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ABSTRACT

Evaluating Head Gestures for Panning 2-D Spatial Information

by

Matthew Oliver Derry

 New, often free, spatial information applications such as mapping tools, 

topological imaging, and geographic information systems are becoming increasingly 

available to the average computer user. These systems, which were once available only to 

government, scholastic, and corporate institutions with highly skilled operators, are 

driving a need for new and innovative ways for the average user to navigate and control 

spatial information intuitively, accurately, and efficiently. Gestures provide a method of 

control that is well suited to navigating the large datasets often associated with spatial 

information applications. Several different types of gestures and different applications 

that navigate spatial data are examined. This leads to the introduction of a system that 

uses a visual head tracking scheme for controlling of the most common navigation action 

in the most common type of spatial information application, panning a 2-D map. The 

proposed head tracking scheme uses head pointing to control the direction of panning. 

The head tracking control is evaluated against the traditional control methods of the 

mouse and touchpad, showing a significant performance increase over the touchpad and 

comparable performance to the mouse, despite limited practice with head tracking.
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1. Introduction

 Due to the large quantity of data frequently associated with spatial information, 

systems dealing with such information inherently have challenging technical 

requirements that must be tackled for the system to be useful. With ever increasing 

computing power, bandwidth, and more sophisticated data collection, storage, and 

retrieval techniques, many of those challenging technical requirements are being 

addressed. Consequently, more spatial information systems are becoming available to the 

general public. New, often free, applications such as mapping tools, topological imaging, 

GIS (Geographic Information Systems), which were once available only to government, 

scholastic, and corporate institutions with highly skilled and trained operators, are now 

driving a need for new and innovative ways to navigate and control spatial information 

intuitively, accurately, and efficiently so that the average computer user may make full 

use of these tools.

 The most common methods for control of these tools revolve around a mouse and 

keyboard, or in the case of laptops, a touchpad and keyboard. Because the space for 

actually moving a mouse or engaging a touchpad is limited, continuous panning or 

scrolling requires constant resetting of the placement of these input devices. 

Unfortunately, due to the size of the datasets of spatial data (i.e. large maps of cities, 

states, or countries), continuous panning is a very common requirement for navigating 

these types of systems [21]. While it is possible to create a scheme for continuous 

panning using a mouse or touchpad, it is not something that is commonplace in current 

applications. With these drawbacks, the natural question arises, is it possible to augment 
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the keyboard and mouse approach by adding another mode of input to handle panning 

control which is as intuitive, efficient, and accurate as a mouse or touchpad?

 Gestures can provide an intuitive mode of input that allows for controlling the 

panning component of navigating spatial data, which could be picked up relatively easily. 

Additionally, head gestures, or more specifically, head turn has a natural correlation with 

the notion of panning in spatial navigation. That is to say, panning in the direction of gaze 

is a natural and intuitive action for controlling a spatial information system [25].  Another 

benefit of head gestures is that fatigue would not be as much of an issue as it would with 

other types of gestures. Head gestures can, in many cases, be useful for individuals with 

certain disabilities in which their hands cannot be used for control.  Additionally, there 

are other domains where hands-free navigation of spatial data could be beneficial. 

Consider surgeons using head turn gestures to move an arthroscopic camera, freeing their 

hands to control their arthroscopic tools.

 The goal of this research is to examine the practical considerations, as well as the 

usefulness of just such an augmentation in navigating spatial data. Specifically, a system 

utilizing a common webcam tracks the location and rotation of a user’s head to control 

the continuous panning in the 2D mapping application, Google Maps. The general 

suitability of head gestures for navigation tasks, and the performance of users for a few 

scenarios are examined in the experimental part of this thesis.  The users are given a 

series of panning-specific tasks using a mouse, a touchpad, and head gestures to control 

the panning. The tasks are timed and the methods are comparatively ranked for accuracy. 
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The results of the experiments are evaluated to identify advantages and drawbacks of 

using head gestures for navigation compared to conventional navigation methods.
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2. Previous Work

2.1 Gestures used in Human-Computer Interaction

 Gestures have been used by humans for thousands of years, to both augment 

verbal communication, e.g. pointing to something while asking for it, or replace verbal 

communication all together with a sign language, such as American Sign Language.  

Both the expressive power and the intuitive and universal nature of gestures has lead to a 

significant amount of research on using gestures to communicate with, and control, 

computer applications.

 There are several options available to an interface designer when choosing which 

gestures to include in creating controls for computer applications.  Those gestures include 

hand gestures, arm gestures, full-body gestures, facial expressions, and head gestures [21, 

31, 41, 48, 49]. What follows is a discussion of these different gesture types along with 

their benefits and drawbacks.

 Hand gestures are any kind of movement or pose done with just the hand.  This 

has several advantages in that the hand is a relatively simple object to recognize using 

computer vision techniques.  Additionally, because the hand has a high level of dexterity, 

a wide range of shape and motion combinations are possible, this is illustrated by the fact 

that there is an entire sign language based on the motions and positions of hands.  This 

lends itself well to controlling a tool with many different commands [29]. One downside 

to using hand gestures is the possibility for fatigue and possible injury, e.g. Carpal Tunnel 

Syndrome, with extended usage and repetitive motion.  Another downside to using hand 

gestures for control is that if the hand is occupied with the task of controlling the 
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program, the user is limited in using it for other aspects of control [48]. This isn’t so 

much a problem if the hand is responsible for controlling a lot of things, but if it is 

responsible for just a few actions, then the dexterity of the hand is wasted.  Finally, a 

fundamental weakness of hand gestures is that the control vocabulary must be easy to 

recreate as well as remember, limiting the overall control vocabulary available to the 

system designer [13]. Overall, the hand is a good tool for control, illustrated by the fact 

that the standard mouse and keyboard controls function with what are essentially hand 

gestures.  

 Arm gestures fall somewhere between hand gestures and full-body gestures.  They 

are especially suited for tasks involving pointing [46] or tasks in which the lower body is 

not involved, such as in the suite of sports games for the Nintendo Wii.  They can be very  

expressive but are often not as nuanced as hand gestures.  Fatigue can be a real issue with 

arm gestures, especially if the control gestures require the user to hold their arms away 

from their body either for long periods or with high frequency.  Several systems use arm 

gestures for control [4, 46, 52], and they can be quite intuitive, but they are better suited 

for environments with large displays, where the full range of arm motion can be taken 

advantage of.  As an aside, hand gestures and arm gestures are often combined for 

control.

 Full-body gestures are another type of gesture used for human-computer 

interaction [48]. With this approach, the whole body is used to complete poses and 

gestures as the control.  Like hand gestures, full-body gestures offer many different poses 

and gestures for control.  The difficulties with full-body gestures are the same as the 
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difficulties with hand gestures, only they are magnified.  Fatigue becomes more of an 

issue because the whole body is involved in the process [6]. Additionally, all parts of the 

body are used for the one control, thereby limiting the user to just one mode of input.  

Full-body gestures are not very compatible with a system in which the user is sitting in 

front of a terminal. They can, however, be useful in a virtual world or virtual reality 

setting where the user is moving around in a simulated environment.

 Finally, there are facial expressions and head gestures.  While heads are relatively 

easy to pick out of an image, facial expressions are much harder to discern using current 

approaches [23].  Additionally, as a control, facial expressions are limited due to small 

number of discernible expressions, as well as their sometimes subconscious nature.  Due 

to these factors, facial expressions are not considered in this research.  On the other hand, 

head movements and gestures are relatively easy to pick out of an image using 

established techniques [3, 27, 30, 36].  Certain head motions can be done for long 

stretches without fatigue or strain.  Additionally, several head gestures are very intuitive, 

e.g. look left to pan left. look right to pan right, etc.  Finally, head gestures correspond 

well with continuous action.  This eliminates the repeated reseting that occurs with 

navigation methods such as the touchpad or mouse when the available physical work 

space isn’t large enough to accommodate the on-screen task. E.g. panning a map that is 

bigger than the screen and the touchpad space, so the panning can only go as far as the 

size of the touchpad in a single swipe.  Despite these advantages, head gestures suffer 

from some drawbacks as well.  There are very few gestures available using head gestures.  

Out of what few gestures there are, there are even fewer that remain comfortable over 
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extended periods of use.  For instance, tilting the head towards the shoulder quickly 

becomes uncomfortable when done for any significant amount of time; this is because the 

head is moved out of alignment with the spine, causing the neck muscles to bear much of 

the weight [26].  Another issue that should be considered when using head gestures is that 

large screens will require users to turn their heads farther than can be compensated for by 

their eye movements, thereby effectively creating blind spots on certain parts of the 

display [7]. Despite these drawbacks, the use of head rotation for panning fits this 

research very well.  Head turn is one of the few motions that can be done for long periods 

of time by able-bodied people, and on the majority of displays in use today by a typical 

user, the large display issue will not be a problem. For these reasons, this research focuses 

on head turn to control the panning component of the navigation of spatial data.

 All of the systems using gestures for control suffer from the problem of having to 

identify intentional gestures versus unintentional gestures.  While much work has been 

done in an attempt to automate this recognition, [1, 20, 39, 42] it is a difficult problem 

and to this point lacks a definitive solution.  Currently, this issue is primarily addressed 

by providing the user with some method to indicate to the system whether or not the 

gesture is intentional or unintentional.

2.2 Input Methods for Capturing Gestures

 There are two primary methods for capturing gestures as input for a computer 

program.  The first such method is a sensor-based approach [49].  A sensor-based 

approach is one where the gestures are captured using some sort of sensor placed on the 
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user’s body. These sensors can be anything from infrared transmitters placed on gloves to 

accelerometers placed on glasses or a visor that tracks the movement of a user’s head.  

Several systems, in wide-spread use today, employ this sensor-based approach. One such 

system is the Apple iPhone®, where an accelerometer is embedded in the iPhone, which 

is in the user’s hand. With the accelerometer it has the ability to switch between 

landscape viewing mode and portrait viewing mode simply by turning the device on its 

side.  Another such system in widespread use is the Nintendo Wii®, which uses 

accelerometers in its controller to capture gestures for controlling different games such as 

the bowling or baseball games.  Mattell was one of the first video game companies to 

attempt to bring gesture-based control to the mass market with an early attempt at using 

gestures to control games on the original 8-bit Nintendo system called the Power Glove 

[49].  This glove used ultrasonic transmitters that sent signals to receivers that were 

placed on the TV.  A benefit to utilizing sensors actually attached to the user is that they 

are generally very precise.  Consequently though, special hardware is often required for 

the control to be used making it more difficult to distribute the tool for widespread use.

 The other method for capturing gestures is a visual approach.  For this approach 

the gestures are interpreted by the system from a video stream of one or more cameras [5, 

19, 45].  There are many systems where multiple cameras are used to create a 3D 

representation of the environment and the user, usually with the hopes of increasing 

accuracy or the robustness of the system [3, 35, 45].  While these systems are popular for 

research or very specific applications, finding a typical computer user with a stereo 

camera setup is uncommon.  For this reason, there has been much research done on 
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gesture recognition with a single camera as the input [26, 50 51].  The benefit of a single 

camera system is that cameras are becoming commonplace (many laptop computers have 

webcams built in now), so the chances are good that a typical user would not have to 

spend any extra money to use a gesture-based system.  Additionally, while recognition 

with a single camera may not be quite as accurate as a stereo camera setup, it can still be 

quite good and very usable [51].  While the visual approach to gesture recognition has the 

advantage of not needing to be attached to the user, the approach can be sensitive to 

lighting changes or occlusions of the incoming image, whereas sensor-based gesture 

recognition is obviously free from these issues [25].

2.3 Existing Computer Systems using Gestures for Control

 Having discussed the different types of gestures typically used for control, as well 

as the methods used for capturing those gestures as inputs, a review of some of the 

existing systems that use these gestural methods of control is warranted.

Figure 1. Individual using the Atlas Gloves application to navigate Google Earth [4].
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 Freeman et al. created a system whereby a television is controlled using hand 

gestures [13]. The system employs a single camera to visually identify the user’s hand 

and track it to control a television.  Additionally, Merdes et al. created a system called 

SlidingMap that uses the inclination of a user’s hands to control the panning of a map on 

a tablet PC.  The gestures are captured by a dual axis accelerometer embedded in the 

tablet PC [33].  Another system that uses hand gestures is a project called Atlas Gloves.  

Atlas Gloves is a hand and arm gesture interface for 3D mapping applications like 

Google Earth.  The system works by using a single camera to identify the hands of the 

user and capture the gestures as input to navigate within a 3D mapping application [4].  

Figure 1 shows the Atlas Gloves project in use.

Figure 2. The GUI portion of the Head Tracking Pointer application developed by 
Kjeldsen in [25]. While this application is running, the computer cursor is controlled by 

head movements.
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 While the previous systems all use hand gestures for control, there are several 

systems that have been developed that use other types of gestures.  Sparacino et al. 

developed a system that utilizes hand and head gestures as a mode of control for 

navigating in the 3D representation of the internet [48]. For this system, a stereo camera 

apparatus is used to identify the user’s hands and head and track them to capture the 

user’s gestures. One type of gesture that is not used as often is the facial expression.  Del 

Valle et al. developed a system that tracks head pose and facial expressions to control an 

avatar on a video conferencing application [8]. The recognition and tracking for the 

system is done visually using a single camera. The last system to be mentioned was 

developed by Kjeldsen and it is called the Head Tracking Pointer [25]. It uses a single 

camera to track the motions of the user’s head to control a cursor on the screen. Figure 2 

is a screenshot of the Head Tracking Pointer application that The Head Tracking Pointer 

uses a very similar approach to the approach used in this thesis.

2.4 Algorithms for Visual Recognition and Tracking of Gestures

 Gesture Recognition algorithms can be broken into two types, object recognition 

and motion tracking [26].  In some cases, the same algorithm can be used for both 

recognition and tracking, but this is not always the case.  In this research, a simple 

training step is executed by the user, thereby removing the need for facial recognition.  

For this reason, only motion tracking algorithms that are being used in different gesture 

recognition systems are presented here.  Section 3.4 is a discussion of the criteria used to 

determine which of the following tracking methods to use in this research.
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2.4.1 Hidden Markov Models

 Hidden Markov Models (HMM) are a dynamic programming technique that can 

be used for pattern recognition or forecasting tasks [36].  What differentiates a Hidden 

Markov Model from a more basic Markov Chain is that the underlying model is hidden 

from direct observation, but there is an output model that is dependent upon the hidden 

model. By using knowledge about the probabilities of an output and knowledge about the 

probabilities of a state to transition to a different state, information about the underlying 

model can be inferred [44].  

 A single HMM consists of a collection of possible states, a transition probability 

matrix that describes the probabilities of one state transitioning to another state, and 

finally either an output probability matrix or a continuous output probability density 

function [43].  The output matrix or function defines the probability of each output given 

the current state of the model.  

 Three problems must be solved to use the HMM for pattern recognition or gesture 

recognition: the learning problem, the evaluation problem, and the decoding problem.  

The learning problem is solved to train the HMM, the evaluation problem is solved to 

identify discrete gestures, and the decoding problem can be solved to identify continuous 

gestures [43]. 

 The general process for setting up a system to recognize gestures using HMMs is 

as follows: Define the gesture vocabulary to be recognized.  Describe each gesture as an 

HMM, with one HMM per gesture to recognize.  This means defining the structure of the 
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HMM.  That is to say, defining how many states and how many values in the various 

probability matrices are going to be used.  The values within these state and probability 

matrices are not calculated until the training process occurs.  Once the training data is 

collected and preprocessed into a concise and invariant form, the data is used to adjust the 

model parameters to maximize the probability within the model for the specific gesture 

being recognized.  This adjustment can be done using the Forward algorithm or the 

Baum-Welch algorithm, a discussion for both of which can be found in [44].  Once the 

training is complete, gestures can be evaluated against the different models using the 

Forward-Backward algorithm or the Viterbi algorithm to recognize individual or discrete 

gestures.  Additionally, at this point the Viterbi algorithm can be used as a solution to the 

decoding problem to identify continuous gestures.  A discussion of the Forward-

Backward and Viterbi algorithms can be found in [44].

2.4.2 Kalman Filtering

 Kalman filtering uses information about the current state of some system, a linear 

model of behavior, and an element of Gaussian noise to estimate the next state of the 

system [12].  Kalman filtering is a recursive solution. This means that each new estimate 

of the state is calculated using the previous estimate and the new input data. 

Consequently, only the previous estimate must be stored reducing the amount of data that 

both must be stored and that must be used in the computations of the new estimate. This 

makes Kalman filtering more computationally efficient than using the entire set of 

previously observed data to calculate the next estimate.  In the case of motion tracking, 
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the filter will predict the position of an object’s bounding box within a two dimensional 

image [28]. In many cases of motion tracking, the time intervals between measurements 

are small enough (i.e. one measurement per frame, with high frame rates) that velocity is 

considered constant and acceleration is considered as white noise in modeling the motion 

of an object.  Therefore, the object being tracked is given a position and a velocity. Using 

the initial state, which is calculated by finding the change in position between two 

frames, and the equation of motion that is known to describe the motion of objects within 

a given domain, a prediction can be calculated of the location of an object in the next 

corresponding state.  This helps to reduce the search space for the recognition task.  The 

downside to using Kalman filtering is that it can be quite cumbersome to create and apply 

a proper model for estimating the behavior of the system and each system must be 

specifically tailored to the domain [28].

2.4.3 Particle Filtering

 The main idea behind a particle filter is the application of a Bayesian filter, based 

on sample sets of input data, to incoming data [38].  Particle filtering uses random 

sampling to compare color histograms at certain points using a similarity measure, such 

as Bhattacharyya distance, and then estimates the point in the image that most closely 

matches that distance [38]. One advantage to particle filtering is that it requires no model, 

but as a result, has a higher computational load [12].  This algorithm does better when the 

underlying model of behavior is not linear and the element of noise is not Gaussian.  With 

particle filtering, an increase in the dimensionality of a problem leads to a significant 
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increase in computational complexity.  Particle filtering can be more accurate than 

Kalman Filtering, but it comes at a cost to computational complexity.  A hybrid approach 

with an initial step using a Kalman filter to reduce the dimensionality of the problem 

followed by the use of a particle filter to come up with a final solution can lead to a 

system that benefits from the lower computational complexity of the Kalman filter with 

the increased accuracy of the particle filter [55].

2.4.4 Normalized Cross-Correlation

 Normalized cross-correlation is a statistical method for identifying a pattern 

within a larger set [11].  An early use for cross-correlation was in dynamic signal 

processing, where a signal was being searched for the occurrence of a particular wave 

form [11]. As it turns out, this method can also be applied to many other areas where 

pattern recognition is useful, including image processing [11]. In image processing, the 

registration of a sub-image within a larger image can be calculated using cross-

correlation.  The basic idea behind cross-correlation is that the similarity (with regards to 

Euclidean distance) is calculated between the smaller target image and all possible areas 

of the larger image in which the search is taking place.  The formula for this calculation 

is:

1

n− 1

�

x,y

�
f (x, y)− f̄

�
(t (x, y)− t̄)

σfσt
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Where f (x, y) is the image data of the sub-image, t (x, y) is the image data of the 

template, n is the number of pixels in f (x, y) and t (x, y), f̄  is the mean of the sub-image 

data, t̄  is the mean of the template data, and σf and σt are the respective standard 

deviations of the sub-image and template data.

 The sub-image within the larger search image that has the greatest cross-

correlation value is the closest match to the template image.  The strength of this 

approach is that the implementation of the calculation is relatively simple.  This 

simplicity does come with a cost.  Cross-correlation is both scale, rotation, and 

perspective dependent, and for this reason is only useful in specific situations [25].   

Additionally, if the smaller target image is rather homogenous and the larger search 

image has many areas with similar colors, the algorithm will not perform very well.  On 

the other hand, in environments that don’t change dramatically and have significant 

contrast, this technique can be useful for tracking a particular sub-image as it moves 

within a larger image.  
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2.5 Systems based on Spatial Information

 The number of systems that operate on, analyze and display spatial information is 

increasing at a rapid pace.  The primary reason that this is notable is that many of these 

tools are being created with the casual user in mind, as opposed to a narrow field of 

experts for which tools like these were designed in the past.   Here, these systems are 

categorized in to four main groups: 2-Dimensional Mapping Applications, 3-Dimensional 

Mapping Applications, 3-Dimensional Virtual Environments, and Geographical 

Information Systems (GIS).

2.5.1 2D Mapping Applications

Figure 3. Screen capture of the Google Maps 2D-mapping application. In this screen 
capture the focus is on Los Angeles and surrounding cities.
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 2D mapping applications are among the most common emerging spatial 

information applications.  For the general public, this class of application holds the most 

utility on a day-to-day basis.  Applications such as Google Maps from Google, Inc. [17], 

Yahoo Maps from Yahoo and Mapquest [54], Virtual Earth from Microsoft [34], all can 

be used by the casual user to find directions to and from user defined locations.  One sign 

of how ubiquitous these applications are becoming is the fact that these mapping 

applications are being integrated directly in to the largest search engines in use today.  2D 

mapping of the physical world is not the only type of application that uses spatial 

relationships though.  Another application type that is similar is the idea map, or concept 

map, which maps some concept space instead of mapping the physical world.  

Applications such as XMind from XMind, Ltd. use location and proximity to establish 

relationships between ideas creating a two or three dimensional space to navigate the 

ideas [53].  
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2.5.2 3D Mapping Applications

Figure 4. Screen capture of the NASA World Wind 3D-mapping application. In this 
screenshot several European countries and landmarks are present.

 3D mapping applications are a natural extension of 2D mapping applications.  By 

incorporating the 3rd dimension, a more realistic representation of the space being 

mapped can be created.  This can lead the user to gain a more thorough understanding of 

a space.  For a long time, the only systems that could handle 3D mapping were large 

systems accessible only to large institutions.  Over the last decade as computers have 

become more powerful and data storage and bandwidth have become cheaper, systems 

like Google Earth [15], Virtual Earth from Microsoft [34], and World Wind from NASA 

[37] have become available to a more mainstream user base.  To show just how 
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mainstream, as of February 2008, over 350 million people have downloaded Google 

Earth since it was released [16].

2.5.3 Virtual Environments

Figure 5. Screen capture of the Second Life 3D Virtual Environment. The character is in a 
fictional place called Help Island. 

 Virtual environments are another type of application that relies on navigating a 

space.  These are usually not a representation of the real world, but in the case of Second 

Life from Linden Labs, it is a fictional place for people to meet, play games, chat, buy 

and sell things, and create user defined places and objects [47].  In Entropia from 

MindArk, it is a game, but with an economy that allows users to turn in game money into 

real dollars and vice versa [9].  Kaneva is a world in which people create avatars that can 
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meet and play games and chat, but it is also a place where companies can create content 

and use it as advertising [24].  These are all make believe worlds, but the same 3D rules 

that apply to mapping, apply in these applications as well.  So the needs for navigation 

are the same as in the 3D mapping tools.  

2.5.4 Geographic Information Systems

Figure 6.  Screen capture of the ArcGIS Geographic Information System from ESRI. In 
this screen capture, a groundwater protection model is transposed over a geographical 

region [2].
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 Geographic Information Systems (GIS) are focused less on casual use and more 

on using data that has a spatial component for research, emergency response and 

coordination, planning, and asset management.  ArcGIS from ESRI is a system that can 

be tailored for business, governmental, or educational uses [2].  Information about 

demographics, or historical information for a given region can be overlaid on a map for 

which that information is applicable.  MapInfo from Pitney Bowes has been used for 

everything from mapping railways to analyzing crime in major cities to managing water 

systems to keep them flowing efficiently [32].  Similarly, GeoMedia from Intergraph is 

targeted towards security, government, and infrastructure projects [14].
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3. Design and Implementation

3.1 Inspiration

 The design of this application was guided by a particular vision of how a typical 

user might actually use head gestures for navigating spatial data in the real world, and 

how it could be made accessible to a large number of users.  Many of the studies related 

to head tracking require very specific hardware as well as a custom, and sometimes 

laborious, setup, such as the setup seen in Figure 7.

 
Figure 7. A complicated apparatus for tracking the movements and location of a user’s 

head [40].

 For this application, the vision was to have a system that works across platforms 

and with very little setup required.  Obviously, there are certain hardware requirements, 

such as a camera, but these are becoming more prevalent with the built-in cameras in 

most new lap-top computers.  Because lap-top computers are a major driver for cameras 
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becoming commonplace, and because the trackpad input method is also being evaluated, 

many of the design decisions are made with a lap-top computer in mind.

3.2 Key System Requirements

 With the previously discussed vision as a guide, a number of decisions were made 

about the requirements of the system upon which the application would run.  The first 

critical requirement was that the head tracking must be done using a single, common 

webcam.  This was important because they are readily available and don’t require 

significant cost or complicated set up, increasing the number of users to which this 

application would be accessible.  The second requirement was that the system should not 

require more than average computing power.  In this case, average computing power was 

defined as a system with a 1.7 Ghz Intel Pentium 4 CPU, 1 GigaByte of RAM, and an 

integrated graphics chipset.  Again, this requirement was specified in the spirit of 

increasing the number of users that could potentially use the system.  Finally, the last 

system level requirement for this application, was that it be operating system 

independent.  This requirement was decided upon, again, to open up the application to as 

many users as possible.  A summary of these system level requirements and the 

evaluation is included in Table 1.
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REQUIREMENT EVALUATION CRITERIA

SR-1

SR-2

SR-3

Tracking must be completed using a single, 
common webcam

Application can use a single webcam, either 
built in to the system or external

The application must run on a system with 
average computing power

The application can run on a system with a 
1.7 GHz Intel Pentium 4 CPU, 1 GB of 

RAM, and an integrated graphics chipset

The application must be operating system 
independent

The application can run on a system 
running Window, OSX, or Linux

Table 1. System-level requirements and the corresponding evaluation criteria.

3.3 Key Application Requirements

 With the system requirements specified such that a large number of users could 

use the application with their current systems, the application also has a set of 

requirements to ensure that the evaluation of the head tracking as a method of user input 

is focused and clear.  The requirements are to have the majority of the screen show the 

map and not be too encumbered by the application itself.  The application must provide 

feedback to the user so that the user can see that the tracking is occurring correctly and 

also, so they may correct any issues with the training step required for the tracking 

algorithm.  This is especially important because the user is unfamiliar with this method of 

input and this helps in reducing the learning curve by providing transparency of what the 

application is seeing and how it is responding.  The application must also provide a 

mechanism to easily set up each evaluation task to streamline the data collection process.  

In data collection process, users are timed in the completion of a series of tasks and the 

accuracy of their performances are comparatively ranked between input methods for a 

given task.  For this reason, AR-3 is especially important to keep the user’s focus on the 

tasks at hand, and not on the administration those tasks.
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REQUIREMENT EVALUATION CRITERIA

AR-1

AR-2

AR-3

The majority of the screen must show the 
map

The application does not take up more 
space than a small corner of the map

The user must receive visual feedback from 
the application regarding the state of 

tracking as well as current position on the 
map

The application provides a video stream 
from the webcam with an overlay of lines 

indicating the tracking decisions being 
made be the application

The user must be able to set up a task or 
reset a task easily

The application provides a button to set up 
or reset a task with a single click

Table 2. Application-level requirements and their corresponding evaluation criteria.

3.4 Decision Criteria for Choosing the Tracking Algorithm

 In deciding which of the four tracking algorithms to use for this application, four 

criteria were used in evaluating the algorithms.  The first criterion was accuracy. For this 

domain, is the algorithm accurate enough to do the job?  The second criterion was speed 

of execution.  Could the algorithm run in real time?  The third criterion was ease of 

training and configuration.  Could the algorithm easily be configured for different users?  

The fourth criterion was ease of implementation.  Could the algorithm reasonably be 

expected to be implemented by a single person in an appropriate amount of time? Table 3 

contains the results of the evaluation of these criteria across the four tracking algorithms.
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ACCURACY SPEED TRAINING IMPLEMENTATION

Hidden 
Markov 
Model

Kalman 
Filtering

Particle 
Filtering

Cross-
Correlation

Very Accurate Fast Complex

Must be combined with a 
recognition algorithm 
leading to a complex 

implementation

Accurate Fast Complex

Must be combined with a 
recognition algorithm 
leading to a complex 

implementation

Very Accurate Slow Simple

Simple implementation, 
but optimizations 

including combining with 
Kalman Filter add 

complexity

Adequate Moderate Simple Simple

Table 3. Tracking algorithms and their evaluation results. 
 

 In examining Table 3, Cross-correlation was determined to be the best fit due to 

the adequate accuracy, fast-enough execution, considerable ease of configuration and 

implementation.    
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3.5 Application Design

3.5.1 Interface Design

Figure 8.  The interface of the application developed for this this.  This is the screen the 
user first sees when going to the appropriate URL.

 As seen in Figure 8, the interface is a small application overlay in the upper left 

corner of a standard Google Map.  On the left side of this overlay is a column of buttons 

corresponding the each evaluation task.  When one of these buttons is clicked, it sets the 

starting and ending flags on the map for that given task.  Additionally, it resets the center 

of the map to the appropriate starting point for the given task.
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 In the upper right of the application overlay is a panel that shows what the webcam is 

seeing. Under this panel, there is a button under this webcam panel labeled “Train 

Camera”.  When the user clicks this button, the application then goes in to training mode 

(Figure 9) where the user is asked to place their head in a predefined box in the webcam 

panel and click the “Done” button.  There is also the option to cancel the training at this 

point which returns the user to the starting window.  Once the user clicks done, the 

application immediately goes in to tracking mode (Figure 10).  

 In tracking mode, there is a small blue box that indicates the location of the reference 

sub-image obtained during the training step, and a small red box that tracks the portion of 

the current frame’s sub-image that most closely matches the reference sub-image.  The 

difference in location between these two boxes determines the direction and speed that 

the underlying map pans.  In tracking mode, there is a “Stop Tracking” button that stops 

the tracking and brings the user back to the starting screen.

Figure 9. Training panel with instructions for the user as well as buttons to cancel or 
finish the training step. 
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Figure 10. The panel that shows while tracking is occurring. The blue box indicates the 
position of the template image retrieved from the training step and the red box indicates 

the current position of the closest match to the template. The difference in these two 
locations provides a vector to pan the map.

3.5.2 Class Design

 Four classes were used to design a solution to fulfill all of the requirements.  The 

main application class, called NoodleNav, is a class that controls the overall layout and 

behavior of the application.  It uses three classes to create the different parts of the 

application.  The class that displays the map on the screen is called GMap and is provided 

by the Google Maps API.  The class that provides the training functionality for the 

application is called WebcamTrainingPanel.  The purpose of this class is to provide the 

user with instructions for the training step and then capture the reference image for use in 

the head tracking.  Finally, the class that performs the head tracking and map panning is 

called WebcamPanel.  The classes are presented in diagram form in Figure 11.
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Figure 11. Object diagram for head tracking application.

3.6 Implementation

3.6.1 Development Language and Environment

 In order to fulfill the system-level requirement, SR-3, the decision was made to 

use Adobe Flex 2.0 along with the Google Maps Flash/Actionscript API.  This allowed 

for the fulfillment of the requirement of operating system independence.  Additionally, it 

sped development by taking advantage of the webcam libraries included in the Adobe 

Flash engine and the existence of the Google Maps Flash API.  Finally, the choice to use 

Google Maps was natural because Google Maps is now the most popular mapping 

application on the internet, according to internet polling company Hitwise [22], which 

would increase the likelihood that the users were already somewhat familiar with the 

mapping environment.

NoodleNav

GMap

WebcamTrainingPanel

WebcamPanel

1 1

1

1

1

1
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 Adobe Flex is an environment used to develop for the Adobe Flash engine.  It uses 

a combination of a markup language (MXML), and a functional language (Actionscript), 

to specify the look and feel of the application, as well as provide the business logic 

behind the user-interface.  MXML is a markup language that is an extension of XML 

used to define the layout and behavior of the user-interface components as well as define 

the transitions between UI components.  Actionscript is an object-oriented, functional 

language that is generally used to provide the functionality to the application.  A typical 

Flex application will have various MXML files that define a user interface which in turn 

uses Actionscript, either within the same file, or as an instance of some class, to 

implement the required functionality.  Once compiled, a single file with the 

extension .swf is produced.  A link to this file is imbedded in an HTML (noodleNav.html) 

file which is distributed by the web server.  

3.6.2 Interface

 The application is implemented using one MXML file (noodleNav.mxml) to define 

the different aspects of the user interface while instantiating two different Actionscript 

classes (WebcamTrainingPanel and WebcamPanel) to handle the training task and the 

head tracking/map panning respectively.   Initially, there was some confusion from users 

because the panel was not acting like a mirror, but instead showing things exactly as the 

camera was seeing them, so when the user looked left, in the panel it looked as if they 

were looking to the right.  Once this was changed to act more like a mirror, it became 

much more user friendly. 
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3.6.3 Algorithms

3.6.3.1 Training Algorithm

 Because the training step is not the primary focus of this research, the algorithm 

chosen for training is very simple.  It requires the user to handle the placement of their 

head within the webcam frame and then assumptions about head position, size, and facial 

structures are made to estimate the location of the area of the face around the eyes and 

nose.  This meant that a certain spot in the frame is always used as the reference sub-

image.  The eyes and nose are important, because this area provides enough detail and 

contrast within an image to differentiate it from other elements of the face.  The logic for 

this is implemented in the Actionscript class called WebcamTrainingPanel.  This training 

step is an area that could be improved.  Some ideas for improvement are presented in the 

future work section of this paper.

3.6.3.2 Tracking Algorithm

 The algorithm used to complete the head tracking task is an implementation of 

cross-correlation.  At a regular interval of 75 ms, the frame from the image stream 

coming from the webcam is processed using cross-correlation. The calculation of the 

cross-correlation is done with the reference image being the sub-image obtained during 

the training step and the search space is a larger sub-image of the frame captured from the 

webcam.  The size and location of the search space is based on the location of the 

previous results of the cross-correlation calculation.  By realizing that a user’s head is 
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only going to move so far from frame to frame, the search space can be constrained to an 

area just around the previously calculated result of the cross-correlation.  This improves 

performance of the tracking considerably by reducing the area to be searched.  Once the 

search space is established, the calculated sub-image with the highest cross-correlation 

value in the search space (calculated using the formula described previously in the related 

work section), is the best match to the reference sub-image.  Using this technique, the 

area in the image that is the closest match to the sub-image will be updated and 

consequently tracked at a rate of about 14 times per second.  This rate was empirically 

determined to provide a sufficiently smooth experience while also providing adequate 

performance on many different systems.  Cross-correlation was chosen for several 

reasons, the first of which was that cross-correlation is relatively easy to implement and 

achieve adequate performance with images of this size.  If the images being used were 

higher resolution, cross-correlation might not be fast enough to provide smooth tracking 

on an average system.  Another reason cross-correlation was chosen was due to the nature 

of the webcam and head tracking, in that the image is fairly static (i.e. the differences 

from frame to frame are often small), because the movements are often small head turns.  

For this specific type of situation, cross-correlation works well.  For this system, the 

cross-correlation tracking algorithm was implemented in the WebcamPanel Actionscript 

class.
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3.6.3.3 Translating Tracking into Movement of the Map

 The translation of the user’s movements into movements of the map is relatively 

straightforward.  The training step provided the anchored location of the original screen 

capture.  The position of the subsequent sub-images that are retrieved during tracking are 

compared to the position of the sub-image captured during the training step.  The 

difference in these positions gives a vector of direction and magnitude which is then used 

to make a call to the PanBy method of the GMap object provided by the Google Maps 

API.  This, in turn, leads to the map panning by the appropriate amount and in the 

appropriate direction to match the user’s movements. 
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4. Evaluation Methodology

4.1 Overall goal of evaluation

 The primary goal behind the methodology of this evaluation was to determine 

how well the head tracking performs the task of panning a two-dimensional map, 

compared to using a mouse or touchpad as the primary input.  To this end, the total 

evaluation task consisted of a short description of the purpose of the experiment, as well 

as a few instructions on the use of the different input methods, how the application 

works, and how the evaluation would proceed.  This was followed by a 10 minute period 

for the user to familiarize themselves with the head tracking, both in training the system 

and in its use.  This period was followed by the completion of five tasks using the mouse, 

the trackpad, and the head tracking. 

 Since every user tested has had some experience with a computer, the tasks 

chosen increased in complexity to act as a sort of tutorial for the head tracking.  In the 

first three tasks, where multiple locations in differing directions were used, the locations 

were chosen so that the distance from the starting location to the ending location was 

approximately the same. The first task was to navigate from a starting point in downtown 

Los Angeles, due west stopping at the Hill Crest Country Club, or due east stopping at 

Whittier Narrows Golf Course. The second task was to navigate from downtown Los 

Angeles, due north or due south, to Glendale or South Gate respectively.  The third task 

was to navigate from the starting point in downtown Los Angeles northeast to Pasadena, 

northwest to Universal Studios, or southwest to Inglewood.  The fourth task was to 

navigate from the starting point in downtown Los Angeles to San Pedro, following the 
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110 freeway south as closely as possible, while still trying to complete the task in a 

timely manner.  Finally, the fifth task was to start from the intersection of the 405 and 110 

freeways, follow the 405 freeway northwest to the 105 freeway, then follow the 105 

freeway east to the 110 freeway, then follow the 110 freeway south back to the starting 

point, completing a full loop. A summary of these tasks can be found in Table 4. After 

these five tasks were completed, the last part of the evaluation was a free form verbal 

feedback period, where the user could talk about their thoughts related to the project.

TASK DESCRIPTION

Task 1

Task 2

Task 3

Task 4

Task 5

Navigate from downtown Los Angeles, due east or due west, to the Whittier Narrows 
Golf Course or the Hill Crest Country Club, respectively

Navigate from downtown Los Angeles, due north or due south, to Glendale or South 
Gate, respectively

Navigate from downtown Los Angeles, northeast to Pasadena, northwest to Universal 
Studios, or southwest to Inglewood

Navigate from downtown Los Angeles to San Pedro, following the 110 freeway south, as 
closely as possible

Navigate from the intersection of the 405 and 110 freeways, along the 405 freeway to the 
105 freeway.  Then follow the 105 freeway east to the 110 freeway.  Follow the 110 

freeway south, back to the intersection of the 405 and 110 freeways.

Table 4. Panning tasks used in the evaluation of the application
 

 To effectively evaluate the performance of the tool, two important characteristics 

were measured.  The first was the objective measurement of time to complete a given 

task.  The second data collected was a subjective ranking of accuracy during the task.  

This ranking was assigned by the test proctor based on observations of how closely the 

user was able to follow the directions of the given task and it is a ranking of either 1, 2, or 

3 relative to the other modes of input.  That is to say, if the mouse was more accurate than 

the head tracking, but the head tracking was more accurate than the touchpad, the 
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accuracy ranking would be as follows: Mouse - 1, Tracking - 2, and Touchpad - 3. In 

order to keep the rankings consistent, the author proctored each evaluation.

4.2 Evaluation Plan Specifics

 The sample of users needed to contain a wide range of ages and prior experience 

with a computer system.  This was necessary to help determine both how easily someone 

with considerable experience with a computer, as well as someone with relatively little 

experience with a computer, could learn to use the application.  To that end, 20 users were 

evaluated on the system according to the plan described above.  The 20 users’ ages 

ranged from 14 to 62, with an average age of 34, and they all had at least some prior 

experience with a computer.  Their self-described experience with computers ranged from 

two to five on a one to five scale (with one being no experience and five being an expert 

who used computers on a daily basis in many different ways) and the users had an 

average experience level of 3.65 on that same scale.  

 Each evaluation was completed on the same Dell XPS 15-inch laptop, using the 

same wireless mouse and built-in webcam.  For each user, the time to complete the entire 

evaluation task was approximately 30 minutes.
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5. Results

5.1 Analytical approach

 In order to ascertain if the data was statistically significant, several statistical 

techniques were employed in the analysis of the data.  In this section those techniques 

will be addressed along with the tools used to complete the analysis.  All statistical 

calculations were completed on a Macintosh MacBook Pro with OS X.  In addition, the 

Apple Numbers application was used for tabulation and the simple statistical calculations 

such as Mean, Standard Deviation, and Standard Error.  Numbers was also used to create 

all of the graphs and charts.  For the more sophisticated statistical calculations, such as 

the one-way, within-subject ANOVA and the T-Test, a program called ezANOVA was 

used. ezANOVA can be used for free and is available at [10].

5.1.1 Mean, Standard Deviation, Standard Error

 In completing the analysis of the data, the first step was a straight-forward check 

using simple statistical calculations to get an idea of what message the data was 

conveying.  This was determined using a calculation of the between-subject mean time to 

complete the five different tasks for each method input.  The mean values provided a 

simple comparison to evaluate the performance of each particular input method with 

respect to the other methods.  The higher the mean, the longer the task took on average to 

complete.  This alone is not sufficient to conclude that one input method is better than 

another because mean averages are influenced very heavily by outlier data, particularly 

with a small sample size such as the sample size used in this research.  Standard 
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Deviation and Standard Error can give some hints as to how well the data actually 

matches the mean, but even these are not enough to make any conclusions.  A stronger 

statistical test is needed.

5.1.2 One-way, Within-Subject ANOVA/T-Test

 The stronger statistical test used to analyze this data is the one-way, within-subject 

analysis of variance (ANOVA).  The result of the calculation provides a probability 

measurement that the null hypothesis is true [18].  That is to say, it is the probability that 

the data occurred purely by chance and was not affected at all by experimental 

manipulations.  This probability value is often referred to as the “p-value”.  It is 

commonly accepted that a p-value less than 0.05 means that the data is statistically 

significant [18]. That number means that there is less than a five percent chance that the 

Null Hypothesis is true, or that the data occurred purely by chance.  Statistical 

significance means that there is a very high probability that it was the experimental 

manipulations that caused the observed results and not chance.  

 An ANOVA is used because within the one factor, the input method, there are 

three levels that are being compared.  These levels are the results of the mouse, touchpad, 

and head tracking respectively.  A T-test is another statistical measure that can be used to 

test the hypothesis by determining the probability that the null hypothesis is true [18].  

Unfortunately, a T-test is insufficient because it only compares two levels at a time, e.g. 

mouse vs. touchpad, which can be hard to interpret for meaning. One the other hand, an 

ANOVA can compare all three together and provide a p-value for the entire data set.  
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Once significance is established for each task with the ANOVA, T-tests are used for 

pairwise comparisons to do individual comparisons between input methods to determine 

which comparisons were statistically significant, which approached significance, and 

which were not significant at all.

 One other item of note, is that an ANOVA assumes that the data represents a 

normal distribution.  The ANOVA method is quite robust to violations of this assumption 

[18], but in the case that the data are too far out of normal, certain data transformations 

can be applied to fit the data in to a more normal distribution [18].  If these data 

transformations are insufficient, non-parametric calculations can be used, which do not 

require the data to be normal, but can be harder to calculate and interpret [18].  The data 

collected for this thesis was also analyzed with the non-parametric Kruskal-Wallis 

ANOVA, and there was not a significant difference between the values of the one-way, 

within-subject ANOVA and the Kruskal-Wallis ANOVA.  Due to this similarity and to 

ease interpretation of the results, only the one-way, within-subject ANOVA is presented.

5.2 Results

 For each task a bar graph with the Average (Mean) Time for completion, the 

Average (Mean) Accuracy Rack and standard error for both are presented.  The graph 

contains the data for each of the input methods for the given task.  In addition, a table 

with the ANOVA calculated p-value for the entire task and the T-test calculated p-values 

for the pairwise comparisons are presented. Finally, these values were calculated over the 

entire dataset, combining all five tasks into one dataset, and that data is presented as well.  
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5.2.1 Task 1 - East and West Panning

 In task 1, which is focused on east and west panning only, users were fastest and 

most accurate with the Mouse with an average completion time of 6.88 seconds and an 

average accuracy rank of 1.65, where 1 is the most accurate and 3 is the least accurate. 

The second fastest as well as the second most accurate was the head tracking with an 

average time of completion of 8.41 seconds and an average accuracy rank of 1.70. In this 

task, the accuracy rank of the head tracking was very close to that of the mouse. Finally, 

the touchpad was slowest with an average time of completion of 9.80 seconds, and an 

average accuracy rank of 2.65. This can be seen in Figure 12.

Figure 12. Average Completion Times for Task 1.
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 One interesting result to note is that, after normalizing the mean averages of the 

accuracy and time values so they can be plotted on the same chart, (see Figure 13), a 

relationship can be seen. The faster devices were more accurate and the slower device 

was less accurate.

Figure 13. Normalized Mean Completion Time and Normalized Mean Accuracy Rank for 
task 1.
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to say that the there was approximately one percent chance that the results occurred 

purely due to chance.  Table 5 shows the results of the ANOVA analysis.

P-VALUE SIGNIFICANCE METHOD

Overall

Mouse vs. 
Touchpad

Mouse vs. 
Tracking

Touchpad 
vs. Tracking

< 0.000529 Significant ANOVA

< 0.0005 Significant T-Test

< 0.0108 Significant T-Test

< 0.0893 Approaching 
Significance

T-Test

Table 5. P-values for task 1 data, both overall and for each pairwise comparison.

5.2.2 Task 2 - North and South Panning

 Task 2 was focused solely on north and south panning motions.  In this task, users 

were again fastest and most accurate using the mouse, with an average time of 

completion of 5.46 seconds and an average accuracy ranking of 1.30.  The head tracking 

input method was second fastest with an average time of completion of 9.50 seconds and 

an average accuracy ranking of 1.95.  The slowest input method was again the touchpad 

with an average time of completion of 12.24 seconds and an average accuracy ranking of 

2.75.  The average times of completion for all three input methods are presented in 

Figure 14.
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Figure 14. Average time to complete task 2 for all three input methods.
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Figure 15. Normalized Mean Completion Time and Normalized Mean Accuracy Rank for 
task 2.

 

 As with task 1, the p-values for task 2 show statistical significance with an overall 

p < 0.000006 calculated using ANOVA.  In the pairwise comparisons, there is a similar 

situation to task 1.  The p-value of the mouse versus the touchpad is a statistically 

significant p < 0.0001.  The p-value of the mouse versus the tracking input method also is 

a statistically significant p < 0.0001.  The p-value for the touchpad versus the tracking is 

p < 0.0804 which is approaching significance, but actually a bit short.  These values can 

be seen in Table 6.
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P-VALUE SIGNIFICANCE METHOD

Overall

Mouse vs. 
Touchpad

Mouse vs. 
Tracking

Touchpad 
vs. Tracking

< 0.000006 Significant ANOVA

< 0.0001 Significant T-Test

< 0.0001 Significant T-Test

< 0.0804 Approaching 
Significance

T-Test

Table 6. P-values for task 2 data, both overall and for each pairwise comparison.

5.2.3 Task 3 - Northeast, Northwest, and Southwest Panning

 For task 3, users were asked to pan to points on the map that were northeast, 

northwest, and southwest from the starting point in Los Angeles.  In this task, users were 

again fastest panning using the mouse, with an average task completion time of 4.93 

seconds and an average accuracy rank of 1.60.  Using the head tracking, the users had an 

average completion time of 9.23 seconds and an average accuracy rank of 1.65, again 

besting the touchpad, which had an average completion time of 11.11 seconds and 

average accuracy rank of 2.75.  The average completion times for task 3 are presented in 

Figure 16.
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Figure 16. Average time to complete task 3 for all three input methods.
 

 In plotting the normalized average time to completion next to the normalized 

average accuracy rank, we see again that the faster methods of input were also the more 

accurate methods of input.  In this case though, despite the fact that the mouse was quite 

a bit faster, the head tracking was nearly as accurate.  This plot can be seen in Figure 17.
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Figure 17. Normalized Mean Completion Time and Normalized Mean Accuracy Rank for 
task 3.

 In task 3, the overall significance of the results, as calculated using ANOVA, 

showed statistical significance with p < 0.0006.  Looking at the individual pairwise 

comparisons, the p-value of the mouse versus touchpad is significant at p < 0.001.  The p-

value of the mouse versus tracking is also significant at p < 0.001.  In looking at the 

variability between the touchpad versus the tracking, there is no significance in the result 

with p < 0.2605.  These results can be found in Table 7.
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P-VALUE SIGNIFICANCE METHOD

Overall

Mouse vs. 
Touchpad

Mouse vs. 
Tracking

Touchpad 
vs. Tracking

< 0.0006 Significant ANOVA

< 0.0001 Significant T-Test

< 0.0001 Significant T-Test

< 0.2605 Not Significant T-Test

 Table 7. P-values for task 3 data, both overall and for each pairwise comparison.

5.2.4 Task 4 - Following a Long Path in One Main Direction

 In task 4, users were asked to follow a highway a considerable distance.  In this 

task, the tracking   input method is the fastest with an average time of completion of 

15.06 seconds and an average accuracy rank of 1.90.  The mouse was the second fastest 

with an average time of completion of 17.68 seconds and an average accuracy rank of 

1.55.  Finally, the touchpad was slowest, with an average time of completion of 25.01 

seconds and an average accuracy rank of 2.55.
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Figure 18. Average time to complete task 4 for all three input methods.
 

 Plotting the normalized averages of the time of completion and the average 

accuracy rank on the same chart, there is a little difference in this task compared to the 

previous three.  For the first time the fastest input method is not the most accurate.  In 

task 4, the fastest input method is the tracking, but the most accurate method is the 

mouse.  Again, the touchpad is the least accurate of the three input methods.  These 

results can be seen in Figure 19.
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Figure 19. Normalized Mean Completion Time and Normalized Mean Accuracy Rank for 
task 4.

 The overall differences in the average completion times for task 4 proved to be 

statistically significant with a value of p < 0.000001.  In comparing the variance of the 

data for the mouse versus the touchpad, it proved to be significant with a value of p < 

0.0001.  In comparing the variance between the mouse and the tracking, there was no 

significance with p < 0.1337.  Finally, the variance between the touchpad and the tracking 

input, there is again statistical significance with p < 0.0001.  Table 8 has all of the 

calculated p-values.
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P-VALUE SIGNIFICANCE METHOD

Overall

Mouse vs. 
Touchpad

Mouse vs. 
Tracking

Touchpad 
vs. Tracking

< 0.000001 Significant ANOVA

< 0.0001 Significant T-Test

< 0.1337 Not Significant T-Test

< 0.0001 Significant T-Test

Table 8. P-values for task 4 data, both overall and for each pairwise comparison.

5.2.5 Task 5 - Following a Circular Route Covering Several Directions

 For task 5, users were asked to follow a series of freeways which formed a loop, 

so that the starting point was also the ending point.  In this task, the mouse was again the 

fastest method of input with an average completion time of 15.43 seconds and average 

accuracy rank of 1.85.  The tracking input method was not much slower at 18.17 seconds, 

and it had an average accuracy rank of 1.70.  Finally, the touchpad was significantly 

slower than the other two, with an average completion time of 28.09 seconds and an 

average accuracy rank of 2.45.  Figure 20 shows a comparison of average completion 

times between the three input methods.
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Figure 20. Average time to complete task 5 for all three input methods.
 

 In plotting the normalized average completion times alongside the normalized 

average accuracy rank, the previous observation holds that the input methods that are 

faster are also more accurate.  The mouse and head-tracking are both very close in 

average completion time and average accuracy rank, so the slight violation of this 

observation is likely due to simple variation in the data.  Figure 21 shows these two data 

plotted on the same chart.
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Figure 21. Normalized Mean Completion Time and Normalized Mean Accuracy Rank for 
task 5.

 In task 5, the overall differences in the completion times were statistically 

significant with p < 0.000001.  Additionally, all three pairwise comparisons were 

statistically significant, with the mouse versus touchpad having p < 0.0001, the mouse 

versus head tracking having p < 0.0266, and the touchpad versus the head tracking having 

p < 0.0005.  Table 9 shows the results of the calculations.

P-VALUE SIGNIFICANCE METHOD

Overall

Mouse vs. 
Touchpad

Mouse vs. 
Tracking

Touchpad 
vs. Tracking

< 0.000001 Significant ANOVA

< 0.0001 Significant T-Test

< 0.0266 Significant T-Test

< 0.0005 Significant T-Test

Table 9. P-values for task 5 data, both overall and for each pairwise comparison.
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5.2.6 Overall Results

 The final piece to the puzzle is to look at the overall results in order to assess the 

performance of the different input methods compared to each other.  For this, all results 

for each task are included in one table and the averages are all calculated.  In doing this, 

the mouse came out on top with an average completion time of 10.07 seconds and an 

average accuracy rank of 1.59.  The head tracking input method was the next fastest, with 

an average completion time of 12.07 seconds and an average accuracy rank of 1.78.  

Finally, the touchpad was the slowest, with an average completion time of 17.25 seconds 

and an average accuracy rank of 2.63.  Figure 22 shows the average completion times 

with the standard error bars.

Figure 22. Overall Average completion times with standard error bars for all three input 
methods.
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 When comparing the normalized means of the completion times and the accuracy 

ranks for all tasks, the previous observation holds true in that the faster the method of 

input, the more accurate as well.  See Figure 23 for the normalized average completion 

time and normalized average accuracy rank plotted on the same chart.

Figure 23. Normalized Mean Completion Time and Normalized Mean Accuracy Rank 
Overall.

 Using a one-way, within-subject ANOVA, the overall set of data is statistically 

significant with p < 0.000001.  Looking at the pairwise comparisons, the data of the 

mouse versus touchpad is significant with p < 0.0001.  The comparison between the 

mouse and the head-tracking input method is significant with p < 0.0003 and the 

comparison between the touchpad and the head-tracking input method is significant with 

p < 0.0001. Table 10 has the data and calculation method for the overall dataset.
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P-VALUE SIGNIFICANCE METHOD

Overall

Mouse vs. 
Touchpad

Mouse vs. 
Tracking

Touchpad 
vs. Tracking

< 0.000001 Significant ANOVA

< 0.0001 Significant T-Test

< 0.0003 Significant T-Test

< 0.0001 Significant T-Test

Table 10. P-values for the overall data, both overall and for each pairwise comparison.

5.3 User Comments

 After completing the data collection portion of the evaluation, each user was 

given the opportunity to provide verbal feedback about the tasks they had just completed 

and the different input methods used.  The comments were varied, but after grouping and 

tallying the comments, there were six different comments that came up 4 times or more.  

With respect to preferences of which input method they liked best, of the 20 users 

surveyed, 11 of them specifically mentioned that the mouse was their preferred method of 

input.  13 users mentioned specifically that they preferred the head tracking to the 

touchpad, and nine users said they didn’t like using the touchpad at all.  Of note, no user 

preferred to use the touchpad over the mouse or head tracking, while three users actually 

preferred using the head tracking over the mouse.  Some users didn’t mention any 

preference.

 The rest of the comments that came up most were related to feedback about the 

head tracking tool.  Five users mentioned that they felt with practice they would actually 

improve further with the head tracking input method, and therefore felt that the 

evaluation would have done well to allow for more practice.  Five users also mentioned 
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that they would have liked the ability to adjust the sensitivity of the tracking based on 

personnel preference as some users felt the panning wasn’t fast enough and others felt 

that it was too fast.  Three users mentioned that having to maintain a certain posture was 

a little tiring.  Finally, four users pointed out that they would like an easier way of turning 

the tracking on and off to help manage unintentional panning.

 Evaluating the use of the head tracking input method, the general response was 

positive, with some users saying that it was more intuitive for them to look where they 

wanted to pan to, as opposed to having to “drag” the underlying map in the opposite 

direction of the desired direction.  In one case, the user had never used a touchpad or the 

head tracking before the task and by the end that user felt that the learning curve for the 

head tracking was significantly faster compared to the touchpad.  Some users felt that the 

hardest part of using the head tracking was stopping the panning where they wanted, 

because they had a tendency to move their eyes and forget to move their heads.  Four 

users had a tendency to look down when they wanted to pan up and look up when they 

wanted to pan down, but they were fine panning left and right, so they would have liked 

an option to invert the vertical panning.  As far as usefulness was concerned, a couple of 

users mentioned that they would use it, others mentioned that, while they felt the head 

tracking was “cool”, they couldn’t see themselves using it in practice.  One user studying 

to be an occupational therapist mentioned that they could see some clinical uses for the 

technology.  
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5.4 Analysis

 The results from the previous section indicate that, with respect to panning, the 

mouse is both the fastest and most accurate input method.  Considering that every user 

had significantly more experience with the mouse, this result is not surprising.  Head 

tracking is about 20 percent slower than the mouse but nearly as accurate.  Finally, the 

touchpad is both the slowest, 70 percent slower than the mouse, and the least accurate.  

These results prove to be highly statistically significant as calculated using a one-way, 

within-subject ANOVA for the overall comparison and a t-test for the individual pairwise 

comparisons.  In only a few cases do the pairwise comparisons fail to meet the criteria for 

significance and in those cases the times are very close to each other.  The qualitative 

responses from the users seem to bear out these quantitative results as generally users 

preferred the mouse, with occasional preference for the head tracking, while almost 

universally disliking using the touchpad.

 In evaluating the performance of head tracking versus the other two input 

methods, head tracking performed best in the last two, more complicated, tasks.  In these 

tasks, the users had to pan longer distances than in the first three tasks.  In several cases, 

users were actually fastest and most accurate with the head tracking by this point in the 

evaluation.  It was during these tasks also that most users seemed to respond positively to 

the head tracking, with one user going so far as to say “Now I get it!” while completing 

task 4 following the long stretch of freeway.
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6. Contribution

 In summary, this study shows that with limited exposure and practice, users were 

able to complete several panning tasks, ranging from simple to complex, using head 

tracking as a method for input, in less time and more accurately than with the touchpad 

on a laptop.  Users were faster and more accurate with the mouse than with head tracking, 

but as the tasks progressed, the performance gap between the mouse and the head 

tracking began to shrink.  It is possible that this is a reflection of the amount of 

experience users had with a mouse versus head tracking, and that given more practice 

head tracking could equal or surpass the performance of the mouse. The other possibility 

for this performance gap shrinking is that the head tracking is not as well suited for the 

simple panning tasks, but in more complex and longer panning tasks, it does better.  

Further study is required to determine the reason for the increase in performance.  The 

quantitative data correlated with the qualitative data provided by the users, after the 

evaluation tasks were completed, in that the touchpad was the most difficult and 

frustrating method of input for panning, the mouse was the most comfortable, and the 

head tracking was better than they expected and nearly as good as the mouse.
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7. Research Validation

 Despite the fact that the research was performed with careful organization and 

planning, there are a few weaknesses that must be addressed.  The first weakness is that 

the tasks were limited to one direction per input per task.  So, for task 1 a particular input 

method either went east or west, but not both.  The reason for this was that the evaluation 

required a significant amount of time, approximately 45 minutes, and to effectively 

double the number of tasks required was considered too much to ask of volunteer users 

who were not being compensated.  As it was, users began to get fatigued toward the end 

of each evaluation.  It’s possible that a between subjects design could be employed to get 

around this problem, but for the initial evaluation of this concept, it would have had its 

own problems.

 The second weakness with the study is the method of evaluation for the accuracy 

of each input method for the given tasks.  The responsibility for ranking the accuracy fell 

to the evaluator and was a subjective measure.  To minimize the differences in evaluation, 

the author was the only person to perform any of the evaluations, so that was consistent 

across all users.  A better approach would be to formulate a more objective measure of 

accuracy that could be calculated either by separate evaluators, or perhaps by the tool 

itself.  One possibility for such a system could be to determine an idealized navigation 

path and have the application calculate and record the deviation from that path.  In doing 

this, an objective score could be calculated for each input method and each task. 

 Finally, a big weakness that was not addressed by this research is the differing 

levels of user experience with the various input methods.  The ideal case would be to 
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have users practice with all three for a significant amount of time, perhaps over several 

days, and then do the evaluation.  Due to time constraints, this was not possible in this 

research, but it certainly warrants further study.
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8. Future Work

 There are several areas into which this research could expand.  The two main 

areas for expansion are in the enhancement of the head tracking tool and in the evaluation 

and test design.  The test design has many options for enhancement.  An automated way 

to calculate the accuracy could enhance the accuracy data and might provide some more 

specific insights on the different ways a user may make a mistake and correction with the 

different input methods.  The idea for another interesting study that could be performed 

came from one of the users who mentioned that they felt their video game experience 

helped them perform better with both the head tracking and the mouse.  Additionally, one 

user was a retired fighter pilot who had experience with missile targeting systems that 

used head gaze for targeting; this user mentioned that the head tracking felt natural.  It 

would be interesting to design an experiment in which head tracking was used to navigate 

a video game or flight simulator space and compare it to the other methods of input 

common in that domain.  Additionally, repeating the experiment with users who had 

similar levels of experience with the mouse and the head tracking would be interesting, to 

see if the head tracking would outperform the mouse or at least be comparable.  The hard 

part of doing that would be finding users with so little experience with the mouse, since it 

is far and away the dominant method of input for computing.  Finally, a simple 

improvement to the test design would be to create a standard questionnaire for users to 

fill out after completion of the various tasks as this would be helpful in making the 

qualitative data easier to compare across users.
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 Some improvements to the tool itself would be worthwhile towards enhancing 

performance compared to the other input methods.  Since the focus of this research was 

to evaluate the concept of head tracking as a method of panning spatial data, the 

algorithm chosen for the actual tracking was a compromise of acceptable performance 

and easier implementation.  Improving the performance of the head tracking, both in 

different lighting conditions and in response time would be helpful.  Additionally, 

creating a more automated way of training the system, perhaps one that can handle users 

in different starting positions would go a long way toward enhancing the user perception 

of the system.  Adding in other dimensions of control, such as zooming with a blink, 

could provide a path for the tool to become more useful and practical for everyday use.  

Finally, it is hard for the user to get the panning via head tracking to stop exactly where 

they want it to, so the tracking and response to small movements could use some 

refinement.  Some combination of these enhancements would most likely improve the 

results of this research.

 Extending the tool to explore how well head tracking would work in a 3D 

environment, particularly in light of the demonstrated ease of use in the 2D environment, 

would also be a worthwhile endeavor.
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9. Conclusion

 This research set out to examine and evaluate the performance of head tracking as 

an input method for panning 2D spatial information.  This is an important step toward 

removing the need for a user to occupy their hands with navigating through information, 

either to enable disabled users or to enhance the capabilities of a typical user by allowing 

them to use their hands for other tasks while navigation is completed with natural 

motions like using head turn for control.  

 This evaluation was completed in two parts. The first part was to create the head 

tracking application.  This application was created using Adobe Flex, Actionscript, and 

the Google Maps API.  It was created such that it is operating system independent and 

has a low cost to use, only requiring an internet connection, a standard webcam, and the 

Adobe Flash player.  The second part consisted of 20 users completing five tasks of 

increasing complexity with three input methods: mouse, laptop touchpad, and the head 

tracking application.  Each task was timed and an accuracy rank was assigned to each 

input method for each task.  The results proved to be statistically significant using a one-

way, within-subject ANOVA and revealed that the head-tracking was slightly behind the 

mouse in performance, but significantly ahead of the touchpad.

 This paper concludes that, as a method of input, head tracking provides intuitive 

and precise control for panning two-dimensional spatial data.  With further application 

refinement and user practice, head tracking may ultimately outperform the mouse in 

navigating spatial information.
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