
Nick Feeney

Outline

 Introduction

 Background

 Related Work

 Current Implementation

 Results

 Future Work

 Conclusion

Introduction

 Reasons for Project:

 Global Illumination

gives up high quality

and realistic images.

 Global Illumination is

a lot of work and can

always go fast.

Introduction

 Project central goals:

 Implementing a Point Based Color Bleeding

global illumination algorithm.

 To speed up with CUDA

 To speed up with Caching

Background

 An Octree is a tree structure where

every node subdivides space into eight

equal pieces.

Background

 Octrees are useful because decrease

the total amount of work that is required.

Background

 Rasterization: process of converting

geometry into pixels.

 Depth-buffer test: the method of saving

the distance between image or

rasterization buffer and the geometry.

Background

 Raytracing

Related Work

 Point Based Color Bleeding by Per H.

Christianson.

 Two Central Steps:

○ Surfel Generation

○ Rasterization

Related Work

 Surfel Generation

 Christianson uses a REYES based

approach to generate surfels. This means

that each object in the scene is broken down

individually and covered with surfels

 For every Surfel direct illumination is

calculated and then surfel is stored into an

octree.

Related Work

 Rasterization

 For every point that needs to calculate

global illumination a raster-cube is

generated.

 Surfels are the rasterized onto the faces of

the cube.

 Using this information

 global illumination is

 calculated.

Current Implementaion

 What I did this quarter:

 Complete C-Style Ray Tracer

○ Direct Illumination

○ Ray-Object Intersections

 Surfel Generation

 CPU Octree

 CPU Surfel Raytracing

 GPU Octree

 GPU Surfel Raytracing

Unrealistic Surfels

Ray Traced Surfels

Surfel Generation

 Different from Christianson:

 Ray Casting method

○ Enlarge View Frustum

CUDA Octree

 Normal Octrees do not work with CUDA.

 Adapt Octree to use a array structure.

 This style of Octree took 30 sec of run

time

Result Times

 2000x2000 Image

 CPU Non-Octree implementation:

 The world may never know…

 CPU Pointer-Octree: 5 min 15 secs

 CPU Array-Octree: 4 min 40 secs

 CUDA non-Octree:

 Had problems: 10 min 43 secs

 CUDA Array-Octree: 13 secs

Future Work

 Rasterization Step

 Spherical Hermonics Calculations

 Octree for Ray-Object Intersections

 CUDA for Ray-Object Intersections

 CUDA Optimizations for Surfel drawings

 Implementation on the new Kepler

Nvidia Hardware

Questions?

