
Nick Feeney

Outline

 Introduction

 Background

 Related Work

 Current Implementation

 Results

 Future Work

 Conclusion

Introduction

 Reasons for Project:

 Global Illumination

gives up high quality

and realistic images.

 Global Illumination is

a lot of work and can

always go fast.

Introduction

 Project central goals:

 Implementing a Point Based Color Bleeding

global illumination algorithm.

 To speed up with CUDA

 To speed up with Caching

Background

 An Octree is a tree structure where

every node subdivides space into eight

equal pieces.

Background

 Octrees are useful because decrease

the total amount of work that is required.

Background

 Rasterization: process of converting

geometry into pixels.

 Depth-buffer test: the method of saving

the distance between image or

rasterization buffer and the geometry.

Background

 Raytracing

Related Work

 Point Based Color Bleeding by Per H.

Christianson.

 Two Central Steps:

○ Surfel Generation

○ Rasterization

Related Work

 Surfel Generation

 Christianson uses a REYES based

approach to generate surfels. This means

that each object in the scene is broken down

individually and covered with surfels

 For every Surfel direct illumination is

calculated and then surfel is stored into an

octree.

Related Work

 Rasterization

 For every point that needs to calculate

global illumination a raster-cube is

generated.

 Surfels are the rasterized onto the faces of

the cube.

 Using this information

 global illumination is

 calculated.

Current Implementaion

 What I did this quarter:

 Complete C-Style Ray Tracer

○ Direct Illumination

○ Ray-Object Intersections

 Surfel Generation

 CPU Octree

 CPU Surfel Raytracing

 GPU Octree

 GPU Surfel Raytracing

Unrealistic Surfels

Ray Traced Surfels

Surfel Generation

 Different from Christianson:

 Ray Casting method

○ Enlarge View Frustum

CUDA Octree

 Normal Octrees do not work with CUDA.

 Adapt Octree to use a array structure.

 This style of Octree took 30 sec of run

time

Result Times

 2000x2000 Image

 CPU Non-Octree implementation:

 The world may never know…

 CPU Pointer-Octree: 5 min 15 secs

 CPU Array-Octree: 4 min 40 secs

 CUDA non-Octree:

 Had problems: 10 min 43 secs

 CUDA Array-Octree: 13 secs

Future Work

 Rasterization Step

 Spherical Hermonics Calculations

 Octree for Ray-Object Intersections

 CUDA for Ray-Object Intersections

 CUDA Optimizations for Surfel drawings

 Implementation on the new Kepler

Nvidia Hardware

Questions?

