CSC530-S02-L6 &e 1

CSC 530 Lectue Notes Week 6
-- REVISED --
Discussion of Assignment 3, Questions 1 and 2
Intr oduction to Denotational Semantics

I. Turingol Highlights

A. Knuth’s Turingol semantics defines the compilation of a simpieugd Turing Machine language
into lower-level TM quintuples.

B. In comparison to the SIL attwibe grammar semantics, theiringol semantics areompiled
whereas the SIL semantics anéerpreted (An example of a compiled semantics for a SlLelik
language is attached to the end of these notes.)

C. Theform of instruction in the dringol TM is:
<p,A,c,d,q>
where

p = present state

A = symbol scanned

¢ = symbol written

d = tape meement direction
g = next state

D. Two major attrilutes in the Tringol definition aréSymbol andlabel

1. Theseare used asymbol tablesin a manner similar to similar to o the ew and store
attributes are used in the SIL definition.

2. Miz., the tables store bindings of identifiers to some fornmakfes
Inthe case oSymbol andlabel, they associate program names with TMkvalues.
4. E.g.,"tape alpha ispoint, blank, one, zero" euld hare aSymbol attribute like this:

w

text(id) symbol(text(id))
"point” .

"blank" B

"zemn" 1

"one" 0

5. Similarly, satement labels are bound itedel symbol table such as

text(id) label(text(id))
test g
carry g,
realign g

E. Somedetails of Example 4.1 on page 137.

CSC530-S02-L6 &ye 2

Source string TM quintuple
tape alpha isblank, one, zero, point
print point <q,s - 009>
where s ={B,0,1,.}
gotocarry <q,ss0,0q,>
test:if the tape symbol is"one” <0, s s 0, q>
where s ={B,0,.}
then <q21 l’ 1! 01 q3>
{print "zem" ; <d, S 0,0, q,>
}
realign:move right one squae <4, s s 0, gg>

F. Additional notes
1. 2 must be fully processed andadable before apinstructions arexecuted
2. newsymbolis Lisp’s gensym-- it creates a brand wesymbol name.
3. Theset union operators used in ttiefine andinclude auxiliary functions maintain set prop-
erty; this &oids the problem of hang to check for multiply defined entries in the symbol
tables.

Il. Specificsfor Assignment 3, Questions 1 and 2
A. For question 1, cast your answer in terms of semanticutghot TM execution states.

B. For question 2:
1. Theidea is to ma& explicit the attritute dependencies

2. Label is the most interesting case (think about the semantics of the declaration and use of
labels in a typical programming lang)

3. Notethat you need not really understand whatiffigol programs do orven much of what the
TM code looks lile - rather the focus here is on the general semantic definition technique.

Now on to Denotational Semantics
lll. Relevant reading: Bpers 17-22, primarily number 20.

IV. Introductory comparison of Knuth-style attrtb grammar semantics witledhent-style denotational
semantics.

A. In Knuth, we define attriltes and semantic rulegytiithe rule ealuation stratgy is not &plicitly
specified, i.e., preciselyowwe do the tree ik is a up to us.

B. In contrast, the denotational approach replaces the ‘speéeified tree-alk evaluation scheme
with formal function galuation.

CSC530-S02-L6 &ye 3

1. Rathetthan walk through a tree gnway we feel lilke, we are forced to perform what amounts
to a depth-first tnzersal

2. Thisis imposed by theatct that semantic functionalgarments arexpressed in terms of syn-
tactic constituents.

3. For the denotational approach, the analog of passinguaésitthrough the tree is carried out by
passing function guments between semantic functions.

4. Multiple evduation passes are stilalable in a denotational definition, based on one full-pass
semantic function woking another full-pass function.

5. A significant adantage of the denotational approachwvalability of evaluation functions as
first-class objects, rather tharvirey evaluation based on a parse tree data structure.
a. Thismeans in particular that we do not need the less-than-completely foumat i on-
i ze auxiliary function.
b. Defined function bodies are represented not as atboparse treespybas the same form
of functions used to define the rest of the language semantics.

6. Also,the rather operational definition of looping required in an attilgrammar definition is
replaced with a much more mathematical form, using the concéppoints

C. Furtherexamples to follav next week.

V. Data domains, froménnent Chapter 3
A. Data domainsre the denotational analog of atiri® type definitions.

B. Aswith attribute grammar definitions, domain constructions are used &opuvposes:
1. To define the datatypes on which toild denotational definitions.
2. To model highetlevel data constructors in programming languages.

C. Summarnyf what domain constructions model:
1. Productdomains areecords
2. Sumdomains areinions(aka,variant recods).
3. Functiondomains can be used to modelaysand other forms dfbles
4

. Also,function domains are used to model #adueof a procedure body -- not thalue it com-
putes, lot the \alue of its body as an wauated function (i.e., a lambdamession).

5. Asin Lisp and other functional languages, reatgsibmains are used to pide the same
capabilities apointers.

VI. The binary numeralx@ample of Ennent Chapter 13

A. Tennent Chapter 13 starts with a simplaraple for the semantics of binary numerals.
1. TheKnuth paper has a similaxample.

2. To begn our investigation of denotational semantics, Weompare three semantic approaches
to defining binary numerals -- denotational, atttéogrammars, and operational.

CSC530-S02-L6 &e 4

B. Denotationablefinition of binary numerals

Abstract syntax: N 0ONml = binary numerals
| OInt = binary integers
F O Frac = binary fractions
. F
| 1B
B|BF
0|1

N :
| ::
F::
B:

Semantic domain:Q = real numbers

Semantic functions:A: Nml - Q
I:Int - Q
F:Frac - Q

AQr . FI = 1[10] + #IF]
IfIBYl=2*1[l]] + 7[B]
I[0]=0

1] =1

F[BF] = #[B] + #[Fl/2
#I0[=0

Fl1]=1/2

Test case:1101.01
A1101.00= r1101] + #[01]
=(2*1[110] + r[1]) + (¥[O] + [11/2)
=(2%(2*1[11] + z[O]) + 7[1D) + (7000 + #[11/2)
=(2*(2*(2* 1[1] + 701D) + 1[OD) + 1[1) + (#[O] + #[11/2)
=(2*(2*(2*1+ 1)+ 0) + 1) + (0 + (1/2)/2)

Another test case:101100.001101 = 32 + 8 + 4 + .125 + .0625 + .015625 = 44.203125
A([101100.001101F
= 7[101100]+ F[001101]
= (2*1[10110] + 7[O])
+ (£ 0] + F[01101)2)
= (2%(2* 1[1011] + 1] O]) + I[O])
+(7[0] + (#[0] + #[1101)/2)/2)
= (2%(2*(2* 1[101] + 1)) + [OT) + [CI)
+ (0] + (7[00 + (#[1] + #[101)/2)/2)/2)
= (2%(2*(2%(2* 1[10] + 1[1]) + 7[[1]) + OT) + [CI)
+ (7[00 + (7[00 + (710 + (#[1] + #[01)/2)/2)/2)/2)
= (2%(2*(2%(2*(2* 1[0 + r[0D) + r[1I)+ 7[1]) + z[[COT) + Z[[O])
+(7[0] + (7000 + (710 + (#[11 + (#[01 + #[11/2)/2)/2)/2)/2)
= (25(2*(2*(2%(2*1 + 0) + 1)+ 1) + 0) + 0)
+(0+ (0 + (12 + (L2 + (0 + 1/212)/2)/2)/2)/2)
= 44.203125

CSC530-S02-L6 &e 5

C. Attribute grammar definition of binary numerals
Attrib utes:

Atrrib ute Description

v Real number decimalalue of the binary number

Grammar rules and semantic equations:

N: I *.” F {$$.v = $1.v + $3.v};
I : 1 B {$$.v = 2 * $1. v + $2.v};
| : B {$$.v = $1.v};
F: BF {$$.v = $1.v + $2.v | 2};
F: B {$$.v = $1.v | 2};
B: 1 {$$.v = 1};
B: O {$$.v = 0};
Test case:
13 +.25=13.25-----. -
2*6+1=13
2*3+0=6
2*1+1=3 ----._. o
1,
o |
B

1

D. Operationatiefinition of binary numerals

Operational semantics for binary nunbers, patterned after the attribute
grammar and denotational definitions in
../ semanti cs- expanpl es/ bi nary- nunbers{attr, deno}, q.q.v.

Syntactically, a binary nunber is represented as a list of 0's and 1's, wth
an optional decimal point. Eg., (1101\. 01).

CSC530-S02-L6 &e 6

(defun main ()
(let ((nunber (read)))
(eval - bi nary- nunber nunber)
)
)

(defun eval - bi nary- nunber (numnber)
(let* ((integer-value (eval-integer-part nunber 0))
(number (nove-upto-dot numnber))
(fractional -val ue (eval -fractional -part nunber 0)))
;(break "in md eval -binary-nunber")
(+ integer-value fractional -val ue)

)

(defun eval -integer-part (nunber val)
;(break "in eval -integer-part")
(cond ((or (null nunmber) (eq (car number) '\.))
val)
(t
(let* ((val (+ (* 2 val) (car nunber))))
(eval -integer-part (cdr number) val)))

)

(defun eval -fractional -part (nunber val)
(cond ((null number)

val)
(t
; (print (list "number=" nunber ", next fp="

; (eval -fractional -part (cdr nunber) val)))
(let* ((val (/ (eval-fractional-part (cdr number) val) 2.0)))
(print (list "number=" nunber ", val=" val))
(+ (/ (car nunber) 2.0) val)))

)

(defun nove-upt o-dot (nunber)
(cond ((null number)
nil)
((eq (car nunber) "\.)
(cdr nunber))
((or (eq (car nunber) 0) (eq (car number) 1))
(rmove- upt o-dot (cdr nunber)))

)

Test case:
% gcl

>(eval -binary-nunber "(11 01\. 01))

13. 25

E. Someobsenations on the three techniques.

1. Thesyntax in the attribte grammar definition is slightly morenbose, or at least more spread
out

CSC530-S02-L6 &e 7

a. Thought does not shw that much in this simplexample, the syntax in a denotation defi-
nition is generally more abstract than in an atteldefinition.

b. To a lage etent this is due to theét that the semantic definitions are directly hurfighef
grammar rules in an attuke grammarwhere as theare factored into a separate list in a
denotational definition.

c. Whatis most important is that both attnite grammars and denotational definition sye-
tax-directed

d. Thedifference between abstra@rsus concrete syntax is really unimportant from a seman-
tics point of viev.

2. Theheart of the definition in the atttite grammar and denotational semantics are the same.

3. Theoperational semantics is considerablykier than the other tavdefinitions.
a. Amajor nuisance in the operational definition igihg to deal directly with scanning.
b. In particular the functionmove- upt o- dot is entirely superfluous to the semantics.
c. Whileother approaches to the operational definition could be shibedvottom line is that
a certain amount of operational hacking mustais be done to get an operational defini-
tion to work.

d. Incontrast, the syntax-directed foundation of the attelgrammar and denotational tech-
niques oliate the need for grsyntactic processing.

VII. Notationalcorventions for Ennent-style denotational definitions (Chapter 13, pp. 213-216)
A. Doublesquare bradaits enclose syntactic operands (i.e., this is an abstraction of all parsing).

B. ?is the union "tag test" operator

1. E.g.,if bis a basic @lue (bool or int) then B?is true if b is a boolTruth value) and b2 is
true if b is an intZ is the normal math abbnation for the set of ints).

2. Interms of emironments and stores, ? pides the basic type and class checking mechanism.
3. l.e,.for a store, thexpression b2 type checks b in that iafls if b is not an int.
4. Similarly for an ewironment, the xpressiond?L checks thad is an l-alue (see rule for
assignment in dble 13.3).
C. "e - o <"isthe if-then-elsexpression. E.g.,

e—>x1,x2

if ethen X, elsex2

D. "e [+ |- ¢]"is the "function perturbation", a.k.a, "malkn entry in the functional representation
of an alist" function.E.g.,

s[l |- r]
means
"enterr as the alue of identified in alists".

1. Cf.Knuth’sdefine, which does the same thing

2. Boththe function perturbation operator and Knattiefine have the same semanticfett as
adding a ne binding into an alist.

3. Thispurely functional viev of tables taks some getting used to.

CSC530-S02-L6 &ye 8

VIII. A Simple Programming Languageefinent Section 13.2)

A. Thedenotational semantics of the programming languagemmdnt Section 13.2 i®ky similar
to the semantics of the Lisp subset handleddayal in Assignment 1.

B. Notesabout the semantic domains:

1. T andZ arebooleansandints, i.e., the basic atomic datalues. Realsre trvial to add (well,
almost trizial).

2. B is the product domain (i.e., union) of bools and ints, and hence the sebasiallvaluesn
this simple language.

3. Sis thestore. Itis a function from tet id’s to gorable \alues (more on storablales in just a
bit). Assuch, it can be thought of as an alist of the form:

Basic

Text Id Value

where the tet id’s ae the leys and the basicalues are their corresponding entries.

4. Pis the domain oprocedues

a. Thesare ungauated procedure bodies that are denoted as functions.

b. The denotation domain of procedures is the analog of the functions generated by the
functi oni ze auxiliary function used in the attibe grammar definition of SIL and the
lambda forms used as thalwe ofxdef un’d functions in the operational semantics.

c. Seelennent bottom of page 219.

5. R is the set obtorable valueghat is the product of basi@ales (i.e., the bool and int scalars)
together with the proceduralaes.
a. Hencea dore entry is either an atomic bool or int, or a function which denotes a proc body
b. This is analogous to the twforms of bindings -- &lues and functions -- in the Lisp inter
preter and the SIL attnilbe semantics.

6. E, G, andA are justR, S, and B respectiely with {error} tacked on.

IX. Adding an erironment to the simple PL €hnent Section 13.3)

A. Thedenotational semantics of the programming languagemmdnt Section 13.3 iRy similar
to the semantics of the Lisp subset handleddiyeck andxeval in Assignment 2, as well as to
the semantics of SIL.

B. Reconcilinga few rotational abnormalities:

CSC530-S02-L6 &e 9

Tennent Normal Pascalese Whait is
newl=E var ident : type :=gpr | scopedar decl with initialization
val l=E constident = epr scopedtonstant decl

with Ddo C | declsbeginstmtsend | block with decls and stmts

where type is restricted fant eger or bool ean and in the case of theew declaration, type is
inferred from the type of thexpression E.

C. Notationakorventions
1. Addto definition 13.2 a ne ervironmenialist to &ist in conjunction with the store:

Environment Star

Storable

Textld Value L-Value
Value

2. Inso doing, weve row parated the classes of storable and denotahles:

3. Thisseparation more accurately models the semantics of a store \agpgca of computer
memory since an |l-alue models a memory addreggleitly.

a. Thisseparation is not done in the attrib grammar definition of SIL, where the definition
of a store is more abstract.

b. The separation could easily be done using atiilgrammars (i.e., #'not something that
requires ay special feature of the denotational technique).

4. Amongother things, we can morepresent the proper semantics as€al procedure bodies by
making elements of the domdihdenotable bt not storable; this reflects the first-ordeséal
semantics that does notegrocedure types.

5. Inthis regad, it is interesting to consider the semantics of the C "&" operator -- iesnalk
elements of the domaln storableas well as denotable.

6. Hencewith the simple addition df to the RHS of the storabl@ales domain definition:

rdR=B+P+L

we can define one of the more important aspects of C semantics that distinguishes it from most
other languages
Thisis a pretty nice illustration of the per of denotational semantics.
For complete truth in adbrtising, we should note that the preceding definition is a bit of a sim-
plification, since Bscal allws a restricted class of Lalues to be storable, i.e., pointaiues.
a. Thereforethe genuine distinction betweeadeal and C L-alue semantics auld involve
subdviding theL domain some more.
b. Nevetheless, this is still a goocka&mple of the paer -- if not thedensity-- of the denota-
tional technique.

© N

CSC530-S02-L6 &ye 10

X. Thesemantic functions oféehnent used in definitions 13.2 & 13.3

A. The meat of the matter in a denotational definition are the semantic functions that tedi
meaning.

B. Hereis a summary of the functions used enfient definitions 13.2 and 13.3:

Description 13.2 13.3

Expression Ealuation E:Exp- (S- E) E:Exp- (U (S-E)T
Command Eg&cution c:Com-(S-G)| c:Com-U-S-G
Declaration Elaboration --- D:Def 5 U5 S5 (UxG)
Program Egcution M:Pro - B - A M.Pro- B - A

T right associatiity shavn explicitly for £; same for others

XI. Whitherinheritance and synthesis iefihent-style defs?

A. Inheritedattributes

1. In a Tennent-style definition, inherited attniies are represented aguwanents passeih to
semantic functions.

2. E.g.,as the emand store are passedwio from ¢ to £, these can be considered inherited by
£

B. Synthesizeattributes

1. Ina Tennent-style definition, synthesized atitds are represented as function results passed
outfrom semantic functions.

2. E.g.the pression alue result produced lw is synthesized up to whenc calls£.

3. Similarly, the store &lue produced by the callinvocation of ¢ is synthesized up to the call-
ing invocation ofC.

XIl. The penasie wse of functions as data irefinent-style defs
A. Many places in a Knuth-style definition where a tabddued (i.e., alist) attrilte is used, the com-
parable attribte in the €nnent-style definition is the functioergion of that table.
B. E.g.,both the emand store in 13.3 arinctionsinstead of tables.

1. Thismeans that, forxample, the enassoc aux function in the Knuth-style SIL semantics is
replaced by applying the efunction itself to an identifier to yield the tablalwe correspond-
ing to that identifier

2. Asnoted earlierthis will take sme getting used to.

XIIl. Next week well dissect definitions 13.2 and 13.3 -- please bring youy cbpaper 24 to class.

XIV. Attached is the sample compil@riented attribite semantics refered to on page 1 of the notes.
A. You do not need to read through tixaraple in detail.

B. Thepoint of praviding the eample is to gie you a general feel for what code generation seman-
tics look like aompared to interprete smantics.

CSC530-S02-L6

E R S R S S B S N N N N N S N S S N S N N N S A T R B N N N S B N . N T S I S R S

&ye 11

This is a Yacc-style attribute grammar for the code generation semantics of
a |l anguage very simlar to SIL. The neta-notation used here is slightly

| ess fornal
definition.

that the pure ML notation used in the interpretive SIL

The point of this exanple is to give you a general feel for

what code generation semantics |look like for a | anguage of other than the
very sinple Turingol defined by Knuth.

The semantic
definition.

type

cl ass

t ext

t ypes

code
addr

par s

actual s

rul es define both type checking and code generation in the sane
These are the attributes that are used:

DESCRI PTI ON

A gl obal reference-valued attribute representing an abstract
synmbol table. A syntab is a reference to a 2-tuple of the
form

(parenttab, entries)
where parenttab is a reference to the parent synbol table, and
entries is a list of 5-tuples of the form

[(nane, class, type, level, offset), ...].
For synmbols with class = "proc", a syntab entry is a nine-tuple
of the form

(name, "proc", type, level, offset, parns, syntab, |abel, size)

where the first 5 itens are as for a variable entry, and the
last 4 itens are, respectively, the list of formal parm names,
the | ocal procedure synbol table, the object code |abel for the
proc, and the size in bytes of the proc act. record.

A string-valued attribute representing the nanmes of types.
Successful type checking is represented by the val ue of
programtype = "OK'. Note that a string-valued type attribute
is used for this sinple | anguage since there are no structured
types. For a language |ike Mdula-2, the type attribute would
be tuple-valued, in order to represented structured types

ef fectively.

A string-valued attribute representing the nanes of symnbol

cl asses, specifically "var", "parni, or "proc"

A string-valued attribute representing the |exical text of
decl ared identifiers.

A sequence-valued attribute that holds a list of types for
formal and actual procedure paraneters.

A synt hesi zed sequence-val ued attribute that hol ds obj code.
A synthesi zed string-valued attribute for a machi ne address.

A sequence-val ued attribute that hol ds the nanes of fornal
procedure paraneters.

A sequence-val ued attribute that holds the types of actual

CSC530-S02-L6

E R S R S S B S N N N N N S N S S N S N N N S A T R B N N N S B N . N T S I S R S

codes

addr s

| abel

reg

&ye 12

procedure paraneters froma proc call
Sequence of actual parm code val ues.
Sequence of actual parm addr val ues.

A global integer attribute used to generate unique |abels.
Initial value is O.

A global integer attribute used to generate an avail abl e
register. Initial value is 1

curoffset An inherited integer attr that records the next avail able

| evel

si ze

dept h

storage offset, in bytes.

An inherited integer attribute that records the |exica
nesting | evel .

A synthesized integer attr that records total size in bytes
of all ocated storage.

Synt hesi zed integer attribute used to record max nesting depth
of proc decls.

WORDSI ZE A gl obal constant integer attribute that holds the size of a

word in bytes.

There are three auxiliary functions used to enter and | ookup synbol s:

Enter (syntab, synbol, class, type, level, offset) =

let (!syntab) 2 =
('symab) 2 U (symbol, class, type, level, offset)

Enter (synt ab, symnbol, class, type, level, offset, parnms, syntab)

let (!syntab) 2 = (!synmtab) 2 U
(symbol, class, type, level, offset, parnms, syntab)

Lookup(sym ab, symbol) = the first elenent S of (!syntab) 2

such that S 1 = synbol,
"ERROR' if no such el ement

There are three auxiliary functions used to enter and exit procedure scopes
whi | e syntab val ues are being conput ed:

Enter Proc(sym ab, nane, level) =

| et newsyntab = (syntab, {})
Enter (syntab, name, "proc", "", level, 0, (), newsyntab)
| et Lookup(nane) 8 = NextLab()

| et symtab = newsyntab

Ent er Par ms(synt ab, nane, type, parntypes, offset) =

CSC530-S02-L6 &ye 13

E R S R S S B S N N N N N S N S S N S N N N S A T R B N N N S B N . N T S I S R S

| et Lookup(syntab, name) 3 = type

| et Lookup(syntab, nane) 4 = parntypes

| et Lookup(syntab, nane) 5 = offset;

| et Lookup(syntab, nane) 9 = offset + 2 * WORDSI ZE

Exit Proc(syntab) =
et symtab = syntab 1

There is an aux function to conpute the size in bytes of a data type. Wth
the sinple types of the Translator 5 | anguage, this is a sinple function.
For Modul a-2, it’'s nore conplicated, as has been noted before.

typesize(t) =
if t = "integer" then WORDSI ZE

elseif t = "real" then WORDSI ZE
else if t = "boolean" then 1
elseif t = "char" then 1

There are aux functions used to generate unique | abels and avail abl e
regi sters, assumng that initially |abel has value 0O and reg has val ue 1.

Next Lab() = "L" || label; let label = label + 1
Next Reg() = "R' || reg; let reg =reg + 1
ClearRegs() =let reg =1

There are two aux functions to generate the largely canned pieces of code
that go at the top of the object code, and at the top of the nmain body:

t opcode(si ze, depth) =

[" GOTOVAI N',
"STATI C\t DATA\t" || strify(size),
" STACK\ t DATA\ t 25000",
"Dl SPLAY\t DATA\t" || strify(dept h*WORDSI ZE) |

mai ncode() =
["MAI N\t DATA\ t 0",
"\t MOWt STATIC, RO",
"\t MOWt STACK, SP",
"\t ADD\'t 25000, SP",
"\t MOWt DI SPLAY, R1"]

There is an aux function to generate a |local or global machi ne address:

genaddr (sym) =
if sym4 =0
then strify(symb5) || "(RO)"
el se strify(sym5) || "(SP)");

There is a sinple aux function to generate an assignment stnt:

CSC530-S02-L6 &e 14

genassmt (src, dest) = "\tMOWt" || src || ", " || dest

There are two sinple aux functions to gen code to push and pop act records:

pushactrec(size) =

"\tSuB\t" || strify(size) || ", SP"
popactrec(size) =
"\tADD\t" || strify(size) || ", SP"

Finally, there is an aux function to generate code for the details of a proc

E . T R B R S N S N R N R .

call:
gencal | (procl ab, returnlab, offset) =
["VtMOAL" || returnlab || ", " || strify(offset) || "(SP)"
"\t OTOt" || procl ab,
returnlab || "\tDATA\tO0"]
/
program : YPROGRAM decl s YBEG N stm's YEND
{symab =
[ref (), [("integer", "type", "integer"), ...] 1;
$$.type = $4.type;
$2.level = 0;
$2. curoffset = 0;
if ($$.type = "OK" then
3. code = topcode($2.size, $2.depth) U
$2. code U mai ncode() U $4. code;}
decl s I * enpty */
{3. size = 0;
$$. depth = 0;
$$.code = [];}
| decl ;' decls
{$1.level = $$.1evel;
$3.level = $$.1evel;
$1. curof fset = $$. curoffset;
$3. curof fset = $$. curof fset + $1.si ze;
$$.size = $1.size + $3.size;
$$. depth = max($1. depth, $3. depth);
$$. code = $1. code U $3. code;
}
decl : vardecl

{$1.level = $$.1evel;
$1. curof fset = $$. curoffset;
3. size = $1. si ze;

CSC530-S02-L6 &ye 15

$$. depth = $1. dept h;

$$. code = [];
}
| procdecl
{$1.level = $$.1evel;
$$.size = 0;

$$. depth = $1. dept h;
3. code = $1. code;

}
var decl © YVAR vars '’ type
{$2.type = $4.type; /* notice inherited attribute */

$2.class = "var";

$2.level = $$.1evel;

$2. curof fset = 3. curoffset;
$$. si ze = $2. si ze;

$$. depth = 0;

}

type © Yidentifier
{$$. type = Lookup(syntab, $1.text) 3;}

vars :var

{Enter(syntab, $1.text, $$.class, $$.type,
$$. level, $$.curoffset);

$$.size = typesize($$.type)}

var ',’ vars

{$3.type = $$. type;

$3.class = $$. cl ass;

$3.level = $$.1evel;

Enter (syntab, $1.text, $$.class, $$.type,
$$. level, $$.curoffset);

$3. curof fset = $$. curof fset + typesize($$.type);

$$. si ze = typesize($$.type) + $3.si ze;

var : Yidentifier
{$$. text = $1.text;
/* The lexer provides Yidentifier as a string */
l et sym = Lookup(syntab, $1.text);

}

procdecl : YPROCEDURE prochdr ';’ procbody
{$2.1evel = $$.1evel;
$4.level = $$.level + 1
$4. curof fset = $2. si ze;
$$. depth = $4. dept h;
$$. si ze = $4. si ze;

CSC530-S02-L6 &ye 16

$$. code = $2.code || $4.code;
Exi t Proc($2.text);}

}

pr ochdr : Yidentifier "(' formals ")’
{EnterProc(syntab, $1.text, $$.level);
$3.level = $$.level + 1
$3. curoffset = 0;
Ent er Par ns(synt ab, $1.text, "",
$3. parms, $3.size);
$$. text = $1.text;
$$. code = Lookup(syntab, $l.text) 7 || "\tDATAt0";}
| Yidentifier '(' formals ")’ ':’ type
{EnterProc(syntab, $1.text, $$.level);
$3.level = $$.level + 1
$3. curoffset = 0;
Ent er Parns(synt ab, $1.text, $6.type,
$3. parms, $3.size);
$$. text = $1.text;
$$. code = Lookup(syntab, $l.text) 7 || "\tDATAt0";}

}
formal s I * enpty */

{$$.types = null;

$$.parns = null;}
| formal

{$$. types = $1.type;
$1.level = $$.1evel;
$1. curof fset = 3. curoffset;
$$. parms = $1.text;
$$. si ze = $1. si ze;

}

| formal ', formals

{$$.types = $1.type U $3.types;}
$$. types = null;
$1.level = $$.1evel;
$1. curof fset = $$. curoffset;
$3. curof fset = $$. curof fset + $1.si ze;
$$. parnms = $1.text U $3. parns;
$$.size = $1.size + $3.size;

}

f or mal : Yidentifier ':' type

{Enter(syntab, $1.text, "parm', $3.type,
$$. 1 evel , $$.curoffset);

$$. text = $1.text
$$. type = $3;
$$. size = typesize($3.type);

}

CSC530-S02-L6

&ye 17

pr ocbody decls YBEA N stnts YEND
{$$.type = $3.type;
$1.level = $$.1evel;
$1. curof fset = 3. curoffset;
$$.size = $1.si ze;
$$. depth = $1.depth + 1;
$$. code = $3. code;
}
stms stm
{$$.type = $1.type;
$$. code = $1. code;}
| stmt ;' stnts
{$$.type = if ($1.type = "OK" and $3.type = "K")
then "OK" el se "ERROR';
$$. code = $1.code U $4. code;
}
st nt I * enpty */
| Yidentifier YASSMNT expr
{$$. type =
(i f Lookup(syntab, $1l.text) 3 = $3.type
then "OK" el se "ERROR');
$$. code =
$3. code U genassmmt ($3. addr, $1. addr)

Cl ear Regs();

}
| Yidentifier '(' actuals ")’
{let ftypes = Lookup(syntab, $1.text) 4;
| et proctype = Lookup(syntab, $1l.text) 3;
$$. type =
if (foreach (fp in ftypes, ap in $3.types)
(fp = ap) and (proctype = null))
t hen
" OK"
el se
" ERROR";
$$. code =
/* Gen code for proc call stm, */

Cl ear Regs();

| YIF expr YTHEN stnts YEND

{$$. type =
if ($2.type = "bool ean") and
($4.type = "X")
then "OK"
el se "ERRCR';
$$.code = /* filled-in code tenplate for if */

Cl ear Regs();

CSC530-S02-L6 &ye 18

}
| YI'F expr YTHEN stnts YELSE stms YEND
{$$. type =
if ($2.type = "bool ean") and
($4.type = "X") and
($6.type = "OX")
then "OK"
el se "ERRCR';

$$.code =/* filled-in tenplate for if-then-else */
Cl ear Regs();

}
expr © numnber
{$$.type = $1.type;
$$. code = [];
$$. addr = $1. addr;}
| char
{$$.type = $1.type;
$$. code = [];
$$. addr = $1. addr;}
| bool
{$$.type = $1.type;
$$. code = [];
$$. addr = $1. addr;}
| Yidentifier
{$$. type = Lookup(syntab, $1.text) 3;
$$. code = [];
$$. addr = genaddr (Lookup(syntab, $1.text));
}

| Yidentifier '(' actuals ")’
{let ftypes = Lookup(syntab, $1.text) 4;
| et proctype = Lookup(syntab, $1l.text) 3;
$$. type =
if (foreach (fp in ftypes, ap in $3.types)
(fp = ap) and (proctype !'= null))
t hen
proct ype
el se
" ERROR";
/* Gen code as for proc call stnt, plus set
* $$. addr = nachi ne addr of return value. */

}
| expr relop expr Y%prec '<
{$$. type =
if ($1.type = $3.type)
and (($1.type = "real") or ($1.type = "integer")
or ($1.type = "char"))
then $1.type
el se "ERRCR';
}

/* NOTE: relop code gen not done here. */
| expr addop expr Y%prec '+

CSC530-S02-L6

addop

mul t op

relop

actual s

{$$. type = /* For sinplicity,
if ($1.type = $3.type)
and (($1l.type = "real") or ($1.type
then $1.type

&ye 19

this is Mbd-2 rule */

= "integer"))

el se "ERRCR';
$$. addr =
if isreg($l.addr) then $1.addr el se NextReg();
3. code =
if not isreg($1l.addr)
t hen
"\t MOWt" || $1l.addr || ", " || $$.addr U
"\t" || $2.code || "\t" ||
$3.addr || "," || $$.addr
el se
"\t" || $2.code || "\t" ||
$3.addr || "," || $$.addr;
}
expr multop expr Y%prec ' *’
{$$. type =
if ($1.type = $3.type)
and (($1.type = "real") or ($1l.type = "integer"))
then $1.type
el se "ERRCR';
}
{$$. code = /* as for addop */;}
1(1 expr 1)1
{$$.type = $2.type;
$$. addr = $2. addr;
$$. code = $2. code;}
1+1
{$$. code = "\tADD\t";} /* etc. for the rest */
/* NOTE: this does not handl e FADD */
YOR
1 %
1/1
YAND
1<1
1>1
YLEOP
YGEOP
YNEOP
/[* empty */

act ual

CSC530-S02-L6

act ual

nunber

real

i nt eger

char

bool

{$$.
$$.
$$.

actual ',’

{$$.
$$.
$$.

real
{$$.
$$.
_ }
i nt eger
{$$.
$$.
}

Yr eal
{$3.
$3.

Yi nt eger
{$3.
$3.
}

Ychar
{$3.
$3.

Ybool

{$3.
$$.

.type
. addr
. code

types
addr s
codes
act ua
types
addr s
codes

type
addr

type
addr

type
addr

type
addr

type
addr

type
addr

$1. type;
$1. addr;
$1. code;

s
$1.type
$1. addr
$1. code

}

U $3.types;
U $3. addrs;
U $3. codes;

$1.
$1.
$1.

$1.
$1.
$1.
$1.

"re

type;
addr ;
code;

type;
addr ;

type;
addr ;

al":

strify($1.

"integer";

"ch

ar":

strify($1.

strify($1.

"bool ean”;

strify($1.

val);

val);

val)

val);

&ye 20

