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Abstract

Localized Type Inference of Atomic Types in Python

by

Brett Cannon

Types serve multiple purposes in programming. One such purpose is in pro-

viding information allowing for a performance increase. Unfortunately specifying

the types of all variables in a program does not always fit within the design of a

programming language.

Python is one such language in which specifying types does not fit within the

language. An open source, dynamic programming language, Python does not

have a direct need for type specifications of variables. This does lead to Python

not having the same opportunities for performance optimizations based on type

information as found in languages that do allow or require the specification of

types.

Type inference is a way to derive the needed type information for optimiza-

tions based on types while not requiring type specifications in the source code of

a program. By inferring the types of variables based on flow control and other

hints in a program, the type information can be derived and used in a constructive

manner.

This thesis is an exploration of implementing a type inference for Python

without changing the semantics of the language. It also explores the benefit of

adding type annotations to method calls in order to garner more type information.
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Chapter 1

Introduction

Types play an important role in programming. Types can be used to check

that illegal operations do not occur between disparate types. Type information

can be used to improve performance [7]. Types are obviously useful.

Typically types are statically declared in order to gain the information for

the compiler to leverage type information. Unfortunately, declaring types is not

always feasible. The programming language being used may not support speci-

fying types for variables, as is the case in most dynamic languages. “a dynamic

language is one that defers as many decisions as possible to runtime” as defined

by Guy Steele. Having to specify types constantly is viewed as superfluous by

some languages and thus not not supported. Type inference provides the ability

to gain type information without requiring type declarations.

Type inference is the process of finding the most accurate type information for

a program that does not explicitly state the types of variables at compile-time,

all without inferring any inaccurate information [1]. Type inference allows one to

have the benefits of type information at compile-time without the programming
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overhead of having to specify types explicitly.

Consider the simple Standard ML function:

fun add2 x = x + 2;

There are no type declarations specifying the argument types or the return

type of the function. Using type inference, though, Standard ML infers the type

of the function is “int → int” (the notation is to be read as all types up to

the last one are arguments to the function, with the last value being the return

type). The argument is inferred to be of type int because the + operator requires

int operands. The addition expression is the only one in the function, making

the type of the expression the return type of the function, which is int. The

programmer is able to program type-safe code without having to statically specify

types and to gain a performance increase from the type information inferred.

Not all languages that lack type declarations have type inference as a step in

their compilation step. Python is a dynamic, open source programming language

[25]. Python does not have any type declarations. In terms of type information

provided to the compiler, Python’s compiler only knows of atomic types (i.e., syn-

tactically supported types) and only at the point of creation. Type information

is not propagated through Python’s compiler for future use.

This thesis explores whether more type information at compile-time from type

inference would benefit Python. Specifically, we explore if introducing type in-

ference into Python’s compiler along with type-specific bytecodes for Python’s

interpreter will lead to at least a 5% performance increase 1 across various bench-

marks without any semantic changes to the compiler or language.

1The 5% goal has been chosen since it is an informal rule of thumb used by Python’s
development team as a measurement of whether something is worth the added code complexity
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In addition to introducing type inference, optional type annotations for func-

tion and method parameters have been introduced into Python (for the rest of

this paper, the term“method” will represent both functions and methods for sim-

plicity). This work analyzes the introduction of type annotations as a mechanism

for providing more type information to the type inference algorithm. This is being

done since optional static type checking had been proposed as a possible addition

to the language (as of this writing, though, that is no longer the case [22]).

This thesis is laid out as follows: Chapter 2 explores the two primary type

inference in use today. The challenge of applying a type inference algorithm to

Python is covered by Chapter 3. In Chapter 4, other attempts at performing type

inference upon Python are covered. The algorithm developed for this thesis is

discussed in Chapter 5. The new bytecodes developed for a performance increase

are covered in Chapter 6. In Chapter 7, the results of benchmarks are revealed.

Chapter 8 discusses the conclusion reached for this thesis. Finally, Chapter 9

covers possible future work based on the result of this thesis.
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Chapter 2

Type Inference Algorithms

2.1 Overview

There are essentially two primary type inference algorithms in use today. The

Hindley-Milner algorithm is mostly used in functional languages and was intro-

duced in Standard ML[17]. The Cartesian Product algorithm is geared towards

object-oriented languages and was first used in the Self programming language

[2].

2.2 Hindley-Milner

The Hindley-Milner algorithm (created by Robin Milner, basing his work

on earlier findings of J. Roger Hindley, and in Standard ML [6]) works with

polymorphic types. A polymorphic type acts as a variable that represents any

possible type. The identity function illustrates this well:

fun identity x = x;
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Standard ML infers the function to be of type “’a → ’a”. The function will

accept any value and will immediately return it. This is presented by the fact

that ’a is a polymorphic type. When a call to identity is made, ’a is set to

the monomorphic (i.e. specific) type of the argument and any type-specific work

is done based on the type ’a is set to.

Polymorphic types are not the only types inferred in the Hindley-Milner al-

gorithm. As shown by the add2 function example in Chapter 1, and its inferred

type of “int → int”, monomorphic types are inferred when enough information

is present.

2.2.1 Example

For a more thorough example, consider the following function:

fun foo x y =

if x = y

then x - y

else x + y

;

Using a bottom-up implementation of Hindley-Milner (the algorithm can be

implemented top-down, called the M algorithm, or bottom-up, called W [11]),

foo’s type is inferred to be “int → int → int”. The algorithm takes five steps to

reach the result.

First, all function parameters, x and y in the example, are type inferred to

polymorphic types, ’a and ’b. No type information is known about how the

function parameters are to be used, leading to the most broad type possible to

be inferred.
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Second, the if guard, x = y, is type inferred. Comparisons in Standard ML

are only legal between the same types. Type inferring the = operator forces x

and y to be of the same type, expressed by both x and y being assigned type ’a.

Third, the true branch is type inferred. With the operator being -, the

argument types are required to be equivalent. The guard of the if statement

handled the equivalency restriction. For mathematical operators, Standard ML’s

type inference algorithm forces polymorphic types to int. ’a then becomes int.

x and y both become int.

The fourth step is to infer the types of the false branch. The + operator works

like the - operator for type restriction. No change is required in the types of x

and y.

The final step is to infer the types of the return type. The if statement is the

only expression for the function. Both true and false branches contain expressions

whose return type is int. The if statement’s requirement of the types of both

branches being equivalent is met. The return type of the if statement is thus

int.

2.2.2 Limitations

Hindley-Milner has some limitations which have been overcome through re-

search [13]. One limitation is that types can only be inferred to be a monomorphic

type or polymorphic type. A set of acceptable types cannot by inferred, leading

to types having to be either exact or overly broad.

Second, higher-order polymorphism is not supported [13]. Higher-order poly-

morphism is “the use or definition of functions that behave uniformly over all

type constructors” [13]. Subsequent research has fixed this limitation.
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Lastly, polymorphic arguments that are used as different types in different

locations in a method are not allowed [13]. Consider the example:

fun notallowed x y =

if y > 0

then x * 2.0

else x * 2

;

The function argument x is used as an int in the true branch of the if

statement and as a real in the false branch based on the value of y. An error

is raised by Standard ML since x cannot be type inferred as both int and real.

Both uses are possibly legal depending on y. Researchers have not solved this

issue with Hindley-Milner.

2.3 Cartesian Product

2.3.1 Overview

Technically the Cartesian Product algorithm performs type inference for method

calls only. Another algorithm, called iterative type analysis, infers the type of the

body of methods [7]. Iterative type analysis creates a constraint graph of types

for the body of a method and performs three steps to reach its conclusion.

First, type variables are allocated for all of the variables and constants in the

body of a method. The type variables are the nodes of the constraint graph. The

nodes represent a single monomorphic type. Polymorphic types are not used by

iterative type analysis.

Second, these type variables are seeded with their initial types. A base type

that all types derive from is used when no initial type is known.
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Third, constraints are created by drawing edges between the nodes and the

operations performed on the nodes. What types a variable will be is determined

by following the edges of the graph until it terminates. The set of all visited nodes

represents all monomorphic types that the variable may be. The graph models

program execution using types. The algorithm can be viewed as an abstract

interpreter executing based on types [26].

There is another algorithm called the control flow analysis algorithm which

works in a similar fashion to iterative type analysis [7]. Control flow analysis

has the limitation of not allowing control flow to change while inferring types.

The Cartesian Product as implemented in [2] did change control flow during type

inference . This led to iterative type analysis to being used.

2.3.2 Example

Consider the example Python program:

def foo():

x = 42

y = x * 3.5

x = []

For the first statement, nodes for x and 42 are created. x is given the base

type, object and 42 is given the integral type. Edges are created from x and

42 to the assignment operator. Following the edge from x to the assignment

operator joined to 42 shows the type of x to be the integral type.

The second statement creates nodes for y and 3.5. y is seeded with the

object type and 3.5 is given the float type. Edges are created from x and

3.5 to the * operator. An edge from the * operator to y through an instance
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of the assignment operator is created. Based on promotion rules in Python y is

considered to have the type float.

The last statement creates the node for []. The node is seeded with the type

list. An edge is drawn from [] to the assignment operator which is connected

to x.

Following all of the edges connected to x leads to the set of {list, integral}

types, derived from the assignment nodes connected to x. y has the type float.

2.3.3 Execution Flow

Execution flow has a direct influence on type inference. Take the block of

code:

y = 1

y = True

The first statement creates nodes for y and 1. After seeding they are connected

to each other through the assignment operator. The second statement adds the

True node which is seeded with bool and connected to y through another instance

of the assignment operator.

How execution flow is handled changes the types that y is inferred to have.

There are two ways to handle execution flow; in a flow-insensitive or a flow-

sensitive manner.

With flow-insensitivity, y has edges to all operations that influence its value

in all parts of the body of code it is used in. y = 1 and y = True lead to y having

edges to the 1 and True nodes. The inferred type for y is the set {integral, bool}.
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Flow-sensitivity rewrites the constraint graph at each statement when possible

to more accurately match execution flow. The edge from y to the assignment

operator connected to 1 is removed when the edge from y to the assignment

operator that is connected to True is created. The inferred type for y is bool

at the end of the code block. The result is more accurate than is found with a

flow-insensitive type inference.

2.3.4 Method Calls

For inferring the types of method calls the key issue is minimizing memory

usage and processing time while still being as accurate as possible. Method calls

connect to a node called a template in the constraint graph. A template is a

mapping from method arguments to the return type of the method call based

on the argument types. Older algorithms created individual templates for each

method call. This approach wastes memory and processing time for the same

method call with the same argument types are recalculated at every point of

use in the constraint graph. To minimize waste a select number of templates

were generated by other algorithms. Accuracy is sacrificed from the limitation of

templates [7].

The Cartesian Product algorithm solves the limitations of older algorithms by

creating the Cartesian product of all possible argument types for a method call

and storing the result in a single template. The template can be viewed as a hash

table for the method call, keyed on monomorphic argument types and with the

value of the return type of the call. Recalculation and wasted memory is evaded

by lazily adding new argument type keys to the template. Accuracy is improved

by not limiting the number of argument type combinations the template can hold

10



values for.

2.3.5 Accuracy

The Cartesian Product algorithm when coupled with iterative type analysis

is very accurate. The limitations that befall Hindley-Milner do not hold for the

Cartesian Product algorithm. The drawback of the Cartesian Product compared

to Hindley-Milner is implementation complexity; Hindley-Milner is known for

being a fairly straight-forward algorithm to code [13].
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Chapter 3

Challenges of Inferring Types in

Python

None of the algorithms mentioned in Chapter 2 can be directly applied to

Python code. Type inference requires complete information on the control flow

of an application .[2] Any lack of control flow information leads to a possible code

path that introduces different types that could invalidate the types.

In order to get complete control flow information all type information or

source code must be present at compile-time [21]. For interpreted languages this

need does not necessarily exist.

12



3.1 Lack of Compile-Time to Run-Time Code

Integrity

3.1.1 Structure

The goal of this work is to infer types in Python without any changes to

the semantics of the language. Python’s compiler is a part of the language’s

interpreter and is the second step in code execution (the first being parsing the

source file). When a Python file (often ending in a “.py” extension) is passed

to the Python interpreter, a check is done for a file with the same name but

with a “.pyc” extension. If the “.pyc” files exists it is assumed to be a bytecode-

compiled version of the file being executed. Python’s bytecodes are practically

type-ignorant; only the specific bytecodes for creating atomic types (i.e. syntac-

tically supported types) have any indication of types and they only specify what

is going to end up the on the interpreter’s stack [24].

If a “.pyc” file does not exist, the file is parsed, compiled, written to a “.pyc”

file, and then executed. Direct access to the compiler is possible through Python’s

standard library, but it is not a standalone application from the interpreter itself.

The compiler operates in an isolated fashion. It is passed a parse tree from

the parser and emits Python bytecodes based off of that parse tree. There is no

outside referencing of data or other source code. These operational semantics are

permitted by the language definition based on the allowance of execution of code

not present during compile-time.

13



3.1.2 Problems Caused

The lack of integrity of code from compile-time to run-time eliminates the

possibility of garnering any control flow information from outside the current

module. When the compiler reaches an import statement 1 it emits the proper

bytecode to perform the importation at run-time. There are no checks for what

will be imported at run-time.

The lack of code dependency checks at compile-time removes any guarantee

code that could be compiled against is the same as used at run-time. In Python

it is legitimate to compile against one module but use another one that is entirely

different except in name at run-time. As long as the code executes without error

there will be no direct difference apparent to the code using the module. Assume

someone compiles against a module containing the following code:

import UserList

def debug_append(self, item):

’’’Print out what item is appended to the UserList’’’

print ’appending’, item

UserList.UserList.append(self, item)

def zero_to_ten():

’’’Return a list containing the numbers from 0 to 10, inclusive’’’

list_of_numbers = UserList.UserList()

list_of_numbers.append = debug_append

for num in range(11):

list_of_numbers.append(num)

return list_of_numbers

This example module contains a method that, when called, returns a new list

containing the integers from 0 to 10, inclusive. The method, though, returns a

UserList which mimics the list API of the list atomic type while being fully

1The import statement pulls code into the current module’s namespace from other modules

14



implemented in Python. The example code includes debugging information that

would be unnecessary to include in the final code. One might do a final version

as:

def zero_to_ten():

’’’Return a list containing the numbers from 0 to 10, inclusive’’’

return range(11)

The above returns a list unlike the version that uses UserList. To any code

using the objects, there is no discernible difference between the two implemen-

tations unless you probe the returned object for type information. It is entirely

plausible one could use the UserList version during development for the extra

debugging information, and thus compile against it, but then release the list

version to the public all without recompiling. There is no way to guarantee that

the code used at run-time was the same used at compile-time.

Python’s compiler could be augmented to check that the code being used at

run-time is the same as that used at compile-time. Unfortunately this changes

the semantics of the language. Currently the only type of verification performed

on “.pyc” files is that the version of the bytecodes used in the file is executable

by the interpreter and, if the source file is also present, if the timestamp matches

the original source the “.pyc” file is based on to keep the “.pyc” in sync with

the corresponding “.py” file. But if the source file is not present the timestamp

check is skipped. Execution of “.pyc” files that do not have the original source

file present is allowed. Requiring the source file to be present to check that the

code present at compile-time is the same at run-time would change the semantics

of the language significantly compared to how it operates now.

15



3.2 External Modification of the Global Names-

pace

The lack of a guarantee that the code present at compile-time is the same

as at run-time is not the only obstacle for inferring types in Python code. The

language’s dynamic execution, which is considered one of its strong points, poses

its own set of issues.

3.2.1 Structure

Python’s dynamic nature allows great flexibility in what can be done at run-

time. The flexibility of Python extends to namespace manipulation between

modules. In Python, one is allowed to inject values into another module’s global

namespace, regardless of whether this action shadows a name in the built-in

namespace or replaces an existing value. Consider the following code:

’’’In module shadowed.py’’’

answer = 42

def answer_to_life():

print answer

When executed shadowed.answer to life() prints 42. But if you run the

following code:

’’’In module cause_trouble.py’’’

import shadowed

shadowed.answer = -13

shadowed.answer_to_life()

16



-13 is printed by shadowed.answer to life(). The code in cause trouble

is able to directly manipulate the global namespace of shadowed without the code

in shadowed knowing something was changed by external code. The ability to ma-

nipulate namespaces also extends to shadowing names in the built-in namespace;

one could shadow the built-in len() method, for instance, with a method that al-

ways returned 1 in cause trouble with the line shadow.len = lambda ignore: 1.

3.2.2 Problems Caused

Python’s allowance of external change to the global namespace proves to be a

severe hindrance when paired with the issues caused by the lack of code integrity

between compile-time and run-time as discussed in Chapter 3.1.2. It is not pos-

sible to rely upon the control flow of code in either external code from the code

under current compilation or control flow accessed from the global namespace

within the current module.

3.3 What Is Possible

There is some control flow that can be guaranteed to not change between

compilation and execution regardless of changes to the global namespace. Every-

thing defined in the local namespace is known to be reliable from compile-time

to run-time. Since there is no directly supported feature of Python that allows

changing the control flow of code declared within a function or method, this can

be considered reliable and essentially static (one can get direct access to the byte-

codes of a function or method before execution and modify it, but the language

does not guarantee that any changes you make will lead to semantically valid

17



code [25]).

Only knowing about control flow at the local namespace level severely restricts

what types can be considered while performing type inference. Only atomic types

can be type inferred. Because atomic types are hard-coded into the actual source

code there is, therefore, no worry of them being changed from compile-time to

run-time. Classes cannot be considered during type inference since they may

change between compile-time and run-time.

Compile-time knowledge cannot, however, extend to what is contained within

atomic container types. In Python there are three atomic types that act as

containers; dicts, lists, and tuples. The first is a hash table type, lists are mutable

arrays, and tuples are immutable arrays. Because tuples are immutable, what

they contain can be considered consistent. But both dicts and lists are mutable,

making information about the values they contain unreliable.

While the language does not directly support an easy way to gain access to

mutable arguments defined in the local namespace the ability still exists through

the sys module in Python’s standard library and the method sys.settrace().

The function sets a trace method that is called when a method call is made, a

new line of code is about to be executed, a method returns, or an exception is

raised [24]. Triggering the trace method before the execution of any line of code

allows one to change a mutable object just before its use. The following code,

for instance, will replace all values contained within locally defined lists and dicts

with None before access to the objects is allowed in subsequent code:

from sys import settrace

def replacewithNone(frame, event, arg):

’’’Replace all values contained within locally declared dicts and

lists with None.

18



Ignoring the ’event’ value since this code is meant to be as

vicious as possible and thus do not care about what the specific

event triggered the trace function.

’’’

for val in frame.f_locals.itervalues():

if type(val) == dict:

for key in val.iterkeys():

val[key] = None

if type(val) == list:

for pos in xrange(len(val)):

val[pos] = None

return replacewithNone

settrace(replacewithNone)

The types that can be safely type inferred in the local namespace are ints,

longs, ASCII strings, Unicode strings, floats, complex numbers, lists (the type

itself, nothing contained within a list), dicts ( with the same restriction as lists),

and tuples (the types of contained items can be type inferred if their types could

be inferred outside of a container).
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Chapter 4

Previous Attempts to Infer

Types in Python

In spite of all of the difficulties in inferring types in Python code, others

have tried. Two projects specifically are known to have tried two very different

approaches to type inference in Python. Neither provides a solution that satisfies

the challenge posed by this thesis.

4.1 Psyco

Psyco is a just-in-time (JIT) re-implementation of the main eval loop for

Python [20]. It tries to detect ints and strings that are consistent from compile-

time to run-time. Armed with this information, the new eval loop emits x86

assembly to perform calculations on those variables.

Psyco infers locally defined ints and strings directly and does not modify any

other types. Unfortunately all of its work is done outside of the compiler and thus
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does not provide an answer to the question posed by this thesis as to whether

Python’s compiler can stand to benefit from inferring types.

4.2 Starkiller

Michael Salib, while a graduate student at the Massachusetts Institute of

Technology, created Starkiller, a type inference tool for Python source with an

eye for eventual use as a tool to help transform Python source code into C++

code [21]. Using the Cartesian Product algorithm, it attempts to infer types in

Python source code within certain limitations (such as not inferring when eval()

or exec are present).

Ignoring its handful of limitations, Starkiller did a complete type inference of

Python source. It is flow-insensitive algorithm is able to infer entire programs.

Unfortunately, in order to infer types, Starkiller ignores the language semantics

discussed in Chapter 3.2. The tool assumes that the code used while inferring

types is the same as that used during execution, thus eliminating the ability to

use different code at run-time that is used at compile-time.
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Chapter 5

Inferring Atomic Types in the

Local Namespace

In Python one can infer atomic types created in the local namespace without

changing the semantics of the compiler or language. But just knowing this fact

does not make it happen. One must develop an algorithm and an implementation

of that algorithm to make this information useful.

5.1 Algorithm Overview

The algorithm designed to infer atomic types in the local namespace is almost

the exact same algorithm as defined for iterative type analysis [7]. This is purely

coincidental; the algorithm was independently developed before the iterative type

analysis algorithm was discovered by the authors. This independent development

would suggest that the algorithm itself is sound.

For any type inference algorithm to work in Python, all possible control flow
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constructs must be handled by the algorithm, as stated in Chapter 3. Condition-

als are in the form of if statements. Looping is through for and while. Finally,

exception handling changes control flow through try/except and try/finally

statements.

The algorithm is flow-sensitive. As mentioned in Chapter 2.3.3, the inferred

type of a variable can change as control flow is followed to a more restrictive

type. Some circumstances do require flow-insensitivity instead of flow-sensitivity,

such as when a change in control flow may occur at any point, and so a flow-

insensitivity style is also supported and used as needed. A global variable in the

implementation signals which style is to be used. This restricts the algorithm to

only using one style at a time.

In terms of atomic types, the algorithm can handle integrals (considered either

int or long since in Python there is supposed to be no significant difference),

float, complex, basestring (base class representing either str or unicode),

list (delineated with square brackets, []), tuple (delineated with parentheses),

and dict (delineated with curly braces; {}). With a finite set of possible types

for any locally defined variable, a bit set is used to represent the set of types.

To handle the actual type inference calculations, an abstract, types-only in-

terpreter that mirrors how Python’s stack-based interpreter works was written.

As bytecode is emitted by the compiler it is passed to the type interpreter. Per-

forming type inference during bytecode emission removed the need for a separate

phase during compilation.
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5.2 Conditionals

The initial types of variables upon reaching a conditional statement are used

when execution reaches a branch of the conditional. Inside a branch the types of

variables are viewed in isolation and thus can be as accurate as possible without

worrying about which types a variable might hold in another branch of the same

conditional. Upon exiting the conditional, the types for variables are inferred to

be the union of all types that the variable can hold upon exiting any branch. A

union is used over other set operations, such as intersection, because the inference

must reflect any type a variable may hold while being as tight of a bound as

possible.

Here is a toy example:

var = 1

if var == 2:

var = []

elif var == 3:

var = {}

else:

var = ’hi’

var is of integral type when the if statement is reached. To infer the types

of the conditional, the initial guard is reached with var still inferred to be of

integral. In the branch for the initial guard, var is inferred to be of type list.

The algorithm is flow-sensitive at this point and thus the inferred type for var

is overwritten by assignment. For the elif guard var is initially inferred to

be of integral type since each possible branch can be viewed in isolation thanks

to the guarantee that only one branch will be taken during execution. For the

code block in the elif branch, var is inferred to be of dict type at the end of

24



the block. Finally, the else branch is like the other guards upon entry; var is

initially of integral type. By the end of the else branch var is inferred to be of

basestring type.

The inferred type of var is list at the end of the initial branch, dict at the

end of the elif branch, and basestring at the end of the else branch. After

the execution of the if statement, the inferred type of var will be the set {list,

dict, basestring}. We do not know how actual execution will go through the

conditional thus var may be of any type along a path through the conditional.

Another view is that each branch body is type inferred in isolation from other

branches in a flow-sensitive manner. The inferred types for the entire statement

after its execution is the union of all the types from all branches.

5.3 Looping

Looping poses an interesting challenge since a variable will have its initial set

of inferred types when it enters a loop body, but this set can change in the loop

body and thus differ when it passes through the loop on the next iteration. Thus,

compilation decisions cannot necessarily depend on information inferred on the

initial pass through the loop.

Here is an example of a while loop:

var = {0 : ’hi’}

cnt = 0

while cnt < 2:

var[0]

var = [’hi’]

cnt += 1

else:
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var = ’hi’

The inferred types of var is initially dict upon entry into the body of the

loop. The first execution of var[0] is expected to be executed on a dict based

on the inferred type up to that point. But var is inferred to be a list based on

the next line. Continuing execution, the loop body is executed again, but var

holds a list at this point. The second execution of var[0] is against a list,

not against dict as initially determined. The initially inferred type of dict was

incorrect for use on var[0].

Since it is possible for the initially inferred type to be wrong, one cannot

necessarily base compilation on this type. The inferred types of variables after a

loop body is those resulting from a flow-insensitive type inference. In the example

the type inference would lead to the set {dict,, list} for the main loop body.

Because the implementation infers types during bytecode emission, bytecodes

can be emitted that are incorrect because of the initial type inference. A check

is performed after every looping statement to see if types have change for any

variable that existed before entry into the loop body. If a change is detected,

the bytecodes emitted for the loop body is tossed and compilation is performed

again with the proper inferred types. If loops are nested recompilation might be

repeated but it will be superfluous.

Inference of the else branch is flow-sensitive. In the example, the inferred

type of var in the else branch is basestring.

Statements of break and continue do not influence the type inference. The

flow-insensitive type inference takes into account the possible change in execution

flow caused by a break or continue statement.

for statements act the same as while statements and thus will not be explic-
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itly covered. A for statement differs from a while statement only in the inferred

type (object) of the loop variant.

5.4 Exception Handling

Python supports exception handling through try/except and try/finally

[25]. The former allows one to specify which exceptions are to be caught within a

try statement and the code to use to handle the caught exception. For the latter,

the code in the finally block is executed regardless of whether an exception is

raised or not. You cannot mix except and finally branches in the same try

statement.

The execution flow of the body of a try statement is is not guaranteed to

be sequential. Any statement within the block can raise an exception. Without

modeling the complete control flow of the application it is unknown which ex-

ceptions might be raised. Thus, every line must be considered a possible cause

of any exception.

For example, here is a try/except statement:

var = 1

try:

var = []

var = ’hi’

var = []

except:

var = {}

else:

var = ()

var
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The try block is entered with the types that variables held upon entry, integral

for var in this case. A flow-insensitive type inference of the try block gives the

inferred type of var as the set {integral, list, basestring}; integral from the

type upon block entry, list from the two list assignments, and basestring

from the assignment of ’hi’. Upon exit, all except blocks are examined as if

the try block was analyzed in a flow-insensitive manner.

The except branch has the types set to what they are upon exit of the try

block. Type inference is flow-sensitive since after execution of the except branch

control flow exits the try/except statement. In the example, the type for var is

inferred to be dict for the except branch.

The else branch works much the same as the except branch. Because execu-

tion flow exits the try/except statement after the execution of the else block, a

flow-sensitive analysis is sufficient. var is type inferred to be tuple for the else

branch.

The inferred types after the try/except statement is the union of the types

for all except branches and the else branch, if present. In the example, this

leads to var having {dict, tuple}. If an else branch is not present, then the

type for the try/except statement is the union of all except branches and the

types at the end of the try block. The change in type inference is due to the

fact that the else statement acts as a guarantee that at least one branch will be

taken out of the try block if no exception is raised. Had the example lacked an

else branch it would have var inferred to the set {integral, list, basestring,

dict}.

For type inference, a try/finally statement can be considered the same

as a try/except statement with no except branches and the finally branch
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acting like a else branch. Where an exception might be raised in the try block

of a try/finally is unknown and thus requires the block to be analyzed flow-

insensitively. The finally branch is guaranteed to be executed and thus is

analyzed in a flow-sensitive manner.

5.5 Type Annotations of Function Parameters

As a proof of concept, and for initial experimentation, type annotations for

methods were introduced by hand and embedded into the documentation string

of the method to specify the type of every argument. Actual arguments were not

checked against these specified types because there is no way to at compile-time

and thus had to be correct else lead to an incorrect type inference.

5.6 Static Type Checking

The type interpreter also performed minimal static type checking of arguments

of the methods of the atomic types. The methods of the atomic types cannot be

changed by Python code and thus are considered static and can be taken into

consideration during type inference. The return types of methods were also taken

into consideration.

Static type checking did not turn up any errors in any of the thoroughly tested

code run against the modified compiler, but it did properly detect a handful of

errors in Python’s regression test suite that were designed to do the same checking

for the errors at run-time.
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Chapter 6

Type-Specific Bytecodes

Having all of this type information at compile-time is useless in terms of

performance if we cannot somehow harness it to speed up execution. It was

decided that type-specific bytecodes would be introduced to increase performance.

To choose which bytecodes should have type-specific variants, a group of nine

projects were analyzed as listed in Table 6.1.

Project Version Lines of Code Reference

BitTorrent 3.4.2 7,026 [8]
Mailman 2.1.5 21,099 [27]
Python Imaging Library 1.1.4 16,118 [19]
Plone 2.0.4 62,086 [16]
Pyrex 0.9.3 10,912 [10]
PythonCard 0.8 36,813 [3]
SciPy 0.3 65,042 [9]
Twisted 1.3.0 110,211 [14]
Python Standard Library 2.3.4 129,814 [24]

Table 6.1. Projects Used for New Bytecode Selection

The compiler was modified to output which types were being used for all
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bytecodes as well as which methods were being called on the atomic types and

the argument types used for the call. In instances where order of arguments to

a specific bytecode was superfluous, the types were sorted lexicographically to

eliminate any difference. If the type of the argument was not important it was

left out.

Statistics emission was done at compile-time. Run-time was not considered

because it would not be an accurate reflection of what the compiler would be able

to infer at compile-time when decisions based on type information are made.

Two separate rankings were calculated to facilitate new bytecode selection.

The first was the frequency of each bytecode/argument-type or method/argument-

type detected, listed in Table 6.2. STORE SUBSCR with a dict argument has

such a high use stems from how Python creates a dict defined syntactically;

an empty dict is created and pushed on to the execution stack with repeated

calls to STORE SUBSCR to seed the dict with its values. BINARY MODULO with a

basestring has a high frequency because the modulo operator being overloaded

for basestring to perform string interpolation; ’Hello, %s’ % ’World’ will re-

turn the string, ’Hello, World’. The rest of the bytecodes have a more gradual

decline in usage.

The second ranking was based on the frequency of the data compared to the

number of lines of code (LOC) to give a ratio of bytecode/method to LOC 1,

listed in Table 6.3. Both STORE SUBSCR with a dict and BINARY MODULO with

a basestring have abnormally high frequency/LOC values for the same reason

these bytecodes have high frequency numbers as discussed previously.

A correlation list was created based on the outcome of both tables. When

1lines-of-code numbers were calculated using SLOCCount 2.26 [28]
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Rank Bytecode or Method Argument Types Frequency

1. STORE SUBSCR dict, -, - 31,786
2. BINARY MODULO basestring, - 8,444
3. PRINT ITEM basestring 3,613
4. list.append() list, - 2,587
5. BINARY ADD basestring, basestring 1,148
6. basestring.join() basestring 751
7. BINARY SUBSCR dict, - 587
8. BINARY SUBSCR list, - 566
9. BINARY LSHIFT integral, integral 542

10. BINARY ADD integral, integral 534
11. BINARY SUBSCR tuple, - 500
12. GET ITER list 489
13. GET ITER tuple 330
14. BINARY MULTIPLY complex, float 312
15. BINARY MULTIPLY basestring, integral 268
16. list.extend() list, list 260
17. dict.has key() dict, - 244
18. COMPARE OP integral, integral 228
19. INPLACE ADD integral, integral 209
20. INPLACE ADD basestring, basestring 205

Table 6.2. Frequency of Bytecode With Specific Type Arguments: The

“Argument Types” column lists the types of the objects that were expected to be

popped off the execution stack and used with the bytecode. “-” represents any

type. The first argument is usually what the bytecode is being applied to.

a bytecode/type or method/type was on both lists but at different rankings the

preference was arbitrarily placed on the frequency table ranking. From this cor-

relation it was decided that ten bytecodes would be chosen to implement, listed

in Table 6.4.

Each bytecode was implemented and the compiler was modified to emit the

new bytecodes appropriately. With each new bytecode, a small test was written

to measure performance. If performance did not increase for the test, the new

32



Rank Bytecode or Method Argument Types Frequency/LOC

1. STORE SUBSCR dict, -, - 0.08368
2. BINARY MODULO basestring, - 0.02980
3. PRINT ITEM basestring 0.01036
4. list.append() list, - 0.00825
5. BINARY ADD basestring, basestring 0.00239
6. BINARY MULITPLY basestring, integral 0.00202
7. basestring.join() basestring, - 0.00166
8. BINARY SUBSCR list, - 0.00161
9. BINARY SUBSCR dict, - 0.00160

10. BINARY SUBSCR tuple, - 0.00154
11. BINARY ADD integral, integral 0.00150
12. COMPARE OP list, list 0.00150
13. GET ITER list 0.00148
14. BINARY LSHIFT integral, integral 0.00085
15. GET ITER tuple 0.00080
16. INPLACE ADD basestring, basestring 0.00079
17. BINARY MULTIPLY complex, float 0.00069
18. dict.has key() dict, - 0.00061
19. list.extend() list, list 0.00057
20. COMPARE OP integral, integral 0.00057

Table 6.3. Frequency/LOC of Bytecode With Specific Type Arguments:

The “Argument Types” column lists the types of the objects that were expected to

be popped off the execution stack and used with the bytecode. “-” represents any

type. The first argument is usually what the bytecode is being applied to.

bytecode was removed and another bytecode was considered. In some instances

it was discovered that bytecodes were already optimized for common types, such

as BINARY ADD for arguments of integral type. Others just did not improve per-

formance. The bytecode implementation itself was faster by inspection for the

type-specific version, removing at least a couple comparisons and branches and

sometimes even a function call in the C implementation. Yet performance still

lagged behind the type-agnostic version of the bytecode in some instances. The
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loss in performance even without a type-specific optimization was most likely

due to cache pressure from Python’s main eval loop becoming larger due to the

new bytecodes and thus pushing out of the code cache the implementation of the

bytecode in the eval loop.

New Bytecode Bytecode Replaced Argument Types Performance Increase

DICT STORE STORE SUBSCR dict, - 3.2%
STR FORMAT BINARY MODULO basestring, - 7.8%
LIST APPEND list.append() list, - 28.1%
STR CONCAT BINARY ADD basestring, basestring 7.7%
STR MULT BINARY MULTIPLY basestring, integral 8.5%
STR JOIN BINARY ADD basestring, basestring 16.9%
INT LSHIFT BINARY LSHIFT integral, integral 13.5%
LIST CMP COMPARE OP list, list 8.2%
DICT GETITEM BINARY SUBSCR dict, - 5.8%
DICT HAS KEY dict.has key() dict, - 33.8%

Table 6.4. New Type-Specific Bytecodes
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Chapter 7

Experiments & Results

Two applications and two actual benchmarks were chosen, listed in Table 7.1,

to measure whether the new type-specific bytecodes led to the desired 5% perfor-

mance increase. All but one (Pyrex) had not been used in the statistics gathering

for choosing the new type-specific bytecodes. This was done to ensure that results

from choosing the new bytecodes would not pad the results of the benchmarks.

Benchmark Version Reference

SpamBayes 1.0rc2 [18]
Pyrex 0.9.3 [10]
PyBench 1.0 [15]
Parrotbench 1.0.4 [23]

Table 7.1. Benchmarks

Before all benchmarks were run, all Python code, including Python’s stan-

dard library, were explicitly compiled with the -O optimization option for both

the baseline installation of Python 2.3.4 and the modified version with type in-

ference. Python’s -OO option was not used because type annotations require the

documentation strings to be present; -OO strips docstrings from the compiled
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code.

The hardware used for benchmarking was an Apple PowerBook G4 1.5 GHz

laptop with 786 MB RAM [5]. The operating system was OS X 10.3.7 with all

startup applications exited (by holding down the shift key during startup) [4].

Because of the sizable time cost caused by having to modify all docstrings

by hand, only two benchmarks were used to measure the benefit of type annota-

tions. Both Parrotbench and Pyrex were modified with type annotations where

a known benefit would result and the types passed to the method were known to

be consistent. Each benchmark was chosen because they have the smallest LOC

and thus easiest to modify for the initial analysis.

7.1 SpamBayes

7.1.1 About the Benchmark

SpamBayes is a Bayesian filtering program for spam emails [18]. It is written

entirely in Python and represents a real-world application. The use of SpamBayes

as a benchmark consisted of training it on what was considered good mail (known

as“ham”) from bad email (a.k.a., “spam”). The ham was chosen from six separate

months of the python-dev email archives (March 2002, April 2002, February 2003,

October 2003, September 2004, and October 2004) totaling 19,474 emails. The

spam for the training was from one of the author’s personal collections of spam

for a day totaling 34 emails.

Execution consisted of creating a pickled corpus trained on the emails. The

command-line arguments to the SpamBayes script sb mboxtrain.pyo were -p
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$PICKLEFILE (with $PICKLEFILE representing the name of the pickle file to write

to) to create the corpus and -f to force a new corpus to be created even if a new

one already existed.

Timing was done using the time utility. The real time value was recorded.

7.1.2 Results

SpamBayes actually performed worse with the new bytecodes, with perfor-

mance decreasing by 2.01%. Table 7.2 lists the timings of the test runs.

Type Run 1 Run 2 Run 3 Run 4 Run 5 Average

Baseline 144.342 145.901 144.842 146.058 145.609 145.35
Type Inference 148.111 148.439 148.873 148.347 148.262 148.41

Table 7.2. SpamBayes Benchmark Results: Timings listed in seconds.

This drop in performance most likely stems from cache performance. If the

implementation in the eval loop of type-specific bytecodes must compete for cache

space with type-agnostic bytecode implementations, the type-agnostic versions

will win due to the lower frequency of use of the type-specific bytecodes.

7.2 PyBench

7.2.1 About the Benchmark

PyBench is a benchmark suite for Python created by eGenix [15]. It performs

a wide variety of tests of the Python interpreter’s performance on various tasks

– from built-in type creation to branching. PyBench automatically performs ten
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rounds of experiments and then averages the results as a final result. The average

result reported by PyBench was recorded.

7.2.2 Results

As with SpamBayes, performance actually decreased with the new bytecodes.

A quick glance at PyBench suggests that the reason for the performance decrease

is the same as that for SpamBayes. But a closer look at the actual results listed

in Table 7.3 shows that the base version of Python had one phenomenal run that

skewed the average in its favor. Subsequent informal runs of PyBench show that

this one phenomenal run is atypical.

Type Run 1 Run 2 Run 3 Average

Baseline 6719 6712 6603 6678
Type Inference 6693 6680 6699 6690.66

Table 7.3. PyBench Benchmark Results: Timings listed in milliseconds.

Obviously a 0.2% decrease in performance is not good. But if you remove

the best run from both groups in order to eliminate the anomalous run for the

baseline the results change in favor of using the new bytecodes, albeit by a very

small margin.

Unfortunately, the performance increase of 0.3% is no where near the 5%

aimed for. Because the benchmark covers such a wide swath of situations the

possible use of the type-specific bytecodes is not necessarily great.
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7.3 Pyrex

7.3.1 About the Benchmark

Pyrex is a modification of the Python programming language to help facil-

itate creating extension modules that are written in Python but are translated

into C [10]. The Pyrex files used for testing were two demo files included with

Pyrex, spam.pyx and cheese.pyx. Because both files are rather small, they were

compiled sequentially 100 times per run.

For timing, the timeit module from Python’s standard library was used

[24]. This module was designed to help facilitate the testing of Python code in

as accurate a way as possible based on the operating system being used. For

testing, the command-line arguments to timeit were -r5 to make the sample

come from the top five runs (10 total runs were used as the pool to pull from

for the five best runs). The specific Python command passed to timeit to ex-

ecute Pyrex was “-s ’from Pyrex.Compiler.Main import compile’ ’for x

in xrange(100): compile(’Pyrex/spam.pyx’); compile(’Pyrex/cheese.pyx’)’”.

7.3.2 Results

Pyrex showed the greatest performance increase with 1%. With the addition

of type annotations, the performance improvement rises to 1.6% as shown by the

results listed in Table 7.4.

The performance increase can be attributed to the use of string interpolation

used extensively throughout Pyrex. The new bytecode STR FORMAT is used in

those situations.
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Type Average

Baseline 3.89
Type Inference 3.85
Type Inference, Type Annotations 3.83

Table 7.4. Pyrex Benchmark Results:Timings in seconds. Average of best

five runs out of ten.

As for the type annotations, out of approximately 1,165 methods a total of

15 had type annotations added for their arguments. In a single run, a total of

596, 366 method calls are made, of which 88,200 are to type annotated methods.

Discussion of the results from type annotations is saved for Chapter 8 so as to

be put into perspective with the results from Parrotbench.

In terms of why so few methods were annotated, it seems that object-oriented

programming works against this kind of type annotation. While adding type an-

notations it became apparent that Pyrex’s OOP design led to most data being

stored as attributes on the instance. This meant most data was accessed through

attribute access rather than being passed around as arguments through method

calls. The values of the attributes never had a chance to be taken into con-

sideration by the type inference phase because of the restrictions on inferable

types.
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7.4 Parrotbench

7.4.1 About the Benchmark

Parrotbench was designed for a competition between the Python development

team and the Parrot virtual machine team (the VM to be used for Perl 6) to see

whose interpreter could run Python code faster at OSCON 2004 [23]. Written by

Guido van Rossum, the creator of Python, the benchmark uses many advanced

features of Python and is considered a compliance test as much as a performance

benchmark.

To make sure the benchmark was stressed enough, the number of complete

runs through the benchmark in a single execution was increased from 2 to 20. This

is done by increasing the number of iterations through all parts of the benchmark

in the b.py file.

Timing was done using the time utility as used by Parrotbench’s Makefile.

The only modification to Makefile was to make sure it used the proper Python

interpreter for testing. Otherwise experimentation was done by executing the

command make and the real time was recorded from the output of time.

7.4.2 Results

Like Pyrex, Parrotbench saw a performance increase from both the new byte-

codes and the addition of type annotations; 0.7% and 0.8%, respectively as shown

by the results listed in Table 7.5.

As with the other tests, the results support the idea that the algorithm and

its implementation just cannot infer enough type information to be of great use.
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Type Run 1 Run 2 Run 3 Run 4 Run 5 Average

Baseline 224.53 224.227 224.195 224.214 224.399 224.313
Type Inference 222.756 222.614 222.796 222.834 222.454 222.691
Type Inference,
Type Annotations

222.422 222.351 222.394 222.523 222.611 222.460

Table 7.5. Parrotbench Benchmark Results:Timings in seconds.

Only three of the 160 methods in Parrotbench benefited from type annota-

tions. Out of 394,871 method calls in a single run, 113,667 of those calls are to

type annotated methods. Discussion of these results are deferred to Chapter 8

so as to compare to the results from Pyrex.

42



Chapter 8

Conclusion

Introducing over 3,000 lines of new C code to Python’s compiler to get, at

best, a 1% improvement is in no way justified based on these results. The level of

added complexity that was introduced into the compilation step would definitely

need to lead to a noticeable speed improvement, the 5% that was the goal, to

justify the cost of code maintenance.

As noticed while adding type annotations, a large amount of data is stored

within objects and is not passed around between methods. Typically local vari-

ables were used as temporary variables. Within an object-oriented design tem-

porary values can be stored in the attribute that the value will end up in, thus

removing the need for using a local variable. This appears to be the situation in

the benchmarking code.

There also seems to be no consistent benefit from type annotations. Pyrex

was able to gain a 0.6% performance increase from type annotating 1.3% of its

methods which are subsequently called 14.8% of the time. Compare this to Par-

rotbench, which had a 0.1% performance increase from adding type annotations
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to 1.9% of its methods which are called 28.8% of the time. Pyrex gets a six-fold

performance increase over Parrotbench’s with less annotated methods and calls

to those methods. This suggests that type annotations can increase performance

but as to how effective they are per method and overall heavily depends on how

the performance benefit manifests itself within the method.

There is the possibility that fewer new bytecodes, in order to shrink the size

of the eval loop in Python’s interpreter to improve cache performance, might

improve performance. That would require very extensive testing on multiple

platforms to make sure the benefit was not in any way architecture-dependent.

Typically this is fairly difficult to get right and could easily be lost when the next

“great” CPU is released. This does not seem like a viable option nor necessarily

the reason for the poor performance overall.

In the end it seems that Python, as a language, is not geared towards type

inference. Its flexibility, considered a great strength, interferes with how extensive

a type inference can be performed. Without a significant change to the language,

type inference is not worth the hassle of implementation.
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Chapter 9

Future Work

There are multiple possibilities for future work based on the results of this

thesis. For one, if one were to remove the restriction of not changing the semantics

of the compiler, improvements might be possible. One could add a check between

compiled code and its corresponding source code at run-time. If there is no time

delta putting the source code as a more recently touched file then one can trust

that compiled code to be current. If there is no source code and only compiled

bytecodes, then an assumption that the bytecodes are trustworthy can be made.

With that level of trust, and a promise from the developer that no other code

will be introduced (this can be implicit through some execution flag such as -OO)

then there is nothing technically stopping full type inference of Python code.

Analysis of whether introducing a keyword to signify when something in the

built-in namespace is allowed to be shadowed might warrant investigation. Pre-

vention of unexpected shadowing of the built-in namespace from external code

to the module would be the purpose of this addition to the language. This would

allow the compiler to know when built-ins would have to be considered unknown

or could be trusted to be what they are as defined by default. Return types on
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built-in functions could then be used in type inference and in the emission of

bytecodes. It would also allow for bytecodes that represented built-in functions

directly. This obviously does not deal with the global namespace in any way, but

it would expand what type information is available.

The possibility of doing a more thorough implementation of the algorithm is

always possible. If that is done, though, it should wait until the AST branch for

Python is completed. This branch in CVS for Python will change the compiler to

follow the much more traditional “parse tree → AST → CFG → bytecode” steps

taken by most compilers. This should lead to a simpler implementation and thus

allow a much more accurate implementation of the algorithm.

In terms of algorithm improvement, a few possibilities exist. There might be

a way to take break and continue statements in loops in a more careful manner

to somehow allow using a flow-sensitive type inference of the loop body in some

way. One could also keep both a flow-sensitive and flow-insensitive type inference

going at all times to allow for the inference of the else block of a try/finally

statement with the flow-sensitive version of the try block.

Finally, future work could focus on gathering type information at run-time.

Using type feedback in which one keeps track of the types used in expressions

at run-time it would be possible to detect at run-time consistent type usage

[12]. With this information various optimizations would be possible thanks to

hotspot recompilation where the type information is helpful and seemingly stable

enough to warrant the cost of recompilation. To clarify, this is not what Psyco

does, which uses JIT compilation and bases its decisions on decisions made at

compile-time instead of run-time [20].

One could even remove the entire need for run-time recompilation by out-
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putting run-time type information from type feedback. This data could then be

fed into the compiler with a second attempt at compilation to optimize for type

information. The performance penalty of having to recompile at run-time would

thus be removed, although it would require a profiling run of the code which in

no way guarantees the type information gathered will be typical of most runs of

the code.
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