CSC509-Previous éérs Rge 1

Foundational Spec-Based in Testing Tools and Techniques

I. The tools and techniques in these notesatwenty years old.

A. They are never-the-less quite valid today.

B. Production-qualityools for specification-based test generation lag very far behind the research.

1. Thereare a number or reasons for this, relating to economics and lack of wide-spread acceptance by soft-

ware developers.
2. Whenthe proper tools do finally catch on, there may well be a breakthrough in this area.
3. Inthe meantime, the promise of specification-based test case generation is not yet fulfilled.

Specification-Based Testing with ADL

Introduction to ADL

A. ADL is a C-basedssertion Definition Language.

B

. ADL specs are predicaé (Lst order) just lie the other model-based spec languages including JML

C. Two forms oftest conditions can be devied from ADL specs:

1. Call-state test conditions are dened directly from preconditions
2. return-state test conditions are denved directly from preconditions

Some terminology

A.

mom

G

ADLT -- The ADL Translator that provides automated support for testing C programs

B. Testdriver -- C program generated by ADlgiven ADL program specification and ADL test data description
C.
D

T -- specification ceerage tool that deres test conditions from an ADL specification

. Coverage condition functions -- C functions that determine whether gedi test conditions are satisfied by
some data.

. Function under test -- the C function for which tests are generated aedwged.

Test program executable -- the compiled and linked set of testwdrj coverage functions, and function under
test.

. Sedrigure 1 on page 63 of the ADL paper.

. Summary of ADL
A.
B.

ADL specification consists ofiodules containingconstituents
Thereare three types of constituents:

1. types

2. objects

3. functions

. Functiongontainsemantic descriptions of two forms:

1. Bindings (aka, macros or "let" expressions)
2. Assertions (aka, pre and postconditions)

Two huilt-in bindings areexcept i on andnor nal
1. Theexpression bound texcept i on defines the condition(s) under which the function fails

CSC509-Previous éérs Rge 2

2. Theexpression bound toor mal defines the condition(s) under which the function succeeds.
3. Theseare efectively the same as the "normal bglm" and "exceptional behavior" clauses of a JML
spec.
E. Assertiorexpressions refer to wvdates:
1. Thecall state (expressions surrounded by the "@" operator)
2. Thereturn state.

V. ADL compared to Java-based specification languages, such as JML

A. Heres a omparison table

ADL Construct Java/JML Construct

module .h file

type constituent class (type) definition

object constituent var or const declaration

function constituent method declaration

binding not available in JML; can be done with\laconst declaration
assertion andd dause in postcondition

exception precondition corverted precondition (see below)
@ (call-state operator) \old
--> (implication) ==>

B. Oncorverted preconditions (in C/C++ notation)
1. Uncowerted:
voi d Append(List* I, Elent e)
/*
* pre: !'(l->Find(e))
* post: |->Find(e)
*/
2. Corverted
int Append(List* |, Elent e)
/*
* pre:
* post: !'(l->Find(e))
* ? (return == -1)
* : (I->Find(e) &% (return == 1))
*/

C. The"@" notation in ADL

1. InADL, the "@" operator surrounds an entis@ression to indicate that it should belaated in the call-
ing state, i.e, with input values of the variables in the expression;

2. In mary publications on predicate gecification, this effect is accomplished by using the prime (")
notation, where unprimed variables/banput values and primed variables@autput values.

3. InJML, the\ ol d operator is equalent to ADL @

VI. Details of ADL test conditions

A. Themain point of ADL tool is the automatic deation of test conditions from ADL specifications.

CSC509-Previous éérs Rge 3

B. A call-statetest condition is evaluable in calling environment

1. Theseconditions are surrounded by the "@" operator.
2. The are expressions containing input-only values (no pointers, arrays, function calls or global vars).

C. ADL uses condition generation rules from the following (selectable?) strategies:

1

2
3
4

. Multi-condition(what’s shown in ADL paper)

. Meaningfulimpact (an impreed test selection strategy)

. Boundary-alue (shown in ADL paper)

. Domain-specifi¢planned research that wasreefully implemented in ADL)

VII. Details of multi-condition test condition generation

A. Test conditions must be generated thar@se both branches of conditional tests, for all truth values of the
conditional expressions.

B. C

onsidetthe conditional expressian|| b.
1. Thetruth table for this expression is
a b allb
0 O 0
0 1 1
1 0 1
1 1 1

. Anannotated flow graph irvolving this conditional is the following:

a== false, b==true a== false, b== false
coveredbya::true<gzzgﬂgzgzzI?ﬂjsee I

<l
-

. Basedn the truth table and flograph, the multi-condition test cases &f b are: {a=="false, b==true},

{a==true}, and {a==false, b==false}.
Thisinformation can be combined irtraith and condition table:

test
condition
0 a==0, b==0
1 a==0, b==1
1 a==1
1 covered by a==1

allb

b
0
1
0
1

PP, OOl Y

C. Notethat in the ADL pape{a==0} is denoted {a} and {a==1} is denoted &} .
D. By similar analysis, the truth and condition tablesafer b anda && b as follows:

CSC509-Previous éérs Rge 4

test

a b a->b condition
0O O 1 a==
0 1 1 covered by a==0
1 0 0 a==1, b==0
1 1 1 a==1, b==1
a b a&&hb te.st.

condition
0O O 0 ==0
0 1 0 covered by a==0
1 0 0 a==1, b==0
1 1 1 ==1, b==1

E. Notethat in particular test generation contexts, we will constrain the value of expressions to be true or false.
1. Insuch contexts, only the conditions applicable to the constrained outcome must be generated.

2. E.g.,if we constrained the value af|| b to be true, we would only need to generate only tleecndi-
tions {a==0, b==1} and {a==1}.
3. If a]| bwere constrained to be false, then only the single condiier @, b==0} would be generated.

VIII. Details of boundary-value condition generation
A. Considetthe expressiofx < 0) || (x> 10).
B. Hereis its truth and condition table

test test
x<0 | x>10 | (x<0) [l (x> 10)‘ condition | data
0 0 0 I(x<0)&&!(x>10) | x=5
0 1 1 x>10 x=11
1 0 1 x<0 x=-1
1 1 --- impossible ----

C. Inthis example, the boundary value strategy pickedl@aevjust belw the constant operand of the relational
expression, and in the middle of the range expression.

IX. Details of the ADL approach
A. Parse the specs

B. Definea boolean-alued inherited attrilte on each node that constrains the value of the subexpressian belo
to be true or false, per the requirements of the test-condition generation strategy.

C. Traverse the parse trees to generate test conditions
1. Call-stateconditions are generated only for subtrees that contain call-stiuealde expressions.
2. Return-stateonditions are generated for all subtrees.

D. Consideexamples on page 66 of ADL paper.

X. Detailed walk-through of the ADL paper example
A. Perusegage 3.

CSC509-Previous éérs Rge 5

1. Noteuse of disjunctie rormal forms (i.e., boolean expression clauses adstagether).
2. E.g.,second disjoin of then-clause of Assertion 3.

B. Seeparse tree notes on paper.

C. Afterparse subexpr parse trees are gen'd

1. Combinethe precondition exprs with each of the 3 multi-condition-generated post-condifics) the
obtain 3 basic test conds for assertion 3.

XI. Some comments on the ADL methodology

A. | think that pre- and post-conds are a little more inteiito deal with than the "calling” an "returning” con-
texts ideas; the "@" notation seems particularly confusing compared to the more traditional """ notation.

B. By defining preconditionsxglicitly, the potentially confusing notion of "call-statealkiable” goes aay,
since the set preconditions is exactly the set of call-stalgadle conditions.

XIl. Extending ADL to work with object-oriented constructs and quantifier logic
A. Thisis the work of on-going research

B. Itinvolves additions to the ADL C grammand updates to the test case generation algorithm.

The Meaningful Impact Strategy
for Automaticall y Generating Test Data
from a Boolean Specification

XIll. Introduction

A. Motivation for and intuition behind the strategy
1. Inthe multi-condition testing strategy empéal by ADL and other comparable tools, the number of test
cases is exponential on the number of input/output variables.
2. Specificallyfor a function withn variables, there ar@” test cases in arxBaustie pecification-based test
plan.

3. Thepoint of the meaningful impact strategy is to reduce the number of test cases by considering the
impact of specific variables in specific test cases

4. To be pecise, a boolean term in a test case formula is said/émnfeaningful impact if changing the truth
value of the term changes the value of the formula.

B. Weyuker et al. hee huilt a tool that lile ADL, automatically generates test cases from boolean specifications.
1. Intheir case, theemploy the meaningful impact strategy rather than the multi-condition strategy.
2. They test the effectieness of their approach, and shempirically good results.

C. How they demonstrate their results

1. They generate test data for the well-known, real-world specification of TCAS (#iiécicontrol and Col-
lision Avoidance System).

2. They compare the size of their test plans to the sizexbhastve nulti-condition test plans for the same
spec

3. Theevduate the effectieness of their specification usingitation testing.
a. Aprogram under test is first tested as written.

b. Then the program iswutated by systematically introducing syntax errors that should change the out-
put of the program.

CSC509-Previous éérs Rge 6

c. If the generated test cases can distinguish the mutant output from the original output, then the test
cases are successful.

d. Owrall, the meaningful result strategy showed vawrfible results when subjected to mutation anal-
ysis.

XIV. Definitions
A. Notation

1. Infix’+’ means booleaar, eg.,a+ b
2. term concatenation meansand, e.qg.,ab
3. Overbar means not, e.ga
B. Definition: Digunctive hormal form
1. All terms of boolean expression andidddgether.
2. E.g.for the formulaa(bc+d), the disjunctie rormal form isabc+ad.
C. Definition:Canonical digjunctive normal form
1. Eachterm in a disjunctie rormal form formula contains all variables.
2. E.g.,for the preceding formula, the canonical disjuwretiormal form is
abd + abed + abed + abed + abed

D. Definition: Meaningful impact

1. Aliteral in a boolean formula ke meaningful impact if, eerything else being the same, a different truth
value assignment to that literal will result in a different value for the formula.

2. E.g.,consider the formuléab + ac) and the test case {a=0, b=1, c=0}.
a. Thistest case causes the formulaveeate to 0.

b. Question: Does the value assigned to the first occurrenee .ef,a;, havemeaningful impact on the
value O for the test case?

c. Answer:Yes, since changing the assignmen&pfo 1 will change the value of the formula for the test
case to 1.

d. Onthe other hand, the test case does not demonstrate &)abr ¢ have meaningful input on the fer
mula value of 0.

E. Definition:True points
1. Theset of test cases that cause a formula to be true are caltedetheints.
2. Thesubset of true points that demonstrate meaningful impact are caitge true points.
3. Complementargefinitions exist fofal se points andunique false points.

XV. The basic strategy

A. Theintuition here is that if a term has no meaningful impact on a pre or postcondition, thenetyigdik
have ro meaningful impact on the outcome of the function under test.
B. Incircuit testing, the "stack-at-1" testing strategy is essentially the same as meaningful impact is here.

1. Inhardware, there are theoretical and empirical data to validate the assumption that stuck-at assumption is
reasonable.

2. PRart of the contribution of this paper are empirical data that shig for software.

C. Asa moncrete example, of the basic stratesgg Table 1 on page 356 of the paper.
1. Notethat this table is non-deterministic for some test cases, i.e., rows 1-4, 9, and 10.
2. Thepaper suggests strategies for simulating determinism in Section V.
3. Foster suggests a fully deterministic strategy that is not optimal.

CSC509-Previous éérs Rge 7

D. Anotherway to diminate the non-determinism is to a@n all testing formulae to canonical DHS fiown
in Table 2 on page 357.

E. Theproblem with this is that it increases the number of test cases, withaysalbtaining more a@rage.

XVI. Assessment of the basic strategy

. A number of incorrect implementations ax@ranteed to be detected by the meaningful impact strategy.

. A number of incorrect implementations greranteed not to be detected by the meaningful impact strategy.

A
B
C. Anumber of incorrect implementations anay or may not be detected by the meaningful impact strategy.
D

. Intuitively, meaningful impact does the following:

1.

pwn

Divide the test data domain into subdomains that distinguish between meaningful and not meaningful
data.

If an implementation fails faall of the points in a particular subdomain, then the failure will be detected.
If an implementation fails faall of the points in a particular subdomain, then the failure will be detected.

If an implementation fails fasome of the points in a particular subdomain, and those points do wet ha
meaningful impact, then the failure will go undetected.

E. Theempirical ealuations in Section VI of the papeweal that for a real-arld specification, the number of
incorrect

XVII. Enhancing the basic strategy

A. A family of algorithms has been devised based on the basic strategy

B. They differ by the strategies used to select test points where the basic strategy is non-deterministic.

XVIII. Empirical results

A. Specificationgaken from TCAS Il (Traffic alert and Collisiornvéidance System II).
1. Thirteenof the larger specs were chosen, ranging in size from 5 to 14 variables.
2. Specsltered to account for variable dependencies that would cause infeasible test conditions.
3. Sedrigure 2 and Table Ill on page 360.

B. Anassessment in terms of comparison withaeistve nmulti-condition test case generation is quagdable
(this is Table 111).

C. Anassessment in terms of a thorough mutation analysis is alsoayaigbie.
1. SeeTables IV thorough Xl on pages 361 and 362.
2. Tables IV through VII she averages, including comparison to random and exhaigsting strategies.

a. Theworst mutation score is 92.7 (out of 100).
b. The arerages are 97.9 - 99.7.

3. Tables VIII through XII she individual analysis for each of the following mutation operators

a. Variable Negation Fault: Replace boolean variable by itsyagon.

b. Expression Negation Fault: Replace boolean expression by itgatieon.

c. Variable Reference Fault: Replace one occurrence of a variable by another.
d. Operator Reference Fault: Replace one boolean operator with another.

e. Associative Shift Fault: Change the associativity of terms in an expression.

CSC509-Previous éérs Rge 8

