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CSC 530 Lecture Notes Week 7

Mor e on Tennent-Style
Denotational Semantics
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I. Tennent Ch 13.

A. We’l l dissect some key definitions.

B. Prepare for pervasive use of functions
(of functions (of functions)).
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II. Assignment statements

A. Dissection of assmnt from 13.3:

[[ C [[(( )  (u)) ( s) = 

command, here "I := E"

env =  DIde

store = +{ unused RL })

G

per Tennent top of page 221:
"The store transformation denoted
  by command C in environment u."
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Assignment, cont’d

whereG expands as follows:

G = s[d |→ e]
= s[u[[ I]] |→ [[E]] u s]
= s[(Ide → D) [[I]] |→

[[E]] (Ide → D)
(L → (R + {unused}))]
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Assignment, cont’d

B. What this says is that the meaning of
an assignment statement of the form "I
:= E" for some identifier "I" and
expression "E" is a modified store,
where the location of the modification
is the memory location bound to "I" in
the environment and the value of the
modification is the value produced by
evaluating E in the environment and
pre-modified store.

C. Cool, huh?
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III. Procedures

A. Consider:

Code Semantics

val n = 100 [[val n = 100]]
newx = 0 [[newx = 0]]

t = true [[new t = true]]

newPn =
(procedure

x := x+1)

[[val Pn =
(proc ...)]]

val Pv =
(procedure

x := x+1)

[[val Pv =
(proc ...)]]

call(Pv) [[Pv]]u s
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Procedures, cont’d

B. Resulting env and store

Environment: Store:

Ide Value x Tag Addr Value

n 100,Z 0xff20 0
x 0xff20, L 1 0
t 0xff24, L 2 0

Pn 0xff25, L 3 0
Pv [[x:=x+1]]uv 4 true

5 [[x:=x+1]]un
storage for
body of Pv

...
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Procedures, cont’d

C. Notes

1. Depiction of env resembles lookup
table, depiction of store resembles
memory.

a. Both depictions are merely sug-
gestions.

b. Abstractly, env and store are
unary functions.
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Procedures, cont’d

2. Assoc-style lookup denoted

u[[x]]

a. This means apply the env func-
tion u to ident "x".

b. Think of entire tableapplied as
function to "x".
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Procedures, cont’d

3. Proc values bound to Pn and Pv are
unevaluated lambda bodies, with
anattached env.

a. Attachment defines language as
statically scoped.

b. Note different static env in Pn
versus Pv.
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IV. Tennent versus Knuth eval

A. Consider

var x,y;
x := 1;
y := x+1;

B. Knuth eval walks the parse tree:

program

decl                    ;                  stmts

stmt              ;            stmt

expr   :=    expr expr   :=    expr

expr    +    exprx 1 y

x 1
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C. Comparable Tennent eval:

var x,y; x:=1 y:=x+1

var x,y

y:=x+1

expr expr

exprx 1 y

x 1

M[[

D[[ C[[

E[[

]]

]] ]]

]] ]]

]] ]]

x:=1; y:=x+1;

C[[ C[[x:=1 ;

]]

]]

]]

]]

E[[ E[[ E[[

E[[ E[[expr

:= :=

+

expr expr
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V. Infinitary pr ogram behavior -- loops

A. Thus far, not directly considered.

B. There are two approaches.

1. "Operational" mathematical
approach.

2. Limit/Fixpoint approach.
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VI. Fixpoint def of while

A. Basic idea

‘‘ while E do C’’=
if E then { C ; while E do C }

Using a bit of notation:

[[ while E do C ]] =
if [[E]] then begin

[[C]] ; [[while E do C]]end

where let

f = [[ while E do C ]]
F(f) = if [[E]] then begin [[C]] ;

[[while E do C]] end
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While, cont’d

B. Question: What’s going on here?

Ans: it’s an equationto be solved for
f, i.e., forf = F(f)

C. Question: Does this form of equation
have a solution in general?I.e., for a
functional F: D→D, does there exist

Y: (D→D)→D such thatY(F) = F(Y(F))
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While, cont’d

Ans: Yes, if we make the following
assumptions:

1. Function domains properly defined.

2. All functions are continuous

D. Solution is called afixpoint
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While, cont’d

E. Question: What does such a fixpoint
look like?

Ans:

1. For non-recursive cases, e.g.,

fix( f(x) = 4 ) is 4

fix( f(x) = 8 - x ) is 4
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While, cont’d

2. For recursive cases, consider

let f(x) = if x=0 then 1
else if x=1 then f(3) else f(x-2)

a. A fixpoint of this is

f(x) =1 if x is is even and x≥0
undefined otherwise
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While, cont’d

b. But also a fixpoint is

f(x) = 1 if x is even and x≥0
a if x is odd and x>0
b otherwise

for any a,b

c. The first is the‘‘ least’’ fixpoint.
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While, cont’d

3. For while loop, fixpoint function
looks like alimit of successive
approximations.

a. I.e.,
(while E do C) 0 =

‘‘ the worst loop approximation’’

(while E do C) i+1 =

if E then C;
(while E do C) i
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While, cont’d

b. More specifically,
(while E do C) 0 =

while true do null;

(while E do C) 1 =

if E then C;
while true do null;

(while E do C) 2 =

if E then C;
if E then C ;

while true do null;

...
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While, cont’d

c. In terms of functions,

let f =
[[while E
do C]]

and we want

f = [[E]] →
[[C; while E do C]]
= [[E]] → ( [[while E do C]]( [[C]]))
= [[E]] → f( [[C]])
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While, cont’d

and now, we want

f = F(f)

d. That is, we have arrived at

|_, F(|_ ), F(F( |_ )), ..., Fi( |_ )

which approximatesf. I.e.,
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While, cont’d

FixD : (D → D) → D

defined as

FixD = limi→ Fi( | )

is the ‘‘ least’’ solution of f =
F(f).


