
S C O T T K U R O D A

A D V I S O R : D R . F R A N Z K U R F E S S

Encouraging Secure Programming
Practice in Academia

Goals

 Develop a system that exposes students to:

 Secure programming practice

 Attack scenarios

 Vulnerable code

 Develop system in a service oriented manner.

 Accessible via Internet

Current Tools

 Static Code Analysis

 Sandbox Environments

 Courses

Static Code Analysis

 Lint

 PC-Lint

 JS-Lint

 Pylint

 Pychecker

Sandbox Environment

 Provide a controlled space for experiments.

 Penetration test

 Allow “safe” environment for safe competitions

 Defcon

 International Capture the Flag Hacking Competition (UCSB)

 Traditional CTF

 “Treasure Hunt”

 “Botnet” Scenario

 Simulated attack against a rogue nation

Academics

 Courses
 Theory and concepts of security

 Encryption

 Program Security

 Network Security

 Implementation of attacks

 Buffer Overflow

 Breaking encryption

 Graceful failure

 SQL Injection

 Clubs
 White Hat

Current Research

 Teaching computer security

 Course design

 Automated tools in academics

 Checking for plagiarism

 In industry

 Penetration testing

 Automated software testing

Research in Academics

 Course design

 Not practical to create an additional required course for many
universities.

 Code analysis

 Utilized by many institutions to reduce plagiarism.

 Textual analysis

 Structural analysis

 Variable analysis

Research in Industry

 Threat Model Driven Approach for Security Testing

 Automated Software Testing as a Service

Threat Model Driven Approach for Security Testing

 Threats modeled as an UML

 Scenarios developed as sequence diagrams at design
phase

 Determine security policy, then define model
behavior that would violate said policy.

Automated Software Testing as a Service

 Leverage cloud services to test code.

 Reduce the load on a given system.

 Provide continuous testing of code to developers.

 Developers can define both high level specifications
and lower level test predicates.

 Predicates broken into two categories, universal and
application specific.

So what?

 Goals reiterated:

 To expose students to computer security issues.

 Close the knowledge gap for student developers

 Students will be exposed to security issues, at a minimum,
through submitting and receiving feedback on their code.

 Students may choose to extend their knowledge by becoming
“experts” in the system.

Proposed Architecture

From proposal by Dr. Seng, Dr. Kurfess, Dr. Nico, and Dr. Assal

Code Checking

 Perform static code analysis

 Generate annotated report for both user and experts

 Intermediate agent to potentially combine reports

 Shorten final report

 Reduce redundancy of a given error

 Several challenges

 Reports from each tool may appear differently.

 Text parsing and language processing to accurately create final
report

Human Expert

 Second level of analysis.

 Use levels to define how much of an “expert” in the
field of computer/network security.

 E.g. Students providing feedback vs. Industry Expert

Code Deployment

 Actual running of submitted code.

 Collect various metrics about deployed code.

 Potentially utilize non-static code analysis methods

 Requires building a safe closed environment to run
code.

 Must be isolated from external influences.

 Must be restricted if malicious code is submitted.

Behavior Analysis

 Analysis of code behavior

 Various analysis methods performed on data
generated from code deployment.

Questions?

Proposed Architecture

From proposal by Dr. Seng, Dr. Kurfess, Dr. Nico, and Dr. Assal

