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Abstract

A Pedagogical Approach to Introducing Test-Driven Development

by

Chetan Desai

Students rarely learn the value of testing in early programming courses. In fact, testing

skills are poorly taught in computer science curricula altogether. Proposals to add courses

on testing may be infeasible due to curriculum constraints at many universities. Integrating

test-driven development (TDD) into courses has been proposed as an alternative to teaching

a separate topic or course on testing. Controlled experiments can help determine when

to introduce TDD in education and identify optimal teaching plans, feedback mechanisms,

and tools. Four experiments were devised to gather empirical evidence on the effects of

incorporating TDD into an introductory-level programming course. Effects observed include

productivity of students, quality of code, attitudes towards testing, comprehension of course

material, and differences in awarding points for test-code. Results indicate that students

required to write tests do not spend significantly longer on assignments and quality of their

source-code does not increase, but code-coverage is much better than that of students not

required to write tests. Being exposed to TDD and JUnit increased the quality of projects

as compared to students who took the course the prior year. Attitudes towards testing and

comprehension of course material did not differ between any groups.
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Chapter 1

Introduction

1.1 Problem Statement

Students rarely learn the value of testing in early programming courses. In fact, testing skills

are poorly taught in computer science curricula altogether. Industry typically spends 50%

or more of software project resources on testing. This is poorly reflected by the amount of

testing in academia [24] and may convey unrealistic expectations to students. Industry pro-

fessionals and university professors alike do not want graduating students starting a career

with this misconception. Proposals to add courses on testing may be infeasible due to cur-

riculum constraints at many universities. Incorporating test-driven development (TDD) into

courses has been proposed as an alternative to teaching a separate topic or course on testing.

TDD tends to help students with the design of complex projects, and increases student

confidence in correctness of their code and when making changes to their code[7, 16, 21].

By writing tests before code, programmers are forced to “differentiate between the function-

ality to implement and the base condition under which the implementation has to work”

[22]. Controlled experiments can help determine when to introduce TDD in education and
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identify optimal teaching plans, feedback mechanisms, and tools. Test-driven development

reveals valuable software testing and design skills to fledgling programmers; the next step is

figuring out how and when to introduce it into a curriculum.

1.2 Overview of Solution

The approach the author and colleagues take is to devise four experiments to analyze the

effects of incorporating TDD into an introductory-level programming course. Effects ob-

served include productivity of students, quality of source- and test-code, student attitudes

towards testing, and comprehension of course material. Four experiments were conducted

simultaneously to isolate several independent variables:

• Experiment 1: Compared a group of students being graded for the test-code they wrote

to a group of students who were not required to write tests.

• Experiment 2: Compared current students who were exposed to TDD and JUnit to

students in the course one-year earlier, who did classical manual test-last or no testing

at all.

• Experiment 3: Compared a common project given to students in the same course but

under different professors to analyze differences in teaching styles.

• Experiment 4: Similar to experiment 1, compared a group of students graded on test-

code to a group not required to write tests, but under a different professor.

Results indicate that students required to write tests do not spend significantly longer on

assignments and quality of their source-code does not increase, but code-coverage is much

better than that of students not required to write tests. Being exposed to TDD and JUnit

increased the quality of source-code as compared to students who took the course the prior

2



year. Attitudes towards testing and comprehension of course material did not differ between

any groups.

1.2.1 Executive Summary

This research examined an experimental approach of introducing TDD that slowly introduced

testing through example and gradually led students to write tests. Previous experiments in

this area required students to learn a new programming language and test-harness such as

JUnit at the same time. The approach used was faster because existing course materials

were reused in a TDD fashion, and minimal setup time was required to grade test-code. Our

approach was successful because it took no additional teaching time to introduce TDD and

JUnit, and students did not spend significantly longer on projects when writing both source-

and test-code. This exposure to TDD and JUnit produced higher quality code (in terms of

the number of unit tests passed) when compared to the previous year where neither TDD

nor JUnit were taught.

1.3 Limitations to Initial Scope

There were two limitations to the initial scope of the thesis. For the common project given

in experiment 3, code-quality analysis was dropped from the study. Differences between

requirements issued by the two professors made it difficult to gather enough comparable

data. Fortunately, other aspects of experiment 3 could still be measured and compared.

Lastly, project grade data for the two groups in experiment 2 had too many uncontrolled

variables to reject or accept the hypothesis which addressed that aspect of the experiment.

Quality of the source-code was still analyzed through a JUnit test-suite.

3



1.4 Outline of Thesis

The remainder of the thesis is outlined as follows. Chapter 2 will overview a background of

TDD and related work in academia. Chapter 3 will present the design of the four experiments

conducted during the Winter 2008 quarter. Chapter 4 analyzes the resulting data from the

experiments, and Chapter 5 summarizes the conclusions drawn and discusses future work.

4



Chapter 2

Background & Related Work

The idea of test-driven development (TDD) has been around since the early 1960’s with

NASA’s Project Mercury[18]. TDD received its current name and popularity after being

introduced as a practice in eXtreme Programming (XP), created by Kent Beck and Ward

Cunningham. XP takes twelve important fundamental software engineering practices and

does them to the extreme. Testing is a fundamental practice, and XP took it to the extreme

by iteratively developing tests in tandem with writing code. More recently, TDD has gained

popularity outside of XP with the publication of Kent Beck’s book Test-Driven Development

by Example[3]. This led many professionals and academic instructors alike to start integrating

TDD into their workplaces and universities, respectively.

2.1 Test-Driven Development

TDD develops tests and code in a unique order. TDD procedures work with units of program

functionality. Units are the smallest module of functionality and are usually in the form of

methods. The sequence of TDD is [3]:

1. Add a new test for an unimplemented unit of functionality.

5



2. Run all previously written tests and see the newly added test fail.

3. Write code that implements the new functionality.

4. Run all tests and see them succeed.

5. Refactor (rewrite to improve readability or structure).

6. Start at the beginning (repeat).

As development continues, the programmer creates a suite of unit tests that can be run

automatically with testing frameworks such as JUnit. As larger modules (entire classes or

packages, as opposed to single methods) are completed, integration tests may be added. The

programmers now have a full regression test suite to run whenever changes are made to the

system. Changes can be made with confidence, since if something breaks in another part of

the system, the regression tests are likely to catch it. Furthermore, low-level design decisions

are constantly being made as the programmer develops tests and source code. By making

constant decisions and refactoring based on these decisions, a stable and flexible program

design is produced.

2.1.1 Example TDD Iteration

To demonstrate TDD, a single iteration of the process described in the previous section is

carried out. For this example, a programmer wants to develop an Alarm.java class to act

like an alarm clock and hold the time that the alarm should go off. The time that the alarm

is set for will need to be set and retrieved. Step 1 of the TDD process is to add a test for

an unimplemented unit of functionality. The programmer will first need to create an Alarm

object to work with, so he/she creates a test to make sure our object is created correctly

(see test code in in Figure 2.1). The programmer decides the alarm needs to be able to

hold an hour and a minute on a 24-hour time scale. When clocks are first plugged in, the

6



Figure 2.1: Artifact after step 1 of the TDD process.

alarm default is always 12:00AM. So in the test, the programmer creates an Alarm object

which should be initialized to 0 hours and 0 minutes on a 24-hour time scale (see line 10

in the test code). He/she now has an idea for a constructor, the next step is the ensure

the object was created correctly. The programmer needs a way to retrieve the two fields.

He/she tests it using get() methods (lines 11-12 of the test code). Two get() methods are

needed; one for each field. Remember that the programmer has not written a single line

of source-code yet. By writing a test first, he/she is driving out low-level design decisions

which allows him/her to understand the conditions in which the implementation should work.

Step 2 has one run all tests and watch the new functionality fail since the source-code is

not implemented yet. The programmer currently can not run the code since there is none.

Thus, he/she stubs out the new methods so that the program can compile, run, and fail the

tests. Figure 2.2 shows the addition of the source-code.

Now the tests run and fail, since the get() methods only return -1. It is time to move to

7



Figure 2.2: Artifact after step 2 of the TDD process.

Figure 2.3: Artifact after step 3 of the TDD process.

8



step 3. In this step the new functionality is implemented. An updated version of the source

code is in Figure 2.3. The programmer needs a way to store the hour and minute and thus

makes private instance variables to hold these values (lines 3,4 of the source code). The

constructor can now initialize these variables (lines 8,9 of the source code).

Step 4 says to re-run the tests written in step 1, and verify that they all pass. In this

case, the tests now pass since the get() method returns the expected value. Step 5 is to

refactor and improve any readability or structure. The constructor and get() methods are

both fairly simple, so no refactoring is needed. Step 6 concludes an iteration of TDD and the

programmer can start over on a new unit of functionality. Why was developing code in that

manner so important? By writing the testAlarm() method before implementing the actual

constructor, the programmer was forced to think about conditions that the implementation

should work under through specifying expected outputs with given inputs. Furthermore, it

drove out design decisions; the programmer needed a way to retrieve the values from the

alarm, so he/she created utility methods (get()).

2.2 Common Misconceptions

There are many misconceptions about test-driven development. First, TDD is not a testing

technique, it is a software development process. A popular misconception is that people

think all the testing is done before any code is produced. This is wrong; units of test and

code are interleaved during the development process. Ambler summarizes several additional

misconceptions in the following list[1]:

• You create a 100% regression test suite: This is not realistic, especially if you are

reusing assets that don’t have test suites, you are testing user interfaces, you do not

have a database regression tester, or you are using a legacy system which does not

9



have all the tests for it.

• Unit tests form 100% of your design specification: TDD still requires external docu-

mentation describing your design, but significantly less than on a traditional project.

• You only need to unit test: There is still a need for acceptance testing, user testing,

system integration testing, and a host of other testing techniques.

• TDD does not scale: Partly true, but easily addressed. If your test suite takes too long

to run, then separate your test suite into two components, one that contains the tests

for the functionality that you are currently working on and the other which contains all

tests. If some developers have trouble testing, then try getting them some appropriate

training or pairing up with a colleague that has unit testing skills. Lastly, everyone on

the team must participate, so either have those who are not taking a TDD approach

leave the team, or abandon the TDD aspect altogether.

2.3 Empirical Evidence of TDD in Academia

Table 2.1 summarizes most of the studies on TDD in academia. However, side by side

comparisons have inherent difficulties. Many of the studies have different independent and

dependent variables, with the common purpose of finding the effects of one or more aspects

of TDD. Each result should be understood within the context and environment of the study.

For example, controlled experiments have different control group characteristics. In cases

where the control group used iterative test-last (write a unit of code, write a unit test, repeat),

many quality results did not differ as much, since continuous testing was still occurring. In

cases where the control group applied a traditional test-last approach (write all the code

then write all the tests) or conducted no programmatic testing at all, defect counts varied

significantly. Furthermore, techniques for measuring quality and productivity differed from

study to study. The most common way to measure functional quality was the number of

10



Study Type Student
Level

Subjects Productivity
of Students

Quality of
Programs

Other Findings

Müller
[22]

Case
Study

Graduate 11 87% stated regression
testing increased confi-
dence.

Edwards
[7]

Cont.
Exp.

Junior 118 (59 TDD /
59 Control)

45% fewer de-
fects

Increased student con-
fidence.

Erdogmus
[9]

Cont.
Exp.

Junior 24 (11 TDD /
13 Control)

52% increase No effect Minimum quality in-
creased linearly with
number of tests.

Janzen
[11]

Cont.
Exp.

Freshman 27 (13 TDL /
14 non-TDL)

TDL students had
slightly better compre-
hension, scoring 10%
higher on a quiz.

Janzen
[13]

Cont.
Exp.

Freshman CS1: 106
( 40 TDD,
66 Control)
CS2: 36 (6
TDD, 30
Control)

CS1: Slower but
not stat. sig.
CS2: Faster but
not stat. sig.

CS1: TDD
Students wrote
more asserts.
CS2: TDD
projects superior
to control group.

TDD students felt
more confident in their
code w.r.t. quality,
change, and reuse.

Kaufmann
[16]

Cont.
Exp.

Sophomore -
Senior

4 (2 TDD / 2
Control)

50% more NLOC Better CCCC
metrics

Increased student con-
fidence.

Madeyski
[19]

Cont.
Exp.

Sophomore -
Graduate

188 External code
quality stat. sig.
lower

Müller
[21]

Cont.
Exp.

Graduate 19 (10 TDD / 9
Control)

Faster but not
stat. sig.

Less reliable
w.r.t. passed
assertion tests
but not stat. sig.

Better program under-
standing w.r.t. code
reuse.

Pancur
[23]

Cont.
Exp.

Senior 34 (19 TDD /
15 Control)

2.5% slower 90% students would ac-
cept TDD in industry

Yenduri
[27]

Cont.
Exp.

Senior 18 (9 TDD / 9
Control)

25.4% faster 34.8% fewer de-
fects

Barriocanal
[2]

Exp.
Report

Freshman 100 Only 10% students
wrote test cases by
choice

Keefe [17] Exp.
Report

Freshman 12 Of XP practices, TDD
not preferred

Melnik
[20]

Exp.
Report

Freshman -
Graduate

240 78% agreed on
improvement

76% agreed on
improvement

Correlation between
age and attitude
towards TDD.

Spacco
[25]

Exp.
Report

Freshman 20 - 30 Students need incen-
tives to adopt test-first
mentality early.

Janzen
[12]

Field
Study

Freshman -
Graduate

160 (130 begin-
ners / 30 ma-
ture)

87% mature program-
mers prefer TDD, 86%
beginner programmers
prefer test-last.

NLOC: non-commented lines of code CCCC: C and C++ Code Counter Cont. Exp.: controlled experiment

Stat. Sig.: statistically significant Exp. Report.: experience report w.r.t: with respect to

TDL: test-driven learning

Table 2.1: Comparison Grid
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unit tests passed during acceptance tests. Test quality was commonly measured through

the total code-coverage obtained by the written tests on an instructor’s code solution. To

measure productivity, many experiments had students log the time they worked, or they

counted non-commented lines of code. Student confidence levels and preferences towards

using TDD were measured through pre- and post-experiment surveys.

2.3.1 TDD Benefits

By writing tests before code, programmers are forced to “differentiate between the function-

ality to implement and the base condition under which the implementation has to work”

[22]. This forces programmers to make better design decisions during development. Most

controlled experiments between TDD and other testing practices show an increase in qual-

ity of code, or minimal differences. Depending on what control group the TDD group was

being compared against, results were between a 35%[27] and 45%[7] reduction in defects.

Changes in productivity varied by experiment. Some experiments found vast improvements

in productivity, between 24.5%[27] and 50%[16]. Others found less hopeful results of a 5-10%

decrease in productivity [14]. Surveys from students have indicated an increase in program

understanding [21] and confidence in making changes to the code and code correctness [22].

These results tended to be more positive in advanced courses. Mature programmers noticed

the benefits of TDD and could conduct its practices correctly, where beginner programmers

struggled to understand the purpose of testing.

2.3.2 Popular Frameworks

All of the examined experiments in Table 2.1 used Java except one, which used Pascal [2].

Java is a widely used language for TDD, along with JUnit, its popular test harness. JUnit

was developed by Kent Beck, along with Erich Gamma. However, TDD is not limited to

Java and JUnit, as there are other frameworks under the name of xUnit, used for various
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programming languages. JUnit provides assertions for expected results, test fixtures for

prepping and cleaning up data to perform one or more tests, and test runners to orchestrate

execution of tests and report results. These abilities allow users to smoothly interchange

between developing tests and code.

2.3.3 Related Work

TDD in academia has moved on from its conception as a practice in eXtreme Program-

ming (XP), created by Kent Beck and Ward Cunningham. Several studies have tried to

prove correlations and effects of adopting TDD. Most claims come from experience reports

[2, 5, 17, 20, 25], case studies [22], field studies [12], and surveys [10, 14, 15]. However, there

have been a handful of controlled experiments to bring forth empirical-based evidence.

Edwards [7] conducted an experiment in a junior-level course with 118 students at Vir-

ginia Tech University. He used an automated grading system named Web-CAT1 to provide

students with feedback on correctness and quality of both source- and test-code. Half of these

students used TDD and submitted programs via Web-CAT during the course in Spring 2003.

The other half did not use TDD and used output-based correctness for feedback on their

programs in Spring 2001. Edwards found that the TDD group’s programs contained 45%

fewer defects and those students felt more confidence in the correctness of their code and

when making changes to their code than the non-TDD control group students.

Erdogmus [9] compared a TDD group to an iterative test-last group. The controlled ex-

periment was conducted on 24 junior-level students programming a bowling score-keeper.

He found that the test-first students wrote more tests on average, and tended to be more

productive. Furthermore, the quality of programs seemed to increase linearly with the num-

1http://web-cat.cs.vt.edu/
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ber of tests written, independent of the development strategy used.

Janzen [13] conducted experiments using the test-driven learning (TDL) [11] pedagogical

approach for introducing testing into a CS1 and CS2 course. He found that test-first pro-

grammers wrote more tests and scored higher on project grades than their test-last counter-

parts when taught in a TDL fashion.

Kaufmann and Janzen [16] looked at two small groups of four sophomore to senior stu-

dents. These students developed a graphical game application, one group using TDD, the

other in a test-last fashion. The TDD group wrote 50% more lines of code, had better inter-

nal quality metrics, and felt more confident in their code. However, the sample and project

sizes were too small to make any general conclusions.

Madeyski [19] had four groups of sophomore to graduate students work on building a

finance-accounting system. One hundred eighty-eight students were divided into groups

for solo-programming and TDD (TS), pair-programming and TDD (TP), solo-programming

with a classical testing approach (CS), and pair-programming with a classical testing ap-

proach (CP). Interestingly enough, results indicated that external code quality (determined

by number of acceptance tests passed) was worse when TDD was used in both solo- and

pair-programming.

Müller and Hagner [21] divided 19 graduate students into a TDD group and traditional

development group. The students implemented a main class for a graph library containing

only method declarations. The TDD group had higher productivity but passed less assertion

tests. These differences were not statistically significant, so they concluded that TDD did

not increase productivity or produce higher quality code. It was mentioned that this could

be due to the fact that there was only a 64.5% chance to see differences in the groups due
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to small sample size. Müller and Hagner did find, however, that TDD enhanced program

understanding with respect to code reuse.

Pancur [23] observed a TDD group and an iterative test-last group consisting of 34 se-

nior undergraduates. The study used an eclipse plug-in to gather data on time spent coding,

number of development cycles, and number of tests run. Preliminary results show slightly

less code-coverage and external code quality for the TDD group, but the results were not

statistically significant.

Yenduri and Perkins [27] compared a TDD group of 9 students with a traditional incre-

mental development group of also 9 students. The students were senior undergraduates and

were trained in both approaches. The authors measured the number of test cases written,

faults found, and hours spent on the project. The TDD group yielded better results in both

quality (34.8% fewer defects) and productivity (25.4% faster). However, the authors report

that these results need to be validated by larger projects with a larger sample size.

2.4 TDD Challenges

Adopting TDD practices in a university environment comes with several concerns. Edwards

outlines five perceived roadblocks [7]:

• Challenge 1: Introductory students are not ready for testing until they have
basic programming skills.

• Challenge 2: Instructors do not have enough lecture hours to teach a new
topic like software testing.

• Challenge 3: Course staff already has its hands full grading code correctness,
so it may not be feasible to assess test cases too.

• Challenge 4: To learn the benefits of TDD, students need frequent, concrete
feedback on how to improve as they are working.

• Challenge 5: Students must see the value in the non-functional code (test
code).
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JUnit has proven to be a tough barrier in introductory programming courses. When students

are learning an entirely new language like Java, trying to understand the concepts and

structure of JUnit is difficult. Keefe recommends to first teach testing with sample test

data, expected results, simple test plans, and retrieving actual results, before moving into

TDD [17].

2.4.1 Introducing TDD

Determining when and how to introduce TDD practices into a curriculum can be difficult.

Most of the experiments reported in the literature introduced TDD at the beginning of the

semesters. Introductions usually consisted of:

• Explaining automated unit testing

• Describing TDD

• Providing documentation on test harnesses (e.g. JUnit API)

• Supplying examples of how to write test cases, execute test cases, and interpret results

Introduction lengths varied from a thirty-minute lecture[6] to a three-week topic[22]. Look-

ing back on Table 1, promising results came from Edwards[7], where TDD practices were

introduced briefly at the start of the semester, but then used in the classroom throughout

the entire experiment to model behavior. Reinforced learning could be key to successfully

introducing TDD, but controlled experiments will have to be conducted with using TDD in

the classroom to model examples as the independent variable. In cases where students were

just briefly introduced to testing at the start of the semester, TDD was not preferred[17]

and only 10% of the students wrote test cases[2].
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2.4.2 GUI Limitations

Graphical user interface (GUI) assignments allow for aesthetically pleasing and sometimes

creative projects for students. Furthermore, the students are rewarded by a visually ap-

pealing result. GUI components are great candidates for object-oriented programming since

concepts such as a button with a color, size, and label can be easily grasped by students[26].

However, trying to develop these in a test-first approach can be challenging.

Testing of GUI components is a challenging endeavor even for professionals. Visual aspects

of programming sometimes require a human eye to test and ensure components are placed

correctly on a screen. However, there has been work in trying to programmatically test this

process. Abbot2 is a popular Java-based testing framework for GUIs at the professional-

level. However, many universities like to incorporate a GUI-based project into introductory

courses[4, 26].

Bruce[4] created a GUI library called ObjectDraw to make Java’s Swing library more user-

friendly for beginner programmers. With Bruce’s simplified GUI development library and an

urge to develop in a test-first fashion, Thornton et al.[26] created a GUI testing framework

for introductory students to successfully test their GUI applications. Since ObjectDraw is

based on Java’s Swing, it has access to all of Swing’s testing components. Thornton’s frame-

work uses Abbot internally to test ObjectDraw’s components, and hides new testing concepts

outside of basic JUnit skills. In Spring 2007, Thornton observed the use of their framework

by comparing it to two previous semesters: Fall 2005 where no GUI programming was used,

and Fall 2006 where ObjectDraw was used, but without any testing. They concluded that

the ObjectDraw library was successful in allowing students to test their GUI programs. The

students wrote more test code for GUI assignments than other assignments but they started

and finished it earlier.

2http://abbot.sourceforge.net/
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2.4.3 Current Concerns

A wide range of studies have looked at the topic of TDD in academia. Many studies try

to address concerns such as showing that TDD can be introduced without any additional

instruction time, and automated graders like Web-CAT and Marmoset can prevent issues

like double grading of both source- and test-code. Java and JUnit are widely used in TDD.

Mature-level programmers seem to realize benefits of TDD more easily than beginner-level

programmers perhaps due to a higher complexity of projects and familiarity with the pro-

gramming language. Many different proposals for introducing TDD into a curriculum have

been tested, and the test-driven learning approach (explained in Section 2.5.1) is promising

since it addresses many perceived roadblocks when introducing testing. Lastly, solutions

have been brought forth to test GUI assignments, which allow more interesting projects to

be assigned at an introductory level, and continue with the testing methodologies.

Most controlled experiments have looked at sophomore-graduate level classes, and rarely

at CS1 or CS2 courses which present more challenges. For students starting to learn what

programming is and how it works, they find it tough to find purpose in the code, so testing

it is difficult [17]. Many studies simply threw students into programming Java and JUnit at

the same time. Students should first learn programming syntax and semantics. Then, move

into concepts of test data, test plans, and expected results. Test-harnesses such as JUnit

can be used to allow for test runners and smooth transitions between developing test-code

and source-code. Following the test-driven learning approach[11], JUnit can be introduced

in simple contexts and reinforced through examples.
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2.5 TDD Opportunities

A current pedagogical concern of university professors is deciding when to introduce TDD

into their curriculum. Experiments have been conducted at all student levels. Studies tend

to show that beginner programmers have a hard time using TDD, especially when trying to

incorporate frameworks like JUnit. For students starting to learn what programming is and

how it works, they find it tough to find purpose in the code, so testing it is difficult [17]. Tools

like WebCAT [6] and Marmoset [25] have helped overcome testing hurdles. By providing

feedback such as test coverage and number of unit tests passed, writing tests is associated

with specific incentives for a programming novice. These incentives help eliminate the need

to force beginners to write tests as part of their grade, which could be counterproductive.

Students forced into writing tests does not prove they are doing it because of the benefit

they get out of testing; they may simply be writing the tests as an afterthought since their

grade depends on it. When left to the students to decide to write tests or not, only 10%

wrote tests [2].

Results have been much more promising at higher levels of education. Many mature pro-

grammers see the benefits of TDD such as increased productivity and quality [20, 12]. As

seen in Table 2.1, most of the success stories come from experiments conducted between

junior undergraduate and graduate levels of education. One possible explanation is that

since advanced courses assign more complex programs, TDD’s benefits are more apparent

to mature programmers. Full regression suites help in complex class hierarchies, and mak-

ing low-level design decisions as one programs can help stabilize the architectural solution.

Does this mean that TDD should not be used in introductory programming courses? Not

necessarily. It means that a lot more work needs to go into CS1 and CS2 course plans.
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2.5.1 Test-Driven Learning

With an incremental instructional approach, students would first learn programming syntax

and semantics; then move into concepts of test data, test plans, and expected results. Once

they are comfortable with that, techniques like TDD can be introduced, using tools such as

JUnit, WebCAT, and Marmoset to help facilitate understanding.

In contrast to this incremental approach, test-driven learning (TDL)[11] proposes teach-

ing by example, presenting examples with automated tests, and starting with tests. TDL

needs little to no additional instruction time and targets any level of programming student

or industry professional. Although TDL is presented as a test-first approach, a test-last ap-

proach can be equally beneficial. To achieve its goal of writing good tests, TDL is designed

to present testing early and use it as a recurring theme throughout a course. According to

[11], objectives behind TDL include:

• Teaching testing for free

• Teaching automated testing frameworks simply

• Encouraging the use of TDD

• Improving student comprehension and programming abilities

• Improving software quality both in terms of design and defect density

A short experiment was conducted and showed that TDL could be introduced with positive

feedback at no additional teaching time or student effort. A subsequent TDL experiment

on a CS1 course and a CS2 course [13] found that test-first programmers wrote more tests

and scored higher on project grades than their test-last counterparts when taught in a TDL

fashion. In the next chapter, the author and colleagues apply a TDL-influenced approach in

the design of an experiment to address the problems outlined in Section 1.1.
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Chapter 3

Experimental Design

Most controlled experiments have looked at sophomore- to graduate-level classes, and rarely

at CS1 or CS2 courses which present more challenges. For students starting to learn what

programming is and how it works, they find it tough to find purpose in the code, so testing

it is difficult [17]. Many studies had students learn and program both Java and JUnit

right from the start. Traditionally, students must learn programming syntax and semantics.

Then, move into concepts of test data, test plans, and expected results. Following the

test-driven learning approach[11], JUnit can be introduced from the beginning in simple

contexts and reinforced through examples. Incorporating testing from the very start of

a student’s programming experience is fundamentally important to teach analytical and

comprehension skills needed in software testing. If curricula can get students ‘test-infected’

from the beginning, they are likely to realize that testing is an integral part of programming.

3.1 Goals

The goal of this study is to obtain empirical evidence on integrating TDD into early pro-

gramming courses with no extra costs, except the one-time cost of instructors getting up
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Concern Description

C1 Cost of using existing materials in a TDD fashion.
C2 Effectiveness of giving credit to student’s test-code.
C3 TDD’s affects on productivity of students.
C4 TDD’s affects on quality of code.
C5 The effect of instructors using TDD for in-class examples.

Table 3.1: Concerns to Address

to speed. Specific concerns are summarized in Table 3.1. The first question is whether or

not TDD can be integrated into an introductory programming course with minimal impact

(C1). The topics taught should remain the same. Is it possible to take existing materials

and tack on a TDD approach? Or is it best to rewrite materials such that a TDD approach

can be easily incorporated.

A second concern is what effectiveness does the grading of test-code have on students (C2).

Is giving credit to tests the best way to teach TDD? Do students write more, higher quality

tests if they get feedback through grades on tests? Barriocanal [2] mentioned that grading

tests could be counterproductive if students write the tests as an afterthought since their

grade depends on it, and are not truly doing TDD.

An area to address is TDD’s affects on quality of code and productivity of students (C3

& C4). Does the TDD approach affect the amount of time spent on projects, since students

have to write test-code? By writing test-code, students might save time in debugging. Does

writing tests lead to higher quality code with respect to the number of acceptance tests

passed?

Different teaching approaches can make either a world of difference or a minimal differ-

ence, depending on the topic. TDD could be either. If in-class examples are developed using

a TDD approach, does it have a higher impact on students than those who do not see testing

in class? Concern C5 hopes to address issues like this.
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3.2 Approach

The approach the author and colleagues take to answering the questions presented in the

previous section is to devise four experiments, looking at various aspects of TDD effective-

ness and incorporation in an introductory-level programming course. The experiments are

outlined below.

3.2.1 Experiment 1 (E1)

Experiment 1 took place in a one-quarter first-year course at California Polytechnic State

University, San Luis Obispo. The course was the second quarter so it is part CS1, part CS2

(denoted CS1/CS2) and was held in Winter 2008. Eighty-three students took the course

divided into three sections with 24, 29, and 30 students respectively. These three sections

are all taught by the same instructor denoted by Professor A. All of the students had com-

pleted a CS1 course in the previous quarter where they learned the basics of programming

in the C language. In this CS1/CS2 course all the students go through a paradigm shift

to object-oriented programming in the Java language. All the sections were given the same

labs, projects and lectures. Three sections of students were divided into two groups. The

first group consisted of two sections of the course, totaling 59 students, and part of their

assignment grade was based on the test-code they wrote. This group will be denoted as

the graded tests group (GT) from now on. The other group was one section of the course,

consisting of 24 students, whose project grades did not depend on the tests they wrote. This

group is called the ungraded tests group (UT).

For this experiment, Professor A’s lab and project descriptions from a previous quarter were

modified, emphasizing and encouraging a TDD approach to development. All of the topics

and structure of the programming assignments stayed the same to address concern C1. Full

23



/* Test method for move() */

@Test

public void testMove() {
// Create three vertices for our triangle

Point vertA = new Point(7, -3);

Point vertB = new Point(13, 56);

Point vertC = new Point(-3, 23);

// Create our triangle

Triangle toMove = new Triangle(vertA, vertB, vertC, Color.cyan, false);

// Perform the move operation by the given amount

toMove.move(new Point(-5, -7));

// Assert that the new vertices of our triangle are as expected

assertEquals(new Point(2, -10), toMove.getVertexA());

assertEquals(new Point(8, 49), toMove.getVertexB());

assertEquals(new Point(-8, 16), toMove.getVertexC());

}

Figure 3.1: A provided JUnit test from TriangleTest.java

JUnit suites were also written for each project. The approach the author and colleagues took

was to introduce TDD in this course by exposing Java and JUnit at the same time. The

students were eased into writing their own JUnit tests over time. Students were given full

JUnit test suites for projects and labs early in the course. This allowed them to over-come

the hurdle of learning basic syntax and semantics of a new programming language at the

beginning of a course, but be exposed to testing through example. To ease students into

writing their own tests, the second project supplied JUnit tests for a Java class similar to

one the student had to test. For example, JUnit tests were supplied for a Triangle class,

and the students had to write tests for a Rectangle class. Figure 3.1 shows an example of a

unit test from the supplied JUnit test case for the Triangle class. The move() method shifts

the vertices of the shape by the supplied amount in the x- and y-axis. By having a concrete

example of how one would test the move() method, the students could write a similar test

for Rectangle’s move() method. Only slight modifications had to be done to achieve the test

they were looking for. Other supplied tests include the expected area or color of a shape.
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Week Lab Topic Program Topic

1 String Concatenation Java Classes
2 ArrayList ArrayList
3 Random Class Abstract Classes, Inheritance
4 Exceptions, equals() Inheritance, Polymorphism
5 File I/O Exceptions, I/O, equals()
6 Comparator Comparator, Sorting
7 N/A LinkedList
8 Iterable, foreach, Wrapper Classes Recursive LinkedList
9 GUI N/A

Table 3.2: Schedule of Topics in E1

This approach gave students a contextual foundation to base new code on.

The fortune of reusable automatic unit tests was exemplified through projects that built

upon one another. In one project, students created different shape objects such as Triangle,

Rectangle, and Circle. In a follow up project, students had to extract common functionality

and member data from these classes into an abstract class called Shape. The previously writ-

ten tests did not have to change, and it provided a test suite to ensure the student did not

break any functionality in the process. This revealed the refactoring benefits of test-driven

development.

The schedule of topics covered is outlined in Table 3.2. The assigned labs and projects

are all available online1.

3.2.2 Experiment 2 (E2)

The same projects and labs from E1 were used for the same course exactly one-year earlier

(Winter 2007). The only difference between the project assignments was that comments

were added to the Winter 2008 descriptions emphasizing a TDD approach as described in

E1. Thus, we compare the quality of projects in the course one-year prior where there was

1http://users.csc.calpoly.edu/˜djanzen/research/TDD08/cdesai/
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no JUnit or TDD integrated into the course, to the quality of the Winter 2008 projects

which introduced TDD and incorporated the use of JUnit. The Winter 2007 group did

classical manual test-last or no testing at all, whereas the Winter 2008 group used TDD

and developed JUnit tests. We shall denote the Winter 2007 group as the classical test-last

group (CT) and the Winter 2008 group as the test-first group (TF).

3.2.3 Experiment 3 (E3)

Two additional sections of the same CS1/CS2 course were taught during the Winter 2008

quarter but by a different instructor denoted Professor B. There were 28 students in one of

his sections, and 25 students in the other. His students were taught in a test-first manner.

His sections followed a design recipe presented in “How To Design Programs”2. Figure 12

of Chapter 6 in this textbook outlines the recipe as follows:

1. Formulate a structure definition and a data definition.

2. Write the method signature, and describe its purpose to formulate a header.

3. Add tests for the method. Characterize input-output relationships via examples.

4. Write the template for the method to formulate an outline.

5. Complete the method in each class by developing the body.

6. Run the test cases to check the outputs are as predicted.

A common project between all CS1/CS2 students was assigned in week 7 of a 10 week

quarter. Two groups, Professor A’s students (group A) and Professor B’s students (group

B) were compared to see how the students performed being taught the test-first development

2http://www.htdp.org/
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Syntax check EXPRESSION expect EXPRESSION

Example check triangle.numEdges() expect 3

Figure 3.2: ProfessorJ’s check-expect Expression

methodology differently. Professor A’s students were encouraged in labs to develop in a test-

driven style. Little, if any, testing was taught within the classroom lectures. Professor B’s

students were taught test-first through example. Professor B heavily emphasized testing by

walking through the design recipe whenever writing code in class. His sections introduced

Java in this course using ProfessorJ3. ProfessorJ has direct unit-testing support through a

check-expect expression shown in Figure 3.2. This environment requires test cases in order

to run programs, so it fit well with the test-first approach. About mid-way through the

quarter, the students transitioned to the Eclipse4 development environment with the JUnit

testing framework.

3.2.4 Experiment 4 (E4)

Similar to E1, Professor B divided his sections into two groups based on grading student’s

test-code. One of his sections was the graded-tests (GT) group and the students were

assigned a project grade based on both source- and test-code. The other section made up

the ungraded-tests (UT) group, whom were assigned project grades based solely on source-

code.

3.3 Experimental Variables

The independent and dependent variables per experiment are outlined in Table 3.3. The

purpose of experiment E1 is to compare differences when students are graded on their test-

code and when they are not. E2 looks to see if adding TDD in a introductory-level course

3http://www.professorj.org/
4http://www.eclipse.org/
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Experiment Independent Variables Dependent Variables

E1
graded test-code

# tests passed
# hours worked
code-coverage
grade on projects
student attitudes toward test-first
final exam grade
score on final exam code-testing question

E2
use of TDD+JUnit in # tests passed
CS1/CS2 grade on projects

E3
teaching style

# tests passed (common project only)
# hours worked (common project only)
code-coverage (common project only)
student attitudes toward test-first
final exam grade
score on final exam code-testing question

E4 graded test-code

grade on projects
student attitudes toward test-first
final exam grade
score on final exam code-testing question

Table 3.3: Independent and Dependent Variables

affects the quality of student programs. E3 looks to compare different teaching styles of

TDD. Lastly, E4 also compares differences when students are graded on their test-code and

when they are not. To measure our dependent variables, we use several metrics.

3.3.1 Metrics

Of the related work observed, the most popular way to measure quality of programs was

through the total number of instructor unit tests passed, or the code-coverage achieved by

student tests. The most common way to measure productivity of students was through a

time log of hours worked on the project, or the total number of non-commented lines of code

produced. To gather empirical evidence to address the concerns in Table 3.1, we establish

several metrics outlined in Table 3.4. Quality of projects, is determined by three different

measurements. We count defects by running every student’s code against the instructor’s
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Metric Measurement

Quality
# JUnit tests passed
project grade
code coverage

Attitudes pre- and post-experiment survey
Productivity # hours spent per project

Comprehension
final exam grade
score on final exam code-testing question

Table 3.4: Measurements and Corresponding Metrics

Sally Student

Project 3

7.5 Hours

Figure 3.3: Sample time.txt File

suite of JUnit tests. The final assigned project grade can help determine functional correct-

ness as well as validity of the approach which only code-reviews can unfold. Code-coverage

is measured with the tool Cobertura5 which gives various number coverage measurements

(e.g. line-coverage, branch-coverage, method-coverage). Student attitudes toward testing

and overall knowledge of different testing approaches is measured through pre- and post-

experiment surveys. Productivity of the students is gathered by having students submit

a time.txt file with each project. This file contains the total number of hours worked on

the submitted project (see Figure 3.3). Lastly, comprehension of the course material and

testing purposes is measured through the overall final exam score, as well as scores on specific

questions on the final exam having to do with testing and writing tests for given code.

3.4 Hypotheses

Table 3.5 formally defines hypotheses for this experiment. Within experiment E1, hypothesis

H1 looks to see whether grading tests affects the total number of unit tests passed (TEST).

Hypothesis H2 examines the total number of hours (HOURS) worked per project to see

5http://cobertura.sourceforge.net/
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Experiment Name Null Hypothesis Alternative Hypothesis

E1

H1 | TESTGT |=| TESTUT | | TESTGT |>| TESTUT |
H2 | HOURSGT |>| HOURSUT | | HOURSGT |≤| HOURSUT |
H3 CV RGGT = CV RGUT CV RGGT ≥ CV RGUT

H4 GRADEGT = GRADEUT GRADEGT ≥ GRADEUT

H5 ATTGT = ATTUT ATTGT ≥ ATTUT

H6 FINALGT = FINALUT FINALGT ≥ FINALUT

H7 QUESGT = QUESUT QUESGT ≥ QUESUT

E2
H8 | TESTTF |=| TESTCT | | TESTTF |>| TESTCT |
H9 GRADETF = GRADECT GRADETF ≥ GRADECT

E3

H10 | TESTA |=| TESTB | | TESTA |<| TESTB |
H11 | HOURSA |=| HOURSB | | HOURSA |≥| HOURSB |
H12 CV RGA = CV RGB CV RGA ≤ CV RGB

H13 ATTA = ATTB ATTA ≤ ATTB

H14 FINALA = FINALB FINALA ≤ FINALB

H15 QUESA = QUESB QUESA ≤ QUESB

E4

H16 GRADEGT = GRADEUT GRADEGT ≥ GRADEUT

H17 ATTGT = ATTUT ATTGT ≥ ATTUT

H18 FINALGT = FINALUT FINALGT ≥ FINALUT

H19 QUESGT = QUESUT QUESGT ≥ QUESUT

Table 3.5: Formal Hypotheses

effects on productivity. H3 compares the total amount of line-coverage (CVRG). H4 looks

at instructor assigned grades (GRADE) on the projects. H5 compares survey information

on student attitudes (ATT) towards the test-first approach. All sections of this course, inde-

pendent of the instructor, took a common final exam. H6 compares differences in scores on

the final exam (FINAL). Similarly, there was a specific question (QUES) on the exam where

the students had to write some test-code; H7 compares the scores achieved on that question.

Experiment E2 has two hypotheses: H8 compares the total number of unit tests passed

between the TF group and the CT group. Hypothesis H9 compares the assigned grades per

project between the two groups.

Experiment E3 looks at all the measurements seen in E1 except grades on the common

project, since final scores were given independently by the two different instructors. H10
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compares the total number of unit tests passed for two groups under different teaching styles

(one by Professor A and the other by Professor B). H11 looks at the hours worked between

the two groups, H12 compares line-coverage, H13 is on attitudes toward test-first, and lastly

H14 and H15 utilize comparisons with the final exam.

H16 through H19 use measurements seen in the previous experiments, but compare the

graded-tests group to the ungraded-tests group under Professor B’s instruction. The hy-

potheses are the same, just with a different sample set.

To test the hypotheses outlined in Table 3.5, measurements will be gathered and analyzed on

the dependent variables stated in Table 3.3. These statistics will be used to determine dif-

ferences between the populations. Statistical significance will be measured with a two-tailed

t-test using a p-value < 0.05.

3.5 Threats to Validity

There were several threats to validity identified with the experiments. First off, conducting

four different experiments at once can be a threat to validity on its own. By looking at

too many questions at once, multiple variables may arise in the data, making it difficult to

analyze. Internal and external validity concerns are outlined below.

3.5.1 Internal Validity

A few threats to internal validity arise looking at experiments E1 and E2. In E1, the

professor had never regularly used JUnit before nor had any formal lessons on TDD. With

the professor coming up to speed with these new topics, it was difficult to teach common

pitfalls, answer advanced testing questions, and give solid in-class examples. A threat in
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E2 is that the productivity of students between the two groups could not be analyzed since

there was no time data (# hours worked per project) available from the CT group. In E3,

Professor B’s students started learning Java with the ProfessorJ development environment,

providing them with the check-expect utility that was not available to Professor A’s students.

Furthermore, education levels between Professor A and Professor B differed. Professor A is

a Lecturer with a M.S. degree whereas Professor B is an Assistant Professor with a Ph.D.

3.5.2 External Validity

There is one main threat to external validity throughout these experiments. All of the

CS1/CS2 students came from a CS1 course that was taught in the C programming language.

Thus, the students went through a paradigm shift from the strictly procedural functionality

of C to object-oriented programming in Java. Another threat is that all groups were split

up by what section of the course they were in. However, cumulative GPA data was analyzed

for each section. In E1, 42.3% of the students in the UT group reported having a GPA over

3.0, where the GT group had 56.9%. For E3, 51.9% of the students in Professor A’s class

had over a 3.0, where only 33.3% of Professor B’s students did. Lastly, for E4, 33.3% of both

the UT and GT group had a GPA over 3.0.

3.5.3 Proposed Design Enhancements

There are several design enhancements that could lead to a more ideal experiment. First,

only conducting one experiment at a time allows a more focused and greater depth of study.

Too much may be going on when conducting four experiments at a time. When teaching

TDD and JUnit to a class, it is important to have the professor up to speed ahead of time.

The professors can more easily address student difficulties this way. Furthermore, proper

lab introductions to both TDD and JUnit may help get the students up to speed, instead of

relying on descriptions of how to develop in a test-first manner and learning JUnit only by
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example.

In E1, an acceptance test was provided at the end of each project, and an interface was

specified with each project. With a large number of students, having a specified interface

was optimal for automated grading. However, a better route to take would be to not give

an acceptance test or interface, so that TDD drives out low-level design decisions. When

grading test-code, method-based code coverage was used to award points. Line-based code

coverage can provided a more accurate measure of quality of tests. Qualitative grading of

tests by the instructor as well as using code-coverage tools is ideal. In this experiment,

groups were divided by course section. A better way to divide groups is based on statistical

measurements of GPA, past course experience, and other similar attributes.

3.6 Addressing Concerns

By conducting four experiments, we were able to address each of the concerns presented in

the goals of the study. For E1, almost all of the existing materials were used and we could

just tack on a TDD approach to development, addressing concern C1. There are however,

two particular structural aspects of a program that makes testing easier for the students.

The first is having class constructors which take all instance fields as parameters. Using this

approach, testing with get() methods are straightforward, since default initialization values

are not arbitrary. Expected results for these tests can be seen right in the construction of the

object. Perhaps the most beneficial aspect of this approach is when testing the equals()

method. Second, for long parent/child relationship chains through inheritance, it can be

difficult to construct a variety of objects with set() methods to test all levels of instance

variables. If the constructors of these objects take all the instance fields of parameters, one

can localize the testing to the inheriting class, and not have to bother with using tests of

parent classes.
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Concern C2 was addressed in E1 and E4 by creating two groups of students, one group

graded on their test-code, and the other not. Productivity and quality concerns (C3 & C4)

were addressed by gathering data to measure these attributes. The methods for this were

outlined in Section 3.3.1. The purpose of E2 was to formally address concerns C3 & C4 by

comparing a TDD-exposed group, with a group that had not been exposed to TDD or JUnit.

Experiment E3 aimed to address concern C5, differentiating between two approaches of

teaching TDD. Results from this experiment will shed some insight on two very different

teaching approaches and present some empirical data to help answer this concern.

Ideally, we would have liked to conduct an experiment as outlined in Section 3.5.3, but

we were able to address all concerns with our given situation.
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Chapter 4

Results & Analysis

4.1 Experiment 1: Graded Tests vs Ungraded Tests

Experiment 1 sought to find differences between the effects of grading students on their test-

code versus not awarding points to test-code. Four different categories of dependent variables

were looked at: productivity, quality, attitudes towards testing, and comprehension of the

course material.

4.1.1 Productivity

The average number of hours worked between the ungraded-tests group UT and graded-

tests group GT is displayed in Table 4.1. A two-tailed t-test is used to check for statistical

significance using a p-value of 0.05. For the first project, both groups were given full JUnit

test suites to introduce them to the syntax and semantics of JUnit. Therefore, productivity

was nearly identical on the first project as expected, since neither group wrote tests. For

the second and fourth projects, the GT group spent significantly longer on the projects. In

general, the GT group spent more time on all remaining projects than the UT group, but the

results were not statistically significant. The third project built upon the second project, so
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Proj. # UT Avg. Prod. GT Avg. Prod. t-Test Val. Stat. Sig?
(hrs worked) (hrs worked) (p-val = 0.05)

1 4.18 4.93 0.240 No
2 8.97 12.2 0.023 Yes
3 7.69 10.62 0.060 No
4 9.49 12.99 0.041 Yes
5 11.75 16.33 0.130 No
6 7.35 9.90 0.158 No
7 10.39 12.10 0.384 No
8 6.27 7.80 0.090 No

Table 4.1: Experiment 1 Productivity Analysis: # Hours Worked

Proj. # UT Max GT Max UT Min GT Min UT Median GT Median
(# hrs) (# hrs) (# hrs) (# hrs) (# hrs) (# hrs)

1 9 14.14 1.5 2.25 3.5 4
2 15 40 3 3.5 10 11.5
3 15 50 2 2.5 7 9
4 21 50 3 4 8.25 11.5
5 23 60 6.25 5 11 13.6
6 15 50 4 2 6.5 7.5
7 16 50 6.5 1.5 9 10
8 10 25 3.5 2 6 8

Table 4.2: Experiment 1 Productivity Statistics

tests could be reused from project two to three. This could explain why time differences were

not as extreme for project three. Project four was the beginning of another series project,

so tests were reused in projects five and six, which could explain insignificant differences for

these two projects. For projects 7 and 8, students had to write all of the tests on their own

and while the GT group spent more time on the projects, it was not significantly more. The

trend shows a steep learning curve for when students first have to write tests (projects 2 and

4). However, when students had to write all the tests on their own in projects 7 and 8, the

time it took them was not significantly longer.

Additional statistics for the productivity of students on these projects is outlined in Table

4.2. Note that while the medians per project were only around two hours more for the GT
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Figure 4.1: Experiment 1: Projects 2-5 Productivity Boxplots

group, the maximums were around twenty to thirty hours more than the UT group. This

situation brings up the concern of outliers. Figure 4.1 shows boxplots for projects whose

averages were around three hours different. The stars indicate outliers. The GT group

clearly had several extreme outliers. This explains why differences in the averages were more

extreme than the median differences.

A further productivity analysis is seen in Figure 4.2. This chart outlines work-load differences

between the two groups compared to approximately how much additional work the GT group

had due to writing tests. For each project, the approximate percentage of tests required to

be written by the GT group to fully test their program is plotted. The corresponding

percent increase in average number of hours worked per project is displayed. This graph

gives insight to the question if the percent increase in number of tests required of the GT

students correlated with their percent increase in hours worked. For the very first project,
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Figure 4.2: Experiment 1: Work-Load Differences

when neither group had to write tests, we see the GT group taking 18% longer than the

UT group. This gives the GT group a predisposition to spend more time on projects for

unknown reasons. Nonetheless, the graph shows an initial increase in time worked by the

GT group as writing tests were required of them. However, by the end of the course, the

trend shows that the GT group got the hang of writing tests and was not spending all that

much longer on the projects, even as more and more tests were required of them.

4.1.2 Quality

The quality of the projects was determined using the number of passed JUnit tests, the

student’s overall project grade, and code-coverage. The student’s source code was run against

an instructor’s suite of JUnit tests to determine the number of passed JUnit tests. Code-

coverage was determined by running students tests on the instructors source-code.

Passed JUnit Tests

Table 4.3 summarizes the percent of JUnit tests passed. To receive credit, a student has

to pass a given acceptance test provided one day before the due date. Thus, we expect
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Proj. # UT Tests Passed GT Tests Passed t-Test Val. Stat. Sig?
(avg. % passed) (avg. % passed) (p-val = 0.05)

1 97.31% 98.43% 0.518 No
2 94.14% 97.86% 0.296 No
3 97.38% 97.06% 0.749 No
4 98.23% 98.38% 0.910 No
5 97.70% 97.13% 0.752 No
6 97.42% 96.05% 0.340 No
7 94.62% 92.91% 0.606 No

Table 4.3: Experiment 1 Quality Analysis: JUnit Tests Passed

Proj. # Avg. UT Grade Avg. GT Grade t-Test Val. Stat. Sig?
(p-val = 0.05)

1 91.36% 93.57% 0.423 No
2 78.57% 79.19% 0.903 No
3 81.34% 81.43% 0.982 No
4 82.05% 83.36% 0.698 No
5 80.00% 76.40% 0.460 No
6 86.36% 83.95% 0.594 No
7 78.33% 82.30% 0.439 No
Course Grade 54.41% 62.45% 0.220 No

Table 4.4: Experiment 1 Quality Analysis: Project Grade

the percentages of passed unit tests to be high. When comparing the GT group to the UT

group, we see no significant differences in the number of unit tests passed. In most cases,

the percentages were nearly equal. Grading test-code did not have an effect on the number

of unit tests passed.

Project Grade

The overall score on the project is a good indicator of quality of code as well. A project

grade has the additional quality criteria of human inspection from the instructor. Table 4.4

shows that while in most cases the GT group had a higher average grade, the differences

were not significant. The average final class grade was again higher for the GT group, but

not significant. This trend follows what was noticed in the quality measurement of passed

JUnit tests.
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Proj. # UT Branch Cov. GT Branch Cov. t-Test Val. Stat. Sig?
(avg. coverage %) (avg. coverage %) (p-val = 0.05)

1 87.23% 87.32% 0.966 No
2 79.59% 85.76% 0.348 No
3 86.69% 86.65% 0.987 No
4 69.34% 81.48% 0.039 Yes
5 57.69% 70.88% 0.071 No
6 35.80% 61.39% 0.003 Yes
7 20.11% 56.10% 0.006 Yes

Table 4.5: Experiment 1 Quality Analysis: Branch Coverage

Code-Coverage

Code-coverage is used to measure the quality of student-written tests. Tests that cover

multiple aspects of a program’s execution are more likely to catch defects, which simple

tests might miss. The author and colleagues measure code-coverage by line coverage and

branch coverage. Line coverage ensures that every executable line of code is run at least

once. Branch coverage requires that every branch in a program has been executed at least

once. Table 4.5 summarizes branch coverage percents between the GT and UT groups, and

Table 4.6 presents line coverage percentages. In each of these cases, percentages of coverage

drop to low levels over time. The UT group’s coverage drops more than the GT group,

with significant differences. Tests were graded based on method coverage, so as long as they

achieved 100% method coverage, their grade was satisfied. Nonetheless, 60% line coverage

is not bad for introductory students. Grading based on line coverage could ensure higher

quality tests.

A concern is if the rate of the decreasing coverage coincides with the amount of tests pro-

vided. This would mean that students tests were not well-written or written at all, and the

provided tests are the crutch for showing any coverage. Figure 4.3 plots out the line coverage

percentages for the groups compared to the line coverage of the given tests. For the first four

projects, it looks as if all the students kept up great coverage percentages as the coverage

40



Proj. # UT Line Cov. GT Line Cov. t-Test Val. Stat. Sig?
(avg. coverage %) (avg. coverage %) (p-val = 0.05)

1 94.84% 95.60% 0.565 No
2 93.77% 96.14% 0.506 No
3 94.12% 94.68% 0.675 No
4 81.96% 92.26% 0.056 No
5 52.70% 69.31% 0.005 Yes
6 36.23% 65.08% 0.0004 Yes
7 26.98% 63.92% 0.009 Yes

Table 4.6: Experiment 1 Quality Analysis: Line Coverage

Figure 4.3: Experiment 1: Line Coverage Comparison
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of the given tests diminished. Project five had a significant drop in test quality. Concepts

of exceptions and file-based streams were introduced in this project; each concept requiring

more complex tests. Towards the end of the course, the quality of the UT group’s tests

dropped significantly lower than the GT group, possibly because they were not required to

do any tests and thus put it off. High quality tests could have been sacrificed be due to

the work load of computer science students towards the end of a quarter, where many final

projects are due in multiple classes, and preparations for final exams take up time.

4.1.3 Attitudes

Attitudes towards test-first programming and test-last programming were tracked through

pre- and post-experiment surveys. These surveys were administered through SurveyMon-

key1 and given on the first and last weeks of the quarter. Differences between groups were

analyzed with a two-sample t-test and within groups with a paired t-test. Three of the sur-

vey questions were analyzed. The first two questions rated importance of testing, and the

last question allowed students to choose a testing preference. The questions are outlined in

Figure 4.4.

Figure 4.5 graphically displays attitudes towards testing. There were no significant differ-

ences between group attitudes. Furthermore, there were no significant differences within

groups (students changing their opinions). However, both groups valued test-last program-

ming more highly in the end. This is reflected with the third question analyzed, as more

students chose test-last instead of test-first. Most self-reported reasonings for the given

choice was because test-last was what the beginner students were used to, and they found

it easier to think of test-cases with written source-code in front of them.

1http://www.surveymonkey.com
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Question 1:
How important is it to write a test before writing the corresponding method?
� Not Important

� Somewhat Important

� Important

� Very Important

Question 2:
How important is it to write a test after writing the corresponding method?
� Not Important

� Somewhat Important

� Important

� Very Important

Question 3:
If you had a choice to write code with a test-first or test-last approach,
which would you choose?
� Test-First

� Test-Last

Figure 4.4: Three Survey Questions Analyzed

4.1.4 Comprehension

A reasonable way to measure course comprehension is by inspecting scores on the cumulative

final exam. All students in this course took the same final exam, independent of which

instructor they had. To remove differences in grading between instructors, three questions

were re-graded by the author. Details of these questions are outlined below. Results will be

discussed afterwards.

Question 1
The first question required students to write code to parse data from a file. Three
points were awarded by the author. One point was given if the student dealt with
I/O concerns correctly (i.e. File and Scanner class creation and usage). The sec-
ond point was awarded if the student handled exceptions correctly. Lastly, the
student was given an additional point if all parsing logic was correct.

Question 2
The second question was a test plan for three pieces of data. A standard bound-
ary analysis was used to grade this question. For each of the three pieces of
data, the author ensured the student gave five different test cases: below the
lower bound, on the lower bound, in the range of acceptable data, on the upper
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Figure 4.5: Experiment 1: Attitudes Towards Testing
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GT Avg % UT Avg % t-Test Val. Stat. Sig?
(p-value = 0.05)

Q1 60.0% 54.4% 0.479 No
Q2 54.7% 51.5% 0.637 No
Q3 72.0% 80.7% 0.315 No
Total 59.2% 57.9% 0.779 No

Table 4.7: Experiment 1 Comprehension: Final Exam Scores

bound, and above the upper bound. There are fifteen possible points for this
question, five for each one of three pieces of data. However, the question on
the exam provided two sample test cases for each one of the three data pieces,
totaling six sample test cases. Therefore, the author graded this problem out of
nine possible points, one for each of the additional test cases not already provided.

Question 3
The last question tested design skills of students. They were required to imple-
ment a subclass with a parameterized constructor and a method on its super-
class’s interface. Three possible points could be achieved on this question. One
point if the design of the class was set up correctly (i.e. extended the parent class
correctly and had correct method signatures). Another point was for proper us-
age of super() calls, and one last point if the logic in the single method was
correct.

Final Exam Grade

The total of the three questions outlined above were compared between the GT and UT

groups. Average scores for each question and the total of the final exam are outlined in

Table 4.7. Overall, the GT group did a little better, but no comparisons were significant.

Code-Testing Question

Question 2 had the students develop a test plan. As seen in Table 4.7, the GT group did

slightly better on this question. Thus, they came up with more correct test-cases than the

UT group. However, the differences were not significant.
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4.1.5 Discussion

When comparing students with graded test-code vs ungraded test-code, a few differences

arise. The GT group does spend 20-40% more time on projects than the UT group, but

the difference is not statistically significant, partly due to a few outliers. Students can suc-

cessfully write tests and be exposed to different methods of testing without taking much

additional time. As an incentive to write tests, students should be graded on their test-code.

Otherwise, the quality and amount of tests written drops as indicated by the code-coverage

analysis. Grades and passed unit tests were not much different between the groups. This

might be surprising since testing is often correlated with the quality of code. However, in

the context of this experiment, all students were required to pass a full acceptance test to

submit their code. This test could have very well exposed the UT group to any defects

without having to write tests themselves. Both groups had relatively the same attitudes

towards testing, and did equally well on the final exam.

Hypotheses H1-H7 focuses on experiment 1. The number of JUnit tests passed was not

significantly different between the groups, so we cannot reject the null hypothesis for H1,

implying that we cannot accept the alternate hypothesis. Although the time spent by the

GT group per project was slightly higher than the UT group, it was not significant in most

cases. We therefore cannot reject the null hypothesis for H2. As the students wrote more

and more unit tests, the quality of tests as measured by code-coverage was significantly

higher for the GT group. We therefore accept H3 alternate hypothesis and reject the null

hypothesis. Grades were relatively equal between the two groups, so we cannot reject the

null hypothesis for H4. Attitudes towards testing and scores on the final exam were rela-

tively the same between both groups, so for hypotheses H5-H7 we cannot reject the null

hypothesis.
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4.2 Experiment 2: Classical-Test vs Test-First

This experiment compares quality of students’ projects in the course taught in Winter 2008

to the projects completed by students who took the course exactly one-year earlier. Students

in the Winter 2007 course were not exposed to TDD or JUnit like the students in the Winter

2008 course. The 2007 group is called the classical-test (CT) group, and the 2008 group is

denoted the test-first group (TF).

4.2.1 Quality

The quality of the projects was determined using the number of passed JUnit tests and the

student’s overall project grade. The student’s source code was run against an instructor’s

suite of JUnit tests.

Passed JUnit Tests

Table 4.8 summarizes the percent of JUnit tests passed. As in the data from experiment 1,

a student has to pass a given acceptance test to be able to hand in their code. Therefore,

we again see high percentages of passed unit tests. The TF group passed a significantly

higher number of tests than the CT group for most projects. Projects one and two were

introductory projects and are expected to have a low number of defects. However, it is

interesting to note that for projects one and seven, the averages for the TF group were lower

than that of the CT group, although the differences were not statistically significant. Figure

4.6 shows boxplots for the distributions of passed tests for projects number one and seven.

We can see some significant outliers in the TF group. For the first project, these students

could have gotten hung up on the new Java language. For the last project, students might

have become busy during the end-of-quarter rush and not put enough time to completing

the project.
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Proj. # CT Tests Passed TF Tests Passed t-Test Val. Stat. Sig?
(avg. % passed) (avg. % passed) (p-val = 0.05)

1 99.08% 98.44% 0.566 No
2 95.95% 96.94% 0.448 No
3 94.81% 97.15% 0.004 Yes
4 94.73% 98.34% 0.00012 Yes
5 86.69% 97.22% 0.013 Yes
6 90.00% 96.31% 0.00004 Yes
7 96.15% 93.27% 0.193 No

Table 4.8: Experiment 2 Quality Analysis: JUnit Tests Passed

Figure 4.6: Experiment 2: Projects 1 and 7 Boxplots
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Proj. # Avg. CT Grade Avg. TF Grade t-Test Val. Stat. Sig?
(p-val = 0.05)

1 94.58% 92.95% 0.407 No
2 88.45% 79.03% 0.0023 Yes
3 89.91% 81.41% 0.0060 Yes
4 87.17% 82.97% 0.136 Yes
5 81.42% 77.14% 0.274 No
6 89.33% 84.46% 0.160 No
7 90.22% 81.33% 0.013 Yes
Course Grade 61.53% 60.12% 0.796 No

Table 4.9: Experiment 2 Quality Analysis: Project Grade

Project Grade

As in experiment 1, project grades were examined in experiment 2 as a measure of quality.

Interestingly, Table 4.9 shows the CT group having a higher average grade than the TF

group on each project with some differences statistically significant. However, average final

course grades between the two groups were nearly identical. This is an opposite trend from

the data seen in the percents of JUnit tests passed, where the TF group sometimes averaged

significantly higher percentiles than the CT group. It is important to note that several

variables exist in this data besides exposure to TDD and JUnit. The CT group received

the acceptance test as soon as they started the project, while the TF group got access one

day before the project was due. Secondly, test-grades are accounted for in the graded-tests

sections of the TF group. These variables add uncontrolled noise to the comparison of project

grades.

4.2.2 Discussion

From this experiment we are able to note the importance of exposure to unit testing through

JUnit. For the majority of projects, the TF group passed significantly more unit tests than

the CT group a year earlier. Too many uncontrolled variables in the project grade analysis

are apparent in the data to make any conclusions in the quality analysis.
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Hypothesis H8 addresses the number of passed unit tests between the two groups. We

accept the alternate hypothesis for H8 and reject the null hypothesis. Due to the noise in

the project grade data, we will not make any claims to hypothesis H9.

4.3 Experiment 3: Teaching Style

This experiment sought to find differences in teaching a test-first approach. It compares the

effects of instructors using a TDD approach for in-class examples. Professor A did not use a

test-first approach for in-class examples, where Professor B strictly followed a design recipe

which steps through a test-first process. A common project was given to both groups and

results were analyzed.

4.3.1 Productivity

Differences in productivity for the common project are outlined in Table 4.10. Professor

B’s students spent less time on average than Professor A’s group, but the differences were

not statistically significant. Furthermore, a boxplot of the data in Figure 4.7 shows several

outliers in Professor A’s group which could have pulled up the average. The median, 25th-,

and 75th-percentiles are very similar. More common projects between the two groups needs

to be assessed to make any general conclusions.

4.3.2 Quality

Project submissions were gathered and analyzed for quality by the number of passed unit

tests and code-coverage from written tests. Unfortunately, different coding practices between

the classes and slight modifications to the API requirements made it difficult to gather enough
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Prof. A Group Prof. B Group

Average 11.78 hrs 9.68 hrs
Median 10 hrs 8.1 hrs
Std. Dev. 8.42 hrs 5.27 hrs
Maximum 50 hrs 24 hrs
Minimum 1.5 hrs 2 hrs

2-tailed t-test 0.173
Stat. sig.? (p-val: 0.05): No

Table 4.10: Experiment 3 Productivity Analysis: # Hours Worked

Figure 4.7: Experiment 3: Productivity Boxplots
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A Avg % B Avg % t-Test Val. Stat. Sig?
(p-value = 0.05)

Q1 58.5% 46.8% 0.089 No
Q2 53.8% 35.9% 0.00015 Yes
Q3 74.4% 44.7% 5.17 ∗ 10−6 Yes
Total 58.8% 39.9% 7.79 ∗ 10−7 Yes

Table 4.11: Experiment 3 Comprehension: Final Exam Scores

comparable data. Thus, the author and colleagues had to drop this aspect of experiment 3.

4.3.3 Attitudes

Attitudes towards testing was gathered through surveys as it was in experiment 1. The

same questions were analyzed between the A group and the B group as outlined previously

in Figure 4.4. Data gathered for the A and B groups is graphically displayed in Figure

4.8. As seen in experiment 1, differences between the groups and within the groups were

not significant. Both groups started out split between choosing test-first and test-last. By

the end of the experiment they both leaned towards choosing test-last independently of the

teaching style taught. Interestingly enough, when taught with a design recipe that enforced

test-first, the B group leaned toward test-last. Nonetheless, both groups still valued testing.

4.3.4 Comprehension

Comprehension was measured by looking at the final exams for both groups. Group A’s final

exams were re-graded in experiment 1, and group B’s final exams were likewise re-graded.

Scores are outlined in Table 4.11.

Final Exam Grade

Professor A’s students averaged much higher on the combined totals of the three questions

looked at on the final exam. Looking more in depth, group A did significantly better on
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Figure 4.8: Experiment 3: Attitudes Towards Testing
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question 2’s boundary test-plan and question 3’s test of design skills. When broken down

into question 3’s sub-problems, both groups were about equal on getting the logic of the

question correct. Professor A’s students did significantly better on getting the design of

classes and method signatures correct (t-test val. = 6.75∗10−5) and properly using super()

in this designed subclass (t-test val. = 8.95 ∗ 10−6).

Code-Testing Question

Group A on average came up with a little more than half of all test-cases, where group B

came up with about a third. When Professor B was asked about the results, he noted that

he did not explicitly teach boundary analysis skills. Group A did significantly better on this

boundary test-plan question.

4.3.5 Discussion

While the students in both these groups took about an equal amount of time on the common

project and felt relatively the same about testing, group A did better on certain final exam

questions. Since the concepts on the final exam were relatively specific (boundary analysis,

subclasses and use of super()), significant differences should not be correlated only with

teaching style. If all labs and projects were the same between both of the groups, a bet-

ter correlation to teaching style could be drawn. Only one project was common between

these two groups, so differences could be attributed to Professor A having projects which

more readily relayed concepts such as boundary analysis and extensive use of subclasses and

super() calls.

Hypotheses H10-H15 addressed different aspects of experiment 3. Due to the limitation of

quality analysis in this experiment, we will not consider hypotheses H10 or H12 which have

to do with the number of unit tests passed and code-coverage of student tests, respectively.
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There were insignificant differences between the number of hours worked on the common

project between the two groups. We therefore cannot reject the null hypothesis for H11.

Both groups had similar attitudes towards testing so we cannot reject the null hypothesis

for H13. Group A did better overall on the final exam and on the testing question, so we

reject both the null and alternate hypotheses for H14 and H15.

4.4 Experiment 4: Graded Tests vs Ungraded Tests

Similar to experiment 1, Professor B divided up his two sections based on grading tests. The

two groups are also denoted graded-tests (GT) group and ungraded-tests (UT) group.

4.4.1 Quality

Only one metric was used to measure the quality of projects. The metric used was project

grades. Table 4.12 shows average grades per project and results from a two-sample t-test.

Grade distributions between the two groups hardly differed. In fact, averages were exactly the

same in one case. Awarding points for writing tests did not affect the quality of projects for

Professor B’s students. The similarity between the sections is most likely due to Professor B’s

teaching approach, explained previously in Section 3.2.3. All of his students were taught in

a test-first manner and followed a strict design recipe for developing programs that required

writing tests. According to Professor B, giving grades for the tests seemed to have little

impact, as all of his students wrote tests for the design recipe.

4.4.2 Attitudes

Survey results from Professor B’s GT and UT groups are displayed in Figure 4.9. Both

groups valued test-last programming, before and after the experiment. Opinions of test-first
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Figure 4.9: Experiment 4: Attitudes Towards Testing
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Proj. # Avg. UT Grade Avg. GT Grade t-Test Val. Stat. Sig?
(p-val = 0.05)

1 91.13% 89.97% 0.719 No
2 69.29% 66.24% 0.730 No
3 68.04% 72.41% 0.618 No
4 66.67% 66.67% 1.000 No
5 57.53% 60.65% 0.655 No
6 84.98% 72.12% 0.110 No
7 50.81% 47.83% 0.698 No
8 84.34% 81.45% 0.695 No

Table 4.12: Experiment 4 Quality Analysis: Project Grade

programming stayed mostly the same. No differences in attitudes between the two groups

were significant. However, within the UT group, a paired t-test showed that the UT group’s

feelings towards test-last either stayed the same or dropped (p value = 0.002). The UT

group’s feelings did not shift toward test-first programming due to the drop in attitudes

towards test-last programming, however. Only 25% of the UT students felt more strongly

about test-first programming after the experiment, while the rest of the student’s attitudes

dropped or stayed the same.

4.4.3 Comprehension

Final exam data gathered from Professor B’s students in experiment 3 was divided into

the GT and UT groups within his classes. This data was then compared to measure any

comprehension differences between the two groups.

Final Exam Grade

Both sections did relatively the same on each of the questions on the final exam. Table

4.13 outlines the averages and documents the statistical tests performed. The UT group did

slightly better on each question, but the differences were not significant.
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GT Avg % UT Avg % t-Test Val. Stat. Sig?
(p-value = 0.05)

Q1 40.0% 54.5% 0.222 No
Q2 35.1% 36.9% 0.797 No
Q3 40.0% 50.0% 0.325 No
Total 37.1% 43.0% 0.321 No

Table 4.13: Experiment 4 Comprehension: Final Exam Scores

Code-Testing Question

On the boundary analysis test-plan question, the groups performed nearly identically. This

is most likely due the lack of proper boundary testing taught in the course by Professor B.

The UT group only did slightly better for reasons unknown.

4.4.4 Discussion

Awarding points for writing test-code had no significant differences within the style of teach-

ing by Professor B. All of his students wrote tests to follow the specific design recipe used

in the course. Both groups scored relatively the same on projects and the final exam. The

only real difference to note is that the UT group’s attitudes towards test-last programming

stayed the same or dropped by the end of the course.

Four hypotheses H16-H19 were concerned with experiment 4. Grades per project did not

differ significantly between groups and scores on the final exam were relatively equal, so we

cannot reject the null hypotheses for H16, H18, and H19. While some attitudes towards

test-last programming differed within the UT group, they were not significantly different

between groups. Therefore, we also cannot reject the null hypothesis for H17.
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Chapter 5

Conclusions & Future Work

Four experiments were conducted to see effects of incorporating TDD into introductory-level

programming courses. More specifically, five concerns with teaching TDD were addressed:

• C1: The cost of using existing materials in a TDD fashion was minimal. All projects

were directly developed in a TDD approach, and most labs were also directly converted.

Labs that originally were designed with I/O were changed to use unit tests for checking

expected outputs. I/O was deferred to later in the course.

• C2: Awarding points for test-code did not significantly change quality of source-code,

time spent on projects, attitudes towards testing, or overall comprehension of mate-

rial. It did however, give students incentives to write higher-quality code as measured

through code-coverage.

• C3: Students spent more time per project when developing tests in tandem with

source-code, but increases were not significant. Students were able to learn and write

unit tests without significantly increasing their work load.

• C4: For the scale of projects in introductory-level programming courses, TDD did not

affect the quality of projects turned in by students as measured by project grades and
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number of passed JUnit tests.

• C5: Different teaching approaches did not significantly change the time students spent

on projects, attitudes towards testing, or course comprehension. Due to the limitation

in our study, project quality aspects were not able to be analyzed.

5.1 Summary of Contributions

Empirical evidence was gathered to address the goals of the experiment. We were able to

get the students to write tests and learn a testing framework (JUnit) with minimal changes

to existing materials and without significantly increasing the number of hours spent on each

project. It is important to reflect on a few of the TDD challenges outlined in Section 2.4.

• Challenge 1: Some claim that introductory students are not ready for testing until

they have basic programming skills.

Response: By exposing testing through example and slowly requiring students to write

a greater percentage of the tests per project, we were able to prepare the students to

write tests completely on their own.

• Challenge 2: Instructors often worry about not having enough lecture hours to teach

a new topic like software testing.

Response: We were able to reuse existing materials and have students develop them

in a TDD approach without increasing the work load of students. Thus, the students

were exposed to unit testing.

• Challenge 3: Staff often have their hands full accessing code-correctness so it may not

be feasible to assess test cases as well.

Response: With automated testing frameworks like JUnit and code-coverage tools like

Emma, the number of tests and quality of tests can be automatically calculated and
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factored into a grade with only a one-time setup cost. Professor A voluntarily continued

using the new TDD and JUnit materials in the subsequent quarter.

5.2 Future Work

In experiment 1, the students were only exposed to TDD and testing through descriptions

of how the process works and sample JUnit code with simple comments. A set of 1-3 labs

needs to be developed to formally introduce students to the TDD process and basic syntax

of JUnit. These labs were purposely not developed prior to the experiment to see the cost

of reusing existing labs and projects and tacking on a TDD approach (concern C1).

A set of self-contained web-based labs should be built that can emphasize benefits of TDD

and allow students to get hands-on experience in a simplified lab setting. Currently, the

author has developed two such labs, available online1. The first lab exposes students to

syntax and semantics of JUnit, and the second introduces TDD and provides a step-by-step

walk-through of the process. Web-CAT is used as a back-end automated grader that can give

students feedback on their assignments. Web-CAT has been used for programming assign-

ments and is currently being used to encourage a test-first approach [6, 7, 8], and therefore

seems like an appropriate candidate. Empirical evidence needs to be gathered to access the

effectiveness and quality of these labs.

1http://users.csc.calpoly.edu/˜djanzen/research/TDD08/cdesai/
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