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Abstract - The main goal of this project was 

to explore the possibility of applying CUDA 

to the Point Based Color Bleeding global 

illumination algorithm. This project tackled 

the creation of surfels, the storage of 

surfels in an octree, representation of an 

octree in CUDA, and the transversal of an 

octree in CUDA. Future work will include 

the rasterization step of the Point Based 

Color Bleeding algorithm done in CUDA, 

spherical harmonics calculations for the 

intensity of surfels, and the development 

of an efficient caching method for surfels.  
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1    Introduction 

Global illumination is a well researched 

topic of computer graphics. Currently one 

of the best algorithms for achieving fast and 

accurate global illumination in a rendered 

scene is the Point Based Color Bleeding 

algorithm.  This algorithm is extensively 

used by both Pixar Animation as well as 

Dreakworks Animation. This method had 

been used in many feature films including 

"Pirates of the Caribbean".[1]   

 Point Based Color Bleeding(PCB) is a 

two pass method that utilizes a point cloud 

to approximate global illumination at given 

points in a scene. The first pass generates 

the point cloud of surfels(explained later) 

that stores position, direct illumination, and 

light intensity also known as radiosity for a 

micropolygon. The surfels are stored in a 

octree representation that allows for 

efficient transversal. The second pass is the 

rasterization step. A raster cube is formed a 

every point where global illumination is 

needed. The surfels are then rasterized 

onto the faces of the cube. Once the 

rasterization is complete, global 

illumination is approximated for that point 

using the spherical harmonic representation 

of light intensity from the surfels that 

where rasterized onto the cube.  

 The rest of this paper is as follows. 

Section 2 is related work and background 

information. Section 3 is accomplished work 

and the current state of the project. Section 

4 is results from the CUDA and octree 

speedups. Section 5 is on future work and 

finally, Section 6 is the conclusion. 

2   Related Work 



 

Figure 1: This is an example scene comprised of 
surfels. This image was taken from 
Christensen[1]. 

This Point Based Color Bleeding algorithm 

was inspired by the work done by Per H. 

Christensen[1]. His algorithm is based on 

two distinct steps, surfel generation and 

rasterization. The first step utilizes a REYES 

type render to subdivide all the surfaces 

into micropolygons. An example of a this is 

seen in Figure 1. Then these micropolygons 

also known as surfels are transferred into 

an octree(explained next) which allow for 

efficient surfel transversal.  After the octree 

is created, spherical harmonics are 

calculated to estimate the projected power 

of every node in the octree. This estimation 

is used later to determine the amount of 

energy a surfel or group of surfels 

contributes to the  color bleeding effect. 

The next step is rasterization. Christensen's 

algorithm creates a raster-cube at every 

point that global illumination needs to be 

calculated and rasterizies all of the surfels 

stored in the octree onto the faces of the 

cube. This is seen in Figure 2. 

  

 

Figure 2: This is an example of a raster-cube. 
The circles are surfels being rasterized to the 
cube. This image was taken from 
Christensen[1]. 

 Octrees are a tree data structure 

where all internal nodes contain exactly 

eight children. Octrees are used to 

subdivide space into an efficient tree 

structure which can greatly reduce the 

number of intersection tests needed to 

render a scene. By testing the bounding 

boxes of the tree nodes large amounts of 

the tree can be ignored, which reduces the 

number of intersection tests required. 

Octrees are easiest to understand by 

examining Figures 3 and 4. 

 

Figure 3: This is a tree structure used to 
illustrate the creation of a octree with 3 layers. 

 



 

Figure 4: This is an example of a triangular 
mesh that has been stored into an Octree. 

 Spherical harmonic functions are 

essentially solutions to the Laplace's 

equation that can be used to model 

different effects with different levels of 

detail. They are used in many applications 

in both computer graphics and other fields 

and explain in great depth in Sloan[2]. It is 

important to understand that they are a 

series of floats, 27 in this case, that 

accurately model the flux of a given 

substance. The substance for this 

application is light intensity being absorbed 

and emitted from a surfel for set of surfels. 

3   Implementation  

This project is precursor to a full thesis 

about Point Based Color Bleeding(PCB) with 

CUDA and Caching. This project tackled four 

main aspects of the PCB algorithm, surfel 

generation, octree generation, CUDA 

efficient octree, and CUDA efficient 

transversal of an octree.  

 The central goal of the surfel 

generation step is to accurately sample the 

scene and pre-compute  the direct 

illumination of all the sample points. To 

accomplish this a ray-casting based 

approach was used. First, the viewing 

frustum was enlarged to insure that 

important objects that were not directly in 

view would be sampled. Next, rays were 

cast from the camera directly into the 

scene. For every point in the scene that the 

rays intersected a surfel was generated. 

Rays can intersect the scene many times. 

When a surfel is generated at an 

intersection point, direct lighting is 

calculated and stored within the surfel. This 

method is demonstrated by Figure 5[3]. 

 

Figure 5: Rays are cast from camera through 
the enlarged  view frustrum and a surfel is 
generated at every intersection point for every 
ray. It is imporant to note that a ray can 
intersect the scene many times. 

 After surfel generation, there are a 

relatively large amount of surfels. It is 



extremely inefficient to do intersection 

tests against all surfels. This means that a 

spatial data structure is needed to manage 

the surfels. Octrees are one of the most 

efficient spatial data structures that can be 

implemented. This implementation creates 

and octree by first creating a node and a 

bounding box that contains all surfels. The 

space contained in this node is then 

recursively split into eight equal size 

sections until each node contains 32 or less 

surfels. This octree is represented using a 

tree structure where nodes contain 

pointers to their sub-nodes. This is similar 

to Figure 3, where surfels are only stored at 

leaf nodes. 

 An octree comprised of pointers and 

nodes is relatively easy to create and works 

well for a CPU based implementation. 

Unfortunately, this structure is almost 

impossible to transfer to CUDA. Also this 

structure is extremely inefficient to use in 

CUDA. A CUDA efficient octree is a 

condensed octree that is has been flattened 

into an array structure. Essentially, all node 

in the octree that are interior nodes or leaf 

nodes with data, are stored in depth first 

order into an array. Leaf nodes instead of 

containing data contain indices into a 

common array containing all of the surfels. 

This structure allows for the minimum 

amount of data to be used to fully 

represent the octree. This also allows for 

one direction octree transversal. This 

means that to find an intersection it is only 

necessary to increment across the octree 

once. One directional octree transversal 

great reduces the seek cost that can be 

incurred by a global read in CUDA because 

you are only seeking forward. An example 

of an quadtree flattened into an array can 

be seen in Figure 6. A quadtree is the 2D 

equivalence of an octree. 

 Lastly, this project required a way of 

visualizing  surfels to verify that they were 

correct as well as verify the transversal 

method was efficient. The method that was 

chosen was a simple ray tracing method 

that required rays to be cast from the 

camera into the scene and intersect the 

surfels. The direct illumination stored in the 

closest surfel was then drawn into a color 

buffer. Each ray was cast using CUDA 

parallelism that decreased the overall run 

time by a factor of 21. It was a simple 

method for drawing the surfels but it 

verified that the surfels were both correct 

and efficiently stored.   

4   Results 

The original plan for this project was to 

Figure 6: Quadtree compressed into an array. This is similar to how an 
octree is stored except that an octree is 3D not 2D. 



decrease the time required to create surfels 

by using CUDA to generate the surfels on 

the GPU. This proved not be entirely 

necessary because the surfel generation 

phase was much shorter than expected. 

Instead work was done to efficiently 

represent the surfels in CUDA. The original 

non-octree, non-CUDA, implementation ran 

so slowly that timing unobtainable. It ran 

for over 2 hours for a 2000x2000 simple 

image. It also ran for 20 seconds to render a 

100x100 image. The non-CUDA, octree 

implementation brought the total run time 

down to 5 minutes for a 2000x2000 image. 

The non-octree, CUDA implementation 

significantly improved performance 

bringing the total run time to 10 minutes. 

The final implementation utilizing both 

CUDA and the CUDA efficient octree runs in 

14 seconds for a 2000x2000 image. This is a 

CUDA speedup factor of 21.  

 The rasterization step for Point 

Based Color Bleeding will require a similar 

amount of transversals of the CUDA octree 

so this speedup will most likely apply to the 

final implementation.   

5   Future Work 

This project was only the start of a much 

larger project. There is still much work to be 

done for the final project. First, the 

rasterization step of PCB needs to be 

written and adapted to use CUDA. Second, I 

want to try and implement a caching 

method that will hopefully speed up the 

octree transversals and surfel fetches.  

 Also, I want to continue working on 

speeding up the surfel creation phase for 

extremely large scenes. Currently, if a large 

scene is used, the surfel creation time can 

become relevant. It was not in the scope of 

this project to have large scenes but it is in 

the scope of the final project. One way of 

achieving this scene complexity would to 

utilize an octree for the scene objects as 

well as utilizing CUDA to do object 

intersections. 

 There are a few CUDA optimization 

tweaks that need to be researched as well. 

Work needs to be done to optimize the 

block and grid layouts as well as try and 

eliminate some of the branch divergence in 

the current implementation. 

 Finally, I believe that the new Nvidia 

Kepler architecture could greatly increase 

the speedup experienced by this project 

and the next. Unfortunately, this 

architecture is currently not release to the 

general public so development for this 

aspect of the project is on hold. 

6   Conclusion 

The Point Based Color Bleeding global 

illumination method is an extremely 

popular rendering method. The work done 

so far for this project shows that CUDA can 

greatly affect the run time of this algorithm. 

This initial project has seen great success 

exposing many problems and solutions that 

the final thesis project will experience and 

utilize. The CUDA efficient octree was a 

great success although there is still some 



optimizations to implement. This has been a 

great first step for the final thesis project. 
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Figure 7: This is an extremely low surfel count image 
that is meant to prove that surfels are in fact created. 

Figure 8: This is an example of an image with 
the correct number of surfels. 


