POINT BASED COLOR
NG WITH.CUDA

| A
]'.

Nick Feeney

Outline

Introduction
Background

Related Work

Current Implementation
Results

Future Work
Conclusion

Introduction

Reasons for Project:

Global lllumination
gives up high quality
and realistic images.
Global lllumination is
a lot of work and can
always go fast.

Introduction

Project central goals:

Implementing a Point Based Color Bleeding
global illumination algorithm.

To speed up with CUDA
To speed up with Caching

Background

An Octree Is a tree structure where
every node subdivides space into eight
equal pieces.

Background

Octrees are useful because decrease
the total amount of work that is required.

y 7

»y -
.".ﬂﬂ’ X X X X X X X |
L

A

Background

Rasterization: process of converting
geometry into pixels.

Depth-buffer test: the method of saving
the distance between image or
rasterization buffer and the geometry.

Background

Raytracing

Image
Camera Light Source

'a) |
- h

Shadow Ray
-

Scene Object

Related Work

by Per H.

ing

® Point Based Color Bleed

Christianson.

* Two Central Steps

o Surfel Generation

o Rasterization

s

| EmEn
c EEEE

Related Work

Surfel Generation

Christianson uses a REYES based
approach to generate surfels. This means
that each object in the scene is broken down
individually and covered with surfels

For every Surfel direct illumination is
calculated and then surfel Is stored into an
octree.

Related Work

Rasterization

For every point that needs to calculate
global illumination a raster-cube is
generated.

Surfels are the rasterized onto the faces of
the cube.

Using this information
global illumination is
calculated.

Current Implementaion

What | did this quarter:

Complete C-Style Ray Tracer
o Direct lllumination
o Ray-Object Intersections

Surfel Generation
CPU Octree

CPU Surfel Raytracing
GPU Octree

GPU Surfel Raytracing

At
b4 444+ + 2o
S5 4440040

F 4+ v e

2 B

4

4
+4+ 4+

+++ 4

- 4 $ee e

-

Surfel Generation

Different from Christianson:

Ray Casting method
o Enlarge View Frustum

CUDA Octree

Normal Octrees do not work with CUDA.

Adapt Octree to use a array structure.
This style of Octree took 30 sec of run
time

A Quadtree

€(2,0) D(3,0)

Result Times

2000x2000 Image

CPU Non-Octree implementation:
The world may never know...

CPU Pointer-Octree: 5 min 15 secs
CPU Array-Octree: 4 min 40 secs

CUDA non-Octree:
Had problems: 10 min 43 secs

CUDA Array-Octree: 13 secs

Future Work

Rasterization Step

Spherical Hermonics Calculations
Octree for Ray-Object Intersections
CUDA for Ray-Object Intersections
CUDA Optimizations for Surfel drawings

Implementation on the new Kepler
Nvidia Hardware

Questions?

