
CSC509-Previous Years Page 1

Foundational Spec-Based in Testing Tools and Techniques

I. The tools and techniques in these notes are twenty years old.

A. They are never-the-less quite valid today.

B. Production-qualitytools for specification-based test generation lag very far behind the research.

1. Thereare a number or reasons for this, relating to economics and lack of wide-spread acceptance by soft-
ware developers.

2. Whenthe proper tools do finally catch on, there may well be a breakthrough in this area.

3. In the meantime, the promise of specification-based test case generation is not yet fulfilled.

Specification-Based Testing with ADL

II. Introduction to ADL

A. ADL is a C-basedAssertion Definition Language.

B. ADL specs are predicative (1st order) just like the other model-based spec languages including JML

C. Two forms oftest conditions can be derived from ADL specs:

1. Call-state test conditions are derived directly frompreconditions

2. return-state test conditions are derived directly frompreconditions

III. Some terminology

A. ADLT -- The ADL Translator that provides automated support for testing C programs

B. Test driver -- C program generated by ADLT giv en ADL program specification and ADL test data description

C. SCT -- specification coverage tool that derives test conditions from an ADL specification

D. Coverage condition functions -- C functions that determine whether derived test conditions are satisfied by
some data.

E. Function under test -- the C function for which tests are generated and executed.

F. Test program executable -- the compiled and linked set of test driver, coverage functions, and function under
test.

G. SeeFigure 1 on page 63 of the ADL paper.

IV. Summary of ADL

A. ADL specification consists ofmodules containingconstituents

B. Thereare three types of constituents:

1. types

2. objects

3. functions

C. Functionscontainsemantic descriptions of two forms:

1. Bindings (aka, macros or "let" expressions)

2. Assertions (aka, pre and postconditions)

D. Two built-in bindings areexception andnormal

1. Theexpression bound toexception defines the condition(s) under which the function fails

CSC509-Previous Years Page 2

2. Theexpression bound tonormal defines the condition(s) under which the function succeeds.

3. Theseare effectively the same as the "normal behavior" and "exceptional behavior" clauses of a JML
spec.

E. Assertionexpressions refer to two states:

1. Thecall state (expressions surrounded by the "@" operator)

2. Thereturn state.

V. ADL compared to Jav a-based specification languages, such as JML

A. Here’s a comparison table

ADL Construct Java/JML Construct

module .h file

type constituent class (type) definition

object constituent var or const declaration

function constituent method declaration

binding not available in JML; can be done with Javaconst declaration

assertion and’d clause in postcondition

exception precondition converted precondition (see below)

@ (call-state operator) \old

--> (implication) ==>

B. Onconverted preconditions (in C/C++ notation)

1. Unconverted:

void Append(List* l, Elem* e)
/*
* pre: !(l->Find(e))
* post: l->Find(e)
*/

2. Converted

int Append(List* l, Elem* e)
/*
* pre:
* post: !(l->Find(e))
* ? (return == -1)
* : (l->Find(e) && (return == 1))
*/

C. The"@" notation in ADL

1. InADL, the "@" operator surrounds an entire expression to indicate that it should be evaluated in the call-
ing state, i.e, with input values of the variables in the expression;

2. In many publications on predicative specification, this effect is accomplished by using the prime ("’")
notation, where unprimed variables have input values and primed variables have output values.

3. InJML, the\old operator is equivalent to ADL@

VI. Details of ADL test conditions

A. Themain point of ADL tool is the automatic derivation of test conditions from ADL specifications.

CSC509-Previous Years Page 3

B. A call-state test condition is evaluable in calling environment

1. Theseconditions are surrounded by the "@" operator.

2. They are expressions containing input-only values (no pointers, arrays, function calls or global vars).

C. ADL uses condition generation rules from the following (selectable?) strategies:

1. Multi-condition(what’s shown in ADL paper)

2. Meaningfulimpact (an improved test selection strategy)

3. Boundary-value (shown in ADL paper)

4. Domain-specific(planned research that was never fully implemented in ADL)

VII. Details of multi-condition test condition generation

A. Test conditions must be generated that exercise both branches of conditional tests, for all truth values of the
conditional expressions.

B. Considerthe conditional expressiona || b.

1. Thetruth table for this expression is

a b a || b
0 0 0
0 1 1
1 0 1
1 1 1

2. Anannotated flow graph involving this conditional is the following:

a || b
a == false, b == true
a == true, b == false
a == true, b == truecovered by a == true

a == false, b == false

3. Basedon the truth table and flow graph, the multi-condition test cases fora || b are: {a==false, b==true},
{ a==true}, and {a==false, b==false}.

4. Thisinformation can be combined in atruth and condition table:

test
condition

a b a || b

0 0 0 a==0, b==0
0 1 1 a==0, b==1
1 0 1 a==1
1 1 1 covered by a==1

C. Notethat in the ADL paper, {a==0} is denoted {!a} and {a==1} is denoted {a} .

D. By similar analysis, the truth and condition tables fora -> b anda && b as follows:

CSC509-Previous Years Page 4

test
condition

a b a -> b

0 0 1 a==0
0 1 1 covered by a==0
1 0 0 a==1, b==0
1 1 1 a==1, b==1

test
condition

a b a && b

0 0 0 a==0
0 1 0 covered by a==0
1 0 0 a==1, b==0
1 1 1 a==1, b==1

E. Notethat in particular test generation contexts, we will constrain the value of expressions to be true or false.

1. Insuch contexts, only the conditions applicable to the constrained outcome must be generated.

2. E.g.,if we constrained the value ofa || b to be true, we would only need to generate only the two condi-
tions {a==0, b==1} and {a==1}.

3. If a || b were constrained to be false, then only the single condition {a==0, b==0} would be generated.

VIII. Details of boundary-value condition generation

A. Considerthe expression(x < 0) || (x > 10).

B. Hereis its truth and condition table

test test
condition data

x < 0 x > 10 (x < 0) || (x > 10)

0 0 0 !(x < 0) && !(x > 10) x = 5
0 1 1 x > 10 x = 11
1 0 1 x < 0 x = -1
1 1 ---- impossible ----

C. In this example, the boundary value strategy picked a value just below the constant operand of the relational
expression, and in the middle of the range expression.

IX. Details of the ADL approach

A. Parse the specs

B. Definea boolean-valued inherited attribute on each node that constrains the value of the subexpression below
to be true or false, per the requirements of the test-condition generation strategy.

C. Traverse the parse trees to generate test conditions

1. Call-stateconditions are generated only for subtrees that contain call-state evaluable expressions.

2. Return-stateconditions are generated for all subtrees.

D. Considerexamples on page 66 of ADL paper.

X. Detailed walk-through of the ADL paper example

A. Perusepage 3.

CSC509-Previous Years Page 5

1. Noteuse of disjunctive normal forms (i.e., boolean expression clauses are or’d together).

2. E.g.,second disjoin of then-clause of Assertion 3.

B. Seeparse tree notes on paper.

C. Afterparse subexpr parse trees are gen’d

1. Combinethe precondition exprs with each of the 3 multi-condition-generated post-condition exprs, the
obtain 3 basic test conds for assertion 3.

XI. Some comments on the ADL methodology

A. I think that pre- and post-conds are a little more intuitive to deal with than the "calling" an "returning" con-
texts ideas; the "@" notation seems particularly confusing compared to the more traditional "’" notation.

B. By defining preconditions explicitly, the potentially confusing notion of "call-state evaluable" goes away,
since the set preconditions is exactly the set of call-state evaluable conditions.

XII. Extending ADL to work with object-oriented constructs and quantifier logic

A. This is the work of on-going research

B. It involves additions to the ADL C grammar, and updates to the test case generation algorithm.

The Meaningful Impact Strategy
for Automaticall y Generating Test Data

from a Boolean Specification

XIII. Introduction

A. Motivation for and intuition behind the strategy

1. In the multi-condition testing strategy employed by ADL and other comparable tools, the number of test
cases is exponential on the number of input/output variables.

2. Specifically, for a function withn variables, there are2n test cases in an exhaustive specification-based test
plan.

3. Thepoint of the meaningful impact strategy is to reduce the number of test cases by considering the
impact of specific variables in specific test cases

4. To be precise, a boolean term in a test case formula is said to have meaningful impact if changing the truth
value of the term changes the value of the formula.

B. Weyuker et al. have built a tool that like ADL, automatically generates test cases from boolean specifications.

1. In their case, they employ the meaningful impact strategy rather than the multi-condition strategy.

2. They test the effectiveness of their approach, and show empirically good results.

C. How they demonstrate their results

1. They generate test data for the well-known, real-world specification of TCAS (the Traffic control and Col-
lision Avoidance System).

2. They compare the size of their test plans to the size of exhaustive multi-condition test plans for the same
spec

3. Theevaluate the effectiveness of their specification usingmutation testing.

a. Aprogram under test is first tested as written.

b. Then the program ismutated by systematically introducing syntax errors that should change the out-
put of the program.

CSC509-Previous Years Page 6

c. If the generated test cases can distinguish the mutant output from the original output, then the test
cases are successful.

d. Overall, the meaningful result strategy showed very favorable results when subjected to mutation anal-
ysis.

XIV. Definitions
A. Notation

1. Infix ’+’ means booleanor, e.g.,a + b

2. term concatenation meansand, e.g.,ab

3. Overbar means not, e.g.,a

B. Definition:Disjunctive normal form

1. All terms of boolean expression and or’d together.

2. E.g.,for the formulaa(b c+d), the disjunctive normal form isab c+ad.

C. Definition:Canonical disjunctive normal form

1. Eachterm in a disjunctive normal form formula contains all variables.

2. E.g.,for the preceding formula, the canonical disjunctive normal form is

ab cd + abcd + abcd+ abcd+ abcd

D. Definition:Meaningful impact

1. A literal in a boolean formula have meaningful impact if, everything else being the same, a different truth
value assignment to that literal will result in a different value for the formula.

2. E.g.,consider the formula(ab + ac) and the test case {a=0, b=1, c=0}.

a. Thistest case causes the formula to evaluate to 0.

b. Question: Does the value assigned to the first occurrence ofa, i.e.,a
1
, hav emeaningful impact on the

value 0 for the test case?

c. Answer:Yes, since changing the assignment ofa
1

to 1 will change the value of the formula for the test

case to 1.

d. Onthe other hand, the test case does not demonstrate thatb, a
2
, or c have meaningful input on the for-

mula value of 0.

E. Definition:True points
1. Theset of test cases that cause a formula to be true are called thetrue points.
2. Thesubset of true points that demonstrate meaningful impact are calledunique true points.
3. Complementarydefinitions exist forfalse points andunique false points.

XV. The basic strategy

A. The intuition here is that if a term has no meaningful impact on a pre or postcondition, then it is likely to
have no meaningful impact on the outcome of the function under test.

B. In circuit testing, the "stack-at-1" testing strategy is essentially the same as meaningful impact is here.

1. In hardware, there are theoretical and empirical data to validate the assumption that stuck-at assumption is
reasonable.

2. Part of the contribution of this paper are empirical data that show this for software.

C. Asa concrete example, of the basic strategy, see Table 1 on page 356 of the paper.

1. Notethat this table is non-deterministic for some test cases, i.e., rows 1-4, 9, and 10.

2. Thepaper suggests strategies for simulating determinism in Section V.

3. Foster suggests a fully deterministic strategy that is not optimal.

CSC509-Previous Years Page 7

D. Anotherway to eliminate the non-determinism is to convert all testing formulae to canonical DJF, as shown
in Table 2 on page 357.

E. Theproblem with this is that it increases the number of test cases, without always obtaining more coverage.

XVI. Assessment of the basic strategy

A. A number of incorrect implementations areguaranteed to be detected by the meaningful impact strategy.

B. A number of incorrect implementations areguaranteed not to be detected by the meaningful impact strategy.

C. A number of incorrect implementations aremay or may not be detected by the meaningful impact strategy.

D. Intuitively, meaningful impact does the following:

1. Divide the test data domain into subdomains that distinguish between meaningful and not meaningful
data.

2. If an implementation fails forall of the points in a particular subdomain, then the failure will be detected.

3. If an implementation fails forall of the points in a particular subdomain, then the failure will be detected.

4. If an implementation fails forsome of the points in a particular subdomain, and those points do not have
meaningful impact, then the failure will go undetected.

E. Theempirical evaluations in Section VI of the paper reveal that for a real-world specification, the number of
incorrect

XVII. Enhancing the basic strategy

A. A family of algorithms has been devised based on the basic strategy

B. They differ by the strategies used to select test points where the basic strategy is non-deterministic.

XVIII. Empirical results

A. Specificationstaken from TCAS II (Traffic alert and Collision Avoidance System II).

1. Thirteenof the larger specs were chosen, ranging in size from 5 to 14 variables.

2. Specsaltered to account for variable dependencies that would cause infeasible test conditions.

3. SeeFigure 2 and Table III on page 360.

B. An assessment in terms of comparison with exhaustive multi-condition test case generation is quite favorable
(this is Table III).

C. Anassessment in terms of a thorough mutation analysis is also quite favorable.

1. SeeTables IV thorough XII on pages 361 and 362.

2. Tables IV through VII show averages, including comparison to random and exhaustive testing strategies.

a. Theworst mutation score is 92.7 (out of 100).

b. The averages are 97.9 - 99.7.

3. Tables VIII through XII show individual analysis for each of the following mutation operators

a. Variable Negation Fault: Replace boolean variable by its negation.

b. Expression Negation Fault: Replace boolean expression by its negation.

c. Variable Reference Fault: Replace one occurrence of a variable by another.

d. Operator Reference Fault: Replace one boolean operator with another.

e. Associative Shift Fault: Change the associativity of terms in an expression.

CSC509-Previous Years Page 8

