
Real Time Occlusion Culling
Ilya Seletsky

Advisor: Zoe Wood

Real Time Graphics

-30 FPS (33.33 ms per frame)
-60 FPS (16.66 ms per frame)
-Useful for games, CAD applications, etc...

Occlusion Culling

-Figure out what not to draw
-Back in the day was statically prebaked

BSP Trees Keeping DooM running at 35 FPS on 66Mhz 486 CPU and 8MB RAM

Unreal Engine 3 Prebaked Visibility Grid

Real Time Occlusion Culling

-No prebaking allows for more dynamic and
flexible environments

Buildings are going down. Where's your
prebaked static visibility data now!!!!

Editing a level in real time. Where's your
prebaked static visibility data now!!!!

View Frustum Culling Alone

VFC+Occlusion Culling

Depth Test

● Lowest level of occlusion culling
● Z Buffer
● About to draw a pixel

○ Skip if this pixel is already behind what's currently
drawn

● Opaque Objects Only

Hardware Occlusion Query

● Begin Query
● Draw Object
● End Query
● Retrieve how many pixels passed depth test

○ Know if object is visible
○ Know what level of detail to use

Hardware Occlusion Query

● CPU issuing asynchronous calls to GPU
○ Stalls

● Batch occlusion queries for best results
○ Don't draw object 0, retreive result, draw object 1,

retreive result
○ Draw x number of objects
○ Retrieve x number of results

Hardware Occlusion Query

● Use query results next frame
● Objects will pop in a frame late
● Human eye usually won't notice at

interactive FPS
○ 33.33 ms at 30 FPS
○ Some modern games do this and you didn't even

notice

You will now pay close attention and try to notice it in all your games...

Hardware Occlusion Query

● Render objects front to back
● Use results next frame
● First Test

○ Disable depth write and color write
○ Render simple box

● Get results back
○ If passed last frame render actual object
○ If not, go back to step 1

● Get results back
○ If passed last frame render actual object
○ If not, go back to step 1

Software Occlusion Culling

● Avoids hardware query drawbacks
○ No CPU stall waiting for GPU results
○ Use results same frame

● Software rasterize simple geometry for large
occluders

● Test objects against software buffer with
simple box

● Used in Cryengine and Battlefield 3

From Dice's Presentation: Culling the Battlefield

Why try Hardware?
● GPU can draw lots of geometry EASY

So why do occlusion culling instead of drawing
EVERYTHING!!!!

● Large draw distance = MAAANY objects
● Bottleneck is transferring data to GPU

○ Transfer simple box model once
○ Render MAAAANY boxes
○ Later transfer detailed data only for visible objects

■ Geometry
■ Textures
■ Running complex shaders....

My implementation so far

● 3D Uniform Grid Scene
○ Hierarchical structure like Octtree wouldn't work well

for this
● 2 Passes in one frame

○ First pass
■ Figure out visible 3D uniform grid cells

○ Second pass
■ Draw objects

First Pass

● Render large occluders to populate depth buffer
○ Simplified geometry that's fully contained by visual geometry
○ Color write off, depth write on

● Figure out visible 3D uniform grid cells with occlusion
queries
○ Color write and depth write off, query only

● Use result in same frame
○ Might be inefficient and cause a stall, I'll figure out if

this is the case later

Second Pass

● Draw objects in the visible 3D uniform grid cells and do
traditional occlusion culling queries

● Use those results in later frames

Quick Demo

Questions?

