
CSC530-W02-L1 Slide1

CSC 530 Lecture Notes Week 1

Intr oduction to the Course

Intr oduction to Lisp

CSC530-W02-L1 Slide2

I. Meaning.

A. We will focus upon themeaning
of programming languages

B. E.g.,what does it mean to be

1. functional?

2. strongly typed?

3. object oriented?

4. more powerful?

5. evil and dangerous?

CSC530-W02-L1 Slide3

What does it mean, cont’d

C. We must investigate how meaning
can be expressed.

1. Formal semantics

2. Definesemantics like BNF
defines syntax.

3. Conciseand formal, without
ambiguity.

4. Thereare a number of
approaches

CSC530-W02-L1 Slide4

II. How is meaning defined?

A. I.e., in general, how’s it done?

B. For English:

1. Ina dictionary

2. Anthropologically

3. Structurally

CSC530-W02-L1 Slide5

Meaning defined, cont’d

C. For programming languages, use
similar techniques.

1. A compiler or interpreter.

2. Historically.

3. With formal definitions.

CSC530-W02-L1 Slide6

Meaning defined, cont’d

D. Forms of semantic definition:

1. Operationalsemantics

2. Attribute grammars

3. Denotationalsemantics

4. Axiomaticssemantics

5. Algebraicsemantics

CSC530-W02-L1 Slide7

III. Programming lang’s as religion.

A. Computerscientists are fond of
heated discussion.

B. Debateis relly moot.

C. Despitewhat they know, they
debate what webelieve.

D. We will join the debate in this
class.

CSC530-W02-L1 Slide8

IV. This class’ belief system

A. applicative (aka, functional)

B. "opposing"viewpoints given fair
treatment.

C. Otheraspects include: ...

CSC530-W02-L1 Slide9

V. Some initial definitions.

A. applicative language = side-effect
free

B. imperative language = instruc-
tions modify state memory.

CSC530-W02-L1 Slide10

VI. Foundations

A. Distinctionbetween applicative
and imperative is fundamental

B. To examine fully, we’ll go back to
pre-history of computing.

CSC530-W02-L1 Slide11

VII. Turing machines and the impera-
tive model

A. Founders: Alan Turing, John von
Neumann, and others.

B. A TM is a model ofeffective com-
putability

C. Formally, TM is a state machine:

CSC530-W02-L1 Slide12

Turing machines, cont’d

1. Infinitememory tape

2. Movable head, that performs

a. Reada symbol

b. Write a symbol

c. Move one slot

CSC530-W02-L1 Slide13

Turing machines, cont’d

D. A set of quintuples

(current state,
symbol read,
new state,
symbol written,
move direction)

CSC530-W02-L1 Slide14

Turing machines, cont’d

A very simple example (compute
the unary constant 4):

(0, ,1,1,R)
(1, ,2,1,R)
(2, ,3,1,R)
(3, ,4,1,R)

CSC530-W02-L1 Slide15

Turing machines, cont’d

E. Anotherexample

(0,1,1,X,R)
(0,,,0,,,R)
(0,:,3,:,R)

(1,1,1,1,R)
(1,,, 1,,,R)
(1,:, 1,:,R)
(1, , 2,1,L)

(2,1,2,1,L)
(2,:,2,:,L)
(2,,,2,:,L)
(2,X,0,X,R)

CSC530-W02-L1 Slide16

Turing machines, cont’d

1. A sample input tape (to add
2+3):

11,111:
ˆ
0

2. Theresulting output tape:

XX,XXX:11111
ˆ
3

CSC530-W02-L1 Slide17

Turing machines, cont’d

3. Whateach state does

State Description

0 check for 1, ’,’,
or ’:’ ...

1 carry a 1 over ...
2 go back ...
3 halt

CSC530-W02-L1 Slide18

VIII. Recursive function theory and
the applicative model

A. Founders: Stephen Kleene,
Alonso Church, and others.

B. Alternative (and equivalent)
model of effective computability

C. Formally, defined as:

CSC530-W02-L1 Slide19

RFT, cont’d

1. Zero function:Z(x) = 0

2. Successor func’n: S(x) = x + 1

3. Composition of functions:

f(x0,...,xn) =

h(g0(x0,...,xn),...,

gk(x0,...,xn))

CSC530-W02-L1 Slide20

RFT, cont’d

4. inductive recursion scheme:

f(0,x1,...,xn) =

g(x1,...,xn)

f(S(n),x1,...,xn) =

h(f(x1,...,xn),n,

x1,...,xn)

where g and h are defined
recursively

CSC530-W02-L1 Slide21

RFT, cont’d

D. RFdef constant 4:

Four(x) = S(S(S(S(Z(x)))))

E. Definitionof addition (second TM
example):

Add(0,y) = y

Add(S(n),y) = S(Add(n,y))

CSC530-W02-L1 Slide22

IX. Equivalence of TMs and RFT

A. Canbe proved formally

B. An important (and comforting)
result

C. Equivalent, but also equivalently
unsuited for practical program-
ming.

D. Whatis important is what the
models represent

CSC530-W02-L1 Slide23

Equivalence, cont’d

E. TheChurh Hypothesis

1. TM’s and RFT each capture
essense of effective com-
putability.

2. Nodevisable system is funda-
mentally more powerful.

3. Hypothesisis unprovable, but
generally believed by all.

CSC530-W02-L1 Slide24

X. Practical comparison

A. In the TM model:

1. Computationdefined by a
sequence of instructions

2. Datastored in equential mem-
ory, which changes state

3. Computationcarried out
executing instructions sequen-
tially

CSC530-W02-L1 Slide25

Practical comparison, cont’d

B. In the RFT model:

1. Computationdefined by a set
of functions

2. Datapassed as parameters and
returned as values

3. Computationcarried out by
invoking functions

CSC530-W02-L1 Slide26

Practical comparison, cont’d

C. Summary:

1. TheTM model is the funda-
mental basis for imperative
languages.

2. TheRFT model is the funda-
mental basis for applicative
languages.

CSC530-W02-L1 Slide27

XI. Compelling motivations for
applicative programming

A. Concurrency

B. Verifiability

C. Referentialtransparency

D. We’ll discuss in upcoming lec-
tures.

CSC530-W02-L1 Slide28

XII. A question for the applicative
zealot

A. If the advantages of applicative
languages are so compelling, why
is their use not more widespread?

CSC530-W02-L1 Slide29

A question, cont’d

B. Answer1: Programmers are
inherently lazy and weak-willed.

C. Answer2: Present-day hardware
isn’t any good.

D. Answer3: We are at an unhappy
point in the natural evolution of
programming languages.

CSC530-W02-L1 Slide30

We now proceed to examine
applicative languages in detail,

beginning with Pure Lisp.

CSC530-W02-L1 Slide31

XIII. Assignmentless programming

A. Take your favorite imperative pro-
gramming language and throw
out assignment statements.

B. Suchrepresents the essence of
applicative programming.

C. Fundamentaltenet of applicative
programming is thatdata do not
change

CSC530-W02-L1 Slide32

Assignmentless programming,
cont’d

D. An applicative language cannot
be constructed simply by remov-
ing assignment statements from
some imperative language.

CSC530-W02-L1 Slide33

XIV. The necessary evil of imperati ve
constructs

A. Few real languages are com-
pletely applicative.

B. Languagesareprimarily one cate-
gory or the other.

C. We begin our study from a pure
standpoint.

D. Subsequently, we will see how
imperative features can fit into an
applicative framework.

CSC530-W02-L1 Slide34

XV. Moti vation for Pure Lisp

A. Definesmost fundamental aspects
in simple and elegant way.

B. Usefulto introduce purely
applicative programming.

C. Alsouseful to describe opera-
tional semantics.

D. Goodtool for rapid prototyping
of translators.

CSC530-W02-L1 Slide35

XVI. General features of Pure Lisp

A. Syntaxdifference; profoundly
unimportant.

B. Lisp is untyped.

C. Lispis anexpression language.

D. Overall style is recursive, not iter-
ative.

E. Lispis built on simple and orthog-
onal primitives.

CSC530-W02-L1 Slide36

XVII. The function definition

A. A simple example

(defun APlusB (a b)
(+ a b)

)

B. Theequivalent in C:

int APlusB(int a,b) {
return a + b;

}

CSC530-W02-L1 Slide37

Function definition, cont’d

C. Observations

1. Basicconcept same in Lisp as
in C.

2. Noteagain that Lisp is
untyped.

3. All expressions in prefix nota-
tion.

4. Lackof a return statement in
Lisp.

CSC530-W02-L1 Slide38

XVIII. cond

A. Comparableto if-then-elsif-else

B. Generalform:

(cond
((test-expression1)

(test-expression1))

. . .
((test-expressionn)

(test-expressionn))

C. Takes some getting used to

CSC530-W02-L1 Slide39

XIX. The heterogeneous list

A. A collection or zero more ele-
ments.

B. Precisedefinition ...

C. Fundamentalops: car, cdr, cons.

D. Fundamentalrelationships:

• (car (cons X Y)) = X

• (cdr (cons X Y)) = Y

CSC530-W02-L1 Slide40

XX. quote

A. Thereis an interesting potential
problem

B. Nosyntactic distinction between
function invocation and a list
datum.

1. E.g,consider

(defun f (x) ...)
(defun a (x) ...)

CSC530-W02-L1 Slide41

quote cont’d

2. Whatdoes the following rep-
resent?

(f (a b))

3. Isit

a. A call to f with the list
argment(a b) ?

b. A call to f , with argument
that is call toa?

CSC530-W02-L1 Slide42

quote cont’d

4. Theanswer is (b).

5. Default meaning for a list is a
function call.

6. To obtain the alternate mean-
ing (a), we must usequote.

7. I.e.,

(f ’(a b))

CSC530-W02-L1 Slide43

XXI. Iteration thr ough recursion

A. In applicative languages, iterative
control replaced by recursion.

B. E.g.,

CSC530-W02-L1 Slide44

Recursion, cont’d

1. Lisp:

(defun avg (l)
(/ (sum l) (length l))

)

(defun sum (l)
(cond ((null l) 0)

(t (+ (car l)
(sum (cdr l))))

)
)

(defun main ()
(avg ’(1 2 3 4 5))

)

CSC530-W02-L1 Slide45

Recursion, cont’d

2. C:
int avg(int l[], int length) {

int i, sum;
for (i=0, sum=0; i<length; i++)

sum += l[i];
return sum/length;

}

main() {
int l[] = {1,2,3,4,5};
printf("%d0, avg(l, 5));

}

CSC530-W02-L1 Slide46

Recursion, cont’d

C. Observations ...

1. Lispusestail recursion.

2. Transliteration into C

int sum(list l) {
if (null(l))

return 0;
else

return car(l) +
sum(cdr(l));

}

CSC530-W02-L1 Slide47

XXII. Another list-pr ocessing example

A. Many functions in real Lisp envi-
ronments.

B. Any can be built using the three
primitives.

C. E.g.,

(defun my-nth (n l)
(cond ((< n 0) nil)

((eq n 0) (car l))
(t (my-nth (- n 1)

(cdr l)))
)

)

CSC530-W02-L1 Slide48

