
EVALUATING HEAD GESTURES FOR PANNING 2-D SPATIAL INFORMATION

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Matthew Oliver Derry

December 2009

© 2009
Matthew Oliver Derry

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Evaluating Head Gestures For Panning 2-D Spatial
 Information

AUTHOR: Matthew Oliver Derry

DATE SUBMITTED: December 2009

COMMITTEE CHAIR: Dr. Franz Kurfess

COMMITTEE MEMBER: Dr. Gene Fisher

COMMITTEE MEMBER: Dr. Clark Turner

iii

ABSTRACT

Evaluating Head Gestures for Panning 2-D Spatial Information

by

Matthew Oliver Derry

 New, often free, spatial information applications such as mapping tools,

topological imaging, and geographic information systems are becoming increasingly

available to the average computer user. These systems, which were once available only to

government, scholastic, and corporate institutions with highly skilled operators, are

driving a need for new and innovative ways for the average user to navigate and control

spatial information intuitively, accurately, and efficiently. Gestures provide a method of

control that is well suited to navigating the large datasets often associated with spatial

information applications. Several different types of gestures and different applications

that navigate spatial data are examined. This leads to the introduction of a system that

uses a visual head tracking scheme for controlling of the most common navigation action

in the most common type of spatial information application, panning a 2-D map. The

proposed head tracking scheme uses head pointing to control the direction of panning.

The head tracking control is evaluated against the traditional control methods of the

mouse and touchpad, showing a significant performance increase over the touchpad and

comparable performance to the mouse, despite limited practice with head tracking.

iv

ACKNOWLEDGEMENTS

 I would like to thank my thesis advisor, Dr. Kurfess for his willingness to take me

on as his advisee when I really needed it. His feedback throughout this process was

always insightful and made this thesis what it is today. I also want to extend a hearty

thank you to Dr. Gene Fisher and Dr. Clark Turner for joining my thesis committee on

short notice without even so much as a grumble about the inconvenience.

 I would also like to thank Karen Redwine for her advising on the statistical

analysis of the results of this research. Without her help I would still be trying to figure

out what an ANOVA is. I would also like to thank Jan Jaroncyk for her extensive effort

in helping me to reign in my tendency towards verbosity. Finally, I would like to thank

all my friends and family who supported me or contributed to this research in some way.

Thank you!

v

TABLE OF CONTENTS

...List of Tables viii
..List of Figures ix
..1. Introduction 1

..2. Previous Work 4
...2.1 Gestures used in Human-Computer Interaction 4

..2.2 Input Methods for Capturing Gestures 7
..2.3 Existing Computer Systems using Gestures for Control 9

...............................2.4 Algorithms for Visual Recognition and Tracking of Gestures 11
...2.4.1 Hidden Markov Models 12

...2.4.2 Kalman Filtering 13

...2.4.3 Particle Filtering 14
..2.4.4 Normalized Cross-Correlation 15

...2.5 Systems based on Spatial Information 17
...2.5.1 2D Mapping Applications 17
...2.5.2 3D Mapping Applications 19

..2.5.3 Virtual Environments 20
..2.5.4 Geographic Information Systems 21

..3. Design and Implementation 23
..3.1 Inspiration 23

...3.2 Key System Requirements 24
..3.3 Key Application Requirements 25

..3.4 Decision Criteria for Choosing the Tracking Algorithm 26
...3.5 Application Design 28

..3.5.1 Interface Design 28
...3.5.2 Class Design 30

..3.6 Implementation 31
..3.6.1 Development Language and Environment 31

..3.6.2 Interface 32
...3.6.3 Algorithms 33

...3.6.3.1 Training Algorithm 33
..3.6.3.2 Tracking Algorithm 33

................................3.6.3.3 Translating Tracking into Movement of the Map 35
..4. Evaluation Methodology 36

..4.1 Overall goal of evaluation 36

..4.2 Evaluation Plan Specifics 38
..5.1 Analytical approach 39

..5.1.1 Mean, Standard Deviation, Standard Error 39
...5.1.2 One-way, Within-Subject ANOVA/T-Test 40

..5.2 Results 41
..5.2.1 Task 1 - East and West Panning 42

vi

..5.2.2 Task 2 - North and South Panning 44
...............................5.2.3 Task 3 - Northeast, Northwest, and Southwest Panning 47
...............................5.2.4 Task 4 - Following a Long Path in One Main Direction 50

..............5.2.5 Task 5 - Following a Circular Route Covering Several Directions 53
..5.2.6 Overall Results 56

..5.3 User Comments 58
..5.4 Analysis 60
...6. Contribution 61

...7. Research Validation 62
...8. Future Work 64

..9. Conclusion 66
...10. References 67

vii

List of Tables

.................Table 1. System-level requirements and the corresponding evaluation criteria 25
.......Table 2. Application-level requirements and their corresponding evaluation criteria 26

...Table 3. Tracking algorithms and their evaluation results 27
.......................................Table 4. Panning tasks used in the evaluation of the application 37

...........Table 5. P-values for task 1 data, both overall and for each pairwise comparison. 44

...........Table 6. P-values for task 2 data, both overall and for each pairwise comparison. 47

...........Table 7. P-values for task 3 data, both overall and for each pairwise comparison. 50

...........Table 8. P-values for task 4 data, both overall and for each pairwise comparison. 53

...........Table 9. P-values for task 5 data, both overall and for each pairwise comparison. 55
..Table 10. P-values for the overall data, both overall and for each pairwise comparison. 58

viii

List of Figures

....Figure 1. Individual using the Atlas Gloves application to navigate Google Earth [4]. 9

Figure 2. The GUI portion of the Head Tracking Pointer application developed by
 Kjeldsen in [25]. While this application is running, the computer cursor is

... controlled by head movements. 10

Figure 3. Screen capture of the Google Maps 2D-mapping application. In this screen
........................... capture the focus in on Los Angeles and surrounding cities. 17

Figure 4. Screen capture of the NASA World Wind 3D-mapping application. In this
................. screenshot several European countries and landmarks are present. 19

Figure 5. Screen capture of the Second Life 3D Virtual Environment. The character
... is in a fictional place called Help Island. 20

Figure 6. Screen capture of the ArcGIS Geographic Information System from ESRI.
 In this screen capture, a groundwater protection model is transposed over a

... geographical region [2]. 21

Figure 7. A complicated apparatus for tracking the movements and location of a
... user’s head [40]. 23

Figure 8. The interface of the application developed for this this. This is the screen
................................... the user first sees when going to the appropriate URL. 28

Figure 9. Training panel with instructions for the user as well as buttons to cancel or
... finish the training step. 29

Figure 10. The panel that shows while tracking is occurring. The blue box indicates
 the position of the template image retrieved from the training step and the
 red box indicates the current position of the closest match to the template.

........ The difference in these two locations provides a vector to pan the map. 30

...Figure 11. Object diagram for head tracking application. 31

..Figure 12. Average Completion Times for Task 1. 42

Figure 13. Normalized Mean Completion Time and Normalized Mean Accuracy
.. Rank for task 1. 43

..........................Figure 14. Average time to complete task 2 for all three input methods. 45

ix

Figure 15. Normalized Mean Completion Time and Normalized Mean Accuracy
.. Rank for task 2. 46

..........................Figure 16. Average time to complete task 3 for all three input methods. 48

Figure 17. Normalized Mean Completion Time and Normalized Mean Accuracy
.. Rank for task 3. 49

..........................Figure 18. Average time to complete task 4 for all three input methods. 51

Figure 19. Normalized Mean Completion Time and Normalized Mean Accuracy
.. Rank for task 4. 52

..........................Figure 20. Average time to complete task 5 for all three input methods. 54

Figure 21. Normalized Mean Completion Time and Normalized Mean Accuracy
.. Rank for task 5. 55

Figure 22. Overall Average completion times with standard error bars for all three
.. input methods. 56

Figure 23. Normalized Mean Completion Time and Normalized Mean Accuracy
... Rank Overall. 57

x

1. Introduction

 Due to the large quantity of data frequently associated with spatial information,

systems dealing with such information inherently have challenging technical

requirements that must be tackled for the system to be useful. With ever increasing

computing power, bandwidth, and more sophisticated data collection, storage, and

retrieval techniques, many of those challenging technical requirements are being

addressed. Consequently, more spatial information systems are becoming available to the

general public. New, often free, applications such as mapping tools, topological imaging,

GIS (Geographic Information Systems), which were once available only to government,

scholastic, and corporate institutions with highly skilled and trained operators, are now

driving a need for new and innovative ways to navigate and control spatial information

intuitively, accurately, and efficiently so that the average computer user may make full

use of these tools.

 The most common methods for control of these tools revolve around a mouse and

keyboard, or in the case of laptops, a touchpad and keyboard. Because the space for

actually moving a mouse or engaging a touchpad is limited, continuous panning or

scrolling requires constant resetting of the placement of these input devices.

Unfortunately, due to the size of the datasets of spatial data (i.e. large maps of cities,

states, or countries), continuous panning is a very common requirement for navigating

these types of systems [21]. While it is possible to create a scheme for continuous

panning using a mouse or touchpad, it is not something that is commonplace in current

applications. With these drawbacks, the natural question arises, is it possible to augment

1

the keyboard and mouse approach by adding another mode of input to handle panning

control which is as intuitive, efficient, and accurate as a mouse or touchpad?

 Gestures can provide an intuitive mode of input that allows for controlling the

panning component of navigating spatial data, which could be picked up relatively easily.

Additionally, head gestures, or more specifically, head turn has a natural correlation with

the notion of panning in spatial navigation. That is to say, panning in the direction of gaze

is a natural and intuitive action for controlling a spatial information system [25]. Another

benefit of head gestures is that fatigue would not be as much of an issue as it would with

other types of gestures. Head gestures can, in many cases, be useful for individuals with

certain disabilities in which their hands cannot be used for control. Additionally, there

are other domains where hands-free navigation of spatial data could be beneficial.

Consider surgeons using head turn gestures to move an arthroscopic camera, freeing their

hands to control their arthroscopic tools.

 The goal of this research is to examine the practical considerations, as well as the

usefulness of just such an augmentation in navigating spatial data. Specifically, a system

utilizing a common webcam tracks the location and rotation of a user’s head to control

the continuous panning in the 2D mapping application, Google Maps. The general

suitability of head gestures for navigation tasks, and the performance of users for a few

scenarios are examined in the experimental part of this thesis. The users are given a

series of panning-specific tasks using a mouse, a touchpad, and head gestures to control

the panning. The tasks are timed and the methods are comparatively ranked for accuracy.

2

The results of the experiments are evaluated to identify advantages and drawbacks of

using head gestures for navigation compared to conventional navigation methods.

3

2. Previous Work

2.1 Gestures used in Human-Computer Interaction

 Gestures have been used by humans for thousands of years, to both augment

verbal communication, e.g. pointing to something while asking for it, or replace verbal

communication all together with a sign language, such as American Sign Language.

Both the expressive power and the intuitive and universal nature of gestures has lead to a

significant amount of research on using gestures to communicate with, and control,

computer applications.

 There are several options available to an interface designer when choosing which

gestures to include in creating controls for computer applications. Those gestures include

hand gestures, arm gestures, full-body gestures, facial expressions, and head gestures [21,

31, 41, 48, 49]. What follows is a discussion of these different gesture types along with

their benefits and drawbacks.

 Hand gestures are any kind of movement or pose done with just the hand. This

has several advantages in that the hand is a relatively simple object to recognize using

computer vision techniques. Additionally, because the hand has a high level of dexterity,

a wide range of shape and motion combinations are possible, this is illustrated by the fact

that there is an entire sign language based on the motions and positions of hands. This

lends itself well to controlling a tool with many different commands [29]. One downside

to using hand gestures is the possibility for fatigue and possible injury, e.g. Carpal Tunnel

Syndrome, with extended usage and repetitive motion. Another downside to using hand

gestures for control is that if the hand is occupied with the task of controlling the

4

program, the user is limited in using it for other aspects of control [48]. This isn’t so

much a problem if the hand is responsible for controlling a lot of things, but if it is

responsible for just a few actions, then the dexterity of the hand is wasted. Finally, a

fundamental weakness of hand gestures is that the control vocabulary must be easy to

recreate as well as remember, limiting the overall control vocabulary available to the

system designer [13]. Overall, the hand is a good tool for control, illustrated by the fact

that the standard mouse and keyboard controls function with what are essentially hand

gestures.

 Arm gestures fall somewhere between hand gestures and full-body gestures. They

are especially suited for tasks involving pointing [46] or tasks in which the lower body is

not involved, such as in the suite of sports games for the Nintendo Wii. They can be very

expressive but are often not as nuanced as hand gestures. Fatigue can be a real issue with

arm gestures, especially if the control gestures require the user to hold their arms away

from their body either for long periods or with high frequency. Several systems use arm

gestures for control [4, 46, 52], and they can be quite intuitive, but they are better suited

for environments with large displays, where the full range of arm motion can be taken

advantage of. As an aside, hand gestures and arm gestures are often combined for

control.

 Full-body gestures are another type of gesture used for human-computer

interaction [48]. With this approach, the whole body is used to complete poses and

gestures as the control. Like hand gestures, full-body gestures offer many different poses

and gestures for control. The difficulties with full-body gestures are the same as the

5

difficulties with hand gestures, only they are magnified. Fatigue becomes more of an

issue because the whole body is involved in the process [6]. Additionally, all parts of the

body are used for the one control, thereby limiting the user to just one mode of input.

Full-body gestures are not very compatible with a system in which the user is sitting in

front of a terminal. They can, however, be useful in a virtual world or virtual reality

setting where the user is moving around in a simulated environment.

 Finally, there are facial expressions and head gestures. While heads are relatively

easy to pick out of an image, facial expressions are much harder to discern using current

approaches [23]. Additionally, as a control, facial expressions are limited due to small

number of discernible expressions, as well as their sometimes subconscious nature. Due

to these factors, facial expressions are not considered in this research. On the other hand,

head movements and gestures are relatively easy to pick out of an image using

established techniques [3, 27, 30, 36]. Certain head motions can be done for long

stretches without fatigue or strain. Additionally, several head gestures are very intuitive,

e.g. look left to pan left. look right to pan right, etc. Finally, head gestures correspond

well with continuous action. This eliminates the repeated reseting that occurs with

navigation methods such as the touchpad or mouse when the available physical work

space isn’t large enough to accommodate the on-screen task. E.g. panning a map that is

bigger than the screen and the touchpad space, so the panning can only go as far as the

size of the touchpad in a single swipe. Despite these advantages, head gestures suffer

from some drawbacks as well. There are very few gestures available using head gestures.

Out of what few gestures there are, there are even fewer that remain comfortable over

6

extended periods of use. For instance, tilting the head towards the shoulder quickly

becomes uncomfortable when done for any significant amount of time; this is because the

head is moved out of alignment with the spine, causing the neck muscles to bear much of

the weight [26]. Another issue that should be considered when using head gestures is that

large screens will require users to turn their heads farther than can be compensated for by

their eye movements, thereby effectively creating blind spots on certain parts of the

display [7]. Despite these drawbacks, the use of head rotation for panning fits this

research very well. Head turn is one of the few motions that can be done for long periods

of time by able-bodied people, and on the majority of displays in use today by a typical

user, the large display issue will not be a problem. For these reasons, this research focuses

on head turn to control the panning component of the navigation of spatial data.

 All of the systems using gestures for control suffer from the problem of having to

identify intentional gestures versus unintentional gestures. While much work has been

done in an attempt to automate this recognition, [1, 20, 39, 42] it is a difficult problem

and to this point lacks a definitive solution. Currently, this issue is primarily addressed

by providing the user with some method to indicate to the system whether or not the

gesture is intentional or unintentional.

2.2 Input Methods for Capturing Gestures

 There are two primary methods for capturing gestures as input for a computer

program. The first such method is a sensor-based approach [49]. A sensor-based

approach is one where the gestures are captured using some sort of sensor placed on the

7

user’s body. These sensors can be anything from infrared transmitters placed on gloves to

accelerometers placed on glasses or a visor that tracks the movement of a user’s head.

Several systems, in wide-spread use today, employ this sensor-based approach. One such

system is the Apple iPhone®, where an accelerometer is embedded in the iPhone, which

is in the user’s hand. With the accelerometer it has the ability to switch between

landscape viewing mode and portrait viewing mode simply by turning the device on its

side. Another such system in widespread use is the Nintendo Wii®, which uses

accelerometers in its controller to capture gestures for controlling different games such as

the bowling or baseball games. Mattell was one of the first video game companies to

attempt to bring gesture-based control to the mass market with an early attempt at using

gestures to control games on the original 8-bit Nintendo system called the Power Glove

[49]. This glove used ultrasonic transmitters that sent signals to receivers that were

placed on the TV. A benefit to utilizing sensors actually attached to the user is that they

are generally very precise. Consequently though, special hardware is often required for

the control to be used making it more difficult to distribute the tool for widespread use.

 The other method for capturing gestures is a visual approach. For this approach

the gestures are interpreted by the system from a video stream of one or more cameras [5,

19, 45]. There are many systems where multiple cameras are used to create a 3D

representation of the environment and the user, usually with the hopes of increasing

accuracy or the robustness of the system [3, 35, 45]. While these systems are popular for

research or very specific applications, finding a typical computer user with a stereo

camera setup is uncommon. For this reason, there has been much research done on

8

gesture recognition with a single camera as the input [26, 50 51]. The benefit of a single

camera system is that cameras are becoming commonplace (many laptop computers have

webcams built in now), so the chances are good that a typical user would not have to

spend any extra money to use a gesture-based system. Additionally, while recognition

with a single camera may not be quite as accurate as a stereo camera setup, it can still be

quite good and very usable [51]. While the visual approach to gesture recognition has the

advantage of not needing to be attached to the user, the approach can be sensitive to

lighting changes or occlusions of the incoming image, whereas sensor-based gesture

recognition is obviously free from these issues [25].

2.3 Existing Computer Systems using Gestures for Control

 Having discussed the different types of gestures typically used for control, as well

as the methods used for capturing those gestures as inputs, a review of some of the

existing systems that use these gestural methods of control is warranted.

Figure 1. Individual using the Atlas Gloves application to navigate Google Earth [4].

9

 Freeman et al. created a system whereby a television is controlled using hand

gestures [13]. The system employs a single camera to visually identify the user’s hand

and track it to control a television. Additionally, Merdes et al. created a system called

SlidingMap that uses the inclination of a user’s hands to control the panning of a map on

a tablet PC. The gestures are captured by a dual axis accelerometer embedded in the

tablet PC [33]. Another system that uses hand gestures is a project called Atlas Gloves.

Atlas Gloves is a hand and arm gesture interface for 3D mapping applications like

Google Earth. The system works by using a single camera to identify the hands of the

user and capture the gestures as input to navigate within a 3D mapping application [4].

Figure 1 shows the Atlas Gloves project in use.

Figure 2. The GUI portion of the Head Tracking Pointer application developed by
Kjeldsen in [25]. While this application is running, the computer cursor is controlled by

head movements.

10

 While the previous systems all use hand gestures for control, there are several

systems that have been developed that use other types of gestures. Sparacino et al.

developed a system that utilizes hand and head gestures as a mode of control for

navigating in the 3D representation of the internet [48]. For this system, a stereo camera

apparatus is used to identify the user’s hands and head and track them to capture the

user’s gestures. One type of gesture that is not used as often is the facial expression. Del

Valle et al. developed a system that tracks head pose and facial expressions to control an

avatar on a video conferencing application [8]. The recognition and tracking for the

system is done visually using a single camera. The last system to be mentioned was

developed by Kjeldsen and it is called the Head Tracking Pointer [25]. It uses a single

camera to track the motions of the user’s head to control a cursor on the screen. Figure 2

is a screenshot of the Head Tracking Pointer application that The Head Tracking Pointer

uses a very similar approach to the approach used in this thesis.

2.4 Algorithms for Visual Recognition and Tracking of Gestures

 Gesture Recognition algorithms can be broken into two types, object recognition

and motion tracking [26]. In some cases, the same algorithm can be used for both

recognition and tracking, but this is not always the case. In this research, a simple

training step is executed by the user, thereby removing the need for facial recognition.

For this reason, only motion tracking algorithms that are being used in different gesture

recognition systems are presented here. Section 3.4 is a discussion of the criteria used to

determine which of the following tracking methods to use in this research.

11

2.4.1 Hidden Markov Models

 Hidden Markov Models (HMM) are a dynamic programming technique that can

be used for pattern recognition or forecasting tasks [36]. What differentiates a Hidden

Markov Model from a more basic Markov Chain is that the underlying model is hidden

from direct observation, but there is an output model that is dependent upon the hidden

model. By using knowledge about the probabilities of an output and knowledge about the

probabilities of a state to transition to a different state, information about the underlying

model can be inferred [44].

 A single HMM consists of a collection of possible states, a transition probability

matrix that describes the probabilities of one state transitioning to another state, and

finally either an output probability matrix or a continuous output probability density

function [43]. The output matrix or function defines the probability of each output given

the current state of the model.

 Three problems must be solved to use the HMM for pattern recognition or gesture

recognition: the learning problem, the evaluation problem, and the decoding problem.

The learning problem is solved to train the HMM, the evaluation problem is solved to

identify discrete gestures, and the decoding problem can be solved to identify continuous

gestures [43].

 The general process for setting up a system to recognize gestures using HMMs is

as follows: Define the gesture vocabulary to be recognized. Describe each gesture as an

HMM, with one HMM per gesture to recognize. This means defining the structure of the

12

HMM. That is to say, defining how many states and how many values in the various

probability matrices are going to be used. The values within these state and probability

matrices are not calculated until the training process occurs. Once the training data is

collected and preprocessed into a concise and invariant form, the data is used to adjust the

model parameters to maximize the probability within the model for the specific gesture

being recognized. This adjustment can be done using the Forward algorithm or the

Baum-Welch algorithm, a discussion for both of which can be found in [44]. Once the

training is complete, gestures can be evaluated against the different models using the

Forward-Backward algorithm or the Viterbi algorithm to recognize individual or discrete

gestures. Additionally, at this point the Viterbi algorithm can be used as a solution to the

decoding problem to identify continuous gestures. A discussion of the Forward-

Backward and Viterbi algorithms can be found in [44].

2.4.2 Kalman Filtering

 Kalman filtering uses information about the current state of some system, a linear

model of behavior, and an element of Gaussian noise to estimate the next state of the

system [12]. Kalman filtering is a recursive solution. This means that each new estimate

of the state is calculated using the previous estimate and the new input data.

Consequently, only the previous estimate must be stored reducing the amount of data that

both must be stored and that must be used in the computations of the new estimate. This

makes Kalman filtering more computationally efficient than using the entire set of

previously observed data to calculate the next estimate. In the case of motion tracking,

13

the filter will predict the position of an object’s bounding box within a two dimensional

image [28]. In many cases of motion tracking, the time intervals between measurements

are small enough (i.e. one measurement per frame, with high frame rates) that velocity is

considered constant and acceleration is considered as white noise in modeling the motion

of an object. Therefore, the object being tracked is given a position and a velocity. Using

the initial state, which is calculated by finding the change in position between two

frames, and the equation of motion that is known to describe the motion of objects within

a given domain, a prediction can be calculated of the location of an object in the next

corresponding state. This helps to reduce the search space for the recognition task. The

downside to using Kalman filtering is that it can be quite cumbersome to create and apply

a proper model for estimating the behavior of the system and each system must be

specifically tailored to the domain [28].

2.4.3 Particle Filtering

 The main idea behind a particle filter is the application of a Bayesian filter, based

on sample sets of input data, to incoming data [38]. Particle filtering uses random

sampling to compare color histograms at certain points using a similarity measure, such

as Bhattacharyya distance, and then estimates the point in the image that most closely

matches that distance [38]. One advantage to particle filtering is that it requires no model,

but as a result, has a higher computational load [12]. This algorithm does better when the

underlying model of behavior is not linear and the element of noise is not Gaussian. With

particle filtering, an increase in the dimensionality of a problem leads to a significant

14

increase in computational complexity. Particle filtering can be more accurate than

Kalman Filtering, but it comes at a cost to computational complexity. A hybrid approach

with an initial step using a Kalman filter to reduce the dimensionality of the problem

followed by the use of a particle filter to come up with a final solution can lead to a

system that benefits from the lower computational complexity of the Kalman filter with

the increased accuracy of the particle filter [55].

2.4.4 Normalized Cross-Correlation

 Normalized cross-correlation is a statistical method for identifying a pattern

within a larger set [11]. An early use for cross-correlation was in dynamic signal

processing, where a signal was being searched for the occurrence of a particular wave

form [11]. As it turns out, this method can also be applied to many other areas where

pattern recognition is useful, including image processing [11]. In image processing, the

registration of a sub-image within a larger image can be calculated using cross-

correlation. The basic idea behind cross-correlation is that the similarity (with regards to

Euclidean distance) is calculated between the smaller target image and all possible areas

of the larger image in which the search is taking place. The formula for this calculation

is:

1

n− 1

�

x,y

�
f (x, y)− f̄

�
(t (x, y)− t̄)

σfσt

15

Where f (x, y) is the image data of the sub-image, t (x, y) is the image data of the

template, n is the number of pixels in f (x, y) and t (x, y), f̄ is the mean of the sub-image

data, t̄ is the mean of the template data, and σf and σt are the respective standard

deviations of the sub-image and template data.

 The sub-image within the larger search image that has the greatest cross-

correlation value is the closest match to the template image. The strength of this

approach is that the implementation of the calculation is relatively simple. This

simplicity does come with a cost. Cross-correlation is both scale, rotation, and

perspective dependent, and for this reason is only useful in specific situations [25].

Additionally, if the smaller target image is rather homogenous and the larger search

image has many areas with similar colors, the algorithm will not perform very well. On

the other hand, in environments that don’t change dramatically and have significant

contrast, this technique can be useful for tracking a particular sub-image as it moves

within a larger image.

16

2.5 Systems based on Spatial Information

 The number of systems that operate on, analyze and display spatial information is

increasing at a rapid pace. The primary reason that this is notable is that many of these

tools are being created with the casual user in mind, as opposed to a narrow field of

experts for which tools like these were designed in the past. Here, these systems are

categorized in to four main groups: 2-Dimensional Mapping Applications, 3-Dimensional

Mapping Applications, 3-Dimensional Virtual Environments, and Geographical

Information Systems (GIS).

2.5.1 2D Mapping Applications

Figure 3. Screen capture of the Google Maps 2D-mapping application. In this screen
capture the focus is on Los Angeles and surrounding cities.

17

 2D mapping applications are among the most common emerging spatial

information applications. For the general public, this class of application holds the most

utility on a day-to-day basis. Applications such as Google Maps from Google, Inc. [17],

Yahoo Maps from Yahoo and Mapquest [54], Virtual Earth from Microsoft [34], all can

be used by the casual user to find directions to and from user defined locations. One sign

of how ubiquitous these applications are becoming is the fact that these mapping

applications are being integrated directly in to the largest search engines in use today. 2D

mapping of the physical world is not the only type of application that uses spatial

relationships though. Another application type that is similar is the idea map, or concept

map, which maps some concept space instead of mapping the physical world.

Applications such as XMind from XMind, Ltd. use location and proximity to establish

relationships between ideas creating a two or three dimensional space to navigate the

ideas [53].

18

2.5.2 3D Mapping Applications

Figure 4. Screen capture of the NASA World Wind 3D-mapping application. In this
screenshot several European countries and landmarks are present.

 3D mapping applications are a natural extension of 2D mapping applications. By

incorporating the 3rd dimension, a more realistic representation of the space being

mapped can be created. This can lead the user to gain a more thorough understanding of

a space. For a long time, the only systems that could handle 3D mapping were large

systems accessible only to large institutions. Over the last decade as computers have

become more powerful and data storage and bandwidth have become cheaper, systems

like Google Earth [15], Virtual Earth from Microsoft [34], and World Wind from NASA

[37] have become available to a more mainstream user base. To show just how

19

mainstream, as of February 2008, over 350 million people have downloaded Google

Earth since it was released [16].

2.5.3 Virtual Environments

Figure 5. Screen capture of the Second Life 3D Virtual Environment. The character is in a
fictional place called Help Island.

 Virtual environments are another type of application that relies on navigating a

space. These are usually not a representation of the real world, but in the case of Second

Life from Linden Labs, it is a fictional place for people to meet, play games, chat, buy

and sell things, and create user defined places and objects [47]. In Entropia from

MindArk, it is a game, but with an economy that allows users to turn in game money into

real dollars and vice versa [9]. Kaneva is a world in which people create avatars that can

20

meet and play games and chat, but it is also a place where companies can create content

and use it as advertising [24]. These are all make believe worlds, but the same 3D rules

that apply to mapping, apply in these applications as well. So the needs for navigation

are the same as in the 3D mapping tools.

2.5.4 Geographic Information Systems

Figure 6. Screen capture of the ArcGIS Geographic Information System from ESRI. In
this screen capture, a groundwater protection model is transposed over a geographical

region [2].

21

 Geographic Information Systems (GIS) are focused less on casual use and more

on using data that has a spatial component for research, emergency response and

coordination, planning, and asset management. ArcGIS from ESRI is a system that can

be tailored for business, governmental, or educational uses [2]. Information about

demographics, or historical information for a given region can be overlaid on a map for

which that information is applicable. MapInfo from Pitney Bowes has been used for

everything from mapping railways to analyzing crime in major cities to managing water

systems to keep them flowing efficiently [32]. Similarly, GeoMedia from Intergraph is

targeted towards security, government, and infrastructure projects [14].

22

3. Design and Implementation

3.1 Inspiration

 The design of this application was guided by a particular vision of how a typical

user might actually use head gestures for navigating spatial data in the real world, and

how it could be made accessible to a large number of users. Many of the studies related

to head tracking require very specific hardware as well as a custom, and sometimes

laborious, setup, such as the setup seen in Figure 7.

Figure 7. A complicated apparatus for tracking the movements and location of a user’s

head [40].

 For this application, the vision was to have a system that works across platforms

and with very little setup required. Obviously, there are certain hardware requirements,

such as a camera, but these are becoming more prevalent with the built-in cameras in

most new lap-top computers. Because lap-top computers are a major driver for cameras

23

becoming commonplace, and because the trackpad input method is also being evaluated,

many of the design decisions are made with a lap-top computer in mind.

3.2 Key System Requirements

 With the previously discussed vision as a guide, a number of decisions were made

about the requirements of the system upon which the application would run. The first

critical requirement was that the head tracking must be done using a single, common

webcam. This was important because they are readily available and don’t require

significant cost or complicated set up, increasing the number of users to which this

application would be accessible. The second requirement was that the system should not

require more than average computing power. In this case, average computing power was

defined as a system with a 1.7 Ghz Intel Pentium 4 CPU, 1 GigaByte of RAM, and an

integrated graphics chipset. Again, this requirement was specified in the spirit of

increasing the number of users that could potentially use the system. Finally, the last

system level requirement for this application, was that it be operating system

independent. This requirement was decided upon, again, to open up the application to as

many users as possible. A summary of these system level requirements and the

evaluation is included in Table 1.

24

REQUIREMENT EVALUATION CRITERIA

SR-1

SR-2

SR-3

Tracking must be completed using a single,
common webcam

Application can use a single webcam, either
built in to the system or external

The application must run on a system with
average computing power

The application can run on a system with a
1.7 GHz Intel Pentium 4 CPU, 1 GB of

RAM, and an integrated graphics chipset

The application must be operating system
independent

The application can run on a system
running Window, OSX, or Linux

Table 1. System-level requirements and the corresponding evaluation criteria.

3.3 Key Application Requirements

 With the system requirements specified such that a large number of users could

use the application with their current systems, the application also has a set of

requirements to ensure that the evaluation of the head tracking as a method of user input

is focused and clear. The requirements are to have the majority of the screen show the

map and not be too encumbered by the application itself. The application must provide

feedback to the user so that the user can see that the tracking is occurring correctly and

also, so they may correct any issues with the training step required for the tracking

algorithm. This is especially important because the user is unfamiliar with this method of

input and this helps in reducing the learning curve by providing transparency of what the

application is seeing and how it is responding. The application must also provide a

mechanism to easily set up each evaluation task to streamline the data collection process.

In data collection process, users are timed in the completion of a series of tasks and the

accuracy of their performances are comparatively ranked between input methods for a

given task. For this reason, AR-3 is especially important to keep the user’s focus on the

tasks at hand, and not on the administration those tasks.

25

REQUIREMENT EVALUATION CRITERIA

AR-1

AR-2

AR-3

The majority of the screen must show the
map

The application does not take up more
space than a small corner of the map

The user must receive visual feedback from
the application regarding the state of

tracking as well as current position on the
map

The application provides a video stream
from the webcam with an overlay of lines

indicating the tracking decisions being
made be the application

The user must be able to set up a task or
reset a task easily

The application provides a button to set up
or reset a task with a single click

Table 2. Application-level requirements and their corresponding evaluation criteria.

3.4 Decision Criteria for Choosing the Tracking Algorithm

 In deciding which of the four tracking algorithms to use for this application, four

criteria were used in evaluating the algorithms. The first criterion was accuracy. For this

domain, is the algorithm accurate enough to do the job? The second criterion was speed

of execution. Could the algorithm run in real time? The third criterion was ease of

training and configuration. Could the algorithm easily be configured for different users?

The fourth criterion was ease of implementation. Could the algorithm reasonably be

expected to be implemented by a single person in an appropriate amount of time? Table 3

contains the results of the evaluation of these criteria across the four tracking algorithms.

26

ACCURACY SPEED TRAINING IMPLEMENTATION

Hidden
Markov
Model

Kalman
Filtering

Particle
Filtering

Cross-
Correlation

Very Accurate Fast Complex

Must be combined with a
recognition algorithm
leading to a complex

implementation

Accurate Fast Complex

Must be combined with a
recognition algorithm
leading to a complex

implementation

Very Accurate Slow Simple

Simple implementation,
but optimizations

including combining with
Kalman Filter add

complexity

Adequate Moderate Simple Simple

Table 3. Tracking algorithms and their evaluation results.

 In examining Table 3, Cross-correlation was determined to be the best fit due to

the adequate accuracy, fast-enough execution, considerable ease of configuration and

implementation.

27

3.5 Application Design

3.5.1 Interface Design

Figure 8. The interface of the application developed for this this. This is the screen the
user first sees when going to the appropriate URL.

 As seen in Figure 8, the interface is a small application overlay in the upper left

corner of a standard Google Map. On the left side of this overlay is a column of buttons

corresponding the each evaluation task. When one of these buttons is clicked, it sets the

starting and ending flags on the map for that given task. Additionally, it resets the center

of the map to the appropriate starting point for the given task.

28

 In the upper right of the application overlay is a panel that shows what the webcam is

seeing. Under this panel, there is a button under this webcam panel labeled “Train

Camera”. When the user clicks this button, the application then goes in to training mode

(Figure 9) where the user is asked to place their head in a predefined box in the webcam

panel and click the “Done” button. There is also the option to cancel the training at this

point which returns the user to the starting window. Once the user clicks done, the

application immediately goes in to tracking mode (Figure 10).

 In tracking mode, there is a small blue box that indicates the location of the reference

sub-image obtained during the training step, and a small red box that tracks the portion of

the current frame’s sub-image that most closely matches the reference sub-image. The

difference in location between these two boxes determines the direction and speed that

the underlying map pans. In tracking mode, there is a “Stop Tracking” button that stops

the tracking and brings the user back to the starting screen.

Figure 9. Training panel with instructions for the user as well as buttons to cancel or
finish the training step.

29

Figure 10. The panel that shows while tracking is occurring. The blue box indicates the
position of the template image retrieved from the training step and the red box indicates

the current position of the closest match to the template. The difference in these two
locations provides a vector to pan the map.

3.5.2 Class Design

 Four classes were used to design a solution to fulfill all of the requirements. The

main application class, called NoodleNav, is a class that controls the overall layout and

behavior of the application. It uses three classes to create the different parts of the

application. The class that displays the map on the screen is called GMap and is provided

by the Google Maps API. The class that provides the training functionality for the

application is called WebcamTrainingPanel. The purpose of this class is to provide the

user with instructions for the training step and then capture the reference image for use in

the head tracking. Finally, the class that performs the head tracking and map panning is

called WebcamPanel. The classes are presented in diagram form in Figure 11.

30

Figure 11. Object diagram for head tracking application.

3.6 Implementation

3.6.1 Development Language and Environment

 In order to fulfill the system-level requirement, SR-3, the decision was made to

use Adobe Flex 2.0 along with the Google Maps Flash/Actionscript API. This allowed

for the fulfillment of the requirement of operating system independence. Additionally, it

sped development by taking advantage of the webcam libraries included in the Adobe

Flash engine and the existence of the Google Maps Flash API. Finally, the choice to use

Google Maps was natural because Google Maps is now the most popular mapping

application on the internet, according to internet polling company Hitwise [22], which

would increase the likelihood that the users were already somewhat familiar with the

mapping environment.

NoodleNav

GMap

WebcamTrainingPanel

WebcamPanel

1 1

1

1

1

1

31

 Adobe Flex is an environment used to develop for the Adobe Flash engine. It uses

a combination of a markup language (MXML), and a functional language (Actionscript),

to specify the look and feel of the application, as well as provide the business logic

behind the user-interface. MXML is a markup language that is an extension of XML

used to define the layout and behavior of the user-interface components as well as define

the transitions between UI components. Actionscript is an object-oriented, functional

language that is generally used to provide the functionality to the application. A typical

Flex application will have various MXML files that define a user interface which in turn

uses Actionscript, either within the same file, or as an instance of some class, to

implement the required functionality. Once compiled, a single file with the

extension .swf is produced. A link to this file is imbedded in an HTML (noodleNav.html)

file which is distributed by the web server.

3.6.2 Interface

 The application is implemented using one MXML file (noodleNav.mxml) to define

the different aspects of the user interface while instantiating two different Actionscript

classes (WebcamTrainingPanel and WebcamPanel) to handle the training task and the

head tracking/map panning respectively. Initially, there was some confusion from users

because the panel was not acting like a mirror, but instead showing things exactly as the

camera was seeing them, so when the user looked left, in the panel it looked as if they

were looking to the right. Once this was changed to act more like a mirror, it became

much more user friendly.

32

3.6.3 Algorithms

3.6.3.1 Training Algorithm

 Because the training step is not the primary focus of this research, the algorithm

chosen for training is very simple. It requires the user to handle the placement of their

head within the webcam frame and then assumptions about head position, size, and facial

structures are made to estimate the location of the area of the face around the eyes and

nose. This meant that a certain spot in the frame is always used as the reference sub-

image. The eyes and nose are important, because this area provides enough detail and

contrast within an image to differentiate it from other elements of the face. The logic for

this is implemented in the Actionscript class called WebcamTrainingPanel. This training

step is an area that could be improved. Some ideas for improvement are presented in the

future work section of this paper.

3.6.3.2 Tracking Algorithm

 The algorithm used to complete the head tracking task is an implementation of

cross-correlation. At a regular interval of 75 ms, the frame from the image stream

coming from the webcam is processed using cross-correlation. The calculation of the

cross-correlation is done with the reference image being the sub-image obtained during

the training step and the search space is a larger sub-image of the frame captured from the

webcam. The size and location of the search space is based on the location of the

previous results of the cross-correlation calculation. By realizing that a user’s head is

33

only going to move so far from frame to frame, the search space can be constrained to an

area just around the previously calculated result of the cross-correlation. This improves

performance of the tracking considerably by reducing the area to be searched. Once the

search space is established, the calculated sub-image with the highest cross-correlation

value in the search space (calculated using the formula described previously in the related

work section), is the best match to the reference sub-image. Using this technique, the

area in the image that is the closest match to the sub-image will be updated and

consequently tracked at a rate of about 14 times per second. This rate was empirically

determined to provide a sufficiently smooth experience while also providing adequate

performance on many different systems. Cross-correlation was chosen for several

reasons, the first of which was that cross-correlation is relatively easy to implement and

achieve adequate performance with images of this size. If the images being used were

higher resolution, cross-correlation might not be fast enough to provide smooth tracking

on an average system. Another reason cross-correlation was chosen was due to the nature

of the webcam and head tracking, in that the image is fairly static (i.e. the differences

from frame to frame are often small), because the movements are often small head turns.

For this specific type of situation, cross-correlation works well. For this system, the

cross-correlation tracking algorithm was implemented in the WebcamPanel Actionscript

class.

34

3.6.3.3 Translating Tracking into Movement of the Map

 The translation of the user’s movements into movements of the map is relatively

straightforward. The training step provided the anchored location of the original screen

capture. The position of the subsequent sub-images that are retrieved during tracking are

compared to the position of the sub-image captured during the training step. The

difference in these positions gives a vector of direction and magnitude which is then used

to make a call to the PanBy method of the GMap object provided by the Google Maps

API. This, in turn, leads to the map panning by the appropriate amount and in the

appropriate direction to match the user’s movements.

35

4. Evaluation Methodology

4.1 Overall goal of evaluation

 The primary goal behind the methodology of this evaluation was to determine

how well the head tracking performs the task of panning a two-dimensional map,

compared to using a mouse or touchpad as the primary input. To this end, the total

evaluation task consisted of a short description of the purpose of the experiment, as well

as a few instructions on the use of the different input methods, how the application

works, and how the evaluation would proceed. This was followed by a 10 minute period

for the user to familiarize themselves with the head tracking, both in training the system

and in its use. This period was followed by the completion of five tasks using the mouse,

the trackpad, and the head tracking.

 Since every user tested has had some experience with a computer, the tasks

chosen increased in complexity to act as a sort of tutorial for the head tracking. In the

first three tasks, where multiple locations in differing directions were used, the locations

were chosen so that the distance from the starting location to the ending location was

approximately the same. The first task was to navigate from a starting point in downtown

Los Angeles, due west stopping at the Hill Crest Country Club, or due east stopping at

Whittier Narrows Golf Course. The second task was to navigate from downtown Los

Angeles, due north or due south, to Glendale or South Gate respectively. The third task

was to navigate from the starting point in downtown Los Angeles northeast to Pasadena,

northwest to Universal Studios, or southwest to Inglewood. The fourth task was to

navigate from the starting point in downtown Los Angeles to San Pedro, following the

36

110 freeway south as closely as possible, while still trying to complete the task in a

timely manner. Finally, the fifth task was to start from the intersection of the 405 and 110

freeways, follow the 405 freeway northwest to the 105 freeway, then follow the 105

freeway east to the 110 freeway, then follow the 110 freeway south back to the starting

point, completing a full loop. A summary of these tasks can be found in Table 4. After

these five tasks were completed, the last part of the evaluation was a free form verbal

feedback period, where the user could talk about their thoughts related to the project.

TASK DESCRIPTION

Task 1

Task 2

Task 3

Task 4

Task 5

Navigate from downtown Los Angeles, due east or due west, to the Whittier Narrows
Golf Course or the Hill Crest Country Club, respectively

Navigate from downtown Los Angeles, due north or due south, to Glendale or South
Gate, respectively

Navigate from downtown Los Angeles, northeast to Pasadena, northwest to Universal
Studios, or southwest to Inglewood

Navigate from downtown Los Angeles to San Pedro, following the 110 freeway south, as
closely as possible

Navigate from the intersection of the 405 and 110 freeways, along the 405 freeway to the
105 freeway. Then follow the 105 freeway east to the 110 freeway. Follow the 110

freeway south, back to the intersection of the 405 and 110 freeways.

Table 4. Panning tasks used in the evaluation of the application

 To effectively evaluate the performance of the tool, two important characteristics

were measured. The first was the objective measurement of time to complete a given

task. The second data collected was a subjective ranking of accuracy during the task.

This ranking was assigned by the test proctor based on observations of how closely the

user was able to follow the directions of the given task and it is a ranking of either 1, 2, or

3 relative to the other modes of input. That is to say, if the mouse was more accurate than

the head tracking, but the head tracking was more accurate than the touchpad, the

37

accuracy ranking would be as follows: Mouse - 1, Tracking - 2, and Touchpad - 3. In

order to keep the rankings consistent, the author proctored each evaluation.

4.2 Evaluation Plan Specifics

 The sample of users needed to contain a wide range of ages and prior experience

with a computer system. This was necessary to help determine both how easily someone

with considerable experience with a computer, as well as someone with relatively little

experience with a computer, could learn to use the application. To that end, 20 users were

evaluated on the system according to the plan described above. The 20 users’ ages

ranged from 14 to 62, with an average age of 34, and they all had at least some prior

experience with a computer. Their self-described experience with computers ranged from

two to five on a one to five scale (with one being no experience and five being an expert

who used computers on a daily basis in many different ways) and the users had an

average experience level of 3.65 on that same scale.

 Each evaluation was completed on the same Dell XPS 15-inch laptop, using the

same wireless mouse and built-in webcam. For each user, the time to complete the entire

evaluation task was approximately 30 minutes.

38

5. Results

5.1 Analytical approach

 In order to ascertain if the data was statistically significant, several statistical

techniques were employed in the analysis of the data. In this section those techniques

will be addressed along with the tools used to complete the analysis. All statistical

calculations were completed on a Macintosh MacBook Pro with OS X. In addition, the

Apple Numbers application was used for tabulation and the simple statistical calculations

such as Mean, Standard Deviation, and Standard Error. Numbers was also used to create

all of the graphs and charts. For the more sophisticated statistical calculations, such as

the one-way, within-subject ANOVA and the T-Test, a program called ezANOVA was

used. ezANOVA can be used for free and is available at [10].

5.1.1 Mean, Standard Deviation, Standard Error

 In completing the analysis of the data, the first step was a straight-forward check

using simple statistical calculations to get an idea of what message the data was

conveying. This was determined using a calculation of the between-subject mean time to

complete the five different tasks for each method input. The mean values provided a

simple comparison to evaluate the performance of each particular input method with

respect to the other methods. The higher the mean, the longer the task took on average to

complete. This alone is not sufficient to conclude that one input method is better than

another because mean averages are influenced very heavily by outlier data, particularly

with a small sample size such as the sample size used in this research. Standard

39

Deviation and Standard Error can give some hints as to how well the data actually

matches the mean, but even these are not enough to make any conclusions. A stronger

statistical test is needed.

5.1.2 One-way, Within-Subject ANOVA/T-Test

 The stronger statistical test used to analyze this data is the one-way, within-subject

analysis of variance (ANOVA). The result of the calculation provides a probability

measurement that the null hypothesis is true [18]. That is to say, it is the probability that

the data occurred purely by chance and was not affected at all by experimental

manipulations. This probability value is often referred to as the “p-value”. It is

commonly accepted that a p-value less than 0.05 means that the data is statistically

significant [18]. That number means that there is less than a five percent chance that the

Null Hypothesis is true, or that the data occurred purely by chance. Statistical

significance means that there is a very high probability that it was the experimental

manipulations that caused the observed results and not chance.

 An ANOVA is used because within the one factor, the input method, there are

three levels that are being compared. These levels are the results of the mouse, touchpad,

and head tracking respectively. A T-test is another statistical measure that can be used to

test the hypothesis by determining the probability that the null hypothesis is true [18].

Unfortunately, a T-test is insufficient because it only compares two levels at a time, e.g.

mouse vs. touchpad, which can be hard to interpret for meaning. One the other hand, an

ANOVA can compare all three together and provide a p-value for the entire data set.

40

Once significance is established for each task with the ANOVA, T-tests are used for

pairwise comparisons to do individual comparisons between input methods to determine

which comparisons were statistically significant, which approached significance, and

which were not significant at all.

 One other item of note, is that an ANOVA assumes that the data represents a

normal distribution. The ANOVA method is quite robust to violations of this assumption

[18], but in the case that the data are too far out of normal, certain data transformations

can be applied to fit the data in to a more normal distribution [18]. If these data

transformations are insufficient, non-parametric calculations can be used, which do not

require the data to be normal, but can be harder to calculate and interpret [18]. The data

collected for this thesis was also analyzed with the non-parametric Kruskal-Wallis

ANOVA, and there was not a significant difference between the values of the one-way,

within-subject ANOVA and the Kruskal-Wallis ANOVA. Due to this similarity and to

ease interpretation of the results, only the one-way, within-subject ANOVA is presented.

5.2 Results

 For each task a bar graph with the Average (Mean) Time for completion, the

Average (Mean) Accuracy Rack and standard error for both are presented. The graph

contains the data for each of the input methods for the given task. In addition, a table

with the ANOVA calculated p-value for the entire task and the T-test calculated p-values

for the pairwise comparisons are presented. Finally, these values were calculated over the

entire dataset, combining all five tasks into one dataset, and that data is presented as well.

41

5.2.1 Task 1 - East and West Panning

 In task 1, which is focused on east and west panning only, users were fastest and

most accurate with the Mouse with an average completion time of 6.88 seconds and an

average accuracy rank of 1.65, where 1 is the most accurate and 3 is the least accurate.

The second fastest as well as the second most accurate was the head tracking with an

average time of completion of 8.41 seconds and an average accuracy rank of 1.70. In this

task, the accuracy rank of the head tracking was very close to that of the mouse. Finally,

the touchpad was slowest with an average time of completion of 9.80 seconds, and an

average accuracy rank of 2.65. This can be seen in Figure 12.

Figure 12. Average Completion Times for Task 1.

0

2.75

5.50

8.25

11.00

Mean Average

8.41
9.80

6.89

Se
co

nd
s

Mouse Touchpad Tracking

42

 One interesting result to note is that, after normalizing the mean averages of the

accuracy and time values so they can be plotted on the same chart, (see Figure 13), a

relationship can be seen. The faster devices were more accurate and the slower device

was less accurate.

Figure 13. Normalized Mean Completion Time and Normalized Mean Accuracy Rank for
task 1.

 Finally, in performing the ANOVA on the data for task 1, the overall p-value

indicates that the data is indeed statistically significant with a value p<0.000529. In

looking at the p-values of the pairwise comparisons, the touchpad versus the head

tracking comparison approaches significance, but falls just short with p<0.0893. The

mouse versus touchpad comparison and the mouse versus head tracking comparison are

both statistically significant with p-values of p<0.005 and p<0.0108, respectively. That is

0

0.125

0.250

0.375

0.500

Mouse Touchpad Tracking

Sm
al

le
r

is
 B

et
te

r

Normalized Mean Completion Time
Normalized Mean Accuracy Rank

43

to say that the there was approximately one percent chance that the results occurred

purely due to chance. Table 5 shows the results of the ANOVA analysis.

P-VALUE SIGNIFICANCE METHOD

Overall

Mouse vs.
Touchpad

Mouse vs.
Tracking

Touchpad
vs. Tracking

< 0.000529 Significant ANOVA

< 0.0005 Significant T-Test

< 0.0108 Significant T-Test

< 0.0893 Approaching
Significance

T-Test

Table 5. P-values for task 1 data, both overall and for each pairwise comparison.

5.2.2 Task 2 - North and South Panning

 Task 2 was focused solely on north and south panning motions. In this task, users

were again fastest and most accurate using the mouse, with an average time of

completion of 5.46 seconds and an average accuracy ranking of 1.30. The head tracking

input method was second fastest with an average time of completion of 9.50 seconds and

an average accuracy ranking of 1.95. The slowest input method was again the touchpad

with an average time of completion of 12.24 seconds and an average accuracy ranking of

2.75. The average times of completion for all three input methods are presented in

Figure 14.

44

Figure 14. Average time to complete task 2 for all three input methods.

 When looking at the normalized average time to complete the task alongside the

normalized average accuracy rank (Figure 15), the plots look very similar to the table

from task 1, showing that the faster input methods were also more accurate for task 2.

0

3.50

7.00

10.50

14.00

9.50

12.24

5.46

Se
co

nd
s

Mouse Touchpad Tracking

45

Figure 15. Normalized Mean Completion Time and Normalized Mean Accuracy Rank for
task 2.

 As with task 1, the p-values for task 2 show statistical significance with an overall

p < 0.000006 calculated using ANOVA. In the pairwise comparisons, there is a similar

situation to task 1. The p-value of the mouse versus the touchpad is a statistically

significant p < 0.0001. The p-value of the mouse versus the tracking input method also is

a statistically significant p < 0.0001. The p-value for the touchpad versus the tracking is

p < 0.0804 which is approaching significance, but actually a bit short. These values can

be seen in Table 6.

0

0.125

0.250

0.375

0.500

Mouse Touchpad Tracking

Sm
al

le
r

is
 B

et
te

r

Normalized Mean Completion Time
Normalized Mean Accuracy Rank

46

P-VALUE SIGNIFICANCE METHOD

Overall

Mouse vs.
Touchpad

Mouse vs.
Tracking

Touchpad
vs. Tracking

< 0.000006 Significant ANOVA

< 0.0001 Significant T-Test

< 0.0001 Significant T-Test

< 0.0804 Approaching
Significance

T-Test

Table 6. P-values for task 2 data, both overall and for each pairwise comparison.

5.2.3 Task 3 - Northeast, Northwest, and Southwest Panning

 For task 3, users were asked to pan to points on the map that were northeast,

northwest, and southwest from the starting point in Los Angeles. In this task, users were

again fastest panning using the mouse, with an average task completion time of 4.93

seconds and an average accuracy rank of 1.60. Using the head tracking, the users had an

average completion time of 9.23 seconds and an average accuracy rank of 1.65, again

besting the touchpad, which had an average completion time of 11.11 seconds and

average accuracy rank of 2.75. The average completion times for task 3 are presented in

Figure 16.

47

Figure 16. Average time to complete task 3 for all three input methods.

 In plotting the normalized average time to completion next to the normalized

average accuracy rank, we see again that the faster methods of input were also the more

accurate methods of input. In this case though, despite the fact that the mouse was quite

a bit faster, the head tracking was nearly as accurate. This plot can be seen in Figure 17.

0

3.25

6.50

9.75

13.00

9.23
11.11

4.93

Se
co

nd
s

Mouse Touchpad Tracking

48

Figure 17. Normalized Mean Completion Time and Normalized Mean Accuracy Rank for
task 3.

 In task 3, the overall significance of the results, as calculated using ANOVA,

showed statistical significance with p < 0.0006. Looking at the individual pairwise

comparisons, the p-value of the mouse versus touchpad is significant at p < 0.001. The p-

value of the mouse versus tracking is also significant at p < 0.001. In looking at the

variability between the touchpad versus the tracking, there is no significance in the result

with p < 0.2605. These results can be found in Table 7.

0

0.125

0.250

0.375

0.500

Mouse Touchpad Tracking

Sm
al

le
r

is
 B

et
te

r

Normalized Mean Completion Time
Normalized Mean Accuracy Rank

49

P-VALUE SIGNIFICANCE METHOD

Overall

Mouse vs.
Touchpad

Mouse vs.
Tracking

Touchpad
vs. Tracking

< 0.0006 Significant ANOVA

< 0.0001 Significant T-Test

< 0.0001 Significant T-Test

< 0.2605 Not Significant T-Test

 Table 7. P-values for task 3 data, both overall and for each pairwise comparison.

5.2.4 Task 4 - Following a Long Path in One Main Direction

 In task 4, users were asked to follow a highway a considerable distance. In this

task, the tracking input method is the fastest with an average time of completion of

15.06 seconds and an average accuracy rank of 1.90. The mouse was the second fastest

with an average time of completion of 17.68 seconds and an average accuracy rank of

1.55. Finally, the touchpad was slowest, with an average time of completion of 25.01

seconds and an average accuracy rank of 2.55.

50

Figure 18. Average time to complete task 4 for all three input methods.

 Plotting the normalized averages of the time of completion and the average

accuracy rank on the same chart, there is a little difference in this task compared to the

previous three. For the first time the fastest input method is not the most accurate. In

task 4, the fastest input method is the tracking, but the most accurate method is the

mouse. Again, the touchpad is the least accurate of the three input methods. These

results can be seen in Figure 19.

0

7.00

14.00

21.00

28.00

15.06

25.01

17.68
Se

co
nd

s

Mouse Touchpad Tracking

51

Figure 19. Normalized Mean Completion Time and Normalized Mean Accuracy Rank for
task 4.

 The overall differences in the average completion times for task 4 proved to be

statistically significant with a value of p < 0.000001. In comparing the variance of the

data for the mouse versus the touchpad, it proved to be significant with a value of p <

0.0001. In comparing the variance between the mouse and the tracking, there was no

significance with p < 0.1337. Finally, the variance between the touchpad and the tracking

input, there is again statistical significance with p < 0.0001. Table 8 has all of the

calculated p-values.

0

0.125

0.250

0.375

0.500

Mouse Touchpad Tracking

Sm
al

le
r

is
 B

et
te

r

Normalized Mean Completion Time
Normalized Mean Accuracy Rank

52

P-VALUE SIGNIFICANCE METHOD

Overall

Mouse vs.
Touchpad

Mouse vs.
Tracking

Touchpad
vs. Tracking

< 0.000001 Significant ANOVA

< 0.0001 Significant T-Test

< 0.1337 Not Significant T-Test

< 0.0001 Significant T-Test

Table 8. P-values for task 4 data, both overall and for each pairwise comparison.

5.2.5 Task 5 - Following a Circular Route Covering Several Directions

 For task 5, users were asked to follow a series of freeways which formed a loop,

so that the starting point was also the ending point. In this task, the mouse was again the

fastest method of input with an average completion time of 15.43 seconds and average

accuracy rank of 1.85. The tracking input method was not much slower at 18.17 seconds,

and it had an average accuracy rank of 1.70. Finally, the touchpad was significantly

slower than the other two, with an average completion time of 28.09 seconds and an

average accuracy rank of 2.45. Figure 20 shows a comparison of average completion

times between the three input methods.

53

Figure 20. Average time to complete task 5 for all three input methods.

 In plotting the normalized average completion times alongside the normalized

average accuracy rank, the previous observation holds that the input methods that are

faster are also more accurate. The mouse and head-tracking are both very close in

average completion time and average accuracy rank, so the slight violation of this

observation is likely due to simple variation in the data. Figure 21 shows these two data

plotted on the same chart.

0

8.00

16.00

24.00

32.00

18.17

28.09

15.43

Se
co

nd
s

Mouse Touchpad Tracking

54

Figure 21. Normalized Mean Completion Time and Normalized Mean Accuracy Rank for
task 5.

 In task 5, the overall differences in the completion times were statistically

significant with p < 0.000001. Additionally, all three pairwise comparisons were

statistically significant, with the mouse versus touchpad having p < 0.0001, the mouse

versus head tracking having p < 0.0266, and the touchpad versus the head tracking having

p < 0.0005. Table 9 shows the results of the calculations.

P-VALUE SIGNIFICANCE METHOD

Overall

Mouse vs.
Touchpad

Mouse vs.
Tracking

Touchpad
vs. Tracking

< 0.000001 Significant ANOVA

< 0.0001 Significant T-Test

< 0.0266 Significant T-Test

< 0.0005 Significant T-Test

Table 9. P-values for task 5 data, both overall and for each pairwise comparison.

0

0.125

0.250

0.375

0.500

Mouse Touchpad Tracking

Sm
al

le
r

is
 B

et
te

r

Normalize Mean Completion Time
Normalized Mean Accuracy Rank

55

5.2.6 Overall Results

 The final piece to the puzzle is to look at the overall results in order to assess the

performance of the different input methods compared to each other. For this, all results

for each task are included in one table and the averages are all calculated. In doing this,

the mouse came out on top with an average completion time of 10.07 seconds and an

average accuracy rank of 1.59. The head tracking input method was the next fastest, with

an average completion time of 12.07 seconds and an average accuracy rank of 1.78.

Finally, the touchpad was the slowest, with an average completion time of 17.25 seconds

and an average accuracy rank of 2.63. Figure 22 shows the average completion times

with the standard error bars.

Figure 22. Overall Average completion times with standard error bars for all three input
methods.

0

5

10

15

20

12.071

17.248

10.074

Se
co

nd
s

Mouse Touchpad Camera

56

 When comparing the normalized means of the completion times and the accuracy

ranks for all tasks, the previous observation holds true in that the faster the method of

input, the more accurate as well. See Figure 23 for the normalized average completion

time and normalized average accuracy rank plotted on the same chart.

Figure 23. Normalized Mean Completion Time and Normalized Mean Accuracy Rank
Overall.

 Using a one-way, within-subject ANOVA, the overall set of data is statistically

significant with p < 0.000001. Looking at the pairwise comparisons, the data of the

mouse versus touchpad is significant with p < 0.0001. The comparison between the

mouse and the head-tracking input method is significant with p < 0.0003 and the

comparison between the touchpad and the head-tracking input method is significant with

p < 0.0001. Table 10 has the data and calculation method for the overall dataset.

0

0.075

0.150

0.225

0.300

Mouse Touchpad Tracking

N
or

m
al

iz
ed

 A
ve

ra
ge

s

Normalized Mean Completion Time
Normalized Mean Accuracy Rank

57

P-VALUE SIGNIFICANCE METHOD

Overall

Mouse vs.
Touchpad

Mouse vs.
Tracking

Touchpad
vs. Tracking

< 0.000001 Significant ANOVA

< 0.0001 Significant T-Test

< 0.0003 Significant T-Test

< 0.0001 Significant T-Test

Table 10. P-values for the overall data, both overall and for each pairwise comparison.

5.3 User Comments

 After completing the data collection portion of the evaluation, each user was

given the opportunity to provide verbal feedback about the tasks they had just completed

and the different input methods used. The comments were varied, but after grouping and

tallying the comments, there were six different comments that came up 4 times or more.

With respect to preferences of which input method they liked best, of the 20 users

surveyed, 11 of them specifically mentioned that the mouse was their preferred method of

input. 13 users mentioned specifically that they preferred the head tracking to the

touchpad, and nine users said they didn’t like using the touchpad at all. Of note, no user

preferred to use the touchpad over the mouse or head tracking, while three users actually

preferred using the head tracking over the mouse. Some users didn’t mention any

preference.

 The rest of the comments that came up most were related to feedback about the

head tracking tool. Five users mentioned that they felt with practice they would actually

improve further with the head tracking input method, and therefore felt that the

evaluation would have done well to allow for more practice. Five users also mentioned

58

that they would have liked the ability to adjust the sensitivity of the tracking based on

personnel preference as some users felt the panning wasn’t fast enough and others felt

that it was too fast. Three users mentioned that having to maintain a certain posture was

a little tiring. Finally, four users pointed out that they would like an easier way of turning

the tracking on and off to help manage unintentional panning.

 Evaluating the use of the head tracking input method, the general response was

positive, with some users saying that it was more intuitive for them to look where they

wanted to pan to, as opposed to having to “drag” the underlying map in the opposite

direction of the desired direction. In one case, the user had never used a touchpad or the

head tracking before the task and by the end that user felt that the learning curve for the

head tracking was significantly faster compared to the touchpad. Some users felt that the

hardest part of using the head tracking was stopping the panning where they wanted,

because they had a tendency to move their eyes and forget to move their heads. Four

users had a tendency to look down when they wanted to pan up and look up when they

wanted to pan down, but they were fine panning left and right, so they would have liked

an option to invert the vertical panning. As far as usefulness was concerned, a couple of

users mentioned that they would use it, others mentioned that, while they felt the head

tracking was “cool”, they couldn’t see themselves using it in practice. One user studying

to be an occupational therapist mentioned that they could see some clinical uses for the

technology.

59

5.4 Analysis

 The results from the previous section indicate that, with respect to panning, the

mouse is both the fastest and most accurate input method. Considering that every user

had significantly more experience with the mouse, this result is not surprising. Head

tracking is about 20 percent slower than the mouse but nearly as accurate. Finally, the

touchpad is both the slowest, 70 percent slower than the mouse, and the least accurate.

These results prove to be highly statistically significant as calculated using a one-way,

within-subject ANOVA for the overall comparison and a t-test for the individual pairwise

comparisons. In only a few cases do the pairwise comparisons fail to meet the criteria for

significance and in those cases the times are very close to each other. The qualitative

responses from the users seem to bear out these quantitative results as generally users

preferred the mouse, with occasional preference for the head tracking, while almost

universally disliking using the touchpad.

 In evaluating the performance of head tracking versus the other two input

methods, head tracking performed best in the last two, more complicated, tasks. In these

tasks, the users had to pan longer distances than in the first three tasks. In several cases,

users were actually fastest and most accurate with the head tracking by this point in the

evaluation. It was during these tasks also that most users seemed to respond positively to

the head tracking, with one user going so far as to say “Now I get it!” while completing

task 4 following the long stretch of freeway.

60

6. Contribution

 In summary, this study shows that with limited exposure and practice, users were

able to complete several panning tasks, ranging from simple to complex, using head

tracking as a method for input, in less time and more accurately than with the touchpad

on a laptop. Users were faster and more accurate with the mouse than with head tracking,

but as the tasks progressed, the performance gap between the mouse and the head

tracking began to shrink. It is possible that this is a reflection of the amount of

experience users had with a mouse versus head tracking, and that given more practice

head tracking could equal or surpass the performance of the mouse. The other possibility

for this performance gap shrinking is that the head tracking is not as well suited for the

simple panning tasks, but in more complex and longer panning tasks, it does better.

Further study is required to determine the reason for the increase in performance. The

quantitative data correlated with the qualitative data provided by the users, after the

evaluation tasks were completed, in that the touchpad was the most difficult and

frustrating method of input for panning, the mouse was the most comfortable, and the

head tracking was better than they expected and nearly as good as the mouse.

61

7. Research Validation

 Despite the fact that the research was performed with careful organization and

planning, there are a few weaknesses that must be addressed. The first weakness is that

the tasks were limited to one direction per input per task. So, for task 1 a particular input

method either went east or west, but not both. The reason for this was that the evaluation

required a significant amount of time, approximately 45 minutes, and to effectively

double the number of tasks required was considered too much to ask of volunteer users

who were not being compensated. As it was, users began to get fatigued toward the end

of each evaluation. It’s possible that a between subjects design could be employed to get

around this problem, but for the initial evaluation of this concept, it would have had its

own problems.

 The second weakness with the study is the method of evaluation for the accuracy

of each input method for the given tasks. The responsibility for ranking the accuracy fell

to the evaluator and was a subjective measure. To minimize the differences in evaluation,

the author was the only person to perform any of the evaluations, so that was consistent

across all users. A better approach would be to formulate a more objective measure of

accuracy that could be calculated either by separate evaluators, or perhaps by the tool

itself. One possibility for such a system could be to determine an idealized navigation

path and have the application calculate and record the deviation from that path. In doing

this, an objective score could be calculated for each input method and each task.

 Finally, a big weakness that was not addressed by this research is the differing

levels of user experience with the various input methods. The ideal case would be to

62

have users practice with all three for a significant amount of time, perhaps over several

days, and then do the evaluation. Due to time constraints, this was not possible in this

research, but it certainly warrants further study.

63

8. Future Work

 There are several areas into which this research could expand. The two main

areas for expansion are in the enhancement of the head tracking tool and in the evaluation

and test design. The test design has many options for enhancement. An automated way

to calculate the accuracy could enhance the accuracy data and might provide some more

specific insights on the different ways a user may make a mistake and correction with the

different input methods. The idea for another interesting study that could be performed

came from one of the users who mentioned that they felt their video game experience

helped them perform better with both the head tracking and the mouse. Additionally, one

user was a retired fighter pilot who had experience with missile targeting systems that

used head gaze for targeting; this user mentioned that the head tracking felt natural. It

would be interesting to design an experiment in which head tracking was used to navigate

a video game or flight simulator space and compare it to the other methods of input

common in that domain. Additionally, repeating the experiment with users who had

similar levels of experience with the mouse and the head tracking would be interesting, to

see if the head tracking would outperform the mouse or at least be comparable. The hard

part of doing that would be finding users with so little experience with the mouse, since it

is far and away the dominant method of input for computing. Finally, a simple

improvement to the test design would be to create a standard questionnaire for users to

fill out after completion of the various tasks as this would be helpful in making the

qualitative data easier to compare across users.

64

 Some improvements to the tool itself would be worthwhile towards enhancing

performance compared to the other input methods. Since the focus of this research was

to evaluate the concept of head tracking as a method of panning spatial data, the

algorithm chosen for the actual tracking was a compromise of acceptable performance

and easier implementation. Improving the performance of the head tracking, both in

different lighting conditions and in response time would be helpful. Additionally,

creating a more automated way of training the system, perhaps one that can handle users

in different starting positions would go a long way toward enhancing the user perception

of the system. Adding in other dimensions of control, such as zooming with a blink,

could provide a path for the tool to become more useful and practical for everyday use.

Finally, it is hard for the user to get the panning via head tracking to stop exactly where

they want it to, so the tracking and response to small movements could use some

refinement. Some combination of these enhancements would most likely improve the

results of this research.

 Extending the tool to explore how well head tracking would work in a 3D

environment, particularly in light of the demonstrated ease of use in the 2D environment,

would also be a worthwhile endeavor.

65

9. Conclusion

 This research set out to examine and evaluate the performance of head tracking as

an input method for panning 2D spatial information. This is an important step toward

removing the need for a user to occupy their hands with navigating through information,

either to enable disabled users or to enhance the capabilities of a typical user by allowing

them to use their hands for other tasks while navigation is completed with natural

motions like using head turn for control.

 This evaluation was completed in two parts. The first part was to create the head

tracking application. This application was created using Adobe Flex, Actionscript, and

the Google Maps API. It was created such that it is operating system independent and

has a low cost to use, only requiring an internet connection, a standard webcam, and the

Adobe Flash player. The second part consisted of 20 users completing five tasks of

increasing complexity with three input methods: mouse, laptop touchpad, and the head

tracking application. Each task was timed and an accuracy rank was assigned to each

input method for each task. The results proved to be statistically significant using a one-

way, within-subject ANOVA and revealed that the head-tracking was slightly behind the

mouse in performance, but significantly ahead of the touchpad.

 This paper concludes that, as a method of input, head tracking provides intuitive

and precise control for panning two-dimensional spatial data. With further application

refinement and user practice, head tracking may ultimately outperform the mouse in

navigating spatial information.

66

10. References

[1] Agrawal, Pyush, Ingmar Rauschert, Keerati Inochanon, Levent Bolelli, Sven
 Fuhrmann, Isaac Brewer, Guoray Cai, Alan MacEachren, and Rajeev Sharma.
 “Multimodal Interface Platform for Geographical Information Systems (GeoMIP)
 in Crisis Management.” In Proceedings of the 6th International Conference on
 Multimodal Interfaces. New York, NY, USA: ACM Press, 2004, 339-340, DOI=
 http://doi.acm.org/10.1145/1027933.1027997.

[2] ArcGIS from ESRI. Retrieved on November 16, 2009, from
 http://www.esri.com/software/arcgis/.

[3] Ashdown, Mark, Kenji Oka, and Yoichi Sato. “Combining Head Tracking and
 Mouse Input for a GUI on Multiple Monitors.” In CHI ’05 Extended Abstracts on
 Human Factors in Computing Systems. New York, NY, USA: ACM Press, 2005,
 1188-1191, DOI=http://doi.acm.org/10.1145/1056808.1056873.

[4] Atlas Gloves. Retrieved on November 16, 2009, from
 http://atlasgloves.org/.

[5] Bolelli, Levent. “Multimodal Response Generation in GIS.” In Proceedings of the
 6th International Conference on Multimodal Interfaces. New York, NY, USA:
 ACM Press, 2004, 355-355, DOI=http://doi.acm.org/10.1145/1027933.1028012.

[6] Cabral, Marcio C., Carlos H. Morimoto, and Marcelo K. Zuffo. “On the Usability
 of Gesture Interfaces in Virtual Reality Environments.” In Proceedings of the
 2005 Latin American Conference on Human-Computer Interaction. New York,
 NY, USA: ACM Press, 2005, 100-108, DOI=
 http://doi.acm.org/10.1145/1111360.1111370.

[7] Darrell, Trevor, Konrad Tollmar, Frank Bentley, Neal Checka, Louis-Phillipe
 Morency, Ali Rahimi, and Alice Oh. “Face-Responsive Interfaces: From Direct
 Manipulation to Perceptive Presence.” In Proceedings of the 4th international
 conference on Ubiquitous Computing. New York, NY, USA: ACM Press, 2002,
 135-151.

[8] Andrés del Valle, Ana C. and Jean-Luc Dugelay. “Online Face Analysis: Coupling
 Head Pose-Tracking with Face Expression Analysis.” In Proceedings of the Tenth
 ACM International Conference on Multimedia. New York, NY, USA: ACM Press,
 2002, 414-415, DOI=http://doi.acm.org/10.1145/641007.641093.

67

http://doi.acm.org/10.1145/1027933.1027997
http://doi.acm.org/10.1145/1027933.1027997
http://www.esri.com/software/arcgis
http://www.esri.com/software/arcgis
http://doi.acm.org/10.1145/1056808.1056873
http://doi.acm.org/10.1145/1056808.1056873
http://atlasgloves.org
http://atlasgloves.org
http://doi.acm.org/10.1145/1111360.1111370
http://doi.acm.org/10.1145/1111360.1111370
http://doi.acm.org/10.1145/641007.641093
http://doi.acm.org/10.1145/641007.641093

[9] Entropia Universe. Retrieved on November 17, 2009, from
 http://www.entropiauniverse.com/.

[10] ezANOVA Statistics Application. Retrieved on October 14, 2009, from
 http://www.sph.sc.edu/comd/rorden/ezanova/index.html.

[11] Fisher, R. B. and Oliver, P. “Multi-variate Cross-Correlation and Image
	
 Matching.” In 	
Proceedings of British Machine Vision Conference, 1995,
	
 623–632.

[12] Francios, Alexandre R.J., “Real-Time Multi-Resolution Blob Tracking.”
	
 IRIS Technical Report IRIS-04-422, University of Southern California,
	
 Los Angeles, April 2004.

[13] Freeman, William. T. and Craig D. Weissman. “Television Control by Hand
 Gestures.” In Proceedings of the International Workshop on Automatic Face- and
 Gesture-Recognition. Zurich, Switzerland: IEEE, 1995, 179-183.

[14] GeoMedia GIS Application from Intergraph. Retrieved on November 12, 2009,
 from http://www.intergraph.com/.

[15] Google Earth 3D Mapping Application. Retrieved on November 11, 2009, from
 http://earth.google.com.

[16] Google Earth Developer Blog. Retrieved on November 19, 2009, from
 http://google-latlong.blogspot.com/2008/02/truly-global.html.

[17] Google Maps 2D Mapping Application. Retrieved on November 19, 2009, from
 http://maps.google.com.

[18] Gravetter, Frederick. J. and Larry B. Wallnau, Statistics for the Behavioral
 Sciences. 6th Edition. Thomson-Wadsworth Publishing, Belmont, California,
 United States, 2004, p.124, 244, 432, 650. Print. ISBN 0-534-62203-8.

[19] Gunes, Hatice, Massimo Piccardi, and Tony Jan. "Face and Body Gesture
 Recognition for a Vision-Based Multimodal Analyzer." In Proceedings of the
 Pan-Sydney area workshop on Visual information processing. ACM, 2004, 19-28.

[20] Hansen, Thomas R., Eva Eriksson, and Andreas Lykke-Olesen. "Use your head:
 exploring face tracking for mobile interaction." CHI '06: CHI '06 extended
 abstracts on Human factors in computing systems. New York, NY, USA:
 ACM Press, 2006, 845-850.

68

http://www.entropiauniverse.com
http://www.entropiauniverse.com
http://www.sph.sc.edu/comd/rorden/ezanova/index.html
http://www.sph.sc.edu/comd/rorden/ezanova/index.html
http://iris.usc.edu/~irislib
http://iris.usc.edu/~irislib
http://www.intergraph.com
http://www.intergraph.com
http://earth.google.com
http://earth.google.com
http://google-latlong.blogspot.com/2008/02/truly-global.html
http://google-latlong.blogspot.com/2008/02/truly-global.html
http://maps.google.com
http://maps.google.com

[21] Hinckley, Ken, Y. Pausch, John C. Goble, and Neal F. Kassell. “A Survey of
 Design Issues in Spatial Input.” In Proceedings of the 7th annual ACM
 symposium on User interface software and technology. New York, NY, USA:
 ACM Press, 1994, 213-222.

[22] Hitwise Weblog. “Google Maps Surpasses Mapquest”. Retrieved on
 November 19, 2009 from
 http://weblogs.hitwise.com/heather-dougherty/2009/04/
 google_maps_surpasses_mapquest.html.

[23] Huang, X. and Y. Lin. “A vision-based hybrid method for facial expression
 recognition.” In Proceedings of the 1st international conference on Ambient
 media and systems. New York, NY, USA: ACM Press, 2008, Article 4.

[24] Kaneva Online Virtual World. Retrieved on November 17, 2009 from
 http://www.kaneva.com

[25] Kjeldsen, Rick. “Head Gestures for Computer Control.” In Proceedings of the
 IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and
 Gestures in Real-Time Systems. New York, NY, USA: ACM Press, 2001, 61-68.

[26] Kjeldsen, Rick and Jacob Hartman. “Design issues for vision-based computer
 interaction systems.” In Proceedings of the 2001 workshop on Perceptive user
 interfaces. New York, NY, USA: ACM Press, 2001, 1-8, DOI=
 http://doi.acm.org/10.1145/971478.971511.

[27] Kjeldsen, Rick, Anthony Levas, and Claudio Pinhanez. "Dynamically
 reconfigurable vision-based user interfaces." In Machine Vision and Applications,
 Vol.16, December 2004, 6-12, DOI=10.1007/s00138-004-0145-6.

[28] Kohler, Markus. “Special Topics of Gesture Recognition Applied in Intelligent
 Home Environments.” In Proceedings of the International Gesture Workshop on
 Gesture and Sign Language in Human-Computer Interaction. London, UK:
 Springer-Verlag, 1997, 285-296.

[29] Krum, David M., Olugbenga Omoteso, William Ribarsky, Thad Starner, and
 Larry F. Hodges. “Evaluation of a Multimodal Interface for 3D Terrain
 Visualization.” In Proceedings of the conference on Visualization '02. New York,
 NY, USA: ACM Press, 2002, 411-418.

69

http://weblogs.hitwise.com/heather-dougherty/2009/04/google_maps_surpasses_mapquest.html
http://weblogs.hitwise.com/heather-dougherty/2009/04/google_maps_surpasses_mapquest.html
http://weblogs.hitwise.com/heather-dougherty/2009/04/google_maps_surpasses_mapquest.html
http://weblogs.hitwise.com/heather-dougherty/2009/04/google_maps_surpasses_mapquest.html
http://www.kaneva.com
http://www.kaneva.com
http://doi.acm.org/10.1145/971478.971511
http://doi.acm.org/10.1145/971478.971511
http://doi.acm.org/10.1007/s00138-004-0145-6
http://doi.acm.org/10.1007/s00138-004-0145-6

[30] Lin, Yuan-Pin, Yi-Ping Chao, Chung-Chih Lin, and Jyh-Horng Chen. "Webcam
 Mouse Using Face and Eye Tracking in Various Illumination Environments." In
 Proceedings of the 27th Annual International Conference of the Engineering in
 Medicine and Biology Society. IEEE-EMBS. 2005, 3738-3741.

[31] Loewenich, Frank and Frederic Maire. “Hands-free mouse-pointer manipulation
 using motion-tracking and speech recognition.” In Proceedings of the 19th
 Australasian conference on Computer-Human Interaction: Entertaining User
 Interfaces, Vol. 251. 2007, 295-302. DOI=
 http://doi.acm.org/10.1145/1324892.1324955.

[32] MapInfo from Pitney Bowes. Retrieved on November 13, 2009 from
 http://www.pbinsight.com/products/location-intelligence/applications/mapping-
 analytical/mapinfo-professional/.

[33] Merdes, Matthias, Jochen Häu, and Matthias Jöst. "'SlidingMap': introducing and
 evaluating a new modality for map interaction." ICMI '04: Proceedings of the 6th
 international conference on Multimodal interfaces. New York, NY, USA: ACM,
 2004, 325-326. DOI=http://doi.acm.org/10.1145/1027933.1027989.

[34] Microsoft Virtual Earth 2D Mapping Application, now known as Bing Maps.
 Retrieved on November 17, 2009 from http://www.bing/com/maps.

[35] Morency, Louis-Philippe and Trevor Darrell “Head gesture recognition in
 intelligent interfaces: the role of context in improving recognition.” In
 Proceedings of the 11th International Conference on Intelligent User Interfaces.
 New York, NY, USA: ACM Press, 2006, 32-38, DOI=
 http://doi.acm.org/10.1145/1111449.1111464.

[36] Morimoto, Carlos H., Yaser Yacoob, and Larry Davis. "Recognition of Head
 Gestures Using Hidden Markov Models." In Proceedings of ICPR. IEEE, 1996,
 461-465.

[37] NASA World Wind 3D Virtual Globe Application. Retrieved on November 18,
 2009 from http://worldwind.arc.nasa.gov/.

[38] Nummiaro, Katja, Esther K. Meier, and Luc J. Van Gool. "Object Tracking with
 an Adaptive Color-Based Particle Filter." Proceedings of the 24th DAGM
 Symposium on Pattern Recognition. London, UK: Springer-Verlag, 2002,
 353-360.

70

http://doi.acm.org/10.1145/1324892.1324955
http://doi.acm.org/10.1145/1324892.1324955
http://www.pbinsight.com/products/location-intelligence/applications/mapping-analytical/mapinfo-professional/
http://www.pbinsight.com/products/location-intelligence/applications/mapping-analytical/mapinfo-professional/
http://www.pbinsight.com/products/location-intelligence/applications/mapping-analytical/mapinfo-professional/
http://www.pbinsight.com/products/location-intelligence/applications/mapping-analytical/mapinfo-professional/
http://doi.acm.org/10.1145/1027933.1027989
http://doi.acm.org/10.1145/1027933.1027989
http://www.bing/com/maps
http://www.bing/com/maps
http://doi.acm.org/10.1145/1111449.1111464
http://doi.acm.org/10.1145/1111449.1111464
http://worldwind.arc.nasa.gov
http://worldwind.arc.nasa.gov

[39] Oviatt, Sharon, Rachel Coulston, and Rebecca Lunsford. "When do we interact
 multimodally?: cognitive load and multimodal communication patterns." In
 Proceedings of the 6th International Conference on Multimodal Interfaces.
 New York, NY, USA: ACM Press, 2004, 129-136.

[40] Panerai, F., S. Hanneton, J. Droulez, and V. Cornilleau-Pérès. "A 6-dof device to
 measure head movements in active vision experiments: Geometric modeling and
 metric accuracy." In Journal of Neuroscience Methods 90 (1999): 97-106.

[41] Rauschert, Ingmar, Pyush Agrawal, Rajeev Sharma, Sven Fuhrmann, Isaac
 Brewer, and Alan Maceachren. "Designing a human-centered, multimodal GIS
 interface to support emergency management." GIS '02: Proceedings of the 10th
 ACM international symposium on Advances in geographic information systems.
 New York, NY, USA: ACM Press, 2002, 119-124.

[42] Rauschert, Ingmar. “Adaptive multimodal recognition of voluntary and
 involuntary gestures of people with motor disabilities.” In Proceedings of the 6th
 International Conference on Multimodal Interfaces. New York, NY, USA:
 ACM Press, 2004, 356-356, DOI=http://doi.acm.org/10.1145/1027933.1028013.

[43] Rigoll, Gerhard, Andreas Kosmala, and Stefan Eickeler. "High Performance Real-
 Time Gesture Recognition Using Hidden Markov Models." In Proceedings of the
 International Gesture Workshop on Gesture and Sign Language in Human-
 Computer Interaction. New York, NY, USA: ACM Press, 1998, 69-80.

[44] Roweis, S. and Z. Ghahramani. "A unifying review of linear gaussian models."
 Neural Computation 11 (February 1999): 305-345.

[45] Sato, Yoichi, Makiko Saito, and Hideki Koik. “Real-Time Input of 3D Pose and
 Gestures of a User’s Hand and Its Applications for HCI.” In Proceedings of the
 Virtual Reality 2001 Conference. New York, NY, USA: ACM Press, 2001, 79-79.

[46] Schöning, Johannes, Brent Hecht, Martin Raubal, Antonio Krüger, Meredith
 Marsh, and Michael Rohs. "Improving interaction with virtual globes through
 thinking: helping users ask "why?"." IUI '08: Proceedings of the 13th
 International Conference on Intelligent User Interfaces. New York, NY, USA:
 ACM Press, 2008, 129-138.

[47] Second Life Virtual World. Retrieved on November 19, 2009 from
 http://secondlife.com.

71

http://doi.acm.org/10.1145/1027933.1028013
http://doi.acm.org/10.1145/1027933.1028013
http://secondlife.com
http://secondlife.com

[48] Sparacino, Flavia, Christopher Wren, Ali Azarbayejani, and Alex Pentland.
 “Browsing 3-D spaces with 3-D vision: body-driven navigation through the
 Internet city.” In Proceedings of the First International Symposium on 3D Data
 Processing, Visualization, and Transmission. IEEE, 2002, 224-231.

[49] Sturman, David J. and David Zeltzer. "A Survey of Glove-based Input." IEEE
 Computer Graphics and Applications 14 (1994): 30-39. DOI=10.1109/38.250916.

[50] Valenti, Roberto, Alejandro Jaimes, and Nicu Sebe. “Facial Expression
 Recognition as a Creative Interface.” In Proceedings of the 13th International
 Conference on Intelligent User Interfaces. New York, NY, USA: ACM Press,
 2008, 433-434.

[51] Wei, Xiaozhou, Lijun Yin, Zhiwei Zhu, and Qiang Ji. “Avatar-mediated face
 tracking and lip reading for human computer interaction.” In Proceedings of the
 12th Annual ACM International Conference on Multimedia. New York, NY, USA:
 ACM Press, 2004, 500-503, DOI=http://doi.acm.org/10.1145/1027527.1027648.

[52] Wii Sports by Nintendo. Retrieved on November 18, 2009 from
 http://us.wii.com/wiisports/.

[53] XMind Mind Map Software by XMind Ltd. Retrieved on November 19, 2009
 from http://www.xmind.net.

[54] Yahoo Maps by Mapquest. Retrieved on November 18, 2009 from
 http://maps.yahoo.com.

[55] Zhang, Xiaoqin, Weiming Hu, Zixiang Zhao, Yan-guo Wnat, Xi Li, and Qingdi
 Wei. “SVD based Kalman particle filter for robust visual tracking.” In
 Proceedings of the 19th International Conference on Pattern Recognition. IEEE,
 2008, 1-4.

72

http://doi.acm.org/10.1145/1027527.1027648
http://doi.acm.org/10.1145/1027527.1027648
http://us.wii.com/wiisports/
http://us.wii.com/wiisports/
http://www.xmind.net
http://www.xmind.net
http://maps.yahoo.com
http://maps.yahoo.com

