
S C O T T K U R O D A

A D V I S O R : D R . F R A N Z K U R F E S S

Encouraging Secure Programming
Practice in Academia

Goals

 Develop a system that exposes students to:

 Secure programming practice

 Attack scenarios

 Vulnerable code

 Develop system in a service oriented manner.

 Accessible via Internet

Current Tools

 Static Code Analysis

 Sandbox Environments

 Courses

Static Code Analysis

 Lint

 PC-Lint

 JS-Lint

 Pylint

 Pychecker

Sandbox Environment

 Provide a controlled space for experiments.

 Penetration test

 Allow “safe” environment for safe competitions

 Defcon

 International Capture the Flag Hacking Competition (UCSB)

 Traditional CTF

 “Treasure Hunt”

 “Botnet” Scenario

 Simulated attack against a rogue nation

Academics

 Courses
 Theory and concepts of security

 Encryption

 Program Security

 Network Security

 Implementation of attacks

 Buffer Overflow

 Breaking encryption

 Graceful failure

 SQL Injection

 Clubs
 White Hat

Current Research

 Teaching computer security

 Course design

 Automated tools in academics

 Checking for plagiarism

 In industry

 Penetration testing

 Automated software testing

Research in Academics

 Course design

 Not practical to create an additional required course for many
universities.

 Code analysis

 Utilized by many institutions to reduce plagiarism.

 Textual analysis

 Structural analysis

 Variable analysis

Research in Industry

 Threat Model Driven Approach for Security Testing

 Automated Software Testing as a Service

Threat Model Driven Approach for Security Testing

 Threats modeled as an UML

 Scenarios developed as sequence diagrams at design
phase

 Determine security policy, then define model
behavior that would violate said policy.

Automated Software Testing as a Service

 Leverage cloud services to test code.

 Reduce the load on a given system.

 Provide continuous testing of code to developers.

 Developers can define both high level specifications
and lower level test predicates.

 Predicates broken into two categories, universal and
application specific.

So what?

 Goals reiterated:

 To expose students to computer security issues.

 Close the knowledge gap for student developers

 Students will be exposed to security issues, at a minimum,
through submitting and receiving feedback on their code.

 Students may choose to extend their knowledge by becoming
“experts” in the system.

Proposed Architecture

From proposal by Dr. Seng, Dr. Kurfess, Dr. Nico, and Dr. Assal

Code Checking

 Perform static code analysis

 Generate annotated report for both user and experts

 Intermediate agent to potentially combine reports

 Shorten final report

 Reduce redundancy of a given error

 Several challenges

 Reports from each tool may appear differently.

 Text parsing and language processing to accurately create final
report

Human Expert

 Second level of analysis.

 Use levels to define how much of an “expert” in the
field of computer/network security.

 E.g. Students providing feedback vs. Industry Expert

Code Deployment

 Actual running of submitted code.

 Collect various metrics about deployed code.

 Potentially utilize non-static code analysis methods

 Requires building a safe closed environment to run
code.

 Must be isolated from external influences.

 Must be restricted if malicious code is submitted.

Behavior Analysis

 Analysis of code behavior

 Various analysis methods performed on data
generated from code deployment.

Questions?

Proposed Architecture

From proposal by Dr. Seng, Dr. Kurfess, Dr. Nico, and Dr. Assal

