
STATE ESTIMATION FOR TRACKING OF TAGGED SHARKS WITH AN

AUV

A Thesis

Presented to

the Faculty of California Polytechnic State University

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Christina Forney

December 2011



c© 2011

Christina Forney

ALL RIGHTS RESERVED

ii



COMMITTEE MEMBERSHIP

TITLE: State Estimation for Tracking of Tagged

Sharks with an AUV

AUTHOR: Christina Forney

DATE SUBMITTED: December 2011

COMMITTEE CHAIR: Chris Clark, Ph.D.

COMMITTEE MEMBER: Zoë Wood, Ph.D.
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Abstract

State Estimation for Tracking of Tagged Sharks with an AUV

Christina Forney

Presented is a method for estimating the planar position, velocity, and orientation

states of a tagged shark. The method is designed for implementation on an

Autonomous Underwater Vehicle (AUV) equipped with a stereo-hydrophone and

receiver system that detects acoustic signals transmitted by a tag. The particular

hydrophone system used here provides a measurement of relative bearing angle

to the tag, but does not provide the sign (+ or -) of the bearing angle. A particle

filter was used for fusing measurements over time to produce a state estimate

of the tag location. The particle filter combined with an active control system

allowed the system to overcome the ambiguity in the sign of the bearing angle.

This state estimator was validated by tracking a stationary tag and moving tag

with known positions. These experiments revealed state estimate errors were

on par with those obtained by manually driven boat based tracking systems,

the current method used for tracking fish and sharks over long distances. Final

experiments involved the catching, releasing, and an autonomous AUV tracking of

a 1 meter leopard shark (Triakis semifasciata) in SeaPlane Lagoon, Los Angeles,

California.
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Chapter 1

Introduction

The ocean remains one of the world’s most largely unexplored regions. Thus,

there is little known about many species that reside in the ocean. Though sharks

have been widely researched, there is much to be discovered about shark behavior

and movement patterns. In order to increase this knowledge, an autonomous

mobile tracking system has been created which will provide researchers with the

long term data that has been missing.

Current methods for tracking sharks include remote sensing GPS tags, manual

active tracking, and stationary receivers (passive tracking). GPS tags provide

accurate positional data, however, these data can only be transmitted when the

shark is at the surface [20]. This leaves a gap in information on the location of the

shark while not at the surface. Researchers can actively follow sharks with a boat

using a mounted receiver; however, this requires human operation to navigate the

boat to maintain a signal reading of the tag, and the position of the shark [16]

so tracks are limited on temporal scales of hours to days. Finally, stationary

acoustic receivers can gather data on the movement of sharks in a localized area.

However, these are cumbersome to set up, and when the sharks move out of
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the range of the stationary receivers, data can no longer be recorded. Groups

of acoustic receivers can be organized so there are many receivers spread over

a specified area, either in high concentration smaller areas, or wide-spread with

receivers set up as gates to track the inward and outward movement of sharks

and other tagged animals [8]. Unfortunately, none of these solutions address the

problem of obtaining high spatial resolution positions on highly mobile species

that may easily swim beyond the reaches of a stationary acoustic receiver.

As of yet, there has not been another method deployed to have Autonomous

Underwater Vehicles (AUV) track the movement of sharks. In [6] the necessity for

en-route decision making in AUVs was was identified as a problem that needed to

be addressed. AUVs have been programmed to follow a designated GPS waypoint

path, recording information as it travels. Prior to this project, there had yet to

be an AUV that could continually follow a single tag on a specific animal (shark)

and make logical decisions on the changing location to follow the animal. An

active localization of the shark is necessary to track and follow it as it moves. A

major part of this active localization is the sensor fusion required for such state

estimation. The AUV was equipped with a stereo-hydrophone receiver system

which provided differential time of arrival data necessary for state estimation.

This paper presents a Particle Filter based method for fusing measurements from

the stereo-hydrophone receiver over time, enabling real-time estimation of the

shark state.

This paper is organized as follows. Section II discusses related works and

elaborates on existing research. The problem definition is described in Section

III. Section IV describes the state estimator, and breaks down the steps of the

proposed algorithm. Experiments are described in Section V, and Section VI

reports the results of these experiments. Section VII concludes the scientific

2



contributions made by this project. Finally, Section VIII discusses future work

to be done to further advance research in this area.
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Chapter 2

Related Work

This project requires an integration of knowledge and technology from various

disciplines including biology, robotics, and computer science. Tracking of aquatic

animals has been greatly improved through the use of GPS. Additionally, the

field of robotics, specifically underwater robotics, has been improved through

the incorporation of new sensors and actuators used on robots. A significant

contribution has been made with the integration of these two fields. The merging

of this information is the basis of this project. The following sections discuss the

current technologies and knowledge available for these two disciplines, including

shark behavior, the tagging and tracking of sharks, tracking using robots, and

state estimation algorithms.

2.1 Shark Behavior

A goal of this research project is to determine fine scale behavioral patterns

of a variety of shark species. To initiate this project the research team will focus

on tracking Leopard sharks and White sharks. An important consideration when
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tracking sharks is the ability of the AUV to keep up with shark swimming speeds.

It was found that the top swimming speeds of white sharks is 4.8 km/hr, with

an average sustainable traveling speed of 3.2 km/hr. Leopard sharks are a much

smaller species which travel with an average speed of 1.94 km/hr. White sharks

can travel up to 190 km within a three to four day time period [2], whereas leopard

sharks tend to stick to smaller areas, such as within bays. When hunting, White

sharks become more aggressive in their swimming patterns, they circle more

frequently, and have higher swimming speeds. In contrast, leopard sharks are

predators of opportunity; they will wait patiently until something comes within

their range [16].

Behaviors of sharks differ with age. Adult sharks tend to move in long linear

lines following coasts or traveling between islands [1, 11]. Juvenile sharks tend

to stay in bays or surrounding islands rather than traveling far distances. Adult

sharks are typically solitary creatures, only interacting with other sharks during

mating. In contrast, Juveniles stay in small groups, and appear much more social.

When using AUVs in close proximity of sharks, there is a concern with respect

to the sensitivity to electromagnetic fields. All sharks have a sense called elec-

troreception, though White sharks are especially sensitive [15]. Electroreception

is a shark’s primary means of navigation, and is also used during hunting. The

AUV emits an electromagnetic field which could potentially attract the attention

of a shark, causing them to come investigate the robot. A shark’s investigation of

a foreign object typically involves trying to eat the object. This could potentially

pose a problem for the robot.

There is still much unknown about the behaviors of sharks. No data has

been collected on the fine-tuned swimming patterns, the mating patterns, or the

lifespan of these sharks. Due to the current available tagging and tracking devices
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it has been impossible to gather this data. Long term (weeks to months) data

on shark movement is non-existent. This project aims to address this issue by

creating a prototype mobile tracking system that can follow the shark for long

periods of time across large distances.

2.2 Acoustic Tagging and Fish Tracking

Current tracking of aquatic animals includes stationary receivers, receivers

on boats, and GPS tags. Stationary receivers can track tag information while

multiple tagged individuals are within range. However, once the animal leaves

the area where the receivers are positioned, no data can be gathered. This is

problematic for both stationary locations near the coast, as well as out in the

ocean [8].

GPS tags provide a longer term solution, as they provide data consistently

and are not restricted to a single area. However, once the shark dives below the

surface of the water, the GPS signal can no longer be detected [20]. Ship-bourne

receivers and directional hydrophones have been used by humans to steer the

boat with the goal of following the tagged shark. However, boats can disturb

the sharks and potentially change the behavior of the shark. In addition, this

requires the human to maintain operation of the vessel and follow the signal of

the shark for the length of the track.

In [22] stationary receivers were set up in a bay, and data was gathered on a

tagged Shovelnose shark which came into range. This particular study aims to

validate the use of acoustic tags and hydrophone receivers. Additionally, from

the data that was gathered, the researchers were able to characterize multiple

shark behavior states based on the shark’s motion patterns. They were thus able

6



to create a shark behavior state estimator to run on their acquired data.

The stereo-hydrophone receiver and acoustic tag that will be used during this

study will provide measurements to the state estimator, including bearing to the

tag, and signal strength. This data is used to calculate a velocity, orientation,

and position estimate of the shark relative to the AUV.

2.3 Robot Tracking

Robotics is a highly idolized field, and is thus a heavy area of research. Hu-

mans desire to have tasks automated for them, which explains the push in indus-

try for robotic intelligence. Particle filter estimation has long been used in robot

intelligence, and has greatly improved the performance of automated robots.

AUV’s have been used to follow GPS waypoint paths through the ocean, how-

ever intelligent online decision making based on the results of an “unpredictable”

animal is a new and exciting endeavor. In the following sections, robot systems

that perform tracking, multiple object tracking, and underwater data acquisition

are discussed.

2.3.1 Visual Real-Time Tracking of Moving Targets

To interact safely and efficiently with dynamic environments, robots must

be able to track and follow moving objects. For example, there have been sev-

eral projects developed to accomplish dynamic tracking systems based on vision.

In [13], joint probabilistic data association filters are used in conjunction with

particle filters in order to track multiple humans inside a building, and are able

to successfully and reliably keep track of multiple persons [13]. The joint prob-
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abilistic data association filter is an algorithm that improves the separation and

individual identification of data when tracking multiple objects. This particular

study compares the success of Kalman filters to the success of particle filters

when tracking a moving being. They found that they were restricted when us-

ing Kalman filters due to the Gaussian distributions over the estimated state.

Kalman and particle filters are algorithms which create estimates of state, either

in the object being tracked, or in localization of the robot itself. A Gaussian dis-

tribution is used by the filters in order to predict the state of the object or robot.

An additional study, [14], also used particle filters and joint probabilistic data

association filters to determine location of people in an office type environment.

Similarly, in [19] visual data is acquired by the robot in order to determine

it’s desired movement path. That particular study focused on soccer playing

robots which need to track the location of a soccer ball in-order to determine

their next move. In [13], a particle filter algorithm is used to predict the location

of the ball. Another related work, [21] uses a SLAM (simultaneous localization

and mapping) algorithm in order to determine the surroundings. This particular

study determines that the computationally intensive algorithm is infeasible to

be used in real time. Thus, they implemented a simpler SLAM algorithm which

was able to successfully track moving objects from a moving vehicle in a crowded

urban area.

2.3.2 Tracking with AUVs

Underwater robots have also been equipped with vision systems to track mov-

ing objects [5]. While in [23] a vision system was developed to conduct tracking of

fish with an ROV, it was not implemented for autonomous tracking experiments.
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In [12], a vision system was used to successfully track jelly-fish with an ROV.

AUVs have been equipped with acoustic receivers to passively record acoustic

tag signals. In [7] an AUV was used to gather data from two tagged Atlantic

Sturgeon in the Hudson River. This study proved that AUV’s are highly useful

in gathering data on a tagged fish. The AUV was sent on a mission to perform

sweeping trajectories across the designated area where the tagged Sturgeon were

located. As the robot was close to the tag signal, it picked up the Sturgeon’s

location. This is a related study, researchers chose not to follow the Sturgeon,

and rather, gather general data about the fishes’ location in the area.

In [6] scientists aimed to validate introducing hydrophone receivers onto an

AUV. They were able to validate the hydrophone’s effectiveness in gathering

information from tags in the area of deployment. The key discovery in this paper

was that signal reception was acquirable, and distance and angle (thus, position)

can be determined from the tag signal picked up by the moving hydrophones.

2.4 State Estimation

Kalman filter algorithms are often used in estimating state in robot localiza-

tion problems. Based on a distribution of error, Kalman filters use uni-modal

Gaussian distributions for representations of state. Kalman filters are very effi-

cient when used for localization[18], but due to the limitations of the uni-modal

distribution, are best used when the initial position of the robot is known [3].

Another approach to robot localization is Monte Carlo Localization (MCL),

a computationally efficient localization algorithm with the ability to represent

arbitrary distributions [3]. MCL uses an adaptive sampling mechanism in which

the number of sample states is chosen as the robot travels. A larger sample set is
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used when position is relatively unknown, and thus, MCL can globally localize a

robot [3]. Particle filter estimation is heavily based on the MCL algorithm [18].

A particle filter state estimation algorithm approximates a belief state through a

set of particle representations [17]. Each particle represents a single randomized

representation of state, the set of which creates a multiple hypothesis sample

set. Each particle is given a probability weighting based on its accuracy to sensor

readings. This weighting provides a scheme for re-sampling the particle set, where

the particles with higher probabilities are much more likely to be chosen than the

particles with low probabilities. Particle filters have been used in robotics to aid

in robot navigation and state recovery [4, 9]. In this paper, the particle filter’s

ability to handle ambiguous sensor measurements is leveraged to deal with a

stereo hydrophone and receiver system that cannot determine the sign of the

relative angle to a detected fish tag.
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Chapter 3

Problem Definition

The problem that this project aims to solve can be defined as follows. Given an

AUV with stereo-hydrophone and receiver, design an estimator that determines

the position and velocity of a tagged shark in real time. In order to solve this

problem, hardware and software configuration must be considered. The following

sections discuss an overview of the system, the challenges associated, and details

the components found within.

3.1 Overview

AUV Sensor Suite The AUV used in this project is an Oceanserver IVER2

AUV (Fig. 5.2), a torpedo shaped robot actuated with two fins to control pitch,

two rear fins to control yaw, and a rear propeller to provide locomotion. The

AUV’s antenna has a built-in GPS receiver providing longitude and latitude

measurements at a rate of 1 Hz. These position measurements are represented

here as ZGPS. The IVER2 also has a 3 degree of freedom compass. In this work

the compass’ yaw measurement Zθ is required for shark state estimation.
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Figure 3.1: Block Diagram

AUV Actuators The AUV actuators are four servo motors to actuate the

control surfaces (i.e. fin angles), and one motor to spin the propeller. As shown

in Figure 3.1, U represents the control vector sent to each of these five motors.

Primary Processor The primary processor runs waypoint tracking missions,

monitors the status of the robot’s actuators, and enables sensor and actuator

communications. The monitoring is performed by the Oceanserver software which

takes Zθ and ZGPS as inputs from the sensor suite.

Secondary Processor The secondary processor is designated for external pro-

grams, and is where the acoustic receiver software, estimator, and controller are

run. The receiver software produces measurements of the bearing to the tag Zα

and signal strength Zss, and passes these measurements to the estimator. The

estimator processes the inputs, and outputs Xshark which it sends to the con-

troller. The controller takes Xshark as an input, and uses this to make decisions

about movement of the AUV relative to the estimated shark position.

12



Figure 3.2: Close-up of Hydrophone Hull Attachment

Stereo Hydrophone System The stereo-hydrophones, acoustic receiver, and

receiver software are part of the Lotek MAP RT-A Hydrophone sensor system.

The AUV has been adapted to internally contain the receiver circuit board from

the Lotek MAP RT-A Hydrophone sensor system. The hydrophone system is

designed to listen for frequencies centered at 76 kHz, the same frequency of

signals emitted by the Lotek tags. The tags transmit encoded analog signals that

allow them to be identified uniquely on the same frequency. The hydrophone

cables are internally connected and fed through sealed holes in the tail end of the

hull of the AUV, as seen in Figure 3.2. The external portion of the hydrophone

cables are 1.5 meters, and 2 meters in length.

3.2 Estimation Requirements

The estimation problem, the core work of this thesis, is depicted in Figure

3.3. In this figure a top down view of this system is shown with hydrophones

h1 and h2 positioned just ahead of the AUV nose and just behind the AUV tail,

respectively. Xauv represents the position and yaw of the AUV with respect to an

inertial coordinate frame and determined by OceanServer’s proprietary software.

The estimator uses Xauv and Zα as inputs to estimate the shark position and

velocity Xshark at each time step t. More precisely, for t ∈ [0, tmax]:

13



Figure 3.3: Top Down View of Sample Measurement

Given:

Xauv,t = [xauv yauv θauv ẋauv ẏauv θ̇auv]t (3.1)

Zt = [ss α]t (3.2)

Determine:

Xshark,t = [xshark yshark θshark vshark wshark]t (3.3)

Such that:

−8 ≤ α ≤ 8

0 ≤ ss ≤ maxSS

L = ρmax

Challenges associated with the stereo-hydrophone system include its limited

range (L = 100 m), its low resolution (= π/9 rad), and the ambiguity of sign of

the bearing angle. This ambiguity is illustrated in Figure 3.3, where the AUV

14



cannot determine if a single bearing measurement α corresponds to angle +α or

−α. X ′shark represents the other possible location of state based on the ambiguous

sensor reading. Signal strength, ss, represents a Lotek measurement of approx-

imate distance, power level, and interference. It gives a general representation

of how far away the tag is, however in this project, this value was not used for

state estimation. The Lotek input value of angle, α, as mentioned above, is an

integer value, and represents the angle between the AUV and the tag as seen in

Figure 3.3. The values which represent state of the shark and AUV are the x and

y-coordinate frame values, the rotation θ, and the previous time step’s values of

that state designated with a dot, e.g. θ̇shark. Each of these states is defined for a

given time step t. The maximum range of the Lotek system is designated L, and

represents the greatest distance that the Lotek system can pick up a signal.

The estimator is used in two ways, in real-time tracking on board the AUV,

and offline to improve the state estimate accuracy. Real-time estimation is used

during the physical tracking of a tag. The estimator outputs Xshark to the con-

troller, which makes movement decisions based on that state. Offline, the esti-

mator is used to simulate the trajectories of the AUV and the shark, allowing

visualization of the estimator, and a post-processing accuracy test. The accuracy

test includes plotting the error, standard deviations, and signal rate. These ac-

curacy tests allow improvements to be made to the state estimation. The offline

simulations enable detailed improvements to be made, as the estimation simula-

tion can be watched at an accelerated pace allowing adjustments to be made to

the algorithm.
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Chapter 4

State Estimator

A Particle Filter (PF) was used to estimate the state of the shark, with states

defined in equation 3.3. The PF uses a collection of P particles to represent

a probabilistic distribution of potential shark states. Each particle represents

a single estimate of the shark state, with a position, orientation, velocity, and

weight. Initially, each particle is randomly assigned to a position, orientation,

and velocity, by selecting from a uniform random distribution. Positions (x, y)

are randomly selected from an L meter by L meter square area with the initial

location of the AUV as the center of the distribution. Here, L reflects the range

of the acoustic receiver system.

xpshark ∈ [xauv − L/2, xauv + L/2] (4.1a)

ypshark ∈ [yauv − L/2, yauv + L/2] (4.1b)

θpshark ∈ [−π, π] (4.1c)
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vpshark ∈ [0, vmax] (4.1d)

After the distribution of particles is initialized and randomly distributed,

particles are updated with the PF algorithm that is called at each iteration of

the AUV’s control loop. The algorithm has two main steps, a preditction step and

a correction step. The prediction step predicts the shark state of every particle.

If a new valid signal from the shark tag is received, the likelihood or weight of

all particles is calculated and the correction step will be called to resample the

particle distribution. At the end of these two steps, the shark state estimate is

calculated as the average position, orientation and velocity of all P particles.

4.1 Propagation Step

At every time step, each of the P particles in the set {Xp} is propagated

forward according to a first-order motion model. The motion model is a func-

tion of the previous particle position (xpshark, y
p
shark), orientation θpshark, velocity

vpshark and the uncertainty associated with these values, specifically the standard

deviations σθ and σv. Steps 3 – 8 in Algorithm 1 show details. Randomness is

added to each propagated state by sampling from a Gaussian distribution with

zero mean and standard deviations σθ and σv (i.e. with the function randn() in

Algorithm 1).

The new position is determined on lines 5 and 6, and is calculated by adding

the previous value with a velocity and direction computation relative to the

amount of time that has passed, ∆t. The velocity is based on the previous

velocity and the velocity after the propagation, so, to further filter velocity, it

17



Algorithm 1 PF Shark State Estimator({Xp}, Xauv, Zα)

1: //Prediction

2: for all p particles do

3: vprand ← vp + randn(0, σv)

4: θprand ← θp + randn(0, σθ)

5: xpshark ← xpshark + vprand ∗ cos (θprand) ∗∆t

6: ypshark ← ypshark + vprand ∗ sin (θprand) ∗∆t

7: vp ← γvt ∗ vp + (1− γvt) ∗
√

(ypshark−y
p
prev)2+(xpshark−x

p
prev)2

∆t

8: θp ← θprand

9: if α is valid then

10: αpexp ← atan2((yauv − ypshark), (xauv − x
p
shark))− θauv

11: αpexp ← g(αpexp)

12: wp ← h(α, αpexp)

13: end if

14: end for

15:

16: //Correction

17: if α is valid then

18: {Xp}temp ← {Xp} for all p

19: for all p particles do

20: Xp ← RandParticle({Xp}temp)

21: end for

22: end if
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is calculated using a weighted average of current estimate with the previous es-

timate. A weighting value of γvt is used to determine the dependency on new

versus previous estimates within the average.

This propagation step allows the PF to maintain an estimate on the position

of the shark, even when the shark is moving. The propagation causes the particles

to spread outward during times when the signal from the acoustic tag is weak or

blocked. The particles are propagated the approximate velocity of a shark so that

the distribution area covers the entire area that the shark could have traveled in

that period of time.

4.2 Correction Step

This correction step is defined in Algorithm 1 lines 10 – 12. The correction and

re-sampling are only run when a “valid” Lotek value is received. The expected

bearing angle form the AUV to the particle’s shark position, αpexp is calculated on

line 10, and is adjusted for the rotation of the AUV, θauv, (see Figure 3.3). On

line 11, the angle αpest is then converted from units of radians to a Lotek angle

units with the following function:

g(αpexp) =− 1 ∗ 10−6(αpexp)
3 + 2 ∗ 10−5(αpexp)

2

+ 0.0947αpexp − 0.2757

(4.2)

The above function was defined through experimental testing of the Lotek

system, and was generated from a Least Squares best fit line to those data plots.

See Figure 4.1 for an example unit conversion. The angle, αpexp, is then rounded

to the nearest whole number, since all Lotek angle values are integers between -8

and 8.
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Figure 4.1: Angle Best Fit Curve

The particle is then assigned a weight on line 12, through the following Gaus-

sian weighting function:

h(α, αpexp) = 0.001 +
1√

2παpexp
∗ e

−(α
p
exp−α)

2

2∗σ2
alpha (4.3)

The weight has a minimum value of 0.001, and is given a higher value when

the particle’s expected angle, αpexp, is closer to the measured angle, α. As the

angle difference decreases, a higher weighting is assigned.

The re-sampling is shown in Algorithm 1, Lines 18 – 21. A copy of the prop-

agated particle set is saved in {Xp}temp. Then, each particle state is repopulated

by randomly selecting from {Xp}temp using the function RandParticle(). This

function selects a particle at random, with a likelihood of selection proportional

to the particle’s normalized weight. To improve the robustness of the algorithm,

a small % of particles returned by this function will be newly generated random

states.
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4.3 Sensor Modeling

There is a certain amount of error associated with every motion model prop-

agation and sensor measurement. These errors are modeled as random variables

that follow a zero mean Gaussian probability density function. The standard

deviations associated with these functions were derived both with experimental

and historical data. The σ values in Table 4.1 represent the standard deviations

used within this work. Standard deviation is a measure of the dispersion of a set

of data from its mean. For example, the σ is chosen based on the accuracy and

trust in the variable containing error. The accuracy of the variable is within σ

units from the saved value of the variable. This means that at any given time,

the variable value could be off by σ units in any direction. It is important to

account for this error within values in order to accurately describe the state.

Table 4.1: Standard Deviation Values

σ Name Value

σauv 5.0 meters

σv 0.3 meters per second

σθ π/2 radians

σα 1.0 lotek angle value

σss 15 lotek signal value

γvt 0.75

A higher σ value represents a larger distribution of error, whereas a small

value represents a smaller distribution indicating a greater level of trust in the

accuracy of that value.
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Chapter 5

Experiment Description

Two external frames were created in order to hold the stereo-hydrophones in

place. The Lotek MAP RT-A system was designed to have the hydrophones set

2.4 meters apart, and at least one meter below the surface of the water. The first

rig is made from PVC, has two support beams which attach to the AUV by hose

clamps through a t-bracket shaped PVC attachment, see Figure 5.1. The second

rig is made of carbon fiber, and has a similar attachment mechanism to the PVC,

however the rig support beams are angled as seen in Figure 5.2.

Figure 5.1: AUV with PVC Rig attached

Experiments were performed with both rigs, and are described in the following

sections.

22



Figure 5.2: AUV with Carbon Fiber Rig attached

5.1 Avila Beach Pier Experiments

A series of validation experiments were performed at the Cal Poly Center for

Coastal Marine Science (CCMS). The facility is located at the end of a large pier

in Avila Beach, CA, as an be seen in Figure 5.3, and is made up of a building for

teaching, a filtration management building, a boat locker, and a lowered platform

which provides direct access to the ocean below. This platform was used to launch

the AUV and Kayak. These experiments included sensor characterization (e.g.

determine σα), AUV tracking of a stationary tag, and AUV tracking of a moving

tag.

Figure 5.3: Cal Poly Center for Coastal Marine Science, Avila Beach, CA
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5.1.1 Stationary Tag

At CCMS, experiments were performed using a stationary tag. The tag was

attached to a 10 meter rope approximately two meters below the surface of the

water. The water depth in the Avila Bay testing area was approximately 10.0

meters deep. Figure 5.4 shows how two large shackles were tied to one end,

anchoring the tag in a stationary position. To counteract the movement of the

waves and the tides, the rope was fed through a buoy and then a counterweight of

another smaller shackle was tied to the other end of the rope. During experiments,

the AUV’s start position relative to the tag was varied to ensure tracking could

be performed from every direction. In addition to the multiple starting locations,

starting points were tested at different initial distances from the tag. AUV start

positions also were varied according to initial distance to the tag (i.e. 20, 50,

75, and 100 meters). For stationary tag experiments, the AUV-1 terminated its

mission when it was within 10 meters of the tag.

Figure 5.4: Stationary Tag Counterweight Buoy

5.1.2 Tracking a Tagged Kayak

A three meter long rope was tied to the stern (back end) of a kayak. A small

shackle was tied to the loose end of the rope to submerge the tag. The acoustic

tag was attached to the rope approximately 2 meters below the surface of the

water, which was a depth of 9 meters. Once the tag was set up and the kayak was
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in the water, the kayak was set in a semi-stationary location for the AUV to track.

Semi-stationary refers to the drifting movement of the kayak which occurs in the

ocean and the presence of wind. A slowly moving kayak was also tracked with

AUV starting locations within each quadrant surrounding. Starting distances of

25 m, 50 m, 75 m, and 100 m were used. During travel, the moving kayak traveled

in a linear fashion parallel to AUV, directly towards the AUV, perpendicular to

the AUV, and directly away from the AUV. These different travel lines helped

verify multiple starting orientations.

5.1.3 Tracking a Tagged AUV

The same three meter rope used while tracking a tagged kayak was attached

to a 61/4 inch stainless steel hose clamp, which was secured around the nose of the

second AUV (AUV-2). A small shackle was tied to the trailing end of the rope

to help submerge the tagas seen in Figure 5.5. Once fully configured, the tag was

approximately two meters below the surface. GPS measurements were recorded

at the surface just above the tag’s location. The depth of the water in Avila

Bay is approximately 10.0 meters. This experiment refers to two different AUVs,

so, the AUV performing the tracking with the acoustic hydrophone system will

now be referred to as AUV-1. The AUV acting as a shark will be referred to as

AUV-2. AUV-2 was manually driven in large circular patterns around AUV-1,

with straight lines of movement interspersed.

Once the AUV-1 was deployed for these experiments, it would autonomously

track the tag’s position estimates produced by the PF. To note, a controller was

implemented that would achieve two goals: Minimize the distance between the

AUV and tag and Minimize the time in which particles converge to the correct
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position of the tag.

Given the direction to the tag is γt = αt + θAUV,t, the controller directed

the AUV-1 to maintain its maximum propeller speed, while repeating on the

following 3 steps: 1) track a desired heading of θdes = γt + π/4, then 2) track

a desired heading of θdes = γt − π/4, and finally 3) track a desired heading of

θdes = γt. This resulted in the AUV-1 zig-zagging its way towards the AUV-2

with 90 degree turns that help resolve the ambiguity in the sign of the bearing

angle.

Figure 5.5: Tagged AUV

5.2 Long Beach Experiments

In Long Beach, CA, as seen in Figure 5.6, the experiments from CCMS were

repeated to verify accuracy and functionality at a new location. In addition

to these same experiments, a leopard shark (Triakis semifasciata) was caught,

externally fitted with an acoustic transmitter, and tracked. The AUV was set

up with the carbon fiber rig during the first few days, and on the final two days,

while tracking a shark, the PVC rig was used. It was necessary to shorten the

PVC rig to compensate for the shallower waters of the lagoon. In some parts of

the lagoon, eel grass became a problem both for AUV navigation and attenuation

of the acoustic signal. The PVC support beams were shortened to 0.75 meters in

length.
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Figure 5.6: Seaplane Lagoon, Port of Long Beach, CA

5.2.1 Stationary Tag

Experiments were the same as at the CCMS.

5.2.2 Tracking a Tagged AUV

Experiments were the same as at CCMS, however, AUV-2 was driven as

though it were a shark skirting around the edges of the lagoon, and was tracked

for a much longer time period.

5.2.3 Tracking a Tagged Leopard Shark

A Leopard Shark, see Figure 5.7 [10] needed to be caught in order to tag and

follow a live shark. To catch a leopard shark for final validation of the system, a

10 hook long line was set in the lagoon and continuously monitored. Although

several species of sharks were caught and released, a 1-meter leopard shark was
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externally dart tagged with an acoustic transmitter (Lotek MM Series, 76 kHz

freq, 2,5 second ping rate), which is in standard use for tagging large marine

fishes. The shark was pulled to the surface using the line, and was then gently

restrained with a rope tied to its tail. Sharks have a biological response of tonic

immobility, becoming still as though they are hypnotized, when they are turned

upside down. This was used to keep the shark from moving while it was fitted

with the tag. The entire procedure took less than 10 minutes. Once the tagged

shark was released, the AUV was deployed to track and follow the shark.

Figure 5.7: Leopard Shark
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Chapter 6

Results

A particle filter estimation is used to track the state and location of sharks

to better determine and understand their behavior. As demonstrated in [22],

particle filter estimation can decrease the error in location predictions of sharks.

By combining the use of this estimation algorithm and the separate states of

shark behavior characterized by the velocity and distance traveled, the location

of the sharks can be closely predicted. This allows the deployment of an AUV,

with mounted acoustic tag receivers, to have the ability to follow a shark through

the ocean on larger scale and longer term voyages. This will enable acquisition

of detailed information regarding the behavior of shark movement. Though cur-

rently the AUV running time is limited by battery usage, the algorithm has the

capabilities for long term tracking.

In this experiment, acoustic tags are used as in [8, 7, 6] to determine the

location of the shark. The accuracy of the acoustic transmitters on the AUV

were tested to determine the weighting and variance properties for weighting

calculations. Based on the accuracy of the transmitters, a level of variance has

been calculated to estimate the movement of the shark, and corrected based on
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the delayed travel response of the location from the acoustic tag. With a proper

behavior state algorithm, in addition to an accurate variance level, the AUV was

successfully deployed to follow the sharks.

The following sections describe the results from tracking a stationary tag,

tracking a tagged AUV, tracking a tagged Leopard Shark, and shows an example

of the particle convergence which occurred during these tracks.

6.1 Stationary Tag

A stationary tag was anchored approximately 1.5 meters below the surface at

a recorded GPS location. AUV-1 was deployed at multiple locations, and was set

to track the stationary tag. The AUV tracked the stationary tag to a location

within 10 meters of the tag, then terminate the mission. The error during a

typical experiment, as defined in equation 6.1, can be seen plotted in black in

Figure 6.1. This error remains less than 18 meters during the experiment, and is

on average less than 10 meters. The overall standard deviations, in blue and green

represent the spread of the particles a higher standard deviation value equates

to a higher uncertainty in estimated location. The overall performance of the

algorithm is seen through the average error, maximum error, and minimum error

over time. Error is defined as the distance between the actual and estimated tag

position:

et =
√

(x̂shark − xshark)2 + (ŷshark − yshark)2) (6.1)

Signal rate, i.e. the frequency of usable measurements, is also plotted in

Figure 6.1, in the color magenta. Notice that as the signal rate gets lower, the
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error rate increases. This correlation is expected because when there are no

signals, a greater error and standard deviation in the estimated position of the

tag is seen. When the signal rate is higher, there is a corresponding drop in error

and standard deviation levels, showing that when more signals are received the

AUV is better able to determine an accurate location of the tag.

Figure 6.1: Error, Standard Deviation, and Lotek Signal Rate from Tracking a
Stationary Tag

6.2 Tracking a Tagged AUV

Figure 6.2: Error, Standard Deviation, and Lotek Signal Rate from Tracking a
Tagged AUV

To demonstrate system performance with a moving target, results are pre-

sented from an experiment where an acoustic tag with a signal rate of 30 sig-
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nals/minute, was attached to a second Iver2 AUV-2. Fig. 6.3 shows the paths

for both the tracking vehicle (named AUV-1) and the tagged vehicle (named

AUV-2). AUV-2 was manually driven within the lagoon, mimicking the rela-

tively slow movement of a leopard shark. Figure 6.4 is a close up view of that

same track. AUV-2 recorded GPS locations of its path, allowing a comparison

of the actual location of the tagged AUV, and the estimated position predicted

by AUV-1. AUV-1 autonomously tracked and followed AUV-2 using the PF and

controller described above. The error, standard deviations, and signal rate can

be seen in Figure 6.2. At t=2500 seconds, there is a significant increase in error.

This corresponds with poor quality acoustic measurements we observed as the

AUVs crossed an area with a high density of eel grass. This can be observed

as this darker coloring in Fig. 6.3. As mentioned previously, eel grass creates a

curtain of dampening in signal transmission, and as the AUV enters this area,

there is a significant drop in signal rate.

Figure 6.3: Trajectories of the tracking AUV-1, the tagged AUV-2, and the
Estimated AUV-2 Position are shown
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Figure 6.4: Close-up of AUV-1, AUV-2, and Estimated Position Trajectories

6.3 Tracking a Leopard Shark

On August 9, 2011, a tagged leopard shark was tracked by the AUV for several

hours with little interruption. The AUV-1 and estimated shark paths from a 48-

minute long tracking experiment are shown in 6.6a and 6.6b. AUV-1 was deployed

at a location where the acoustic signal was picked up by the on-board tracking

system. Figure 6.6a shows a close up of the trajectories of AUV-1, as well as

the estimated position of the shark when the standard deviation of the particle

set was less than or equal to ten meters in both the X and Y-coordinate plane.

Figure 6.6b is a zoomed-out version of the trajectories, this shows the location

within Sea Plane Lagoon that the actual tracking took place. Figure 6.5 shows

the corresponding standard deviations of the particle set as well as the signal

rate from the acoustic tag. While no estimation accuracy was obtained, these

experiments demonstrated the ability for long term autonomous AUV tracking

and following of a live shark. Table II summarizes the results, with a notable
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maximum tracking time of 1.67 hrs.

Figure 6.5: Standard Deviation and Lotek Signal Rate of Tracking a Tagged
Leopard Shark

(a) Close-up (b) Far View

Figure 6.6: Trajectories of AUV-1 and Estimated Shark Position

6.4 Particle Convergence Time Series

In Figure 6.7, a series of images represent the convergence of particles while

tracking a tagged shark. In 6.7a, the initial time step, the particles are randomly
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distributed throughout an L meter by L meter square area centered around the

initial location of the AUV. The second image, 6.7b, shows the beginning of

particle convergence after a single acoustic signal is picked up by the hydrophones.

The ambiguity in the sign of α can be observed here by the fact that particles

are into two symetrical groups, one on each side of the AUV. The third image,

6.7c, depicts an instance when the AUV has rotated enough so that only one

of the rays cast by the current bearing measurement (+Zα or -Zα) overlap with

one of the existing particle groups. This geometric overlap leads to appropriate

weighting of particles and convergence to a single accurate location. After a

few more signals from the tag, and only 32 seconds after the initialization, the

particles have consolidated into a tight distribution in 6.7d.

These four images demonstrate the convergence that occurred during each

experiment. The particles continually spread out through propagation, then were

weighted and re-sampled after a Lotek measurement was obtained. It was a

repeated cycle of expansion and contraction, with frequent contractions during a

higher Lotek signal rate.
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(a) t = 0.0 s (b) t = 2.54 s

(c) t = 13.92 s (d) t = 32.37 s

Figure 6.7: Time Series of Particle Convergence
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Chapter 7

Conclusions

A state estimation method has been developed to enable tracking and fol-

lowing of a tagged sharks. There are still improvements to be made, but the

existing framework for this project has been established. It is now known that a

shark can be autonomously tracked by an AUV. A state estimator is presented

such that a position can be maintained on a tagged Leopard shark. The state

estimator uses a particle filtering algorithm containing prediction and correction

steps which control the movement of the particles. The prediction step moves the

particles forward based on a velocity, rotation, and time elapsed. The correction

step weights the particles on the accuracy of position based on the input α value

from the Lotek hydrophone receiver system. At the end of each correction step,

the particles are re-sampled based on their weights. This causes particles that

more closely reflect the α value to be represented in higher quantities, while the

outliers are likely to disappear. The state estimator is what determines the po-

sition of the tag, and is the basis for en-route decisions. This filtering algorithm

has been proven accurate through testing by localizing a stationary tag, tracking

a tagged AUV, and a tagged shark. While tracking a second tagged AUV, the
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average error during the tracking was 41.73 meters, with a minimum value of 0.85

meters. A shark was continually tracked for a period of 1 hour and 41 minutes,

thus validating this real system. The link between biology and robotics is clear;

data that could not be collected by biologists previously is now within reach.
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Chapter 8

Future Works

Signal strength of the tag should be more carefully calibrated with both an

external sensor system as well as with the Lotek system in place. This could

provide valuable range measurement, which may be required in tracking faster

swimming sharks. It is unclear whether it will be possible to track a larger, and

more quickly moving shark with the current system. There is some question

whether the AUV will be able to keep up with the pace of these faster swimming

sharks, and maintain a location of this shark. A better range in the sensor

system will be required in order to maintain a track on these faster swimming

sharks. The current system’s signal strength was barely adequate for maintaining

a location on the very slow swimming Leopard Sharks. With a larger range, the

AUV will be able to maintain a track on a shark even when it chooses to leave

an area and travel further from the position of the AUV. If the shark chooses to

leave at a quick enough pace it will swim out of range of the current system, and

unless it chooses to circle back around and re-enter the range area of the AUV,

the track will be terminated. With a larger range, the distance that the shark

can travel before the track is lost is much greater. In addition to the need for
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a better acoustic system, a longer battery life of the AUV must be realized. At

this time the battery of the AUV can support the system for approximately 10

hours of continuous running. With the duration of tracking is currently limited

by this battery power.Streamlining and reduction of the hydrophone profile will

improve battery life of the AUV, reduce the likelihood of animal disturbance,

and make the AUV more manuverable. Finally, this work promotes the use of

collaborative multi-AUV tracking that may improve accuracy and reduce the

likelihood of losing the shark.
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Chapter 9

Appendix
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