Encouraging Secure Programming
Practice in Academia

O




» Develop a system that exposes students to:
Secure programming practice
Attack scenarios
Vulnerable code

» Develop system in a service oriented manner.
Accessible via Internet



Current Tools

O




Static Code Analysis

O




Provide a controlled space for experiments.
Penetration test

Allow “safe” environment for safe competitions
Defcon

International Capture the Flag Hacking Competition (UCSB)
Traditional CTF
“Treasure Hunt”
“Botnet” Scenario
Simulated attack against a rogue nation



Academics

O




Current Research

O




Research in Academics

O




Threat Model Driven Approach for Security Testing
Automated Software Testing as a Service



Threats modeled as an UML

Scenarios developed as sequence diagrams at design
phase

Determine security policy, then define model
behavior that would violate said policy.



Leverage cloud services to test code.
Reduce the load on a given system.
Provide continuous testing of code to developers.

Developers can define both high level specifications
and lower level test predicates.

Predicates broken into two categories, universal and
application specific.



So what?

» Goals reiterated:

o To expose students to computer security issues.

* Close the knowledge gap for student developers

o Students will be exposed to security issues, at a minimum,
through submitting and receiving feedback on their code.

o Students may choose to extend their knowledge by becoming
“experts” in the system.




Proposed Architecture
)

Code Submission Service Feedback Service

Formalized expert

£} e
EEREEE |
SubmitCode T Results go back to coders directly
Code Checking Service results of hlbnan
[UlMA—likE platfnrm} Formalized expert results added ana lysis sen%l;r
I * to checking Engine formalizatio

Code Analysis Tool Code Analysis Tool
Human Experts

Results go to human experts Code Analysis Expert
for further analysis
Security Analysis Expert

Behavior Analysis Service \dentify problems

at run time, send it

Data Mining Log Analysis to human experts

Code Deplnyment Service Code submitted for deployment
ol

Data Collection Installation Expert results used to guide
installation and data collection




Perform static code analysis
Generate annotated report for both user and experts

Intermediate agent to potentially combine reports
Shorten final report
Reduce redundancy of a given error

Several challenges
Reports from each tool may appear differently.

Text parsing and language processing to accurately create final
report



Second level of analysis.

Use levels to define how much of an “expert” in the
field of computer/network security.
E.g. Students providing feedback vs. Industry Expert



Actual running of submitted code.
Collect various metrics about deployed code.
Potentially utilize non-static code analysis methods

Requires building a safe closed environment to run
code.

Must be isolated from external influences.
Must be restricted if malicious code is submitted.



Analysis of code behavior

Various analysis methods performed on data
generated from code deployment.



Questions?

O




Proposed Architecture
)

Code Submission Service Feedback Service

Formalized expert

£} e
EEREEE |
SubmitCode T Results go back to coders directly
Code Checking Service results of hlbnan
[UlMA—likE platfnrm} Formalized expert results added ana lysis sen%l;r
I * to checking Engine formalizatio

Code Analysis Tool Code Analysis Tool
Human Experts

Results go to human experts Code Analysis Expert
for further analysis
Security Analysis Expert

Behavior Analysis Service \dentify problems

at run time, send it

Data Mining Log Analysis to human experts

Code Deplnyment Service Code submitted for deployment
ol

Data Collection Installation Expert results used to guide
installation and data collection




