
Point Based Color Bleeding with CUDA and

Caching

Nick Feeney

California Polytechnic State University

San Luis Obispo

Abstract - The main goal of this project was

to explore the possibility of applying CUDA

to the Point Based Color Bleeding global

illumination algorithm. This project tackled

the creation of surfels, the storage of

surfels in an octree, representation of an

octree in CUDA, and the transversal of an

octree in CUDA. Future work will include

the rasterization step of the Point Based

Color Bleeding algorithm done in CUDA,

spherical harmonics calculations for the

intensity of surfels, and the development

of an efficient caching method for surfels.

Keywords: CUDA, Point Based Color

Bleeding, Caching, Surfels, Micro-polygons,

Rasterization, Spherical Harmonics

1 Introduction

Global illumination is a well researched

topic of computer graphics. Currently one

of the best algorithms for achieving fast and

accurate global illumination in a rendered

scene is the Point Based Color Bleeding

algorithm. This algorithm is extensively

used by both Pixar Animation as well as

Dreakworks Animation. This method had

been used in many feature films including

"Pirates of the Caribbean".[1]

 Point Based Color Bleeding(PCB) is a

two pass method that utilizes a point cloud

to approximate global illumination at given

points in a scene. The first pass generates

the point cloud of surfels(explained later)

that stores position, direct illumination, and

light intensity also known as radiosity for a

micropolygon. The surfels are stored in a

octree representation that allows for

efficient transversal. The second pass is the

rasterization step. A raster cube is formed a

every point where global illumination is

needed. The surfels are then rasterized

onto the faces of the cube. Once the

rasterization is complete, global

illumination is approximated for that point

using the spherical harmonic representation

of light intensity from the surfels that

where rasterized onto the cube.

 The rest of this paper is as follows.

Section 2 is related work and background

information. Section 3 is accomplished work

and the current state of the project. Section

4 is results from the CUDA and octree

speedups. Section 5 is on future work and

finally, Section 6 is the conclusion.

2 Related Work

Figure 1: This is an example scene comprised of
surfels. This image was taken from
Christensen[1].

This Point Based Color Bleeding algorithm

was inspired by the work done by Per H.

Christensen[1]. His algorithm is based on

two distinct steps, surfel generation and

rasterization. The first step utilizes a REYES

type render to subdivide all the surfaces

into micropolygons. An example of a this is

seen in Figure 1. Then these micropolygons

also known as surfels are transferred into

an octree(explained next) which allow for

efficient surfel transversal. After the octree

is created, spherical harmonics are

calculated to estimate the projected power

of every node in the octree. This estimation

is used later to determine the amount of

energy a surfel or group of surfels

contributes to the color bleeding effect.

The next step is rasterization. Christensen's

algorithm creates a raster-cube at every

point that global illumination needs to be

calculated and rasterizies all of the surfels

stored in the octree onto the faces of the

cube. This is seen in Figure 2.

Figure 2: This is an example of a raster-cube.
The circles are surfels being rasterized to the
cube. This image was taken from
Christensen[1].

 Octrees are a tree data structure

where all internal nodes contain exactly

eight children. Octrees are used to

subdivide space into an efficient tree

structure which can greatly reduce the

number of intersection tests needed to

render a scene. By testing the bounding

boxes of the tree nodes large amounts of

the tree can be ignored, which reduces the

number of intersection tests required.

Octrees are easiest to understand by

examining Figures 3 and 4.

Figure 3: This is a tree structure used to
illustrate the creation of a octree with 3 layers.

Figure 4: This is an example of a triangular
mesh that has been stored into an Octree.

 Spherical harmonic functions are

essentially solutions to the Laplace's

equation that can be used to model

different effects with different levels of

detail. They are used in many applications

in both computer graphics and other fields

and explain in great depth in Sloan[2]. It is

important to understand that they are a

series of floats, 27 in this case, that

accurately model the flux of a given

substance. The substance for this

application is light intensity being absorbed

and emitted from a surfel for set of surfels.

3 Implementation

This project is precursor to a full thesis

about Point Based Color Bleeding(PCB) with

CUDA and Caching. This project tackled four

main aspects of the PCB algorithm, surfel

generation, octree generation, CUDA

efficient octree, and CUDA efficient

transversal of an octree.

 The central goal of the surfel

generation step is to accurately sample the

scene and pre-compute the direct

illumination of all the sample points. To

accomplish this a ray-casting based

approach was used. First, the viewing

frustum was enlarged to insure that

important objects that were not directly in

view would be sampled. Next, rays were

cast from the camera directly into the

scene. For every point in the scene that the

rays intersected a surfel was generated.

Rays can intersect the scene many times.

When a surfel is generated at an

intersection point, direct lighting is

calculated and stored within the surfel. This

method is demonstrated by Figure 5[3].

Figure 5: Rays are cast from camera through
the enlarged view frustrum and a surfel is
generated at every intersection point for every
ray. It is imporant to note that a ray can
intersect the scene many times.

 After surfel generation, there are a

relatively large amount of surfels. It is

extremely inefficient to do intersection

tests against all surfels. This means that a

spatial data structure is needed to manage

the surfels. Octrees are one of the most

efficient spatial data structures that can be

implemented. This implementation creates

and octree by first creating a node and a

bounding box that contains all surfels. The

space contained in this node is then

recursively split into eight equal size

sections until each node contains 32 or less

surfels. This octree is represented using a

tree structure where nodes contain

pointers to their sub-nodes. This is similar

to Figure 3, where surfels are only stored at

leaf nodes.

 An octree comprised of pointers and

nodes is relatively easy to create and works

well for a CPU based implementation.

Unfortunately, this structure is almost

impossible to transfer to CUDA. Also this

structure is extremely inefficient to use in

CUDA. A CUDA efficient octree is a

condensed octree that is has been flattened

into an array structure. Essentially, all node

in the octree that are interior nodes or leaf

nodes with data, are stored in depth first

order into an array. Leaf nodes instead of

containing data contain indices into a

common array containing all of the surfels.

This structure allows for the minimum

amount of data to be used to fully

represent the octree. This also allows for

one direction octree transversal. This

means that to find an intersection it is only

necessary to increment across the octree

once. One directional octree transversal

great reduces the seek cost that can be

incurred by a global read in CUDA because

you are only seeking forward. An example

of an quadtree flattened into an array can

be seen in Figure 6. A quadtree is the 2D

equivalence of an octree.

 Lastly, this project required a way of

visualizing surfels to verify that they were

correct as well as verify the transversal

method was efficient. The method that was

chosen was a simple ray tracing method

that required rays to be cast from the

camera into the scene and intersect the

surfels. The direct illumination stored in the

closest surfel was then drawn into a color

buffer. Each ray was cast using CUDA

parallelism that decreased the overall run

time by a factor of 21. It was a simple

method for drawing the surfels but it

verified that the surfels were both correct

and efficiently stored.

4 Results

The original plan for this project was to

Figure 6: Quadtree compressed into an array. This is similar to how an
octree is stored except that an octree is 3D not 2D.

decrease the time required to create surfels

by using CUDA to generate the surfels on

the GPU. This proved not be entirely

necessary because the surfel generation

phase was much shorter than expected.

Instead work was done to efficiently

represent the surfels in CUDA. The original

non-octree, non-CUDA, implementation ran

so slowly that timing unobtainable. It ran

for over 2 hours for a 2000x2000 simple

image. It also ran for 20 seconds to render a

100x100 image. The non-CUDA, octree

implementation brought the total run time

down to 5 minutes for a 2000x2000 image.

The non-octree, CUDA implementation

significantly improved performance

bringing the total run time to 10 minutes.

The final implementation utilizing both

CUDA and the CUDA efficient octree runs in

14 seconds for a 2000x2000 image. This is a

CUDA speedup factor of 21.

 The rasterization step for Point

Based Color Bleeding will require a similar

amount of transversals of the CUDA octree

so this speedup will most likely apply to the

final implementation.

5 Future Work

This project was only the start of a much

larger project. There is still much work to be

done for the final project. First, the

rasterization step of PCB needs to be

written and adapted to use CUDA. Second, I

want to try and implement a caching

method that will hopefully speed up the

octree transversals and surfel fetches.

 Also, I want to continue working on

speeding up the surfel creation phase for

extremely large scenes. Currently, if a large

scene is used, the surfel creation time can

become relevant. It was not in the scope of

this project to have large scenes but it is in

the scope of the final project. One way of

achieving this scene complexity would to

utilize an octree for the scene objects as

well as utilizing CUDA to do object

intersections.

 There are a few CUDA optimization

tweaks that need to be researched as well.

Work needs to be done to optimize the

block and grid layouts as well as try and

eliminate some of the branch divergence in

the current implementation.

 Finally, I believe that the new Nvidia

Kepler architecture could greatly increase

the speedup experienced by this project

and the next. Unfortunately, this

architecture is currently not release to the

general public so development for this

aspect of the project is on hold.

6 Conclusion

The Point Based Color Bleeding global

illumination method is an extremely

popular rendering method. The work done

so far for this project shows that CUDA can

greatly affect the run time of this algorithm.

This initial project has seen great success

exposing many problems and solutions that

the final thesis project will experience and

utilize. The CUDA efficient octree was a

great success although there is still some

optimizations to implement. This has been a

great first step for the final thesis project.

7 References

[1] Per H. Christensen. Point-based

approximate color bleeding. 2008.

 [2] Peter-Pike Sloan. Stupid spherical

harmonics (SH) tricks. 2008. Microsoft

Corporation.

[3] Christopher Gibson. Point-based color

bleeding with volumes. 2011. Cal Poly San

Luis Obispo

[4] Sylvain Lefebvre, Samuel Hornus,

Fabrice Neyret. GPU gems 2. Chapter 37.

Octree Textures on the GPU. 2005.

Figure 7: This is an extremely low surfel count image
that is meant to prove that surfels are in fact created.

Figure 8: This is an example of an image with
the correct number of surfels.

