MAX-A | MAX-B TABLE IX
! 862 | 866 | 866 989 98.9 1000 | 100.0 MUTATION SCORES BY TEST STRATEGY FOR EXPRESSION NEGATION FAULTS (ENF)
2 30.7 | 48.7 48.7 48.7 59.2 59.6 59.6
3 54.4 | 708 70.8 95.1 95.1 98.2 98.2 [ Spec. No. [ Ineq Muts | MIN | ONE | FOSTER | MANY-A | MANY-B | MAX-A [ MAX-B
4 46.7 | 556 | 556 64.4 64.4 91.1 100.0 I an 445 ] 10001000 1000 | 1000 | 1000 | 1000 | 1000 J
5 336 | 488 | 488 72.3 73.0 97.3 97.3 j
6 121 [ 121 12.1 14.2 223 253 25.3
7 30.6 | 58.1 58.1 83.8 84.2 84.2 84.2
8 768 | 9.7 | 9.7 98.6 98.6 99.1 99.5 TABLE X
9 94.5 | 94.5 94.5 94.5 94.5 94.5 94.5
m 36 51 31 162 6o 245 515 MUTATION SCORES BY TEST STRATEGY FOR VARIABLE REFERENCE FAULTS (VRF)
1 289 | 634 63.4 94.2 94.2 96.0 96.0 Spec. No. | Ineq Muts | MIN | ONE | FOSTER | MANY-A | MANY-B | MAX-A | MAX-B
12 15.1 | 36.7 36.7 84.6 84.6 100.0 100.0 E) 584 973 | 1000 | 1000 1000 100.0 100.0 100.0
13 30.7 | 312 312 827 82.7 100.0 100.0 5 191 97.9 [ 100.0 | 100.0 100.0 100.0 100.0 100.0
14 47.7 | 758 75.8 94.7 100.0 100.0 100.0 6 281 91.8 | 940 94.0 91.8 94.7 94.7 94.7
15 248 | 757 75.7 97.3 97.3 100.0 100.0 7 221 %68 | 968 %28 973 973 97.3 97.3
16 397 | 673 | 67.3 9.3 98.3 98.3 98.3 11 261 931 | 996 | 996 100.0 100.0 100.0_ | 100.0
17 23| 713, 713 95.3 9.3 1000 | 100.0 12 252 96.0 | 97.6 97.6 100.0 100.0 1000 | 1000
18 266 | 703 703 9.2 9.2 1000 | 1000 13 163 93.9 | 96.9 96.9 100.0 100.0 1000 | 1000
19 87.5 | 964 96.4 100.0 100.0 100.0 100.0 14 93 925 | 96.8 96.8 100.0 100.0 100.0 100.0
20 573 | 573 | 573 57.3 58.4 652 65.2 15 162 938 | 944 944 100.0 100.0 1000 | 1000

avg 42.7 | 613 61.3 79.4 80.7 86.7 87.1 16 472 90.9 99.4 99.4 100.0 100.0 100.0 100.0
17 132 99.2 99.2 99.2 100.0 100.0 100.0 100.0

others 30-472 | 100.0 | 1000 | 100.0 100.0 100.0 1000 | 1000

avg 974 | 98.7 98.7 99.5 99.6 99.6 99.6

4) Operator Reference Fault (ORF): Replace one Boolean
operator with another.

5) Associative Shift Fault (ASF): Change the associativity
of terms. Thus, for example, replace A(B + C) with
(AB) + C.

Table IV shows the mutation score for each strategy and
each specification, as well as the average mutation score for
each strategy. In each case, all mutants of type VNF, ENF,
VRF, ORF, and ASF were included in the analysis. The
lowest mutation score encountered for any strategy and any
specification was 92.7. The averages ranged from a low of 97.9
for the MIN strategy to a high of 99.7. Thus, on average, all
of the meaningful impact strategy variants did extremely well.

Because these results were so encouraging, we decided to
compare the mutation scores obtained by the various mean-
ingful impact strategies to the mutation scores obtained by
randomly selected test sets of exactly the same size. In Table
V, we present the results for randomly generated test sets. The
columns are labeled with meaningful impact strategy variant
names in order to indicate the size of the test set. Thus, the
column labeled MIN in Table V shows the mutation score of

a randomly generated test set of size equal to that of the set
generated by our tool to satisfy the MIN strategy.

Table VI directly compares the average mutation scores of
each variant of the meaningful impact strategy to the average
scores of random test sets of equal size. The table’s third row
shows the average size of the meaningful impact and random
test sets as a percentage of the size of the exhaustive test
set. In all cases, the meaningful impact strategies, on average,
performed significantly better than random testing, with the
greatest benefit realized for the less demanding variants. This
is as expected, because the less demanding strategies required
the smallest test sets.

In general, the more variables there are in a specification,
the smaller is the ratio of the meaningful impact test set size to
the exhaustive test set size. Table VII shows the average ratio
for each strategy for three groupings of specifications based
on the number of variables in the specification.

Tables VIII through XII show the mutation score, by muta-
tion type, for each specification and each strategy. In most
cases, the mutation score for all strategies was 100, and



362 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 5, MAY 1994

TABLE XI
MUTATION SCORES BY TEST STRATEGY FOR OPERATOR REFERENCE FAuLTS (ORF)

Spec. No. | Ineq Muts | MIN | ONE | FOSTER | MANY-A | MANY-B | MAX-A | MAX-B

6 7 926 | %63 | 963 926 9.3 96.3 9.3

others 12-121 | 100.0 | 1000 | 100.0 100.0 1000 | 1000 [ 1000

avg 996 | 998 [ 998 99.6 99.8 99.8 99.8
TABLE XII

MUTATION SCORES BY TEST STRATEGY FOR ASSOCIATIVE SHIFT FAULTS (ASF)

twenty specifications taken from the specification for a real air-
craft collision avoidance system (TCAS II). We used mutation
analysis for this portion of the assessment. Selected mutation
operators represented all relevant “simple faults” that we
identified. Assessed in this way, all of the meaningful impact
strategies did very well, ranging from a low average mutation
score of 97.9 for MIN to a high average mutation score of 99.7.

To evaluate the effect of the test set size on these results,
we also used random selection to generate test sets of exactly
the same size as those generated by each of the meaningful
impact strategies for each of the specifications, and computed
the mutation scores for these random test sets. They ranged

Spec. No. | Ineq Muts | MIN [ ONE | FOSTER { MANY-A | MANY-B MAX-A [ MAX-B
2 9 88.9 | 839 88.9 88.9 100.0 88.9 100.0
11 9 88.9 | 889 88.9 100.0 100.0 100.0 100.0
12 10 900 | 90.0 90.0 100.0 100.0 100.0 100.0
15 8 875 | 87.5 87.5 100.0 100.0 100.0 100.0
others 2-19 100.0 | 100.0 100.0 100.0 100.0 100.0 100.0
avg 97.8 | 97.8 97.8 99.4 100.0 99.4 100.0

these are listed as “others” or “all” in the tables. We include
the number of inequivalent mutants of each type for each
specification. When a number of specifications have been
grouped together because all of their mutation scores were 100,
we indicate the range of the number of inequivalent mutants
for the specifications in that group. We also show the average
mutation score for each strategy for each of the five fault types.

It was not surprising that all of the strategies were very good
at detecting Variable Negation Faults (VNF), because the basic
strategy was designed explicitly to detect this type of fault. In
fact, the reason why they did not detect all such faults is
that our tool converts the specification into disjunctive normal
form and applies the algorithms to that form, rather than the
original input version. The mutation analyzer, in contrast, is
applied to the originally input form, and thus there may be
minor differences between the VNF’s of the two forms. The
success of the strategies at detecting the other faults is more
interesting, and extremely encouraging.

Each of the considered mutation operators represented one
simple typical fault that might plausibly be introduced during
implementation. We hypothesized that those types of faults
were in fact relatively difficult to detect, because relatively
few points would typically be affected by such a fault. We
therefore also generated 500 random Boolean formulas con-
taining exactly the same variables as each of the specifications
considered above. In every case, each of the meaningful impact
strategy variants obtained a fault detection rate of 100%.
That is, the ratio of the number of these randomly generated
Boolean formulas that were distinguished from the specifica-
tion to the total number of inequivalent generated formulas was
always 1. As mentioned in Section III, this did not surprise
us, because such a randomly generated formula would be very
likely to differ substantially from the specification, and the
more places that two functions differ, the easier it generally is
to detect the presence of these faults.

VII. CONCLUSION

We have presented a formal description of the meaningful
impact strategy for testing implementations of Boolean for-
mulas and have analyzed the fault detection ability for both
the disjunctive normal form and canonical disjunctive normal
form representations of a Boolean formula. We also examined
the effectiveness of our strategies empirically, using a set of

from the low average of 42.7 for the random test sets of
size equal to MIN test sets, to a high average of 87.1 for
the random test sets of size equal to MAX-B test sets. Thus,
we saw significant benefit in using any of the variants of the
meaningful impact strategy as compared to random testing.

We also examined the cost of the criteria assessed in
terms of the number of test cases required by each strategy,
and compared these suites to exhaustive test sets. The MIN
strategy required the smallest number of test cases, averaging
5.8% of the size of an exhaustive test set. The most costly
strategy was MAX-B, which required, on average, test
sets that were 48.2% of the size of an exhaustive test set.
For larger formulas, these percentages were even smaller.
For example, in our sample, formulas containing 12 to 14
variables averaged only 0.6% of an exhaustive test set for the
MIN strategy, whereas MAX-B test sets averaged 34.5%.
FOSTER is one deterministic instance of the ONE strategy,
and had the same performance as ONE.

We concluded that all of the meaningful impact strate-
gies were extremely effective. The MANY-A and MANY-B
strategies represented particularly attractive choices for safety-
critical systems like TCAS I, because they are both relatively
cheap and highly effective. The average test set sizes were,
respectively, 19% and 21% of an exhaustive test set, with
average detection rates of 99.5% and 99.7%, respectively. For
the largest formulas we considered (containing 13 and 14 vari-
ables), the average test set size was only 4% of an exhaustive
test set, whereas the effectiveness was 100% for both MANY-
A and MANY-B. The decrease in the relative size of the test
set compared to the size of an exhaustive test set as the number
of variables grows is particularly important for large formulas.
An exhaustive test set for a formula containing 13 variables
contains 8192 points, but 4% of that is 328, a manageable
number, particularly because these test cases are automatically
generated. An exhaustive test set for a formulas containing 14
variables contains 16 384 points, but 4% of that is 655.

We look forward to continuing our experimentation with
these strategies. Our preliminary results indicate that this
is worth pursuing. We expect to symbolize additional por-
tions of the TCAS II specification and investigate the cost
and effectiveness results for a much larger set of formulas.
We are also interested in finding other specifications that
can be represented as Boolean formulas. We are currently
looking for such examples among specifications for commer-
cial transaction processing software, avionics software, and
telecommunications software.




WEYUKER et al.: AUTOMATICALLY GENERATING TEST DATA

REFERENCES

[1] J.J. Chilenski and S.P. Miller, “Applicability of modified condi-
tion/decision coverage to software testing,” Software Eng. J., submitted
for publication.

[2] R.A. DeMillo, R.J. Lipton, and F.G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Comput., Apr. 1978,
pp. 34-41.

31 K. A. Foster, “Sensitive test data for logic expressions,” ACM SIGSOFT

Software Eng. Notes, vol. 9, no. 2, pp. 120-126, Apr. 1984.

P.G. Frankl and E.J. Weyuker, “A formal analysis of the fault-detecting

ability of testing methods,” IEEE Trans. Software Eng., vol. 19, pp.

202-213, Mar. 1993.

[5] D. Gelperin, “Partial testing of complex decision logic,” in preparation.

[6] R. Hamlet, “Theoretical comparison of testing methods,” in Proc. 3rd
Symp. Testing, Analysis, and Verification, 1989, pp. 28-37.

[7] Z.Kohavi, Switching and Finite Automata Theory, 2nd ed. New York:
McGraw-Hill, 1978.

{81 N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and J.D. Reese,
“Requirements specification for process-control systems,” Tech. Rep.
92-106, Dept. of Inform. and Comput. Sci., Univ. of Cal., Irvine, Nov.
1992.

9] K. C. Tai, “Condition-based software testing strategies,” Proc. Compsac

90, 14th Ann. Int. Comput. Software & Applic. Conf., Oct. 1990, pp.

564-569.

S. N. Weiss, “What to Compare When Comparing Test Data Adequacy

Criteria,” Software Eng. Notes, vol. 14, pp. 42-49, Oct. 1989.

E.J. Weyuker, “Can we measure software testing effectiveness,” Proc.

IEEE-CS Int. Software Metrics Symp., May 1993, pp. 100-107.

E.J. Weyuker, S.N. Weiss, and R. Hamlet, “Comparison of program

testing strategies,” in Proc. 4th Symp. Software Testing, Analysis and

Verification (TAV4), 1991, pp. 1-10.

4

fa}

{10}

(1]
[12]

E. Weyuker received the M.S.E. degree from the
Moore School of Electrical Engineering, University
of Pennsylvania, and the Ph.D. degree in computer
science from Rutgers University.

She is currently a member of the technical staff
in the Software and Systems Research Center at
AT&T Bell Laboratories at Murray Hill, NJ, and
a Professor of Computer Science at the Courant
Institute of Mathematical Sciences of New York
University (NYU), New York, NY, where she has
been on the faculty since 1977. Before coming to
NYU, she was on the faculty of the City University of New York, was
a systems engineer for IBM, and was a programmer for Texaco, Inc. Her
research interests are in software engineering, particularly software testing
and reliability, and software complexity measures, and has published many
papers in those areas. She is also interested in the theory of computation, and
is the author of a book (with Martin Davis and Ron Sigal), Computability,
Complexity, and Languages. published by Academic Press. She spends a large
portion of her nonworking time working with elementary school-age children.
She is particularly eager to encourage young girls to become interested in
science, and, for this reason, is a volunteer scientist for the Science by Mail
program. She also regularly teaches hands-on science to first graders ina
local public school.

She is currently a member of the Executive Committee of the IEEE
Computer Society Technical Committee on Software Engineering, and is a
member of the Editorial Board of ACM Transactions on Software Engineering
and Methodology (TOSEM). She is also a member of the ACM Committee
on the Status of Women and Minorities, and a former member of the CRA
Committee on the Status of Women. She was Secretary/Treasurer of ACM
SIGSOFT and has been an ACM National Lecturer.

363

T. Goradia received the B.Tech. degree in computer
science from Indian Institute of Technology, Bom-
bay, in 1984, the M.S. degree in computer science
from the University of Wisconsin at Madison in
1985, and the Ph.D. degree in computer science
from New York University in 1993.

He was a research engineer at Honeywell Corpo-
rate Systems Development Division in Minneapolis
from 1986 to 1989. Since 1991, he has been a
member of technical staff at Siemens Coporate
Research, Inc. in Princeton, NJI.

His research interests include program and execution analyses, software
testing and debugging, and design for testability.

A. Singh received the B.E. degree (with honors) from Birla Institute of
Technology and Science, Pilani, India, in 1982.

He is currently working on the M.S. degree in computer science at New
York University, New York, NY. Since 1991, he has been with Investment
Support Systems, Inc, where his interests are object-oriented programming
languages and OODBS.




