
CSC530-W02-L6 Slide1

CSC 530 Lecture Notes Week 6

Discussion of Assignment 3,
Questions 1 and 2

Intr oduction to
Denotational Semantics

CSC530-W02-L6 Slide2

I. Turingol Highlights

A. Semantics define compilation of a TM
language into quintuples.

B. Turingol semantics arecompiled, SIL
semantics areinterpreted.

C. The form of instruction in the Turingol
TM is:

CSC530-W02-L6 Slide3

Turingol, cont’d

< p , A , c , d , q >

where

p = present state
A = symbol scanned
c = symbol written
d = tape movement direction
q = next state

CSC530-W02-L6 Slide4

Turingol, cont’d

D. AttributesSymbolandlabel

1. Used assymbol tables, similar to
env and store.

2. Store bindings of ident with value.

3. Here program names with TM-
level values.

CSC530-W02-L6 Slide5

Turingol, cont’d

4. E.g., "tape alpha ispoint, blank,
one, zero"

text(id) symbol(text(id))

‘‘ point’’ .
‘‘ blank’’ B
‘‘ zero’’ 1
‘‘ one’’ 0

CSC530-W02-L6 Slide6

Turingol, cont’d

5. Similarly for statement labels.

text(id) label(text(id))

test q2
carry q4
realign q7

CSC530-W02-L6 Slide7

Turingol, cont’d

E. Example 4.1 on page 137.

Source string TM quintuple

print point <q0, s, ., 0, q1>

where s = {B,0,1,.}

gotocarry <q1, s, s, 0, q4>

. . ._

CSC530-W02-L6 Slide8

Turingol, cont’d

F. Additional notes

1. Σ must be fully processed before
any instructions.

2. newsymbolis Lisp’s gensym.

3. defineandinclude maintain set
property.

CSC530-W02-L6 Slide9

II. Specifics for Assignment 3

A. For question 1, answer in terms of
semantic attributesnotTM states.

B. For question 2:

1. Make explicit attr dependencies.

2. Label most interesting.

3. Focus on the semantic definition
technique, not TMs.

CSC530-W02-L6 Slide10

Now on to Denotational Semantics

III. Reading: Papers 17-22,
emphasis on 20

IV. Intr oductory comparison of
Knuth-style semantics

with Tennent-style

CSC530-W02-L6 Slide11

A. In Knuth, rule eval strategy not explic-
itly specified.

B. In denotational, eval with formal func-
tion evaluation.

1. Amounts to depth-first traversal

2. Function args expressed in terms of
syntactic constituents.

3. Analog of passing attributes is
passing function args.

CSC530-W02-L6 Slide12

Intr o comparison, cont’d

4. Multiple eval passes based on one
full-pass function invoking
another.

5. Eval functions are first-call objects.

a. We don/t needfunctionize

b. No attributed parse trees.

6. Also, looping is more mathemati-
cal, usingfixpoints.

C. More examples to follow.

CSC530-W02-L6 Slide13

V. Data domains, Tennent Ch 3

A. Data domainsare the denotational
analog of attribute type definitions.

B. As with attribute grammars, domain
constructions are used for:

1. Defining definitional datatypes.

2. Model higher-level data.

CSC530-W02-L6 Slide14

Data domains, cont’d

C. Summary of what domain construc-
tions model:

1. Product domains arerecords

2. Sum domains areunions(aka,vari-
ant records).

CSC530-W02-L6 Slide15

Data domains, cont’d

3. Function domains modelarrays
and other forms oftables.

4. Also to model thevalueof a proce-
dure body (i.e., a lambda expr).

5. As in Lisp, recursive domains pro-
vide same capabilities aspointers.

CSC530-W02-L6 Slide16

VI. Binary numeral example

A. Tennent Ch 13 starts with it.

1. Knuth paper has similar example.

2. We’l l compare three semantic
approaches --

denotational, attribute grammars,
and operational.

CSC530-W02-L6 Slide17

Binary numbers, cont’d

B. Denotational definition

Abstract syntax: N ∈ Nml = binary numerals
I ∈ Int = binary integers
F ∈ Frac = binary fractions

N ::= I . F
I ::= B | I B
F ::= B | B F
B ::= 0 | 1

Semantic domain: Z= real numbers

CSC530-W02-L6 Slide18

Binary numbers, cont’d

Semantic functions: : Nml → Z
: Int → Z
: Frac → Z

[[I . F]] = [[I]] + [[F]]
[[I B]] = 2* [I] + [[B]]
[[0]] = 0
[[1]] = 1
[[B F]] = [[B]] + [[f]] / 2
[[0]] = 0
[[1]] = 1/2

CSC530-W02-L6 Slide19

Binary numbers, cont’d

C. Attribute grammar definition

Atrrib ute Description

v Real number decimal value
of the binary number.

Grammar and semantic equations:

N ::= I . F {$$.v = $1.v + $3.v};
I ::= I B {$$.v = 2 * $1.v + $2.v};
I ::= B {$$.v = $1.v};
F ::= B F {$$.v = $1.v + $2.v / 2};
F ::= B {$$.v = $1.v / 2};
B ::= 1 {$$.v = 1};
B ::= 0 {$$.v = 0};

CSC530-W02-L6 Slide20

Binary numbers, cont’d

D. Operational definition
; Operational semantics for binary numbers, patterned after the attribute
; grammar and denotational definitions in
; ../semantics-expamples/binary-numbers{attr,deno}, q.q.v.
;
; Syntactically, a binary number is represented as a list of 0’s and 1’s, with
; an optional decimal point. E.g., (1 1 0 1 . 0 1).

(defun main ()
(let ((number (read)))

(eval-binary-number number)
)

)

(defun eval-binary-number (number)
(let* ((integer-value (eval-integer-part number 0))

(number (move-upto-dot number))
(fractional-value (eval-fractional-part number 0)))

(+ integer-value fractional-value)
)

)

(defun eval-integer-part (number val)
(cond ((or (null number) (eq (car number) ’.))

val)
(t

(let* ((val (+ (* 2 val) (car number))))
(eval-integer-part (cdr number) val)))

)
)

(defun eval-fractional-part (number val)
(cond ((null number)

val)
(t

(let* ((val (/ (eval-fractional-part (cdr number) val) 2.0)))
(+ (/ (car number) 2.0) val)))

)
)

(defun move-upto-dot (number)
(cond ((null number)

nil)
((eq (car number) ’.)

(cdr number))
((or (eq (car number) 0) (eq (car number) 1))

(move-upto-dot (cdr number)))
)

)

CSC530-W02-L6 Slide21

Binary numbers, cont’d

E. Some observations

1. Syntax in attr def slightly more ver-
bose

2. Heart of attribute grammar and
denotational semantics is the same.

3. Operational semantics is consider-
ably bulkier.

CSC530-W02-L6 Slide22

VII. Notational conventions

A. Double square brackets enclose syn-
tactic operands (all of parsing).

B. ? is the "union tag test" operator.

1. E.g., b?T, b?Z

2. ? provides basic type checking

3. b?Z type checks b as int

4. d?L checks thatd is an l-value

CSC530-W02-L6 Slide23

Notational conventions, cont’d

C. "• → • , •" is the if-then-else expr

D. "• [• |→ •]" is "function perturbation".
E.g.,

s[I |→ r]

means

"enterr as value ofI in alists".

CSC530-W02-L6 Slide24

VIII. Tennent Section 13.2

A. Language very similar Lisp subset
handled byxeval

B. Semantic domains:

1. T andZ arebooleansandints.

2. B is product of bools and ints,
calledbasic values.

CSC530-W02-L6 Slide25

Tennent 13.2, cont’d

3. S is thestore, as a function from
text id’s to storable values; think of
it as an alist:

Basic
Value

Text Id

. . .

CSC530-W02-L6 Slide26

Tennent 13.2, cont’d

4. P is the domain ofprocedures.

5. R is storable values, union of basic
vals with procedure vals

6. E, G, andA areR, S, andB resp.,
with {error} added.

CSC530-W02-L6 Slide27

IX. Adding an envir onment (13.3)

A. Language very similar to Lisp subset
handled byxcheck as well as SIL.

B. A few notational abnormalities:

Tennent Normal Pascalese

new I = E var Id := Expr

val I = E constId = Expr

with D do C DeclsbeginCommandsend

CSC530-W02-L6 Slide28

Tennent 13.3, cont’d

C. Notational conventions

1. Add to 13.2 anenvironment, in
conjunction with the store:

Environment Store

Storable
Value

Text Id Value L-Value

CSC530-W02-L6 Slide29

Tennent 13.3, cont’d

2. We’v e separated storable and deno-
table values.

3. More accurately models store as
computer memory.

a. Not done in SIL def.

b. Could easily be done with attr
grammar.

CSC530-W02-L6 Slide30

Tennent 13.3, cont’d

4. Can represent semantics of Pascal
first-order proc bodies.

5. Interesting to consider semantics of
C "&".

6. AddingL to RHS ofR def

r ∈ R = B + P + L

defines important aspect of C.

7. Nice illustration of power of deno-
tational semantics.

CSC530-W02-L6 Slide31

X. Semantic functions 13.2 & 13.3

A. The meat of the matter.

B. Summary:

Descrip 13.2 13.3

Expr Eval : Exp →
(S → E)

:E xp →
(U → (S → E))

Cmd Exec : Com →
(S → G)

:C om →
U → S → G

Decl Elab --- : Def →
U → S → (U × G)

Pgm Exec : Pro →
B → A

: Pro →
B → A

CSC530-W02-L6 Slide32

XI. Whither inheritance and synthesis?

A. Inherited attributes

1. Args passedin to semantic func-
tions.

2. E.g., env and store passed down
from to

CSC530-W02-L6 Slide33

Inheritance and synthesis, cont’d

B. Synthesized attributes

1. Results passedout from semantic
functions.

2. E.g., result produced by synthe-
sized up to call from .

3. Similarly, store from synthesized
up to caller.

CSC530-W02-L6 Slide34

XII. Pervasive use of functions.

A. Table-valued alists represented as
functions.

B. E.g., both the env and store.

1. assoc function replaced by apply-
ing function to an ident.

2. Will take some getting used to.

