
CSC530-W02-L7 Slide1

CSC 530 Lecture Notes Week 7

Mor e on Tennent-Style
Denotational Semantics

CSC530-W02-L7 Slide2

I. Tennent Ch 13.

A. We’l l dissect some key definitions.

B. Prepare for pervasive use of functions
(of functions (of functions)).

CSC530-W02-L7 Slide3

II. Assignment statements

A. Dissection of assmnt from 13.3:

[[C [[(() (u)) (s) =

command, here "I := E"

env = DIde

store = +{ unused RL })

G

per Tennent top of page 221:
"The store transformation denoted
 by command C in environment u."

CSC530-W02-L7 Slide4

Assignment, cont’d

whereG expands as follows:

G = s[d |→ e]
= s[u[[I]] |→ [[E]] u s]
= s[(Ide → D) [[I]] |→

[[E]] (Ide → D)
(L → (R + {unused}))]

CSC530-W02-L7 Slide5

Assignment, cont’d

B. What this says is that the meaning of
an assignment statement of the form "I
:= E" for some identifier "I" and
expression "E" is a modified store,
where the location of the modification
is the memory location bound to "I" in
the environment and the value of the
modification is the value produced by
evaluating E in the environment and
pre-modified store.

C. Cool, huh?

CSC530-W02-L7 Slide6

III. Procedures

A. Consider:

Code Semantics

val n = 100 [[val n = 100]]
newx = 0 [[newx = 0]]

t = true [[new t = true]]

newPn =
(procedure

x := x+1)

[[val Pn =
(proc ...)]]

val Pv =
(procedure

x := x+1)

[[val Pv =
(proc ...)]]

call(Pv) [[Pv]]u s

CSC530-W02-L7 Slide7

Procedures, cont’d

B. Resulting env and store

Environment: Store:

Ide Value x Tag Addr Value

n 100,Z 0xff20 0
x 0xff20, L 1 0
t 0xff24, L 2 0

Pn 0xff25, L 3 0
Pv [[x:=x+1]]uv 4 true

5 [[x:=x+1]]un
storage for
body of Pv

...

CSC530-W02-L7 Slide8

Procedures, cont’d

C. Notes

1. Depiction of env resembles lookup
table, depiction of store resembles
memory.

a. Both depictions are merely sug-
gestions.

b. Abstractly, env and store are
unary functions.

CSC530-W02-L7 Slide9

Procedures, cont’d

2. Assoc-style lookup denoted

u[[x]]

a. This means apply the env func-
tion u to ident "x".

b. Think of entire tableapplied as
function to "x".

CSC530-W02-L7 Slide10

Procedures, cont’d

3. Proc values bound to Pn and Pv are
unevaluated lambda bodies, with
anattached env.

a. Attachment defines language as
statically scoped.

b. Note different static env in Pn
versus Pv.

CSC530-W02-L7 Slide11

IV. Tennent versus Knuth eval

A. Consider

var x,y;
x := 1;
y := x+1;

B. Knuth eval walks the parse tree:

program

decl ; stmts

stmt ; stmt

expr := expr expr := expr

expr + exprx 1 y

x 1

CSC530-W02-L7 Slide12

C. Comparable Tennent eval:

var x,y; x:=1 y:=x+1

var x,y

y:=x+1

expr expr

exprx 1 y

x 1

M[[

D[[C[[

E[[

]]

]]]]

]]]]

]]]]

x:=1; y:=x+1;

C[[C[[x:=1 ;

]]

]]

]]

]]

E[[E[[E[[

E[[E[[expr

:= :=

+

expr expr

CSC530-W02-L7 Slide13

V. Infinitary pr ogram behavior -- loops

A. Thus far, not directly considered.

B. There are two approaches.

1. "Operational" mathematical
approach.

2. Limit/Fixpoint approach.

CSC530-W02-L7 Slide14

VI. Fixpoint def of while

A. Basic idea

‘‘ while E do C’’=
if E then { C ; while E do C }

Using a bit of notation:

[[while E do C]] =
if [[E]] then begin

[[C]] ; [[while E do C]]end

where let

f = [[while E do C]]
F(f) = if [[E]] then begin [[C]] ;

[[while E do C]] end

CSC530-W02-L7 Slide15

While, cont’d

B. Question: What’s going on here?

Ans: it’s an equationto be solved for
f, i.e., forf = F(f)

C. Question: Does this form of equation
have a solution in general?I.e., for a
functional F: D→D, does there exist

Y: (D→D)→D such thatY(F) = F(Y(F))

CSC530-W02-L7 Slide16

While, cont’d

Ans: Yes, if we make the following
assumptions:

1. Function domains properly defined.

2. All functions are continuous

D. Solution is called afixpoint

CSC530-W02-L7 Slide17

While, cont’d

E. Question: What does such a fixpoint
look like?

Ans:

1. For non-recursive cases, e.g.,

fix(f(x) = 4) is 4

fix(f(x) = 8 - x) is 4

CSC530-W02-L7 Slide18

While, cont’d

2. For recursive cases, consider

let f(x) = if x=0 then 1
else if x=1 then f(3) else f(x-2)

a. A fixpoint of this is

f(x) =1 if x is is even and x≥0
undefined otherwise

CSC530-W02-L7 Slide19

While, cont’d

b. But also a fixpoint is

f(x) = 1 if x is even and x≥0
a if x is odd and x>0
b otherwise

for any a,b

c. The first is the‘‘ least’’ fixpoint.

CSC530-W02-L7 Slide20

While, cont’d

3. For while loop, fixpoint function
looks like alimit of successive
approximations.

a. I.e.,
(while E do C) 0 =

‘‘ the worst loop approximation’’

(while E do C) i+1 =

if E then C;
(while E do C) i

CSC530-W02-L7 Slide21

While, cont’d

b. More specifically,
(while E do C) 0 =

while true do null;

(while E do C) 1 =

if E then C;
while true do null;

(while E do C) 2 =

if E then C;
if E then C ;

while true do null;

...

CSC530-W02-L7 Slide22

While, cont’d

c. In terms of functions,

let f =
[[while E
do C]]

and we want

f = [[E]] →
[[C; while E do C]]
= [[E]] → ([[while E do C]]([[C]]))
= [[E]] → f([[C]])

CSC530-W02-L7 Slide23

While, cont’d

and now, we want

f = F(f)

d. That is, we have arrived at

|_, F(|_), F(F(|_)), ..., Fi(|_)

which approximatesf. I.e.,

CSC530-W02-L7 Slide24

While, cont’d

FixD : (D → D) → D

defined as

FixD = limi→ Fi(|)

is the ‘‘ least’’ solution of f =
F(f).

