
CSC530-W02-L3.2 Slide1

CSC 530 Lecture Notes Week 3, Part 2

Discussion of Assignments 1 and 2
More on Type Theory

Introduction to Typing in ML

CSC530-W02-L3.2 Slide2

I. "Naive" alist from Assignment 1

A. Bindings of the form

(name value).

B. Tw o categories:

1. Var binding pair

(var-name
data-value)

2. Function binding triple

(function-name
formal-parms
function-body)

CSC530-W02-L3.2 Slide3

Naive alist, Cont’d

C. Distinguish bindings by lengths.

D. Created and modified three ways:

1. Var bindings bysetq

2. Func bindingsdefun

3. Func call bindings by

(f a1 ... an)

CSC530-W02-L3.2 Slide4

Naive alist, Cont’d

E. Search for bindings in LIFO discipline

F. What isnaive-- does not accurately
represent scoping rules of Common
Lisp.

CSC530-W02-L3.2 Slide5

II. Alist as environment and store

A. Consider two formal semantic struc-
tures

1. Environmentholds static attributes

2. Storeholds runtime values

a. stack store holds function acti-
vations

b. statestore holds global vars

CSC530-W02-L3.2 Slide6

Environemnt and store, Cont’d

B. In pure untyped Lisp, env and store
can be combined

C. Requires some additional structure on
the alist.

CSC530-W02-L3.2 Slide7

III. Less naive alist layout

A. A number of ways to lay out.

B. Here’s one:

((state-store)
(environment)
(stack-store))

wherestack-store has sub-alists,
one per active function.

CSC530-W02-L3.2 Slide8

Less naive, Cont’d

C. Same bindings as before, organized
into separate areas:

1. state-store holds global bindings by
setq

2. environment holds bindings by
defun

3. stack-store holds bindings by
apply andbind

CSC530-W02-L3.2 Slide9

Less naive, Cont’d

D. Simple LIFO management replaced
with:

1. Stack-store is still LIFO

2. State-store and environment man-
aged any old way

3. Tw o-phase var binding search:

a. First, topmost act rec

b. Then state-store

4. Func binding search only in env

CSC530-W02-L3.2 Slide10

IV. Comparing naive vs non-naive

A. What’s wrong with naive layout?

B. Definesdynamic scopinginstead of
static scoping.

C. Consider:

(setq x 1)
(setq y 2)
(defun f(y) (g))
(defun g() (+ x y))

CSC530-W02-L3.2 Slide11

Comparing, Cont’d

1. With static scoping,(f 10) and
(g) return same result --3.

2. With dynamic scoping,(f 10)
returns11, (g) returns3.

D. Cause is traceable to naive alist han-
dling.

CSC530-W02-L3.2 Slide12

Comparing, Cont’d

1. Simply start at end and search
backward

2. Finds stack bindings first

3. May find in act rec

4. This explains above behavior.

CSC530-W02-L3.2 Slide13

Comparing, Cont’d

E. Rule for non-naive alist looksonly in
topmost act rec then state-store

F. Was dynamic binding ever used?

1. Sure -- beforeCommonLisp.

2. Stems from ease of interpretation

CSC530-W02-L3.2 Slide14

Comparing, Cont’d

G. Some things to consider:

1. Makes sense from implementation
perspective.

2. Dynamic scoping and strong typing
do not get along well.

3. With "Pascalization" of PLs,
dynamic scoping is a relic.

CSC530-W02-L3.2 Slide15

V. Another view of Assmnt 1 and 2

A. Continuing objective is to inv estigate
fundamental semantics PLs

B. What do programming constructs
really mean?

C. These semantics areoperational.

D. Why interpreters and why Lisp?

CSC530-W02-L3.2 Slide16

VI. Hints on Assignment 2

A. Put type bindings in env, along with
xdefuns

1. form (name type)

2. Independent of value bindingsin
stores

3. E.g., for

(xdefvar x int 10)

(x int) in env, (x 10) in
state-store

CSC530-W02-L3.2 Slide17

Hints, Cont’d

B. xcheck mirrorsxeval

1. Definecheck-X analogous to
eval-X

2. E.g.,check-xsetq analog of
eval-xsetq.

C. equiv function used internally

D. No really hairy test cases

CSC530-W02-L3.2 Slide18

Now on to
Further Discussion of

Type Theory

CSC530-W02-L3.2 Slide19

VII. Relevant readings
-- Section 2 of papers

CSC530-W02-L3.2 Slide20

VIII. Recap of kinds of typedness

A. From Notes 3

1. Strong versus weak

2. Static versus dynamic

3. Mono- versus polymorphic

4. Encapsulated versus flat

5. Subtyped versus non-subtyped

6. Generic versus non-generic

CSC530-W02-L3.2 Slide21

Kinds of typedness, cont’d

B. Items 1-3 in Assignment 2.

C. Items 4-6 in Assignments 3 and 4.

CSC530-W02-L3.2 Slide22

IX. Type encapsulation

A. Used constructabsract datatypes.

B. ADT defined as:

1. Hiddenrepresentation

2. Operations, with hidden imple’ns

CSC530-W02-L3.2 Slide23

Encapsualation, cont’d

C. Requires PL support, in some form

1. Information hiding.

2. Packaging construct.

CSC530-W02-L3.2 Slide24

Encapsualation, cont’d

D. Info hiding features differ syntacti-
cally, but same semantically.

E. Packaging differs both syntactically
semantically.

CSC530-W02-L3.2 Slide25

Encapsualation, cont’d

1. Syntactic distinctions of no concern.

2. Important semantic distinction is
whether ADT denotes a type.

3. When it does, construct isfirst-class.

4. When it does not, it issecond-class.

CSC530-W02-L3.2 Slide26

X. Info hiding in PLs

A. Simula -- hidden/non-hidden, single
class body

B. Modula-2 -- import/export, two-part
module body

C. Ada -- private/non-private, two- or
three-part package body

CSC530-W02-L3.2 Slide27

Info hiding, cont’d

D. C++ -- public/private/protected, crude
one- or two-part class body

E. Java -- public/private/protected, one-
part class body

F. Cardelli and Wegner existential types --
quantified variables, one-part represen-
tation (as a body)

CSC530-W02-L3.2 Slide28

XI. Second-class encapsulation

A. Decl of ADT independent of type
declaration

B. Consider Modula-2 example:

definition module Stack;
type Stack;
procedure Push(var s: Stack;

elem: integer);
procedure Pop(var s: Stack):

integer;
procedure Peek(s: Stack):

integer;
end Stack.

CSC530-W02-L3.2 Slide29

Second-class encapsulation, cont’d

implementation module Stack;
const Size = 100;
type Stack = array[1..Size]

of integer;
var curtop: integer;
(* ... implementations

of Push, Pop, and Peek *)
end Stack.

(* program *) module TestIntStack;
import Stack;
var s: Stack;

i: integer;
begin

Stack.Push(s, 1);
i := Stack.Pop(s);

end TestIntStack.

CSC530-W02-L3.2 Slide30

Second-class encapsulation, cont’d

C. Noteworthy features

1. Module "Stack" distinct from type
"Stack"

2. Info hiding via two-part module

D. Note calling form of ADT ops:

Stack.Push(s, 1);
i := Stack.Pop(s);

CSC530-W02-L3.2 Slide31

XII. First-class encapsulation

A. Decl of ADT declares a type.

B. Consider C++ example

CSC530-W02-L3.2 Slide32

First-class encapsulation, cont’d

class Stack {
public:
void Push(int elem);
int Pop();
int Peek();

protected:
const int Size = 100;
int curtop;
int body[Size];

};

/* ... implementations of ops */

main() {
Stack s;
int i;

s.Push(1);
i = s.Pop();

}

CSC530-W02-L3.2 Slide33

First-class encapsulation, cont’d

C. Noteworthy features

1. Class "Stack" is type "Stack"

2. Info hiding via explicit keywords.

3. Calling form of ADT ops:

s.Push(1);
i := s.Pop();

CSC530-W02-L3.2 Slide34

XIII. State-free ADTs

A. Consider variant of C++ stack:

class Stack {
public:

Stack();
void push(int elem);
void pop();
int top();

equations:
pop(Stack()) = null;
pop(s.push(e)) = s;

top(Stack()) = null;
top(s.push(e)) = e;

};

CSC530-W02-L3.2 Slide35

State-free ADTs, cont’d

/* NO implementations of
Push, Pop, and Peek */

main() {
Stack s;
int i;

s = s.Push(1);
i = s.Pop();

}

CSC530-W02-L3.2 Slide36

State-free ADTs, cont’d

B. Noteworthy features ...

1. Still first-class ADT.

2. Info hiding isunecessary!

3. No op implementations necessary!

4. Side-effect-free calling:

s = s.Push(1);
i = s.Pop();

CSC530-W02-L3.2 Slide37

State-free ADTs, cont’d

C. Does this mean anything?

1. Most definitely yes.

2. It’s C++ syntax for the OBJ alge-
braic language

CSC530-W02-L3.2 Slide38

XIV. Object-orientedness, part 1

A. Relation between ADTs and OO?

B. Partial ans: OO needs ADTs.

C. Needfirst-classADTs for OO?

D. Most say yes.

E. However, there’s Booch’s "OOP in
Ada".

CSC530-W02-L3.2 Slide39

XV. Subtyping

A. Allowsparenttype from whichchild
typesinherit.

B. Does subtyping require ADT?

1. Theoretic answer is no.

2. In practice, yes in most PLs.

3. Notable exception is OBJ.

CSC530-W02-L3.2 Slide40

Subtyping, cont’d

C. Wide variety of issues:

1. Multiple or single inheritance.

2. Representation inheritance.

3. Representation and/or operation
overriding.

4. Op behavior inheritance.

5. Strong, weak, static, or dynamic
typing.

CSC530-W02-L3.2 Slide41

XVI. Subtyping in common PLS

A. Simula -- single rep+ops inheritance,
full override, strong static typing

B. Smalltalk -- single rep+ops inheri-
tance, full override, weakish dynamic
typing

C. Modula-2, Ada (pre 9X) -- no subtyp-
ing

CSC530-W02-L3.2 Slide42

Subtyping in PLs, cont’d

D. C++ -- multiple rep+ops inheritance,
full override, weakish mostly static
typing

E. Emerald, Owl -- single ops-only
inheritance, no override, strong static
typing, behavior inheritance

F. Java -- single reps inheritance
(classes), multiple ops inheritance
(interfaces), full override, strong
mostly static typing

CSC530-W02-L3.2 Slide43

XVII. Generics

A. A form of parameterized type

B. Almost all languages provide generics
with ADTs.

1. Unencapsulated parameterized
types reasonable in theory.

2. Euclid is notable.

CSC530-W02-L3.2 Slide44

Generics, cont’d

C. A Modula-2esque example

(* A generic stack module. *)
definition module Stack(

Size: integer,
ElemType: type);

type Stack;

procedure Push(var S: Stack;
Elem: ElemType);

procedure Pop(var S: Stack):
ElemType:

procedure Peek(S: Stack):
ElemType;

end Stack.

CSC530-W02-L3.2 Slide45

Generics, cont’d

implementation module Stack;

type Stack = array[1..Size]
of ElemType;

var curtop: integer;

(* ... implementations of
Push, Pop, and Peek *)

end Stack;

CSC530-W02-L3.2 Slide46

Generics, cont’d

(* program *) module TestIntStack;

import Stack(100, integer);

var S: Stack;
i: integer;

begin

Stack.Push(S, 1);

i := Stack.Pop(S);

end TestIntStack;

CSC530-W02-L3.2 Slide47

Generics, cont’d

(* program *) module TestThreeStacks;
import Stack(100, integer)

as IntStack100;
import Stack(200, integer)

as IntStack200;
import Stack(200, real)

as RealStack200;

var SI100: IntStack100.Stack;
var SI200: IntStack200.Stack;
var SR200: RealStack200.Stack;

begin
IntStack100.Push(SI100, 1);
IntStack200.Push(SI200, 2);
RealStack200.Push(SR200, 2.5);

(* etc. ... *)
end TestThreeStacks;

CSC530-W02-L3.2 Slide48

XVIII. OO, complete picture

A. So, what exactly constitutes OO?

B. Danforth and Tomlinson’s take:

Is it possible that OOP is simply
ADTs? Notan unreasonable conjec-
ture However, there is more --
inheritance.

C. Summary, OOP = first-class ADTs +
inheritance.

CSC530-W02-L3.2 Slide49

OO complete picture, cont’d

D. Almost universally accepted that
genericsNOT needed for OO.

E. An inherent conflict of OOP:

1. a primary goal of data abstraction is
to hide info

2. a primary goal of inheritance is to
share info

F. Does this mean that OOP is a crock?

CSC530-W02-L3.2 Slide50

