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CSC 530 Lecture Notes Week 1

Intr oduction to the Course

Intr oduction to Lisp
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I. Meaning.

A. We will focus upon themeaning
of programming languages

B. E.g.,what does it mean to be

1. functional?

2. strongly typed?

3. object oriented?

4. more powerful?

5. evil and dangerous?
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What does it mean, cont’d

C. We must investigate how meaning
can be expressed.

1. Formal semantics

2. Definesemantics like BNF
defines syntax.

3. Conciseand formal, without
ambiguity.

4. Thereare a number of
approaches
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II. How is meaning defined?

A. I.e., in general, how’s it done?

B. For English:

1. Ina dictionary

2. Anthropologically

3. Structurally
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Meaning defined, cont’d

C. For programming languages, use
similar techniques.

1. A compiler or interpreter.

2. Historically.

3. With formal definitions.
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Meaning defined, cont’d

D. Forms of semantic definition:

1. Operationalsemantics

2. Attribute grammars

3. Denotationalsemantics

4. Axiomaticssemantics

5. Algebraicsemantics



CSC530-W02-L1 Slide7

III. Programming lang’s as religion.

A. Computerscientists are fond of
heated discussion.

B. Debateis relly moot.

C. Despitewhat they know, they
debate what webelieve.

D. We will join the debate in this
class.
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IV. This class’ belief system

A. applicative (aka, functional)

B. "opposing"viewpoints given fair
treatment.

C. Otheraspects include: ...
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V. Some initial definitions.

A. applicative language = side-effect
free

B. imperative language = instruc-
tions modify state memory.
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VI. Foundations

A. Distinctionbetween applicative
and imperative is fundamental

B. To examine fully, we’ll go back to
pre-history of computing.
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VII. Turing machines and the impera-
tive model

A. Founders: Alan Turing, John von
Neumann, and others.

B. A TM is a model ofeffective com-
putability

C. Formally, TM is a state machine:
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Turing machines, cont’d

1. Infinitememory tape

2. Movable head, that performs

a. Reada symbol

b. Write a symbol

c. Move one slot
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Turing machines, cont’d

D. A set of quintuples

(current state,
symbol read,
new state,
symbol written,
move direction)
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Turing machines, cont’d

A very simple example (compute
the unary constant 4):

(0, ,1,1,R)
(1, ,2,1,R)
(2, ,3,1,R)
(3, ,4,1,R)
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Turing machines, cont’d

E. Anotherexample

(0,1,1,X,R)
(0,,,0,,,R)
(0,:,3,:,R)

(1,1,1,1,R)
(1,,, 1,,,R)
(1,:, 1,:,R)
(1, , 2,1,L)

(2,1,2,1,L)
(2,:,2,:,L)
(2,,,2,:,L)
(2,X,0,X,R)
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Turing machines, cont’d

1. A sample input tape (to add
2+3):

11,111:
ˆ
0

2. Theresulting output tape:

XX,XXX:11111
ˆ
3
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Turing machines, cont’d

3. Whateach state does

State Description

0 check for 1, ’,’,
or ’:’ ...

1 carry a 1 over ...
2 go back ...
3 halt
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VIII. Recursive function theory and
the applicative model

A. Founders: Stephen Kleene,
Alonso Church, and others.

B. Alternative (and equivalent)
model of effective computability

C. Formally, defined as:
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RFT, cont’d

1. Zero function:Z(x) = 0

2. Successor func’n: S(x) = x + 1

3. Composition of functions:

f(x0,...,xn) =

h(g0(x0,...,xn),...,

gk(x0,...,xn))
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RFT, cont’d

4. inductive recursion scheme:

f(0,x1,...,xn) =

g(x1,...,xn)

f(S(n),x1,...,xn) =

h(f(x1,...,xn),n,

x1,...,xn)

where g and h are defined
recursively
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RFT, cont’d

D. RFdef constant 4:

Four(x) = S(S(S(S(Z(x)))))

E. Definitionof addition (second TM
example):

Add(0,y) = y

Add(S(n),y) = S(Add(n,y))
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IX. Equivalence of TMs and RFT

A. Canbe proved formally

B. An important (and comforting)
result

C. Equivalent, but also equivalently
unsuited for practical program-
ming.

D. Whatis important is what the
models represent
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Equivalence, cont’d

E. TheChurh Hypothesis

1. TM’s and RFT each capture
essense of effective com-
putability.

2. Nodevisable system is funda-
mentally more powerful.

3. Hypothesisis unprovable, but
generally believed by all.
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X. Practical comparison

A. In the TM model:

1. Computationdefined by a
sequence of instructions

2. Datastored in equential mem-
ory, which changes state

3. Computationcarried out
executing instructions sequen-
tially
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Practical comparison, cont’d

B. In the RFT model:

1. Computationdefined by a set
of functions

2. Datapassed as parameters and
returned as values

3. Computationcarried out by
invoking functions
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Practical comparison, cont’d

C. Summary:

1. TheTM model is the funda-
mental basis for imperative
languages.

2. TheRFT model is the funda-
mental basis for applicative
languages.
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XI. Compelling motivations for
applicative programming

A. Concurrency

B. Verifiability

C. Referentialtransparency

D. We’ll discuss in upcoming lec-
tures.
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XII. A question for the applicative
zealot

A. If the advantages of applicative
languages are so compelling, why
is their use not more widespread?
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A question, cont’d

B. Answer1: Programmers are
inherently lazy and weak-willed.

C. Answer2: Present-day hardware
isn’t any good.

D. Answer3: We are at an unhappy
point in the natural evolution of
programming languages.
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We now proceed to examine
applicative languages in detail,

beginning with Pure Lisp.
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XIII. Assignmentless programming

A. Take your favorite imperative pro-
gramming language and throw
out assignment statements.

B. Suchrepresents the essence of
applicative programming.

C. Fundamentaltenet of applicative
programming is thatdata do not
change
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Assignmentless programming,
cont’d

D. An applicative language cannot
be constructed simply by remov-
ing assignment statements from
some imperative language.
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XIV. The necessary evil of imperati ve
constructs

A. Few real languages are com-
pletely applicative.

B. Languagesareprimarily one cate-
gory or the other.

C. We begin our study from a pure
standpoint.

D. Subsequently, we will see how
imperative features can fit into an
applicative framework.
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XV. Moti vation for Pure Lisp

A. Definesmost fundamental aspects
in simple and elegant way.

B. Usefulto introduce purely
applicative programming.

C. Alsouseful to describe opera-
tional semantics.

D. Goodtool for rapid prototyping
of translators.
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XVI. General features of Pure Lisp

A. Syntaxdifference; profoundly
unimportant.

B. Lisp is untyped.

C. Lispis anexpression language.

D. Overall style is recursive, not iter-
ative.

E. Lispis built on simple and orthog-
onal primitives.
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XVII. The function definition

A. A simple example

(defun APlusB (a b)
(+ a b)

)

B. Theequivalent in C:

int APlusB(int a,b) {
return a + b;

}
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Function definition, cont’d

C. Observations

1. Basicconcept same in Lisp as
in C.

2. Noteagain that Lisp is
untyped.

3. All expressions in prefix nota-
tion.

4. Lackof a return statement in
Lisp.
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XVIII. cond

A. Comparableto if-then-elsif-else

B. Generalform:

(cond
( (test-expression1)

(test-expression1) )

. . .
( (test-expressionn)

(test-expressionn) )

C. Takes some getting used to
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XIX. The heterogeneous list

A. A collection or zero more ele-
ments.

B. Precisedefinition ...

C. Fundamentalops: car, cdr, cons.

D. Fundamentalrelationships:

• (car (cons X Y)) = X

• (cdr (cons X Y)) = Y
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XX. quote

A. Thereis an interesting potential
problem

B. Nosyntactic distinction between
function invocation and a list
datum.

1. E.g,consider

(defun f (x) ... )
(defun a (x) ...)
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quote cont’d

2. Whatdoes the following rep-
resent?

(f (a b))

3. Isit

a. A call to f with the list
argment(a b) ?

b. A call to f , with argument
that is call toa?
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quote cont’d

4. Theanswer is (b).

5. Default meaning for a list is a
function call.

6. To obtain the alternate mean-
ing (a), we must usequote.

7. I.e.,

(f ’(a b))
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XXI. Iteration thr ough recursion

A. In applicative languages, iterative
control replaced by recursion.

B. E.g.,
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Recursion, cont’d

1. Lisp:

(defun avg (l)
(/ (sum l) (length l))

)

(defun sum (l)
(cond ((null l) 0)

(t (+ (car l)
(sum (cdr l))))

)
)

(defun main ()
(avg ’(1 2 3 4 5))

)
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Recursion, cont’d

2. C:
int avg(int l[], int length) {

int i, sum;
for (i=0, sum=0; i<length; i++)

sum += l[i];
return sum/length;

}

main() {
int l[] = {1,2,3,4,5};
printf("%d0, avg(l, 5));

}
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Recursion, cont’d

C. Observations ...

1. Lispusestail recursion.

2. Transliteration into C

int sum(list l) {
if (null(l))

return 0;
else

return car(l) +
sum(cdr(l));

}
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XXII. Another list-pr ocessing example

A. Many functions in real Lisp envi-
ronments.

B. Any can be built using the three
primitives.

C. E.g.,

(defun my-nth (n l)
(cond ( (< n 0) nil )

( ( eq n 0) (car l) )
( t ( my-nth (- n 1)

(cdr l)) )
)

)
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