
CSC530-S02-L6 Page 1

CSC 530 Lecture Notes Week 6
-- REVISED --

Discussion of Assignment 3, Questions 1 and 2
Intr oduction to Denotational Semantics

I. Turingol Highlights

A. Knuth’s Turingol semantics defines the compilation of a simple textual Turing Machine language
into lower-level TM quintuples.

B. In comparison to the SIL attribute grammar semantics, the Turingol semantics arecompiled
whereas the SIL semantics areinterpreted. (An example of a compiled semantics for a SIL-like
language is attached to the end of these notes.)

C. Theform of instruction in the Turingol TM is:

< p , A , c , d , q >

where

p = present state
A = symbol scanned
c = symbol written
d = tape movement direction
q = next state

D. Two major attributes in the Turingol definition areSymbolandlabel
1. Theseare used assymbol tables, in a manner similar to similar to how the env and store

attributes are used in the SIL definition.

2. Viz., the tables store bindings of identifiers to some form of value.

3. In the case ofSymbolandlabel, they associate program names with TM-level values.

4. E.g.,"tape alpha ispoint, blank, one, zero" would have aSymbolattribute like this:

text(id) symbol(text(id))

"point" .
"blank" B
"zero" 1
"one" 0

5. Similarly, statement labels are bound in alabel symbol table such as

text(id) label(text(id))

test q2
carry q4
realign q7

E. Somedetails of Example 4.1 on page 137.

CSC530-S02-L6 Page 2

Source string TM quintuple

tape alpha isblank, one, zero, point

print point <q0, s, ., 0, q1>

where s = {B,0,1,.}

gotocarry <q1, s, s, 0, q4>

test:if the tape symbol is"one" <q2, s, s, 0, q6>

where s = {B,0,.}
then <q2, 1, 1, 0, q3>

{ print "zero" ; <q3, s, 0, 0, q4>

. . .

}

realign:move right one square <q7, s, s, 0, q8>

F. Additional notes
1. Σ must be fully processed and available before any instructions are executed
2. newsymbolis Lisp’s gensym-- it creates a brand new symbol name.
3. Theset union operators used in thedefine and include auxiliary functions maintain set prop-

erty; this avoids the problem of having to check for multiply defined entries in the symbol
tables.

II. Specificsfor Assignment 3, Questions 1 and 2

A. For question 1, cast your answer in terms of semantic attributesnotTM execution states.

B. For question 2:

1. Theidea is to make explicit the attribute dependencies

2. Label is the most interesting case (think about the semantics of the declaration and use of
labels in a typical programming lang)

3. Notethat you need not really understand what Turingol programs do or even much of what the
TM code looks like -- rather, the focus here is on the general semantic definition technique.

Now on to Denotational Semantics

III. Relevant reading: Papers 17-22, primarily number 20.

IV. Introductory comparison of Knuth-style attribute grammar semantics with Tennent-style denotational
semantics.

A. In Knuth, we define attributes and semantic rules, but the rule evaluation strategy is not explicitly
specified, i.e., preciselyhowwe do the tree walk is a up to us.

B. In contrast, the denotational approach replaces the under-specified tree-walk evaluation scheme
with formal function evaluation.

CSC530-S02-L6 Page 3

1. Ratherthan walk through a tree any way we feel like, we are forced to perform what amounts
to a depth-first traversal

2. Thisis imposed by the fact that semantic functional arguments are expressed in terms of syn-
tactic constituents.

3. For the denotational approach, the analog of passing attributes through the tree is carried out by
passing function arguments between semantic functions.

4. Multiple evaluation passes are still available in a denotational definition, based on one full-pass
semantic function invoking another full-pass function.

5. A significant advantage of the denotational approach is availability of evaluation functions as
first-class objects, rather than having evaluation based on a parse tree data structure.
a. Thismeans in particular that we do not need the less-than-completely formalfunction-

ize auxiliary function.
b. Defined function bodies are represented not as attributed parse trees, but as the same form

of functions used to define the rest of the language semantics.

6. Also, the rather operational definition of looping required in an attribute grammar definition is
replaced with a much more mathematical form, using the concept offixpoints.

C. Furtherexamples to follow next week.

V. Data domains, from Tennent Chapter 3

A. Data domainsare the denotational analog of attribute type definitions.

B. Aswith attribute grammar definitions, domain constructions are used for two purposes:

1. To define the datatypes on which to build denotational definitions.

2. To model higher-level data constructors in programming languages.

C. Summaryof what domain constructions model:

1. Productdomains arerecords

2. Sumdomains areunions(aka,variant records).

3. Functiondomains can be used to modelarraysand other forms oftables.

4. Also,function domains are used to model thevalueof a procedure body -- not the value it com-
putes, but the value of its body as an unevaluated function (i.e., a lambda expression).

5. As in Lisp and other functional languages, recursive domains are used to provide the same
capabilities aspointers.

VI. Thebinary numeral example of Tennent Chapter 13

A. Tennent Chapter 13 starts with a simple example for the semantics of binary numerals.

1. TheKnuth paper has a similar example.

2. To begin our investigation of denotational semantics, we’ll compare three semantic approaches
to defining binary numerals -- denotational, attribute grammars, and operational.

CSC530-S02-L6 Page 4

B. Denotationaldefinition of binary numerals

Abstract syntax: N ∈ Nml = binary numerals
I ∈ Int = binary integers
F ∈ Frac = binary fractions

N ::= I . F
I ::= B | I B
F ::= B | B F
B ::= 0 | 1

Semantic domain:Q = real numbers

Semantic functions:
�

: Nml → Q�
: Int → Q�
: Frac → Q

�
[[I . F]] =

�
[[I]] +

�
[[F]]�

[[I B]] = 2*
�
[[I]] +

�
[[B]]�

[[0]] = 0�
[[1]] = 1�
[[B F]] =

�
[[B]] +

�
[[F]]/2�

[[0]] = 0�
[[1]] = 1/2

Test case:1101.01�
[[1101.01]] =

�
[[1101]] +

�
[[01]]

= (2*
�
[[110]] +

�
[[1]]) + (

�
[[0]] +

�
[[1]]/2)

= (2*(2*
�
[[11]] +

�
[[0]]) +

�
[[1]]) + (

�
[[0]] +

�
[[1]]/2)

= (2*(2*(2*
�
[[1]] +

�
[[1]]) +

�
[[0]]) +

�
[[1]]) + (

�
[[0]] +

�
[[1]]/2)

= (2*(2*(2*1 + 1) + 0) + 1) + (0 + (1/2)/2)

Another test case:101100.001101 = 32 + 8 + 4 + .125 + .0625 + .015625 = 44.203125�
[[101100.001101]] =

=
�
[[101100]] +

�
[[001101]]

= (2*
�
[[10110]] +

�
[[0]])

+ (
�

[[0]] +
�

[[01101]]/2)
= (2*(2*

�
[[1011]] +

�
[[0]]) +

�
[[0]])

+ (
�

[[0]] + (
�

[[0]] +
�

[[1101]]/2)/2)
= (2*(2*(2*

�
[[101]] +

�
[[1]]) +

�
[[0]]) +

�
[[0]])

+ (
�

[[0]] + (
�

[[0]] + (
�

[[1]] +
�

[[101]]/2)/2)/2)
= (2*(2*(2*(2*

�
[[10]] +

�
[[1]]) +

�
[[1]]) +

�
[[0]]) +

�
[[0]])

+ (
�

[[0]] + (
�

[[0]] + (
�

[[1]] + (
�

[[1]] +
�

[[01]]/2)/2)/2)/2)
= (2*(2*(2*(2*(2*

�
[[1]] +

�
[[0]]) +

�
[[1]])+

�
[[1]]) +

�
[[0]]) +

�
[[0]])

+ (
�

[[0]] + (
�

[[0]] + (
�

[[1]] + (
�

[[1]] + (
�

[[0]] +
�

[[1]]/2)/2)/2)/2)/2)
= (2*(2*(2*(2*(2*1 + 0) + 1)+ 1) + 0) + 0)

+ (0 + (0 + (1/2 + (1/2 + (0 + 1/2/2)/2)/2)/2)/2)
= 44.203125

CSC530-S02-L6 Page 5

C. Attribute grammar definition of binary numerals

Attrib utes:

Atrrib ute Description

v Real number decimal value of the binary number.

Grammar rules and semantic equations:
N : I ’.’ F {$$.v = $1.v + $3.v};
I : I B {$$.v = 2 * $1.v + $2.v};
I : B {$$.v = $1.v};
F : B F {$$.v = $1.v + $2.v / 2};
F : B {$$.v = $1.v / 2};
B : 1 {$$.v = 1};
B : 0 {$$.v = 0};

Test case:

N

I . F

I B

I B

I B

B F

B

B

v

1

1

1

0

0

1

1

1

1

1

0

0

2*1 + 1 = 3

2*6 + 1 = 13

2*3 + 0 = 6

1

1/2 = .5

0 + 1/ 2/2 = .25

13 + .25 = 13.25

D. Operationaldefinition of binary numerals
; Operational semantics for binary numbers, patterned after the attribute
; grammar and denotational definitions in
; ../semantics-expamples/binary-numbers{attr,deno}, q.q.v.
;
; Syntactically, a binary number is represented as a list of 0’s and 1’s, with
; an optional decimal point. E.g., (1 1 0 1 \. 0 1).

CSC530-S02-L6 Page 6

(defun main ()
(let ((number (read)))

(eval-binary-number number)
)

)

(defun eval-binary-number (number)
(let* ((integer-value (eval-integer-part number 0))

(number (move-upto-dot number))
(fractional-value (eval-fractional-part number 0)))

;(break "in mid eval-binary-number")
(+ integer-value fractional-value)

)
)

(defun eval-integer-part (number val)
;(break "in eval-integer-part")
(cond ((or (null number) (eq (car number) ’\.))

val)
(t

(let* ((val (+ (* 2 val) (car number))))
(eval-integer-part (cdr number) val)))

)
)

(defun eval-fractional-part (number val)
(cond ((null number)

val)
(t

; (print (list "number=" number ", next fp="
; (eval-fractional-part (cdr number) val)))

(let* ((val (/ (eval-fractional-part (cdr number) val) 2.0)))
(print (list "number=" number ", val=" val))
(+ (/ (car number) 2.0) val)))

)
)

(defun move-upto-dot (number)
(cond ((null number)

nil)
((eq (car number) ’\.)

(cdr number))
((or (eq (car number) 0) (eq (car number) 1))

(move-upto-dot (cdr number)))
)

)

Test case:
% gcl

>(eval-binary-number ’(1 1 0 1 \. 0 1))

13.25

E. Someobservations on the three techniques.

1. Thesyntax in the attribute grammar definition is slightly more verbose, or at least more spread
out

CSC530-S02-L6 Page 7

a. Thoughit does not show that much in this simple example, the syntax in a denotation defi-
nition is generally more abstract than in an attribute definition.

b. To a large extent this is due to the fact that the semantic definitions are directly hung off the
grammar rules in an attribute grammar, where as they are factored into a separate list in a
denotational definition.

c. Whatis most important is that both attribute grammars and denotational definition aresyn-
tax-directed.

d. Thedifference between abstract versus concrete syntax is really unimportant from a seman-
tics point of view.

2. Theheart of the definition in the attribute grammar and denotational semantics are the same.

3. Theoperational semantics is considerably bulkier than the other two definitions.
a. Amajor nuisance in the operational definition is having to deal directly with scanning.
b. In particular, the functionmove-upto-dot is entirely superfluous to the semantics.
c. Whileother approaches to the operational definition could be shorter, the bottom line is that

a certain amount of operational hacking must always be done to get an operational defini-
tion to work.

d. In contrast, the syntax-directed foundation of the attribute grammar and denotational tech-
niques obviate the need for any syntactic processing.

VII. Notationalconventions for Tennent-style denotational definitions (Chapter 13, pp. 213-216)

A. Doublesquare brackets enclose syntactic operands (i.e., this is an abstraction of all parsing).

B. ?is the union "tag test" operator.

1. E.g.,if b is a basic value (bool or int) then b?T is true if b is a bool (Truth value) and b?Z is
true if b is an int (Z is the normal math abbreviation for the set of ints).

2. In terms of environments and stores, ? provides the basic type and class checking mechanism.

3. I.e,.for a store, the expression b?Z type checks b in that it fails if b is not an int.

4. Similarly for an environment, the expressiond?L checks thatd is an l-value (see rule for
assignment in Table 13.3).

C. "• → • , •" is the if-then-else expression. E.g.,

e → x1, x2

is

if e then x1 elsex2

D. "• [• |→ •]" is the "function perturbation", a.k.a, "make an entry in the functional representation
of an alist" function.E.g.,

s[I |→ r]

means

"enterr as the value of identifierI in alists".

1. Cf.Knuth’s define, which does the same thing

2. Both the function perturbation operator and Knuth’s define have the same semantic effect as
adding a new binding into an alist.

3. Thispurely functional view of tables takes some getting used to.

CSC530-S02-L6 Page 8

VIII. A Simple Programming Language (Tennent Section 13.2)

A. The denotational semantics of the programming language in Tennent Section 13.2 is very similar
to the semantics of the Lisp subset handled byxeval in Assignment 1.

B. Notesabout the semantic domains:

1. T andZ arebooleansandints, i.e., the basic atomic data values. Realsare trivial to add (well,
almost trivial).

2. B is the product domain (i.e., union) of bools and ints, and hence the set of allbasic valuesin
this simple language.

3. S is thestore. It is a function from text id’s to storable values (more on storable values in just a
bit). Assuch, it can be thought of as an alist of the form:

Basic
Value

Text Id

.

where the text id’s are the keys and the basic values are their corresponding entries.

4. P is the domain ofprocedures.
a. Theseare unevaluated procedure bodies that are denoted as functions.
b. The denotation domain of procedures is the analog of the functions generated by the

functionize auxiliary function used in the attribute grammar definition of SIL and the
lambda forms used as the value ofxdefun’d functions in the operational semantics.

c. SeeTennent bottom of page 219.

5. R is the set ofstorable valuesthat is the product of basic values (i.e., the bool and int scalars)
together with the procedure values.
a. Hence,a store entry is either an atomic bool or int, or a function which denotes a proc body.
b. This is analogous to the two forms of bindings -- values and functions -- in the Lisp inter-

preter and the SIL attribute semantics.

6. E, G, andA are justR, S, andB respectively with { error} t acked on.

IX. Adding an environment to the simple PL (Tennent Section 13.3)
A. The denotational semantics of the programming language in Tennent Section 13.3 is very similar

to the semantics of the Lisp subset handled byxcheck andxeval in Assignment 2, as well as to
the semantics of SIL.

B. Reconcilinga few notational abnormalities:

CSC530-S02-L6 Page 9

Tennent Normal Pascalese Whatit is

new I = E var ident : type := expr scopedvar decl with initialization

val I = E const ident = expr scopedconstant decl

with D do C declsbeginstmtsend block with decls and stmts

where type is restricted tointeger or boolean and in the case of thenew declaration, type is
inferred from the type of the expression E.

C. Notationalconventions
1. Addto definition 13.2 a new environmentalist to exist in conjunction with the store:

Environment Store

Storable
Value

Text Id Value L-Value

.

2. Inso doing, we’ve now separated the classes of storable and denotable values.
3. Thisseparation more accurately models the semantics of a store as a raw piece of computer

memory, since an l-value models a memory address explicitly.
a. Thisseparation is not done in the attribute grammar definition of SIL, where the definition

of a store is more abstract.
b. The separation could easily be done using attribute grammars (i.e., it’s not something that

requires any special feature of the denotational technique).
4. Amongother things, we can now represent the proper semantics of Pascal procedure bodies by

making elements of the domainP denotable but not storable; this reflects the first-order Pascal
semantics that does not have procedure types.

5. In this regard, it is interesting to consider the semantics of the C "&" operator -- it makes all
elements of the domainL storableas well as denotable.

6. Hence,with the simple addition ofL to the RHS of the storable values domain definition:

r ∈ R = B + P + L

we can define one of the more important aspects of C semantics that distinguishes it from most
other languages

7. Thisis a pretty nice illustration of the power of denotational semantics.
8. For complete truth in advertising, we should note that the preceding definition is a bit of a sim-

plification, since Pascal allows a restricted class of L-values to be storable, i.e., pointer values.
a. Therefore,the genuine distinction between Pascal and C L-value semantics would involve

subdividing theL domain some more.
b. Nev ertheless, this is still a good example of the power -- if not thedensity-- of the denota-

tional technique.

CSC530-S02-L6 Page 10

X. Thesemantic functions of Tennent used in definitions 13.2 & 13.3

A. The meat of the matter in a denotational definition are the semantic functions that deliver the
meaning.

B. Hereis a summary of the functions used in Tennent definitions 13.2 and 13.3:

Description 13.2 13.3

Expression Evaluation � : Exp → (S → E) � : Exp → (U → (S → E)) †
Command Execution � : Com → (S → G) � : Com → U → S → G
Declaration Elaboration --- � : Def → U → S → (U × G)
Program Execution � : Pro → B → A � : Pro → B → A

† right associativity shown explicitly for � ; same for others

XI. Whither inheritance and synthesis in Tennent-style defs?

A. Inheritedattributes

1. In a Tennent-style definition, inherited attributes are represented as arguments passedin to
semantic functions.

2. E.g.,as the env and store are passed down from � to � , these can be considered inherited by
� .

B. Synthesizedattributes

1. In a Tennent-style definition, synthesized attributes are represented as function results passed
out from semantic functions.

2. E.g.,the expression value result produced by� is synthesized up to� when � calls � .

3. Similarly, the store value produced by the called invocation of � is synthesized up to the call-
ing invocation of � .

XII. The pervasive use of functions as data in Tennent-style defs
A. Many places in a Knuth-style definition where a table-valued (i.e., alist) attribute is used, the com-

parable attribute in the Tennent-style definition is the function version of that table.
B. E.g.,both the env and store in 13.3 arefunctionsinstead of tables.

1. Thismeans that, for example, the env assoc aux function in the Knuth-style SIL semantics is
replaced by applying the env function itself to an identifier to yield the table value correspond-
ing to that identifier.

2. Asnoted earlier, this will take some getting used to.

XIII. Next week we’ll dissect definitions 13.2 and 13.3 -- please bring your copy of paper 24 to class.

XIV. Attached is the sample compiler-oriented attribute semantics refered to on page 1 of the notes.

A. You do not need to read through the example in detail.

B. Thepoint of providing the example is to give you a general feel for what code generation seman-
tics look like compared to interpretive semantics.

CSC530-S02-L6 Page 11

/*
* This is a Yacc-style attribute grammar for the code generation semantics of
* a language very similar to SIL. The meta-notation used here is slightly
* less formal that the pure ML notation used in the interpretive SIL
* definition. The point of this example is to give you a general feel for
* what code generation semantics look like for a language of other than the
* very simple Turingol defined by Knuth.
*
* The semantic rules define both type checking and code generation in the same
* definition. These are the attributes that are used:
*
* NAME DESCRIPTION
* ===
* symtab A global reference-valued attribute representing an abstract
* symbol table. A symtab is a reference to a 2-tuple of the
* form:
* (parenttab, entries)
* where parenttab is a reference to the parent symbol table, and
* entries is a list of 5-tuples of the form:
* [(name, class, type, level, offset), ...].
* For symbols with class = "proc", a symtab entry is a nine-tuple
* of the form
* (name, "proc", type, level, offset, parms, symtab, label, size)
* where the first 5 items are as for a variable entry, and the
* last 4 items are, respectively, the list of formal parm names,
* the local procedure symbol table, the object code label for the
* proc, and the size in bytes of the proc act. record.
*
* type A string-valued attribute representing the names of types.
* Successful type checking is represented by the value of
* program.type = "OK". Note that a string-valued type attribute
* is used for this simple language since there are no structured
* types. For a language like Modula-2, the type attribute would
* be tuple-valued, in order to represented structured types
* effectively.
*
* class A string-valued attribute representing the names of symbol
* classes, specifically "var", "parm", or "proc".
*
* text A string-valued attribute representing the lexical text of
* declared identifiers.
*
* types A sequence-valued attribute that holds a list of types for
* formal and actual procedure parameters.
*
* code A synthesized sequence-valued attribute that holds obj code.
*
* addr A synthesized string-valued attribute for a machine address.
*
* parms A sequence-valued attribute that holds the names of formal
* procedure parameters.
*
* actuals A sequence-valued attribute that holds the types of actual

CSC530-S02-L6 Page 12

* procedure parameters from a proc call.
*
* codes Sequence of actual parm code values.
*
* addrs Sequence of actual parm addr values.
*
* label A global integer attribute used to generate unique labels.
* Initial value is 0.
*
* reg A global integer attribute used to generate an available
* register. Initial value is 1.
*
* curoffset An inherited integer attr that records the next available
* storage offset, in bytes.
*
* level An inherited integer attribute that records the lexical
* nesting level.
*
* size A synthesized integer attr that records total size in bytes
* of allocated storage.
*
* depth Synthesized integer attribute used to record max nesting depth
* of proc decls.
*
* WORDSIZE A global constant integer attribute that holds the size of a
* word in bytes.
*
*
* There are three auxiliary functions used to enter and lookup symbols:
*
* Enter(symtab, symbol, class, type, level, offset) =
* let (!symtab) 2 =
* (!symtab) 2 U (symbol, class, type, level, offset)
*
* Enter(symtab, symbol, class, type, level, offset, parms, symtab)
* let (!symtab) 2 = (!symtab) 2 U
* (symbol, class, type, level, offset, parms, symtab)
*
* Lookup(symtab, symbol) = the first element S of (!symtab) 2
* such that S 1 = symbol,
* "ERROR" if no such element
*
*
* There are three auxiliary functions used to enter and exit procedure scopes
* while symtab values are being computed:
*
* EnterProc(symtab, name, level) =
* let newsymtab = (symtab, {})
* Enter(symtab, name, "proc", "", level, 0, (), newsymtab)
* let Lookup(name) 8 = NextLab()
* let symtab = newsymtab
*
* EnterParms(symtab, name, type, parmtypes, offset) =

CSC530-S02-L6 Page 13

* let Lookup(symtab, name) 3 = type
* let Lookup(symtab, name) 4 = parmtypes
* let Lookup(symtab, name) 5 = offset;
* let Lookup(symtab, name) 9 = offset + 2 * WORDSIZE
*
* ExitProc(symtab) =
* let symtab = symtab 1
*
*
* There is an aux function to compute the size in bytes of a data type. With
* the simple types of the Translator 5 language, this is a simple function.
* For Modula-2, it’s more complicated, as has been noted before.
*
* typesize(t) =
* if t = "integer" then WORDSIZE
* else if t = "real" then WORDSIZE
* else if t = "boolean" then 1
* else if t = "char" then 1
*
*
* There are aux functions used to generate unique labels and available
* registers, assuming that initially label has value 0 and reg has value 1.
*
* NextLab() = "L" || label; let label = label + 1
* NextReg() = "R" || reg; let reg = reg + 1
* ClearRegs() = let reg = 1
*
* There are two aux functions to generate the largely canned pieces of code
* that go at the top of the object code, and at the top of the main body:
*
* topcode(size,depth) =
* ["GOTOMAIN",
* "STATIC\tDATA\t" || strify(size),
* "STACK\tDATA\t25000",
* "DISPLAY\tDATA\t" || strify(depth*WORDSIZE)]
*
* maincode() =
* ["MAIN\tDATA\t0",
* "\tMOV\tSTATIC, R0",
* "\tMOV\tSTACK, SP",
* "\tADD\t 25000, SP",
* "\tMOV\tDISPLAY, R1"]
*
*
* There is an aux function to generate a local or global machine address:
*
* genaddr(sym) =
* if sym 4 = 0
* then strify(sym 5) || "(R0)"
* else strify(sym 5) || "(SP)");
*
*
* There is a simple aux function to generate an assignment stmt:

CSC530-S02-L6 Page 14

*
* genassmnt(src, dest) = "\tMOV\t" || src || ", " || dest
*
*
* There are two simple aux functions to gen code to push and pop act records:
*
* pushactrec(size) =
* "\tSUB\t" || strify(size) || ", SP"
* popactrec(size) =
* "\tADD\t" || strify(size) || ", SP"
*
*
* Finally, there is an aux function to generate code for the details of a proc
* call:
*
* gencall(proclab, returnlab, offset) =
* ["\tMOV\t" || returnlab || ", " || strify(offset) || "(SP)",
* "\tGOTO\t" || proclab,
* returnlab || "\tDATA\t0"]
*
*
*/

program : YPROGRAM decls YBEGIN stmts YEND
{symtab =

[ref (), [("integer", "type", "integer"), ...]];
$$.type = $4.type;
$2.level = 0;
$2.curoffset = 0;
if ($$.type = "OK" then

$$.code = topcode($2.size, $2.depth) U
$2.code U maincode() U $4.code;}

;

decls : /* empty */
{$$.size = 0;
$$.depth = 0;
$$.code = [];}

| decl ’;’ decls
{$1.level = $$.level;
$3.level = $$.level;
$1.curoffset = $$.curoffset;
$3.curoffset = $$.curoffset + $1.size;
$$.size = $1.size + $3.size;
$$.depth = max($1.depth, $3.depth);
$$.code = $1.code U $3.code;
}

;

decl : vardecl
{$1.level = $$.level;
$1.curoffset = $$.curoffset;
$$.size = $1.size;

CSC530-S02-L6 Page 15

$$.depth = $1.depth;
$$.code = [];
}

| procdecl
{$1.level = $$.level;
$$.size = 0;
$$.depth = $1.depth;
$$.code = $1.code;
}

;

vardecl : YVAR vars ’:’ type
{$2.type = $4.type; /* notice inherited attribute */
$2.class = "var";
$2.level = $$.level;
$2.curoffset = $$.curoffset;
$$.size = $2.size;
$$.depth = 0;
}

;

type : Yidentifier
{$$.type = Lookup(symtab, $1.text) 3;}

;

vars : var
{Enter(symtab, $1.text, $$.class, $$.type,

$$.level, $$.curoffset);
$$.size = typesize($$.type)}

| var ’,’ vars
{$3.type = $$.type;
$3.class = $$.class;
$3.level = $$.level;
Enter(symtab, $1.text, $$.class, $$.type,

$$.level, $$.curoffset);
$3.curoffset = $$.curoffset + typesize($$.type);
$$.size = typesize($$.type) + $3.size;
}

;

var : Yidentifier
{$$.text = $1.text;

/* The lexer provides Yidentifier as a string */
let sym = Lookup(symtab, $1.text);
}

;

procdecl : YPROCEDURE prochdr ’;’ procbody
{$2.level = $$.level;
$4.level = $$.level + 1;
$4.curoffset = $2.size;
$$.depth = $4.depth;
$$.size = $4.size;

CSC530-S02-L6 Page 16

$$.code = $2.code || $4.code;
ExitProc($2.text);}
}

;

prochdr : Yidentifier ’(’ formals ’)’
{EnterProc(symtab, $1.text, $$.level);
$3.level = $$.level + 1;
$3.curoffset = 0;
EnterParms(symtab, $1.text, "",

$3.parms, $3.size);
$$.text = $1.text;
$$.code = Lookup(symtab, $1.text) 7 || "\tDATA\t0";}
}

| Yidentifier ’(’ formals ’)’ ’:’ type
{EnterProc(symtab, $1.text, $$.level);
$3.level = $$.level + 1;
$3.curoffset = 0;
EnterParms(symtab, $1.text, $6.type,

$3.parms, $3.size);
$$.text = $1.text;
$$.code = Lookup(symtab, $1.text) 7 || "\tDATA\t0";}
}

;

formals : /* empty */
{$$.types = null;
$$.parms = null;}

| formal
{$$.types = $1.type;
$1.level = $$.level;
$1.curoffset = $$.curoffset;
$$.parms = $1.text;
$$.size = $1.size;
}

| formal ’,’ formals
{$$.types = $1.type U $3.types;}
$$.types = null;
$1.level = $$.level;
$1.curoffset = $$.curoffset;
$3.curoffset = $$.curoffset + $1.size;
$$.parms = $1.text U $3.parms;
$$.size = $1.size + $3.size;
}

;

formal : Yidentifier ’:’ type
{Enter(symtab, $1.text, "parm", $3.type,

$$.level, $$.curoffset);
$$.text = $1.text
$$.type = $3;
$$.size = typesize($3.type);
}

CSC530-S02-L6 Page 17

;

procbody : decls YBEGIN stmts YEND
{$$.type = $3.type;
$1.level = $$.level;
$1.curoffset = $$.curoffset;
$$.size = $1.size;
$$.depth = $1.depth + 1;
$$.code = $3.code;
}

;

stmts : stmt ’;’
{$$.type = $1.type;
$$.code = $1.code;}

| stmt ’;’ stmts
{$$.type = if ($1.type = "OK" and $3.type = "OK")

then "OK" else "ERROR";
$$.code = $1.code U $4.code;
}

;

stmt : /* empty */
| Yidentifier YASSMNT expr

{$$.type =
(if Lookup(symtab, $1.text) 3 = $3.type
then "OK" else "ERROR");

$$.code =
$3.code U genassmnt($3.addr, $1.addr)

ClearRegs();
}

| Yidentifier ’(’ actuals ’)’
{let ftypes = Lookup(symtab, $1.text) 4;
let proctype = Lookup(symtab, $1.text) 3;
$$.type =

if (foreach (fp in ftypes, ap in $3.types)
(fp = ap) and (proctype = null))

then
"OK"

else
"ERROR";

$$.code =
/* Gen code for proc call stmt, ... */

ClearRegs();
}

| YIF expr YTHEN stmts YEND
{$$.type =

if ($2.type = "boolean") and
($4.type = "OK")

then "OK"
else "ERROR";

$$.code = /* filled-in code template for if */
ClearRegs();

CSC530-S02-L6 Page 18

}
| YIF expr YTHEN stmts YELSE stmts YEND

{$$.type =
if ($2.type = "boolean") and

($4.type = "OK") and
($6.type = "OK")

then "OK"
else "ERROR";

$$.code = /* filled-in template for if-then-else */
ClearRegs();
}

;

expr : number
{$$.type = $1.type;
$$.code = [];
$$.addr = $1.addr;}

| char
{$$.type = $1.type;
$$.code = [];
$$.addr = $1.addr;}

| bool
{$$.type = $1.type;
$$.code = [];
$$.addr = $1.addr;}

| Yidentifier
{$$.type = Lookup(symtab, $1.text) 3;
$$.code = [];
$$.addr = genaddr(Lookup(symtab, $1.text));
}

| Yidentifier ’(’ actuals ’)’
{let ftypes = Lookup(symtab, $1.text) 4;
let proctype = Lookup(symtab, $1.text) 3;
$$.type =

if (foreach (fp in ftypes, ap in $3.types)
(fp = ap) and (proctype != null))

then
proctype

else
"ERROR";

/* Gen code as for proc call stmt, plus set
* $$.addr = machine addr of return value. */

}
| expr relop expr %prec ’<’

{$$.type =
if ($1.type = $3.type)
and (($1.type = "real") or ($1.type = "integer")

or ($1.type = "char"))
then $1.type
else "ERROR";

}
/* NOTE: relop code gen not done here. */

| expr addop expr %prec ’+’

CSC530-S02-L6 Page 19

{$$.type = /* For simplicity, this is Mod-2 rule */
if ($1.type = $3.type)
and (($1.type = "real") or ($1.type = "integer"))

then $1.type
else "ERROR";

$$.addr =
if isreg($1.addr) then $1.addr else NextReg();

$$.code =
if not isreg($1.addr)
then

"\tMOV\t" || $1.addr || ", " || $$.addr U
"\t" || $2.code || "\t" ||

$3.addr || "," || $$.addr
else

"\t" || $2.code || "\t" ||
$3.addr || "," || $$.addr;

}
| expr multop expr %prec ’*’

{$$.type =
if ($1.type = $3.type)
and (($1.type = "real") or ($1.type = "integer"))

then $1.type
else "ERROR";

}
{$$.code = /* ... as for addop */;}

| ’(’ expr ’)’
{$$.type = $2.type;
$$.addr = $2.addr;
$$.code = $2.code;}

;

addop : ’+’
{$$.code = "\tADD\t";} /* etc. for the rest */

/* NOTE: this does not handle FADD */
| ’-’
| YOR
;

multop : ’*’
| ’/’
| YAND
;

relop : ’<’
| ’>’
| ’=’
| YLEOP
| YGEOP
| YNEOP
;

actuals : /* empty */
| actual

CSC530-S02-L6 Page 20

{$$.types = $1.type;
$$.addrs = $1.addr;
$$.codes = $1.code;}

| actual ’,’ actuals
{$$.types = $1.type U $3.types;
$$.addrs = $1.addr U $3.addrs;
$$.codes = $1.code U $3.codes;
}

;

actual : expr
{$$.type = $1.type;
$$.addr = $1.addr;
$$.code = $1.code;
}

;

number : real
{$$.type = $1.type;
$$.addr = $1.addr;
}

| integer
{$$.type = $1.type;
$$.addr = $1.addr;
}

;

real : Yreal
{$$.type = "real";
$$.addr = " " || strify($1.val);
}

;

integer : Yinteger
{$$.type = "integer";
$$.addr = " " || strify($1.val);
}

;

char : Ychar
{$$.type = "char";
$$.addr = "’" || strify($1.val) "’";
}

;

bool : Ybool
{$$.type = "boolean";
$$.addr = " " || strify($1.val);
}

;

