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CSC 530 Lecture Notes Week 3, Part 2

Discussion of Assignments 1 and 2
More on Type Theory

Introduction to Typing in ML
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I. "Naive" alist from Assignment 1

A. Bindings of the form

( name value ).

B. Tw o categories:

1. Var binding pair

( var-name
data-value )

2. Function binding triple

( function-name
formal-parms
function-body )
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Naive alist, Cont’d

C. Distinguish bindings by lengths.

D. Created and modified three ways:

1. Var bindings bysetq

2. Func bindingsdefun

3. Func call bindings by

(f a1 ... an)
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Naive alist, Cont’d

E. Search for bindings in LIFO discipline

F. What isnaive-- does not accurately
represent scoping rules of Common
Lisp.
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II. Alist as environment and store

A. Consider two formal semantic struc-
tures

1. Environmentholds static attributes

2. Storeholds runtime values

a. stack store holds function acti-
vations

b. statestore holds global vars
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Environemnt and store, Cont’d

B. In pure untyped Lisp, env and store
can be combined

C. Requires some additional structure on
the alist.
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III. Less naive alist layout

A. A number of ways to lay out.

B. Here’s one:

( ( state-store )
( environment )
( stack-store ) )

wherestack-store has sub-alists,
one per active function.
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Less naive, Cont’d

C. Same bindings as before, organized
into separate areas:

1. state-store holds global bindings by
setq

2. environment holds bindings by
defun

3. stack-store holds bindings by
apply andbind
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Less naive, Cont’d

D. Simple LIFO management replaced
with:

1. Stack-store is still LIFO

2. State-store and environment man-
aged any old way

3. Tw o-phase var binding search:

a. First, topmost act rec

b. Then state-store

4. Func binding search only in env
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IV. Comparing naive vs non-naive

A. What’s wrong with naive layout?

B. Definesdynamic scopinginstead of
static scoping.

C. Consider:

(setq x 1)
(setq y 2)
(defun f(y) (g))
(defun g() (+ x y))
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Comparing, Cont’d

1. With static scoping,(f 10) and
(g) return same result --3.

2. With dynamic scoping,(f 10)
returns11, (g) returns3.

D. Cause is traceable to naive alist han-
dling.
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Comparing, Cont’d

1. Simply start at end and search
backward

2. Finds stack bindings first

3. May find in act rec

4. This explains above behavior.
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Comparing, Cont’d

E. Rule for non-naive alist looksonly in
topmost act rec then state-store

F. Was dynamic binding ever used?

1. Sure -- beforeCommonLisp.

2. Stems from ease of interpretation
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Comparing, Cont’d

G. Some things to consider:

1. Makes sense from implementation
perspective.

2. Dynamic scoping and strong typing
do not get along well.

3. With "Pascalization" of PLs,
dynamic scoping is a relic.
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V. Another view of Assmnt 1 and 2

A. Continuing objective is to inv estigate
fundamental semantics PLs

B. What do programming constructs
really mean?

C. These semantics areoperational.

D. Why interpreters and why Lisp?
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VI. Hints on Assignment 2

A. Put type bindings in env, along with
xdefuns

1. form ( name type )

2. Independent of value bindingsin
stores

3. E.g., for

(xdefvar x int 10)

(x int) in env, (x 10) in
state-store
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Hints, Cont’d

B. xcheck mirrorsxeval

1. Definecheck-X analogous to
eval-X

2. E.g.,check-xsetq analog of
eval-xsetq.

C. equiv function used internally

D. No really hairy test cases
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Now on to
Further Discussion of

Type Theory
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VII. Relevant readings
-- Section 2 of papers
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VIII. Recap of kinds of typedness

A. From Notes 3

1. Strong versus weak

2. Static versus dynamic

3. Mono- versus polymorphic

4. Encapsulated versus flat

5. Subtyped versus non-subtyped

6. Generic versus non-generic
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Kinds of typedness, cont’d

B. Items 1-3 in Assignment 2.

C. Items 4-6 in Assignments 3 and 4.
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IX. Type encapsulation

A. Used constructabsract datatypes.

B. ADT defined as:

1. Hiddenrepresentation

2. Operations, with hidden imple’ns
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Encapsualation, cont’d

C. Requires PL support, in some form

1. Information hiding.

2. Packaging construct.
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Encapsualation, cont’d

D. Info hiding features differ syntacti-
cally, but same semantically.

E. Packaging differs both syntactically
semantically.
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Encapsualation, cont’d

1. Syntactic distinctions of no concern.

2. Important semantic distinction is
whether ADT denotes a type.

3. When it does, construct isfirst-class.

4. When it does not, it issecond-class.
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X. Info hiding in PLs

A. Simula -- hidden/non-hidden, single
class body

B. Modula-2 -- import/export, two-part
module body

C. Ada -- private/non-private, two- or
three-part package body
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Info hiding, cont’d

D. C++ -- public/private/protected, crude
one- or two-part class body

E. Java -- public/private/protected, one-
part class body

F. Cardelli and Wegner existential types --
quantified variables, one-part represen-
tation (as a body)
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XI. Second-class encapsulation

A. Decl of ADT independent of type
declaration

B. Consider Modula-2 example:

definition module Stack;
type Stack;
procedure Push(var s: Stack;

elem: integer);
procedure Pop(var s: Stack):

integer;
procedure Peek(s: Stack):

integer;
end Stack.
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Second-class encapsulation, cont’d

implementation module Stack;
const Size = 100;
type Stack = array[1..Size]

of integer;
var curtop: integer;
(* ... implementations

of Push, Pop, and Peek *)
end Stack.

(* program *) module TestIntStack;
import Stack;
var s: Stack;

i: integer;
begin

Stack.Push(s, 1);
i := Stack.Pop(s);

end TestIntStack.
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Second-class encapsulation, cont’d

C. Noteworthy features

1. Module "Stack" distinct from type
"Stack"

2. Info hiding via two-part module

D. Note calling form of ADT ops:

Stack.Push(s, 1);
i := Stack.Pop(s);
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XII. First-class encapsulation

A. Decl of ADT declares a type.

B. Consider C++ example
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First-class encapsulation, cont’d

class Stack {
public:
void Push(int elem);
int Pop();
int Peek();

protected:
const int Size = 100;
int curtop;
int body[Size];

};

/* ... implementations of ops */

main() {
Stack s;
int i;

s.Push(1);
i = s.Pop();

}
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First-class encapsulation, cont’d

C. Noteworthy features

1. Class "Stack" is type "Stack"

2. Info hiding via explicit keywords.

3. Calling form of ADT ops:

s.Push(1);
i := s.Pop();
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XIII. State-free ADTs

A. Consider variant of C++ stack:

class Stack {
public:

Stack();
void push(int elem);
void pop();
int top();

equations:
pop(Stack()) = null;
pop(s.push(e)) = s;

top(Stack()) = null;
top(s.push(e)) = e;

};
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State-free ADTs, cont’d

/* NO implementations of
Push, Pop, and Peek */

main() {
Stack s;
int i;

s = s.Push(1);
i = s.Pop();

}
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State-free ADTs, cont’d

B. Noteworthy features ...

1. Still first-class ADT.

2. Info hiding isunecessary!

3. No op implementations necessary!

4. Side-effect-free calling:

s = s.Push(1);
i = s.Pop();
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State-free ADTs, cont’d

C. Does this mean anything?

1. Most definitely yes.

2. It’s C++ syntax for the OBJ alge-
braic language
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XIV. Object-orientedness, part 1

A. Relation between ADTs and OO?

B. Partial ans: OO needs ADTs.

C. Needfirst-classADTs for OO?

D. Most say yes.

E. However, there’s Booch’s "OOP in
Ada".
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XV. Subtyping

A. Allowsparenttype from whichchild
typesinherit.

B. Does subtyping require ADT?

1. Theoretic answer is no.

2. In practice, yes in most PLs.

3. Notable exception is OBJ.
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Subtyping, cont’d

C. Wide variety of issues:

1. Multiple or single inheritance.

2. Representation inheritance.

3. Representation and/or operation
overriding.

4. Op behavior inheritance.

5. Strong, weak, static, or dynamic
typing.
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XVI. Subtyping in common PLS

A. Simula -- single rep+ops inheritance,
full override, strong static typing

B. Smalltalk -- single rep+ops inheri-
tance, full override, weakish dynamic
typing

C. Modula-2, Ada (pre 9X) -- no subtyp-
ing
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Subtyping in PLs, cont’d

D. C++ -- multiple rep+ops inheritance,
full override, weakish mostly static
typing

E. Emerald, Owl -- single ops-only
inheritance, no override, strong static
typing, behavior inheritance

F. Java -- single reps inheritance
(classes), multiple ops inheritance
(interfaces), full override, strong
mostly static typing
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XVII. Generics

A. A form of parameterized type

B. Almost all languages provide generics
with ADTs.

1. Unencapsulated parameterized
types reasonable in theory.

2. Euclid is notable.
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Generics, cont’d

C. A Modula-2esque example

(* A generic stack module. *)
definition module Stack(

Size: integer,
ElemType: type);

type Stack;

procedure Push(var S: Stack;
Elem: ElemType);

procedure Pop(var S: Stack):
ElemType:

procedure Peek(S: Stack):
ElemType;

end Stack.
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Generics, cont’d

implementation module Stack;

type Stack = array[1..Size]
of ElemType;

var curtop: integer;

(* ... implementations of
Push, Pop, and Peek *)

end Stack;
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Generics, cont’d

(* program *) module TestIntStack;

import Stack(100, integer);

var S: Stack;
i: integer;

begin

Stack.Push(S, 1);

i := Stack.Pop(S);

end TestIntStack;
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Generics, cont’d

(* program *) module TestThreeStacks;
import Stack(100, integer)

as IntStack100;
import Stack(200, integer)

as IntStack200;
import Stack(200, real)

as RealStack200;

var SI100: IntStack100.Stack;
var SI200: IntStack200.Stack;
var SR200: RealStack200.Stack;

begin
IntStack100.Push(SI100, 1);
IntStack200.Push(SI200, 2);
RealStack200.Push(SR200, 2.5);

(* etc. ... *)
end TestThreeStacks;
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XVIII. OO, complete picture

A. So, what exactly constitutes OO?

B. Danforth and Tomlinson’s take:

Is it possible that OOP is simply
ADTs? Notan unreasonable conjec-
ture ... . However, there is more --
inheritance.

C. Summary, OOP = first-class ADTs +
inheritance.
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OO complete picture, cont’d

D. Almost universally accepted that
genericsNOT needed for OO.

E. An inherent conflict of OOP:

1. a primary goal of data abstraction is
to hide info

2. a primary goal of inheritance is to
share info

F. Does this mean that OOP is a crock?
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