
CSC530-S98-L4 Slide1

CSC 530 Lecture Notes Week 4

Intr o Formal Semantics of PLs
Intr o to Attrib ute Grammars

CSC530-S98-L4 Slide2

I. Reading: Papers 10 and 11

II. What is Semantics?

A. Themeaning of program

B. Broadly, two fundamental forms:

1. how a programbehaves

2. What a programdenotes

CSC530-S98-L4 Slide3

What is semantics, cont’d

C. Also defined asnot syntax.

1. Syntax expresses structure

2. Semantics expresses meaning

D. Semantic eval in two phases:

1. Static semantics (type chking)

2. Dynamic semantics (exec’n)

CSC530-S98-L4 Slide4

III. How to Specify Semantics?

A. Informal approaches:

1. Free-form English

2. Formalized English

3. Output of a compiler

CSC530-S98-L4 Slide5

How to Specify Semantics, cont’d

B. Formal approaches

1. Attribute Grammars (Knuth)

2. Axiomatic (Hoare)

3. Denotational (Scott, Strachey)

4. Algebraic (Goguen)

5. Operational (you all)

CSC530-S98-L4 Slide6

IV. Why Formal Semantics?

A. Systematic, machine-independent, rig-
orous language design

1. A "BNF" for semantics.

2. Formal and concise.

3. Less bulky than operational def.

B. Formal def for translator imple’n

C. Basis for program verification

D. Reference for programmers

CSC530-S98-L4 Slide7

V. Common features of
semantic definition techniques

A. Notational power and complexity

B. Syntax-directed.

C. Semanticdomains of environment and
store.

CSC530-S98-L4 Slide8

Common features, cont’d

D. Semantic "bootstrapping"

1. Start with grammar

2. Operational semantics requires
abstract interpreter.

3. Denotational semantics requires
mathematical logic.

CSC530-S98-L4 Slide9

Common features, cont’d

4. Bottom line -- define meaning in
terms of what we already under-
stand.

5. We musttrust the underlying for-
malisms.

6. Mathematics is more trustworthy
than interpreter.

CSC530-S98-L4 Slide10

VI. Role of functional PLS

A. Functional PL is mathematical, so can
be used for formal semantics.

B. Concepts, notations from functional
pgming used extensively.

CSC530-S98-L4 Slide11

VII. Overview of Major Techniques

A. For each technique consider:

1. Language Semantics -- semantics
of a full PL

2. Program Semantics -- semantics of
a particular program

3. Orientation -- practical uses

CSC530-S98-L4 Slide12

Overview of techniques, cont’d

B. Attribute grammars

1. Language semantics are

a. CFG

b. set of attributes

c. attribute equations assoc’d with
grammar rules

CSC530-S98-L4 Slide13

Attrib ute grammars, cont’d

2. Program semantics are:

a. Attribute values associated with
nodes of parse tree

b. Values obtained by well-defined
evaluation process

3. Orientation -- compilers

CSC530-S98-L4 Slide14

Overview of techniques, cont’d

C. Denotational

1. Language semantics are

a. CFG (abstract syntax)

b. Semantic domains

c. Semantic functions that map
syntactic forms into semantic
domains.

CSC530-S98-L4 Slide15

Denotational overv iew, cont’d

2. Program semantics are results of
semantic function eval’n

3. Orientation -- language design.

CSC530-S98-L4 Slide16

Overview of techniques, cont’d

D. Axiomatic

1. Language Semantics are:

a. CFG

b. axioms and rules of inference

c. one axiom per grammar rule

CSC530-S98-L4 Slide17

Overview of axiomatic, cont’d

2. Program Semantics are:

a. Formulae asserted to be true
within a program

b. Formula at end is meaning of
the entire program.

3. Orientation -- program verification.

CSC530-S98-L4 Slide18

Overview of techniques, cont’d

E. Operational

1. Language Semantics are:

a. abstract syntax

b. execution states of structured
values

c. set of instructions that change
state

CSC530-S98-L4 Slide19

Overview of operational, cont’d

2. Program Semantics are set execu-
tion snapshots

3. Orientation -- compiler/interpreter
writing; pedagogy.

CSC530-S98-L4 Slide20

VIII. Example attribute grammar
for t ype checking

A. Definesstatic semantics

B. Components of the def:

1. "term-factor" BNF

2. string-valuedtype attribute

3. global list-valuedenv attribute of
(name, type) pairs.

4. semantic equations defining how
type is comnputed

CSC530-S98-L4 Slide21

Example attribute grammar, cont’d

C. Grammar rules and equations:

E ::= E1 + T E.type = (if E1.type = T.type

then E1.type else "ERROR")

E ::= T E.type = T.type

T ::= T1 * F T.type = (if T1.type = F.type

then T1.type else "ERROR")

T ::= F T.type = F.type

F ::= ident F.type = Lookup(env, ident).type

F ::= real F.type = "real"

F ::= integer F.type = "integer"

CSC530-S98-L4 Slide22

Example attribute grammar, cont’d

D. Observations

1. Abstractly, "=" is math equality, not
var assmnt

2. "=" can be interpreted concretely as
assmnt

3. Equations appear as Yacc-like
"action routines"

CSC530-S98-L4 Slide23

Example attribute grammar, cont’d

4. Equations areabstract action rou-
tines

5. Meaning expressed insyntax-
directed framework

6. Equations employ auxiliary func-
tions

CSC530-S98-L4 Slide24

IX. Another example -- expr eval

A. Attribute grammars can convey any
aspect language semantics

1. Above defined type checking

2. Next we define expr eval

CSC530-S98-L4 Slide25

Another example, cont’d

B. Components of the def:

1. same "term-factor" grammar

2. numericval attribute

3. semantic equations defining how
val is computed

CSC530-S98-L4 Slide26

Another example, cont’d

C. Here are the rules:

E ::= E1 + T E.val = E1.val + T.val

E ::= T E.val = T.val

T ::= T1 * F E.val = E1.val * T.val

T ::= F T.val = F.val

F ::= ident F.val = GetVal(store, ident)

F ::= real F.val = read(val)

F ::= integer F.val = read(val)

CSC530-S98-L4 Slide27

Another example, cont’d

D. Observations

1. As before, equations are abstraction
of code

2. Use aux functionGetVal

3. Other aux functionread

CSC530-S98-L4 Slide28

X. Attrib ute evaluation

A. Usingattributed parse tree

B. For example,

CSC530-S98-L4 Slide29

Attrib ute eval, cont’d

E

a

E

T

F

type

type

type

type

T

F

T

F

type

type

type

type

b

10

env

+

*

CSC530-S98-L4 Slide30

Attrib ute eval, cont’d

1. Labeled bullets mark computed
attribute values

2. env attributeglobal, accessible at
all nodes

CSC530-S98-L4 Slide31

Attrib ute eval, cont’d

C. Eval performed by applying semantic
eqns at each tree node

1. Visit nodes in some order

2. Eqns do not specify order, only
attribute dependencies.

3. Evaluator chooses traversal order
based on dependencies; for now
postorder

CSC530-S98-L4 Slide32

Attrib ute eval, cont’d

D. Let’s now trace

E. Here’s the result:

CSC530-S98-L4 Slide33

Attrib ute eval, cont’d

E

a

E

T

F

type

type

type

type

T

F

T

F

type

type

type

type

b

10

+

*

env = [(a,integer), (b,integer)]assume

integer

via semantic equation
 for rule F ::= ident,
 which uses Lookup

integer
via semantic equation
 for rule T ::= F

integer
via semantic equation
 for rule E ::= T

integer
via semantic equation
for rule E ::= E + T

integer

via semantic equation
 for rule F ::= ident,
 which uses Lookup

integer

via semantic equation
 for rule F ::= integer,
 which relies on the
 assumed available
 lexical analyzer

integer
via semantic equation
for rule T ::= T * F

CSC530-S98-L4 Slide34

Attrib ute eval, cont’d

F. Similar trace for expr eval on:

E

a

E

T

F

val

val

val

val

T

F

T

F

val

val

val

val

b

10

+

*

store
env

CSC530-S98-L4 Slide35

XI. Inherited versus
synthesized attributes

A. Equations specify two forms of depen-
dencies:

1. Synthesized attribute dependent on
attributesbelow.

2. Inherited attribute dependent on
attributesabove or beside.

CSC530-S98-L4 Slide36

Inherited vs. synthesized, cont’d

B. E.g., consider

X ::= Y Z Y.a1 = X.a1
Z.a1 = Y.a2
X.a2 = Z.a2

and the corresponding dependency
diagram

CSC530-S98-L4 Slide37

Inherited vs. synthesized, cont’d

Xa1 a2

Ya1 a2 Z a2a1

1. value ofY.a1 inherited down from
X.a1

2. value ofZ.a1 inherited across from
Y.a2

3. value ofX.a2 synthesized up from
Z.a2

CSC530-S98-L4 Slide38

Inherited vs. synthesized, cont’d

C. Dependencies dictate how to traverse
for complete eval

1. With only synthesized attributes,
eval can be single bottom-up
traversal.

2. With inherited attrs, traversal order
chosen so values of dependents are
known.

3. With real PLs, one to three depth-
first passes.

4. Details next time.

CSC530-S98-L4 Slide39

Inherited vs. synthesized, cont’d

D. Important to remember -- passes are
not explicitly defined by eqns.

1. Equations aredeclarative.

2. Eval in any order, as long as the

dependencies satisfied.1

1 Unless global attributes are used; more next week.

