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CSC 530 Lecture Notes Week 4

Intr o Formal Semantics of PLs
Intr o to Attrib ute Grammars



CSC530-S98-L4 Slide2

I. Reading: Papers 10 and 11

II. What is Semantics?

A. Themeaning of program

B. Broadly, two fundamental forms:

1. how a programbehaves

2. What a programdenotes
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What is semantics, cont’d

C. Also defined asnot syntax.

1. Syntax expresses structure

2. Semantics expresses meaning

D. Semantic eval in two phases:

1. Static semantics (type chking)

2. Dynamic semantics (exec’n)
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III. How to Specify Semantics?

A. Informal approaches:

1. Free-form English

2. Formalized English

3. Output of a compiler
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How to Specify Semantics, cont’d

B. Formal approaches

1. Attribute Grammars (Knuth)

2. Axiomatic (Hoare)

3. Denotational (Scott, Strachey)

4. Algebraic (Goguen)

5. Operational (you all)
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IV. Why Formal Semantics?

A. Systematic, machine-independent, rig-
orous language design

1. A "BNF" for semantics.

2. Formal and concise.

3. Less bulky than operational def.

B. Formal def for translator imple’n

C. Basis for program verification

D. Reference for programmers
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V. Common features of
semantic definition techniques

A. Notational power and complexity

B. Syntax-directed.

C. Semanticdomains of environment and
store.
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Common features, cont’d

D. Semantic "bootstrapping"

1. Start with grammar

2. Operational semantics requires
abstract interpreter.

3. Denotational semantics requires
mathematical logic.



CSC530-S98-L4 Slide9

Common features, cont’d

4. Bottom line -- define meaning in
terms of what we already under-
stand.

5. We musttrust the underlying for-
malisms.

6. Mathematics is more trustworthy
than interpreter.
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VI. Role of functional PLS

A. Functional PL is mathematical, so can
be used for formal semantics.

B. Concepts, notations from functional
pgming used extensively.
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VII. Overview of Major Techniques

A. For each technique consider:

1. Language Semantics -- semantics
of a full PL

2. Program Semantics -- semantics of
a particular program

3. Orientation -- practical uses
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Overview of techniques, cont’d

B. Attribute grammars

1. Language semantics are

a. CFG

b. set of attributes

c. attribute equations assoc’d with
grammar rules
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Attrib ute grammars, cont’d

2. Program semantics are:

a. Attribute values associated with
nodes of parse tree

b. Values obtained by well-defined
evaluation process

3. Orientation -- compilers
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Overview of techniques, cont’d

C. Denotational

1. Language semantics are

a. CFG (abstract syntax)

b. Semantic domains

c. Semantic functions that map
syntactic forms into semantic
domains.
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Denotational overv iew, cont’d

2. Program semantics are results of
semantic function eval’n

3. Orientation -- language design.
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Overview of techniques, cont’d

D. Axiomatic

1. Language Semantics are:

a. CFG

b. axioms and rules of inference

c. one axiom per grammar rule
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Overview of axiomatic, cont’d

2. Program Semantics are:

a. Formulae asserted to be true
within a program

b. Formula at end is meaning of
the entire program.

3. Orientation -- program verification.
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Overview of techniques, cont’d

E. Operational

1. Language Semantics are:

a. abstract syntax

b. execution states of structured
values

c. set of instructions that change
state
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Overview of operational, cont’d

2. Program Semantics are set execu-
tion snapshots

3. Orientation -- compiler/interpreter
writing; pedagogy.
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VIII. Example attribute grammar
for t ype checking

A. Definesstatic semantics

B. Components of the def:

1. "term-factor" BNF

2. string-valuedtype attribute

3. global list-valuedenv attribute of
(name, type) pairs.

4. semantic equations defining how
type is comnputed
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Example attribute grammar, cont’d

C. Grammar rules and equations:

E ::= E1 + T  E.type = (if E1.type = T.type

then E1.type else "ERROR")

E ::= T E.type = T.type

T ::= T1 * F  T.type = (if T1.type = F.type

then T1.type else "ERROR")

T ::= F T.type = F.type

F ::= ident F.type = Lookup(env, ident).type

F ::= real F.type = "real"

F ::= integer F.type = "integer"
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Example attribute grammar, cont’d

D. Observations

1. Abstractly, "=" is math equality, not
var assmnt

2. "=" can be interpreted concretely as
assmnt

3. Equations appear as Yacc-like
"action routines"
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Example attribute grammar, cont’d

4. Equations areabstract action rou-
tines

5. Meaning expressed insyntax-
directed framework

6. Equations employ auxiliary func-
tions
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IX. Another example -- expr eval

A. Attribute grammars can convey any
aspect language semantics

1. Above defined type checking

2. Next we define expr eval
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Another example, cont’d

B. Components of the def:

1. same "term-factor" grammar

2. numericval attribute

3. semantic equations defining how
val is computed
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Another example, cont’d

C. Here are the rules:

E ::= E1 + T  E.val = E1.val + T.val

E ::= T E.val = T.val

T ::= T1 * F  E.val = E1.val * T.val

T ::= F T.val = F.val

F ::= ident F.val = GetVal(store, ident)

F ::= real F.val = read(val)

F ::= integer F.val = read(val)
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Another example, cont’d

D. Observations

1. As before, equations are abstraction
of code

2. Use aux functionGetVal

3. Other aux functionread
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X. Attrib ute evaluation

A. Usingattributed parse tree

B. For example,
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Attrib ute eval, cont’d
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Attrib ute eval, cont’d

1. Labeled bullets mark computed
attribute values

2. env attributeglobal, accessible at
all nodes
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Attrib ute eval, cont’d

C. Eval performed by applying semantic
eqns at each tree node

1. Visit nodes in some order

2. Eqns do not specify order, only
attribute dependencies.

3. Evaluator chooses traversal order
based on dependencies; for now
postorder



CSC530-S98-L4 Slide32

Attrib ute eval, cont’d

D. Let’s now trace

E. Here’s the result:
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Attrib ute eval, cont’d
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env = [ (a,integer), (b,integer) ]assume

integer

via semantic equation
  for rule F ::= ident,
   which uses Lookup

integer
via semantic equation
    for rule T ::= F

integer
via semantic equation
    for rule E ::= T

integer
via semantic equation
for rule E ::= E + T

integer

via semantic equation
  for rule F ::= ident,
   which uses Lookup

integer

via semantic equation
  for rule F ::= integer,
   which relies on the
    assumed available
      lexical analyzer

integer
via semantic equation
for rule T ::= T * F
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Attrib ute eval, cont’d

F. Similar trace for expr eval on:
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XI. Inherited versus
synthesized attributes

A. Equations specify two forms of depen-
dencies:

1. Synthesized attribute dependent on
attributesbelow.

2. Inherited attribute dependent on
attributesabove or beside.
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Inherited vs. synthesized, cont’d

B. E.g., consider

X ::= Y Z Y.a1 = X.a1
Z.a1 = Y.a2
X.a2 = Z.a2

and the corresponding dependency
diagram
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Inherited vs. synthesized, cont’d

Xa1 a2

Ya1 a2 Z a2a1

1. value ofY.a1 inherited down from
X.a1

2. value ofZ.a1 inherited across from
Y.a2

3. value ofX.a2 synthesized up from
Z.a2
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Inherited vs. synthesized, cont’d

C. Dependencies dictate how to traverse
for complete eval

1. With only synthesized attributes,
eval can be single bottom-up
traversal.

2. With inherited attrs, traversal order
chosen so values of dependents are
known.

3. With real PLs, one to three depth-
first passes.

4. Details next time.
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Inherited vs. synthesized, cont’d

D. Important to remember -- passes are
not explicitly defined by eqns.

1. Equations aredeclarative.

2. Eval in any order, as long as the

dependencies satisfied.1

1 Unless global attributes are used; more next week.


