
AUTONOMOUS SATELLITE OPERATIONS FOR CUBESAT SATELLITES

A Thesis

Presented to

the Faculty of California Polytechnic State University

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Jason L. Anderson

March 2010

c© 2010

Jason L. Anderson

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Autonomous Satellite Operations For CubeSat Satellites

AUTHOR: Jason L. Anderson

DATE SUBMITTED: March 2010

COMMITTEE CHAIR: Dr. Franz Kurfess
Computer Science Professor
Computer Science Department
California Polytechnic State University

COMMITTEE MEMBER: Dr. Jordi Puig-Suari
Aerospace Professor
Aerospace Department
California Polytechnic State University

COMMITTEE MEMBER: Dr. Alex Dekhtyar
Computer Science Associate Professor
Computer Science Department
California Polytechnic State University

iii

Abstract

Autonomous Satellite Operations For CubeSat Satellites

by

Jason L. Anderson

In the world of educational satellites, student teams manually conduct op-

erations daily, sending commands and collecting downlinked data. Educational

satellites typically travel in a Low Earth Orbit allowing line of sight communica-

tion for approximately thirty minutes each day. This is manageable for student

teams as the required manpower is minimal. The international Global Educa-

tional Network for Satellite Operations (GENSO), however, promises satellite

contact upwards of sixteen hours per day by connecting earth stations all over

the world through the Internet. This dramatic increase in satellite communica-

tion time is unreasonable for student teams to conduct manual operations and

alternatives must be explored. This thesis first introduces a framework for devel-

oping different Artificial Intelligences to conduct autonomous satellite operations

for CubeSat satellites. Three different implementations are then compared us-

ing Cal Poly’s CP6 CubeSat and the University of Tokyo’s XI-IV CubeSat to

determine which method is most effective.

Keywords: Autonomous Operations, CubeSat, Lights Out Operations, Earth

Station, Validation Framework, Rule Based System, Process Extraction

iv

Acknowledgements

There are so many people who have helped to make this thesis possible.

Dr. Franz Kurfess For inspiring my passion for autonomous systems and

encouraging your students to be proud and submit their work to public forums.

Dr. Jordi Puig-Suari For all your support and creating the CubeSat project

which has made learning an enjoyable/real world experience. Who’d have thought

a 10cm3 cube could offer so many opportunities?

Dr. Alex Dekhtyar For introducing me to the world of Data Mining and all

of its many interesting problems.

PolySat & CubeSat To those who have come before me, thank you for the

ground work you have laid to get us to where we are today. To those who have

worked beside me, thank you for always being supportive and a friend. To those

who are to come, I encourage you to seize this opportunity to learn and challenge

yourself.

My Family For always believing in me and encouraging me to follow my

dreams.

v

Contents

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Thesis Outline . 4

1.2 Use of General Terms . 6

2 Literature Review 7

2.1 Evaluation of Existing Systems 7

2.1.1 Inspectable Scoring Definition 9

2.1.2 Predictable Scoring Definition 9

2.1.3 Repairable Scoring Definition 10

2.1.4 Extensible Scoring Definition 10

2.1.5 Intelligent Scoring Definition 11

2.2 GENIE . 12

2.2.1 Advantages . 14

2.2.2 Disadvantages . 15

2.2.3 Validation Framework Results 16

2.3 LOGOS . 18

2.3.1 Advantages . 19

2.3.2 Disadvantages . 20

2.3.3 Validation Framework Results 21

2.4 ASPEN . 22

2.4.1 Advantages . 24

vi

2.4.2 Disadvantages . 25

2.4.3 Validation Framework Results 26

2.5 Summary of Existing Research . 28

3 Automation Framework 29

3.1 The Agent . 29

3.2 The Knowledge Base Interface . 30

3.3 The Task File . 31

3.4 The TNC Interface . 32

3.5 Line of Sight Executive Interface 33

3.6 Standard Program Execution . 33

3.7 Historical Data Record . 34

3.8 Framework Actions . 35

3.8.1 Agent Actions . 35

3.8.2 Satellite Actions . 36

4 Implementation 1:
Rule Based System 37

4.1 RBS Execution . 37

4.1.1 RBS Execution Example 40

4.2 Implementation . 41

4.2.1 Satellite Model . 41

4.2.2 Task to Agenda Rules . 42

4.2.3 Preventative Rules . 43

4.2.4 Error Recovery Rules . 43

4.3 Results . 44

4.3.1 Advantages . 44

4.3.2 Disadvantages . 45

4.3.3 Validation Framework Results 46

5 Implementation 2:
DFA Process Model 53

5.1 DFA Process Model Execution . 53

5.2 Creation of a DFA Process Model 55

vii

5.2.1 Data Source Selection . 57

5.2.2 Preprocessing . 57

5.2.3 MXML Formatting . 60

5.2.4 Alpha Extraction . 60

5.2.5 Contraction . 61

5.3 Results . 61

5.3.1 Advantages . 61

5.3.2 Disadvantages . 64

5.3.3 Validation Framework Results 65

6 Implementation 3:
Hybrid Implementation 67

6.1 Implementation . 67

6.2 Results . 68

6.2.1 Advantages . 69

6.2.2 Disadvantages . 70

6.2.3 Validation Framework Results 71

7 Verification & Validation 73

7.1 Testing Overview . 73

7.2 ASOF Verification With Another Satellite 75

7.3 Validation Framework Results . 75

8 Future Work 78

8.1 Learning Knowledge Base Library 78

8.2 Advanced Monitor Interface . 79

8.3 Add HamLib Driver Support . 79

8.4 Add Satellite State to Hybrid Implementation 80

9 Conclusion 81

Bibliography 83

A Glossary 89

B Satellite Simulator 92

B.1 Satellite Simulator Implementation 92

viii

B.2 Satellite Link Quality . 93

B.3 Responses File . 93

C File Formats 94

C.1 MoredBs Log File Format . 94

C.2 MXML File Format . 94

C.3 DFA File Format . 95

C.4 Configuration File Formats . 95

C.4.1 asof.prop . 95

C.4.2 satellite.prop . 96

C.5 Satellite Simulator Response File 97

D Petri Nets Background 98

D.1 Workflow Nets . 100

E The α-Algorithm 101

E.1 α-Algorithm Example . 103

E.2 α-Algorithm Assumption . 105

E.3 α-Algorithm Limitation . 105

ix

List of Tables

2.1 GENIE’s Evaluation Using the Validation Framework 17

2.2 LOGOS’ Evaluation Using the Validation Framework 22

2.3 ASPEN’s Evaluation Using the Validation Framework 27

2.4 Validation Framework Summary for Prior Systems 28

4.1 The RBS’ Evaluation Using the Validation Framework 47

5.1 Inferred Actions for MoredBs . 60

5.2 The DFA Process Model’s Evaluation Using the Validation Frame-
work . 66

6.1 The Hybrid’s Evaluation Using the Validation Framework 72

7.1 Results of all Verification Tests with CP6 74

7.2 Results of all Verification Tests with IX-IV 75

7.3 Validation Framework Summary for Autonomous Systems 75

9.1 Summary of Thesis Contributions 82

E.1 An Example Workflow Log . 103

E.2 Organized Cases from the Example Workflow Log 103

x

List of Figures

1.1 CP6, Cal Poly’s Forth CubeSat 2

1.2 Cal Poly’s Two Earth Stations . 2

1.3 LEO Ground Coverage Using the GENSO Network [31] 3

1.4 Time Available per Day to Conduct Ops Before (left) and After
(right) GENSO . 4

1.5 Image Taken by AeroCube-2 of Cal Poly’s CP4 in Space 5

2.1 The Previous Work Being Reviewed 8

2.2 The Three Components (Top) of the GENIE Application 13

2.3 The LOGOS Concept . 18

2.4 The LOGOS Framework . 19

2.5 ASPEN’s GUI Showing Goal Decomposition 23

3.1 A Design Overview for the ASOF Framework 30

3.2 An Example Task File . 32

3.3 The KPC9612+ Hardware TNC 32

3.4 The MixW Software TNC . 32

4.1 RBS Implementation Screenshot 38

4.2 Agenda Stack Right after tellNextTask 48

4.3 Agenda Stack while Payload is Off and Not in Normal Ops 48

4.4 Agenda Stack with Low Power Situation 49

4.5 Agenda Stack after a Nack, Not in Normal Ops is Received 49

4.6 Task-To-Agenda JESS Rule for the CDHDataDump Task 50

xi

4.7 CDHDataDump Command’s Preventative Normal Ops Rule . . . 51

4.8 JESS Rule for Handling a Nack(Not in Normal Ops) 52

5.1 CDHDataDump DFA Process Model 54

5.2 The Data Structures and Steps to Create a DFA Process Model . 58

5.3 The CDHDataDump Task Before and After the Contraction Pro-
cedure . 62

5.4 DFA Process Model Implementation Screenshot 63

7.1 Example Test Structure . 74

7.2 Example JUnit Verification Screen 74

7.3 Logic Showing the Hybrid Implementation has the Potential to
Solve More Problems than the DFA Process Model Implementation 77

D.1 Relationships Between Transitions 99

D.2 An Example Workflow Net . 100

E.1 The Completed Workflow Net Generated 104

E.2 No Single Loops Possible with the Basic α-Algorithm 105

xii

Chapter 1

Introduction

There are many different operational satellites in orbit at the moment with

missions ranging from scientific payloads provided by NASA’s Jet Propulsion

Laboratory (JPL) [28] to commercial communication missions such as Direct TV

services [8]. Each of these satellites, however, requires an operations team to

monitor the spacecraft and solve potential problems. These operations are well

understood, repetitive tasks making spacecraft operations a perfect candidate for

automation [17].

Satellite operations can also be expensive to maintain for any sustained pe-

riod of time. NASA operation centers are typically staffed 24 hours a day, 7

days a week which can add up over time [17]. For instance, LandSat 7 requires

approximately $20 million per year for operations [45]. If automation made it

possible to reduce this budget by even 5% ($1 million), the direct savings alone

would be enough to adopt an automated system.

In order to provide students with the necessary skills to work in the Aerospace

industry, Stanford University in coordination with the California Polytechnic

1

Figure 1.1: CP6, Cal Poly’s Forth CubeSat

State University (Cal Poly) has developed the CubeSat standard [3]. CubeSats

are small 10cm3 satellites weighing less than a kilogram (see Figure 1.1 for an

image of Cal Poly’s CP6 CubeSat) [46]. The idea is that small satellites can

be developed in approximately 2 years, allowing students to be involved in the

design, development, testing and operations of a complete spacecraft. There are

currently over 20 CubeSats in orbit at various mission stages [24] (see Figure 1.5

for an image of CP4 in space taken by Aerospace Corporation’s AeroCube-2).

Figure 1.2: Cal Poly’s Two Earth Stations

2

Unlike NASA missions which typically have 24-hour contact with their space-

craft, CubeSat orbits are such that only 30 minutes of contact is available per

day [20]. Additionally, the commands that CubeSat operators send are simplistic

such as taking a picture or dumping onboard data. These commands do not

require any complex sequencing. CubeSat operations therefore require a small

amount of manpower and currently do not warrant a fully automated system as

CubeSat teams often have 10 or more members. A simple rotation schedule is

enough to ensure that all satellite passes are utilized (see Figure 1.2 for an image

Cal Poly’s two amateur earth station setups).

Figure 1.3: LEO Ground Coverage Using the GENSO Network [31]

While the current CubeSat operations situation does not require automated

operations, the Global Educational Network for Satellite Operators (GENSO)

will soon greatly increase the potential operations time [13]. GENSO is a project

which promises increased educational satellite (i.e. CubeSats) communication

time by connecting earth stations all over the world through the Internet [41]. For

example, when Cal Poly’s CP3 is within communication range of the University

of Aalborg, Denmark’s earth station, Cal Poly can command CP3 via the Internet

through Aalborg’s station. An important point is that earth station sharing is

3

bidirectional so that when Aalborg’s satellite AAUSat-II is within communication

range of Cal Poly, Aalborg can command their satellite using Cal Poly’s earth

station. See Figure 1.3 for example coverage with 27 ground stations on the

GENSO network.

Figure 1.4: Time Available per Day to Conduct Ops Before (left) and
After (right) GENSO

When GENSO is completed, it will increase satellite communication time from

30 minutes per day to approximately 16 hours per day which will proportionally

raise the amount of manpower required for operations by 32 times (see Figure 1.4).

Since this substantial increase cannot feasibly be compensated by adding more

student labor, another solution, automation, must be explored for educational

satellites.

1.1 Thesis Outline

Before the specifics of this thesis’ research is discussed, an outline is provided.

To define the scope of this thesis and to determine what work still needed to be

completed in the field of autonomous ground operations, a thorough background

search was conducted. The prior autonomous operations systems were then vali-

4

dated using a validation framework developed as part of this thesis based on five

system attributes. The prior systems were placed into the validation framework

to more accurately determine which aspects were lacking. Once this validation is

complete, this thesis describes the software framework created to quickly develop

additional autonomous ground operation systems. Using this software framework,

three autonomous systems were developed for both Cal Poly’s CP6 CubeSat and

the University of Tokyo’s XI-IV CubeSat. The autonomous systems were then

verified and validated using the previously described validation framework. The

thesis then concludes with the potential future work based on the contributions

of this thesis.

Figure 1.5: Image Taken by AeroCube-2 of Cal Poly’s CP4 in Space

5

1.2 Use of General Terms

The terms below are defined for use in this thesis as they have multiple mean-

ings in today’s English vernacular. A glossary of additional terms can be found

in Appendix A.

• Lights-Out Operations: Operation of a ground control center without

the presence or direct intervention of people [47].

• Satellite: An object launched to orbit Earth or another celestial body [6].

At the time of this writing, this includes all CubeSats. The more general

term spacecraft is defined below.

• Spacecraft: Throughout this thesis, the word satellite will be used al-

though all instances can be replaced more generally with the term space-

craft (a vehicle designed for travel or operation in space [7]). This is possible

since the developed Autonomous Satellite Operations Framework (ASOF)

makes no distinction.

6

Chapter 2

Literature Review

The following section first introduces a validation framework which can be

used to judge all autonomous operations systems. Previously researched au-

tonomous operations systems are then reviewed and validated against the afore-

mentioned validation framework. Introducing these prior systems will define what

has already been accomplished at a professional level and outline possibilities for

autonomous CubeSat operations (see Figure 2.1 for an overview of the prior sys-

tems).

2.1 Evaluation of Existing Systems

Before the existing systems can be reviewed, a validation framework must be

established in order to objectively compare each system. The framework must

consist of metrics that summarize the systems’ requirements allowing members

of the field to clearly see what work has yet to be done correctly. Brann created

such a framework for the evaluation of the GENIE system in 1996 [1]. Brann’s

7

Figure 2.1: The Previous Work Being Reviewed

paper outlines the following criteria for an autonomous system (a sixth criteria,

timing constraints, is excluded due to its inapplicability to the analyzed systems).

1. Inspectable: What is the system currently doing and why is it doing it?

2. Predictable: What will the system do next?

3. Repairable: Can the system be restarted with minimal effort?

4. Extensible: Can the system be easily improved?

5. Intelligent: Does the system learn from its mistakes?

While these attributes are able to differentiate autonomous operations systems,

a simple binary scoring does not suffice. In order to add a quantitative aspect to

the validation framework’s scoring system, the following four scores will be used.

N/I = Not Implemented, P = Poor, S = Satisfactory, G = Good

8

In order for the validation framework to remain objective, each scoring option

must be explicitly defined for each attribute in Brann’s criteria. These scoring

definitions are listed below for each attribute.

2.1.1 Inspectable Scoring Definition

The different inspectability scores quantify how much of the autonomous sys-

tem’s internals are displayed to the user.

• Not Implemented: No display is provided to the user.

• Poor: Only the system’s inputs and outputs are displayed.

• Satisfactory: High level operations tasks are shown but small details such

as individual uplinks are not displayed.

• Good: Decisions made by the system are displayed with reasonable justi-

fication.

2.1.2 Predictable Scoring Definition

The predictability scores quantifies how foreseeable the system’s actions are

to a human operator.

• Not Implemented: Actions appear to be randomly generated.

• Poor: The system generally follows a predictable path with some deviations

during nominal operations.

• Satisfactory: Decisions are predictable except for decisions made in re-

sponse to errors conditions.

9

• Good: Decisions are predictable including decisions made in errors condi-

tions.

2.1.3 Repairable Scoring Definition

Repairability scores quantify how easy it is to fix and restart an autonomous

operations system when an unrecoverable error occurs.

• Not Implemented: When a fatal error occurs, the system must be com-

pletely restarted from the beginning of the task sequence.

• Poor: When a fatal error occurs, the system can be restarted at some point

during the last executing task with some lost progress.

• Satisfactory: When a fatal error occurs, the system can be restarted with

no lost progress but the repair requires programmer involvement.

• Good: When a fatal error occurs, the system can be restarted with no lost

progress and the repair can be made by a mission operator.

2.1.4 Extensible Scoring Definition

The extensibility score quantifies how easy it is for changes to be introduced

to the autonomous operations system.

• Not Implemented: A compiled binary is distributed which allows for no

modifications.

• Poor: Modifications require editing and a recompilation of the source code.

10

• Satisfactory: Modifications can be made via a configuration file but re-

quire programmer involvement.

• Good: Modifications can be made via a configuration file and can be com-

pleted by a mission operator.

2.1.5 Intelligent Scoring Definition

The intelligence scores quantify to what degree an autonomous operations

system is able to modify its own behavior and remember these new behaviors.

• Not Implemented: No attempt to modify behavior based on prior exe-

cutions. A human is required to make all behavior modifications.

• Poor: A flexible programming model is used that changes its behavior

based on system inputs. No behavior modifications are saved to the system

for future executions.

• Satisfactory: Behavior modifications are dynamically generated and stored

in the system across executions. Modified behaviors are generated and

stored offline using log information from prior executions.

• Good: Behavior modifications are dynamically generated and stored in

the system across executions. Modified behaviors are generated and stored

online such that behaviors learned during execution can be used later in

that same execution.

Now that the validation framework has been explicitly defined for each of

Brann’s attributes, three prior autonomous operations systems will be introduced

and evaluated using this framework.

11

2.2 GENIE

This section on the Generic Inferential Executor (GENIE) is generally cited

from Hartley [17]. GENIE is NASA’s first attempt to automate spacecraft oper-

ations. In 1993, GENIE started at NASA Goddard Space Flight Center (GSFC)

with the goal of replacing the spacecraft command operator by programming

his/her actions into GENIE. If GENIE was successful, it would have replaced at

least one pass operator, therefore reducing the required manpower for operations

[17].

NASA command centers at the time were typically staffed with two people

per satellite per shift [17]. The first person acts as a Command Controller while

the other is the Spacecraft Analyst [17]. The Command Controller is responsible

for selecting which commands to send and the Spacecraft Analyst monitors the

spacecraft’s health. The Spacecraft Analyst then has the ability to stop the

transmission of commands if a problem is discovered. In this setup, GENIE

completely replaces the Command Controller role reducing the required man

power for operations by 50%.

For testing and to allow for multiple uses, GENIE supports three different

operating modes [17]. The mode with the least control is called Shadow Mode

which displays the next command GENIE would send if it had control of the

earth station. The next mode is Advisory Mode which displays the next com-

mand to send and sends that command once a human operator approves. An

operator approves the command by clicking the send button on GENIE’s GUI.

Advisory Mode is close to the fully automated system, but allows a human to

verify the commands that GENIE sends. The final operating mode is Controlled

Automation which gives full spacecraft control to GENIE. It is the Controlled

12

Automation mode which enables GENIE to conduct Lights-Out Operations.

Figure 2.2: The Three Components (Top) of the GENIE Application

The GENIE application is split into three distinct parts (see Figure 2.2). The

monitoring portion of GENIE is a modified instance of NASA Goddard’s Generic

Spacecraft Analyst Assistant (GenSAA) [21]. GenSAA is a program which mon-

itors incoming telemetry and uses user-defined rules to check for abnormalities

onboard the spacecraft. These rules are created with a graphical interface which

is easily used by spacecraft engineers rather than computer programmers, mini-

mizing errors due to human miscommunication. GenSAA uses the C Language

Integrated Production System (CLIPS) [39] to define the monitoring rules. When

GenSAA detects a potential problem onboard the spacecraft, it pages a member

of the operations team so that he/she can investigate the problem. This notifica-

tion allows potentially fatal problems such as low voltage errors to be corrected

before any damage can become permanent.

13

The second component of the GENIE system is the graphical Pass Builder.

The Pass Builder allows an operations team member to define what actions need

to be completed during the pass. The Pass Builder creates a flow chart of all

spacecraft activities for the pass and their following activity based on the space-

craft’s response.

The third component is the Pass Executor. This component takes a pass

script built with the Pass Builder and uses it to command the spacecraft. The

Pass Executor itself is built within the rule-based system CLIPS. This component

also uses a graphical display to show GENIE’s current location in the pass script

so that observing operations team members can verify GENIE’s correctness.

2.2.1 Advantages

The following is a list of the GENIE system’s advantages.

1. Notification of Problems: GENIE automatically notifies flight opera-

tion team members with a page when a problem is discovered onboard the

spacecraft. This has the potential to prevent fatal spacecraft problems (e.g.

battery failure).

2. Three Modes of Operation: GENIE is able to be used in different situ-

ations due to its three operating modes with different levels of automation.

These modes make the transition to Lights-Out Operations easier since

trust in the GENIE system can be incrementally developed.

3. Graphical Script Creation: GENIE’s ability to use graphically created

pass scripts enables spacecraft engineers, rather than programmers, to cre-

ate the pass scripts which GENIE executes. Removing the programmer

14

from the process reduces spacecraft activity encoding errors during pass

script creation. This reduction in encoding errors results since the satellite

operator no longer needs to communicate through the programmer.

4. Graphical Execution: To allow for transparency of the GENIE system,

GENIE provides an animated graphic of pass script execution during run-

time. Present flight operations team members are able to verify GENIE’s

behavior to increase confidence in the system.

5. Action Log: GENIE outputs a log of all of its actions so that if a problem

occurs with the spacecraft, GENIE’s actions can be reviewed for potential

flaws.

2.2.2 Disadvantages

The following is a list of the GENIE system’s disadvantages.

1. No Relation Between Passes: Currently pass scripts are completely

independent from one another. That is if all of the pass script’s activities

are not able to be completed within a given pass, the entire pass script

must be executed again during the next spacecraft pass. This is inefficient

and could lead to duplicate commands being sent which may harm the

spacecraft.

2. Unforgiving Timing System: Currently, GENIE divides all activities in

a pass script into time segments. In order for the pass to be completed, all

activities must be finished within their time segment. If the activity cannot

be completed within the allotted time the pass fails. This behavior is not a

correct imitation of a satellite operator since if an activity takes 31 seconds

15

instead of 30 seconds to execute, a human operator would not consider this

a pass failure [1].

3. No Pass Script Modularity: Pass scripts are created as one large file

storing all spacecraft activities. GENIE does not support building subrou-

tines in different files which could then be included into other pass scripts.

Adding this functionality would allow for more modular testing of pass

scripts and reduce the script creation time through reuse of subroutines.

4. Fails Gracelessly: When a problem occurs in GENIE, the GENIE ap-

plication stops operating and waits for a human to manually restart the

system. This behavior is not supportive of Light-Out Operations which

cannot rely on human intervention when problems occur.

5. No Learning Capabilities: GENIE is unable to automatically learn from

its mistakes. For instance if GENIE sends a particular command which

makes the spacecraft become unresponsive for a period of time, the only

way to stop GENIE from continuing this behavior is to have a spacecraft

engineer modify the pass script accordingly.

2.2.3 Validation Framework Results

The following is an evaluation of the GENIE system using the established

validation framework.

• Inspectable: Satisfactory

The GENIE system only shows its users the Pass Script that was created by

the Pass Builder. This visualization displays all of the information regarding

the high level tasks that the system is completing.

16

• Predictable: Satisfactory

The GENIE system follows a logical progression while it completes its tasks.

There is, however, limited autonomous error recovery making its behavior

during error situations unpredictable.

• Repairable: Not Implemented

GENIE does not provide much information to fix errors that occur and does

not allow a human operator to intervene. After the error is thought to be

corrected, the GENIE system then has to be restarted from the beginning

of the pass script.

• Extensible: Good

The GENIE system allows changes to its pass scripts via the Pass Builder.

Additionally, CLIPS rules can be added to GenSaa to extends its function-

ality. Since both of these procedures are graphical and straightforward, a

mission operator can make these changes.

• Intelligent: Not Implemented

GENIE does not allow for any behavior modifications to exist across system

executions.

Inspectable Predictable Repairable Extensible Intelligent Type
GENIE Satisfactory Satisfactory Not Implemented Good Not Implemented Rules

Table 2.1: GENIE’s Evaluation Using the Validation Framework

17

2.3 LOGOS

This section on the Lights-Out Ground Operations System (LOGOS) is gen-

erally cited from Truszkowski [47]. NASA Goddard’s next attempt to implement

automated spacecraft operations was LOGOS. LOGOS is a large scale automa-

tion system which not only includes automated spacecraft command using GE-

NIE, but also automates all other ground station functionality (see Figure 2.3 for

LOGOS’ general concept diagram).

Figure 2.3: The LOGOS Concept

LOGOS is developed as a collection of software programs, each with a particu-

lar responsibility. Some software programs, also called agents, are responsible for

spacecraft health monitoring while others are responsible for error analysis and

recovery. Agents in the system are considered “tool users” which allows them

to utilize existing tools to mimic human behavior more closely. For example,

the GenSAA/GENIE agent (LOGOS embeds and uses the previously introduced

GENIE system) uses the GenSAA and GENIE system directly as if the agent

was a flight operations team member. This architecture allows for a plug-in

agent framework which makes adding agents easy (see Figure 2.4 for a diagram

of LOGOS’ framework).

18

Figure 2.4: The LOGOS Framework

Agents in LOGOS are able to communicate with each other using the Agent

Communication Language (ACL). For instance, the GenSAA/GENIE agent is

able to notify the error diagnosis and resolution agent when problems occur using

the ACL. The ACL is also extended to humans when an unrecoverable error is

found. Specifically, the UserIFAgent pages to a human operator who can then

log into the system and work among the agents to resolve the problem. Ideally

all agents would be able to learn from this human interaction but the LOGOS

system does not currently support this functionality.

2.3.1 Advantages

The following is a list of the LOGOS system’s advantages.

1. Agent Modularity: Since all earth station operation responsibility is com-

19

partmentalized across many different agents, maintenance is easy as agents

are designed to have high cohesion. The agent framework also enables new

agents to be quickly added to the system.

2. Problem Resolution Facility: Unlike GENIE, LOGOS implements a

secondary problem resolution agent which examines any errors reported

from GenSAA/GENIE and tries to solve the problem itself before contact-

ing external help. This extra step of problem resolution allows for small

problems to be resolved automatically, increasing the system’s robustness

and reducing the need for human intervention.

3. Agent Communication: Instead of each agent being independent, agents

are allowed to communicate with one another using the ACL. This design

allows for interesting cooperative behavior between agents that evolves dur-

ing the use of the system. These cooperative relationships may eventually

reveal patterns or trends in spacecraft operations that were not previously

recognized.

2.3.2 Disadvantages

The following is a list of the LOGOS system’s disadvantages.

1. Scalability: One issue with using LOGOS’ agent framework is scalability.

Currently when one agent learns information, it is able to communicate

that data to other agents via the ACL. As agents are added to the system,

the number of possible communication channels grow quadratically. While

this might not be a concern for the current number of agents, problems may

occur as the LOGOS system is extended.

20

2. Increased Overhead: Due to the system’s distributed nature over many

agents, there is overhead associated with internal communication. While

this slight decrease in efficiency is a disadvantage, the alternative is to

combine all agents into one large agent which decreases code modularity.

Therefore even though this overhead is a disadvantage, it may be tolerated

for increased modularity and maintainability.

3. No Learning Capability: While the creators of LOGOS plan to include

agent learning through human interaction with the system, this function-

ality is not yet available. Giving all agents the ability to learn enables the

system to improve over time without direct human maintenance.

2.3.3 Validation Framework Results

The following is an evaluation of the LOGOS system using the established

validation framework.

• Inspectable: Satisfactory

The LOGOS system displays the high level tasks to be accomplished. LO-

GOS does not, however, display the complex interactions between its agents.

• Predictable: Good

Since LOGOS uses GENIE for its execution, LOGOS has good predictabil-

ity during nominal conditions. With the addition of an error recovery agent,

the system is even predictable during error situations.

• Repairable: Satisfactory

When the LOGOS system fails, a human operator is notified of the problem.

21

To resolve the problem, however, a knowledge engineer must log into the

system as a LOGOS agent and control the other agents using the ACL.

• Extensible: Poor

For the LOGOS system to be extended, a programmer must either create

or modify an agent in the agent pool. This requires the writing/modifying

of a LOGOS agent’s source code.

• Intelligent: Not Implemented

While agent learning in LOGOS was discussed as a needed improvement,

LOGOS does not have the ability to remember information across execu-

tions.

Inspectable Predictable Repairable Extensible Intelligent Type
LOGOS Satisfactory Good Satisfactory Poor Not Implemented Rules

Table 2.2: LOGOS’ Evaluation Using the Validation Framework

2.4 ASPEN

This section on the Automated Scheduling and Planning Environment (AS-

PEN) is generally cited from Chien [2]. Since all the previous systems use the

GENIE application, they all contain the same base problems such as operating

system dependency and unforgiving time constraints. In order to correct these

problems, Chien at NASA’s JPL has created ASPEN [2]. ASPEN’s job as a

planner/scheduler is to “accept high-level goals and generate a set of low-level

activities that satisfies the goals, do not violate any of the spacecraft’s flight

rules or constraints, and optimize the quality of the plan” [2]. ASPEN does this

22

by decomposing a given goal into different high-level tasks (see Figure 2.5 for a

visualization of ASPEN’s goal decomposition).

Figure 2.5: ASPEN’s GUI Showing Goal Decomposition

While ASPEN could construct a complete and detailed plan, it instead leaves

high-level tasks abstracted until a time closer to execution. This level of abstrac-

tion allows ASPEN to plan but not commit to a particular method of completing

the task. For instance if a spacecraft is required to point towards the earth, the

spacecraft can either be commanded to use its reaction wheels [30] or magne-

torquers [51]. Had ASPEN selected to use reaction wheels at the time of plan

generation and prior to execution, the reaction wheels had become momentum

23

saturated, a resource conflict would exist in the plan. Instead by postponing

the task’s specifics, ASPEN waits until execution and observes that the reaction

wheels are unavailable and decides to instead use the magnetorquers.

If a plan is created that does result in a conflict, however, ASPEN contains

a real-time planning component called the Continuous Activity Scheduling Plan-

ning Execution and Replanning (CASPER) [2]. CASPER allows a plan generated

by ASPEN to be modified during its execution, if necessary, due to unforeseen

conflicts. Had ASPEN selected the reaction wheels in the previous example,

CASPER would be able to detect the conflict and resolve it by changing the plan

to alternatively use the magnetorquers. CASPER allows for robust plan execu-

tion that recovers from conflicts, conflicts which would have halted the previous

systems and required human intervention.

In addition to automating spacecraft operations on earth, ASPEN is created

generically so that it can be used on a variety of platforms. ASPEN has been

used directly onboard many spacecraft to automate how commands are executed.

For instance, ASPEN has been utilized on the Earth Orbiter 1 (EO-1) [40] to

allow the spacecraft to change its current operating task. For instance if EO-1

is monitoring a low priority atmospheric event and it senses a volcanic eruption,

EO-1 will postpone monitoring the atmospheric event and record data associated

with the eruption. ASPEN’s ability to modify its currently scheduled plan enables

EO-1 to maximize its collected science data. In addition to spacecraft, ASPEN

has also be adapted for planetary rovers [10] and unmanned aerial vehicles [33].

2.4.1 Advantages

The following is a list of the ASPEN system’s advantages.

24

1. Iterative Repair: Since ASPEN commits to a high-level task plan early

and allows for changes during execution, a current plan is always available.

This ability enables ASPEN’s high tolerance to unexpected complications.

Where as the previous systems would consider a pass a failure if its current

plan was unable to be executed, CASPER allows APSEN to modify the

plan and continue.

2. Extensibility: One of ASPEN’s best features is its ability to be used not

just with an earth station but also onboard a spacecraft. Using ASPEN on

both the earth station and the spacecraft may allow for increased robustness

as both systems would be capable of adjusting the current plan at varying

levels of abstraction.

3. Plan Optimization: When determining the best initial plan for a given

goal, ASPEN uses “improvement experts” to optimize the plan. An im-

provement expert can be thought of as an utility function that evaluates a

given plan for a particular variable. For instance, there is an improvement

expert for time dependency which minimizes a plan’s potential for timing

conflicts. A collection of improvement experts equates to a minimization

problem over a number of variables to optimize for a plan. This is an ef-

fective method of plan optimization as it evaluates possible plans based on

many different considerations.

2.4.2 Disadvantages

The following is a list of the ASPEN system’s disadvantages.

1. No Learning Capability: While ASPEN is a great improvement com-

25

pared to the previously discussed systems, it still does not implement any

type of learning capabilities. Learning would enable ASPEN to generate

better plans by remembering conflicts discovered in previous ones.

2. Local Conflict Resolution: When ASPEN detects a conflict in its current

schedule, it searches locally within the current high-level task to resolve the

problem [40]. Searching locally, however, limits the possible solutions as

it does not consider reordering high-level tasks. For example, if a given

high-level task requires a large amount of power but the spacecraft does

not have enough at that moment, the task would fail. Had the next task

been low power and have no direct dependency on the high power task, a

reordering may have given the spacecraft enough time to charge its batteries

to complete both tasks successfully.

3. Limited Modeling Language: While the creators of ASPEN believe

that their modeling language is expressive, the engineers adapting ASPEN

to execute on EO-1 had problems modeling the complex interaction be-

tween spacecraft subsystems. Specifically, they were unable to correctly

model the interaction between EO-1’s solar array and the batteries [40].

An augmented modeling language which allows for more complex space-

craft modeling would improve the system’s effectiveness when prioritizing

activities.

2.4.3 Validation Framework Results

The following is an evaluation of the ASPEN system using the established

validation framework.

26

• Inspectable: Good

The ASPEN system shows the user all aspects of the current plan along

with the information required to make that plan.

• Predictable: Good

In the nominal case, ASPEN logically follows a planning algorithm to effi-

ciently schedule tasks. When errors occur, the tasks are replanned accord-

ingly in a logical fashion.

• Repairable: Satisfactory

The APSEN system is able to restart without any lost progress since the

planning component breaks goals into small individual subtasks which can

be individually scheduled. Programmers, however, are required to make

changes to correct the fatal error.

• Extensible: Poor

In order for ASPEN to be extended, system modifications at a source level

are required.

• Intelligent: Poor

ASPEN is able to dynamically reorder tasks and change its behavior to

react to current conditions. This ability gives ASPEN some intelligence

but ASPEN is incapable of remembering decisions made across executions

to improve its performance.

Inspectable Predictable Repairable Extensible Intelligent Type
ASPEN Good Good Satisfactory Poor Poor Rules

Table 2.3: ASPEN’s Evaluation Using the Validation Framework

27

2.5 Summary of Existing Research

Inspectable Predictable Repairable Extensible Intelligent Type
GENIE Satisfactory Satisfactory Not Implemented Good Not Implemented Rules
LOGOS Satisfactory Good Satisfactory Poor Not Implemented Rules
ASPEN Good Good Satisfactory Poor Poor Rules

Table 2.4: Validation Framework Summary for Prior Systems

28

Chapter 3

Automation Framework

In order to quickly develop and evaluate autonomous operation systems,

a software framework named the Autonomous Satellite Operations Framework

(ASOF) was created. This framework allows AI developers to focus on creating

the autonomous component of the system while ignoring standard operation con-

figurations such as hardware drivers. To enable flexibility, the software framework

is implemented in Java and consists of five modular components. These compo-

nents are the Agent, the Knowledge Base (KB), the Terminal Node Controller

(TNC), the Line of Sight Executive (LOSE) and the Task File. Each of these

components are further described in this section (see Figure 3.1 for a UML dia-

gram of the framework).

3.1 The Agent

For all satellite operations, specific activities are always required. These ac-

tions include data logging and satellite communication. This core set of required

29

Figure 3.1: A Design Overview for the ASOF Framework

functionality is contained within in the Agent. The main functions provided by

the Agent are

1. Transmit and log uplink packets

2. Receive and log downlink packets

3. Read a task list from a file

The Agent can be further extended via Java’s inheritance to incorporate addi-

tional functionality.

3.2 The Knowledge Base Interface

All intelligence for satellite operations is located in the Knowledge Base. The

Knowledge Base is the main framework component which when implemented,

creates an autonomous system for a particular satellite. The following methods

30

provide the interface between the Knowledge Base and the Agent (see Section

3.6 for Knowledge Base API usage).

1. tellNextTask(Task) : void

Tells the Knowledge Base which task should be completed next as listed in

the task file.

2. askNextAction(void) : AgentAction

Queries the Knowledge Base for the next Agent action to execute (see

Section 3.8.1 for a list of all current Agent actions).

3. tellResponse(SatelliteAction) : void

Tells the Knowledge Base what response was received from the satellite (see

Section 3.8.2 for a list of all current satellite responses).

Currently, a Knowledge Base must be implemented for every satellite the

program will track. That is, if the framework is going to track CP3 and CP6,

there must be two different Knowledge Bases. The Knowledge Bases, however,

are written in Java and therefore can be constructed using inheritance to reuse

code between different satellites.

3.3 The Task File

Using the framework, a mission operator can define tasks to be completed

using a simple text file. These tasks must be understood by the Knowledge

Base for execution. A text file is currently used and structured with each line

representing a single task followed by a list of task parameters. An example task

file can be seen in Figure 3.2.

31

CDHDataDump()

RunADCSExperiment(1, "Magnetometer1.test")

DumpADCSExpData("Magnetometer1.test")

RunADCSExperiment(2, "ExpTemps1.test")

RunADCSExperiment("ExpTemps1.test")

Figure 3.2: An Example Task File

3.4 The TNC Interface

Since most satellites communicate over a radio link, operations software must

be able to modulate/demodulate data sent between the satellite and the earth

station. The modulating and demodulating of data is commonly done using a

terminal node controller (TNC). A TNC can be a physical device such as the

KPC9612+ [23] or implemented in software with a program such as MixW [11]

(see Figure 3.3 and 3.4 for screenshots of the KPC9612+ and MixW respectively).

Figure 3.3: The KPC9612+ Hardware
TNC Figure 3.4: The MixW Software TNC

Since each earth station is different, a TNC driver must be implemented using

the TNC interface. A default serial TNC driver is provided since most hardware

32

and software TNCs are implemented using serial port communication. In the

future, a GENSO TNC driver will be provided to allow the framework to send

and receive data from any GENSO ground station around the world.

3.5 Line of Sight Executive Interface

While external tracking software can control the Doppler shift on the satel-

lite’s radio frequency and the earth station’s antenna pointing, the Agent must

still know when the satellite is available for communication. The LOSE abstracts

this information via an interface which can be implemented by any user defined

class. A SGP4 implementation is provided by default [22]. With the release of

GENSO, a GENSO LOSE will be made available to notify the framework when

a satellite can communicate with any earth station on the GENSO network.

3.6 Standard Program Execution

When the Agent is started, it parses the entire input task file into a serializable

in-memory data structure. The Agent then begins its basic control loop which is

defined in Algorithm 1.

This algorithm executes over all tasks in the input file until they have all

been completed. Once the Agent has accomplished all the tasks in the task file,

it reads a similarly formatted default task file. The default task file contains a

list of tasks that the Agent should do once the primary task list is complete. This

concept is useful since most mission operators would prefer an active as opposed

to an idle satellite. At the very least, the default task file can downlink health

33

Algorithm 1 The Agent’s Algorithm

for each task t in input file do

Tell Knowledge Base t via tellNextTask(t)

Ask Knowledge Base next action a

while a is not FINSHED do

response← Execute a

Tell Knowledge Base response

Ask Knowledge Base next action a

end while

end for

and status data for later analysis.

3.7 Historical Data Record

In the satellite industry, satellite generated data is a valuable resource on the

ground since slow communication links transmitting at approximately 1200 baud

restrict how much data can be received during a pass. CP3 is able to transmit a

maximum of 30KB per satellite pass [12]. Therefore, it is important that satellite

data is stored in its rawest form to ensure that data never has to be retransmitted

from the satellite.

One way to ensure that retransmission is never necessary is to have the frame-

work save any received data to its log. This protects against the case where

satellite data fails to parse and therefore is not saved for later analysis. With

the framework log available, the parsing program can be fixed and the pass reran

using the framework log as input.

34

3.8 Framework Actions

The following actions are used by the ASOF framework as internal represen-

tations of operation events.

3.8.1 Agent Actions

This list of Agent actions enumerates the possible actions the Agent can

execute.

1. Send Command(commandToSend): This action sends commandToSend

to the satellite and does not wait for any response.

2. Wait For Data(timeout): This action waits for one data packet to be

received. If no response is received in timeout seconds, this action returns

a No Response satellite action.

3. Send Command Receive Response(commandToSend, timeout): This

action is equivalent to a Send Command action directly followed by a

Wait For Data action. This action is mostly for convenience since most

satellite commands return one data packet.

4. Wait For Time Period(timeToWait): This action tells the Agent to

do nothing for timeToWait seconds. This gives the satellite time to recover

from any power issues or wait for activities which should not be interrupted.

5. Finish(): This is the final action and tells the Agent that it has successfully

completed its current task.

35

3.8.2 Satellite Actions

This list of satellite actions enumerates the possible actions which a satellite

can take.

1. Ack(): This action tells the earth station that their command was success-

fully received and executed. This Ack action is typically followed by one or

more data packets.

2. Nack(): This action is received when an error occurs while processing an

earth station command.

3. Data(responseData): This action is used when the satellite has trans-

mitted responseData down to the earth station.

4. No Response(): This action is received when the satellite either did not

decode an Agent command or the Agent is executing a Wait For Data ac-

tion and the satellite did not transmit any data.

36

Chapter 4

Implementation 1:

Rule Based System

As was shown in the literature review, all of the previous automated opera-

tions research has been built using Rule Based Systems (RBS). In order to provide

a baseline for this thesis, a RBS system is built and integrated with the ASOF

framework. The RBS is developed using the Java Expert System Shell (JESS) is

used to manage the rule engine [27] (see Figure 4.1 for a screenshot of the RBS

system).

4.1 RBS Execution

The RBS system works by executing a sequence of Agent actions on an

agenda. While there is one main agenda for each task, subagendas can be inserted

to accomplish a task requirement before continuing on with the main agenda.

This concept is implemented using an agenda stack such that while executing

37

Figure 4.1: RBS Implementation Screenshot

a subagenda, another subagenda can be pushed on top of the stack. The RBS

also contains three types of JESS rules. The first are the task-to-agenda rules

which take a task from the task list and converts it to an agenda to complete.

That is, if the Knowledge Base completes the agenda, it has completed the task.

The second type of JESS rules are the preventative rules which are used to verify

that a particular Agent action can be performed. These rules work to prevent

harming the satellite by considering the satellite’s current state. The last type

of JESS rules are error recovery rules. These rules recognize and correct any

onboard satellite problems given a satellite response. With the introduction of

(sub)agendas and the three types of JESS rules, the RBS Knowledge Base works

as follows.

38

Each time that the Agent calls tellNextTask, the RBS creates the initial

agenda. The initial agenda contains the sequence of Agent action which when

executed will finish the previously told task. The Agent then proceeds to ask the

RBS the next action to perform via the askNextAction method. At this time,

the JESS engine is run which enables the preventative rules to be triggered. Since

JESS has access to the agenda stack, it is able to examine the top agenda’s next

action. The JESS rules then compare the next action with the satellite’s state to

verify that the action will be successful. If the JESS engine determines that there

is a reason the action will not work with the current satellite state, subagendas

are pushed onto the agenda stack to fix the satellite state. The RBS then returns

the next action on the agenda stack to the Agent for execution.

After the Agent completes the next action, it tells the response to the RBS

Knowledge Base via the tellResponse method. At this time the JESS engine

is executed which can result in a number of outcomes. If the response is the

expected response, the current action pointer on the top agenda is advanced.

If this advance results in the top agenda being completed, it is popped off the

agenda stack. If an error occurs, however, the error recovery rules are triggered

and a corrective subagenda is pushed onto the agenda stack. The current action

pointer is not advanced so that when the corrective subagenda is completed, the

error causing action is executed again with the appropriate satellite state. When

the original task agenda has been completed, the RBS returns the FINISHED

Agent action which signals that the RBS is ready for the next task. This RBS

execution process is further explained using the example below.

39

4.1.1 RBS Execution Example

Suppose the RBS Knowledge Base was told that it needed to execute the

TakePicture task. The RBS would first create the initial task agenda found in

Figure 4.2. Since the CP6 satellite does not posses complex command sequencing,

the TakePicture task translates into one real TakePicture command. When the

Agent calls the askNextAction method, the JESS engine inside the RBS is then

executed. For the purposes of this example, assume that the satellite is currently

not in normal ops and the payload is off. Since the TakePicture command re-

quires that the satellite be in normal ops and the payload on, the JESS engine’s

prevention rules will recognize this problem and push two preventative subagen-

das onto the agenda stack (see Figure 4.3). The RBS then proceeds to execute

the top agenda’s next action until all agendas are complete.

Imagine again for the purposes of this example that the satellite is also in

a low power situation. Since taking a picture requires a lot of data transfer

onboard the satellite, a healthy power state is required. In this situation, the

next time the RBS Knowledge Base tries to execute the TakePicture command,

the JESS engine will push a preventative subagenda onto the agenda stack to

wait for the batteries to charge (see Figure 4.4). When the satellite has charged

to an appropriate level, the JESS engine will allow the RBS Knowledge Base to

execute the TakePicture command thus completing the TakePicture task.

Suppose, however, that when the TakePicture command is executed, the

satellite responds with a Nack(Not in Normal Ops). In this case, the JESS engine

will be executed and its error recovery rules will push a corrective subagenda

onto the agenda stack to put the satellite back into normal ops (see Figure 4.5).

This scenario can happen for many reasons such as the satellite being reset by

40

radiation. After the RBS system puts the satellite back into normal ops, the

TakePicture command can be sent which completes the TakePicture task.

4.2 Implementation

This section outlines the specifics of how the RBS system was implemented.

4.2.1 Satellite Model

In order for the RBS to make good operations decisions, it must always main-

tain a believed model of the satellite’s state. To do this, the last satellite snapshot

is stored along with the time it was taken. This snapshot can then be queried to

answer questions about the satellite at a given current time. For instance, if the

RBS wants to know if the satellite is in normal ops, it would call

satModel.isInNormalOps(System.currentTimeMillis())

which returns true if the satellite is believed to be in normal ops at the current

time and false otherwise. This model is updated every time a command is issued

or a response is received. The following fields represent some of the common

parameters monitored for the CPX brand of satellites that are available in the

snapshot.

1. Snapshot time

2. Beacon rate

3. Time left in normal operations

41

4. Time till payload turns off

5. Battery voltages

6. Battery temperatures

An example situation where these parameters are useful is during payload op-

erations. All CPX satellites have the concept of a normal operations (ops) mode

which is a high power state required for payload command execution. Normal

ops must be enabled by sending a GoToNormalOps command. Since normal ops

is a high power state, there is a three day inactivity timer to deactivate normal

ops for safety reasons. That is, after three days of no contact from an earth sta-

tion, the satellite goes back into prior-to-operations (preops) mode. Therefore, it

is necessary to query the satellite model before sending a payload command to

verify that the last command received by the satellite was less than three days

ago to make sure the satellite is still in normal ops.

4.2.2 Task to Agenda Rules

One of the simple functions which JESS is used for is to convert a task from

the task list into an agenda containing the Agent actions required to complete

that task. These task-to-agenda JESS rules are straightforward but tedious to

implement. For instance when the TakePicture task is told to the RBS Knowledge

Base, an initial agenda is pushed onto the agenda stack (the result shown in

Figure 4.2). An example JESS rule used to translate the CDHDataDump task into

its corresponding agenda can be seen in Figure 4.6.

42

4.2.3 Preventative Rules

In order to protect the satellite from executing potentially harmful actions,

the RBS has implemented safety checks on the ground via prevention rules (see

Figure 4.7 for an example prevention rule). That is when an agenda specifies a

potentially harmful action, the RBS checks the satellite model via its rules to

verify that the satellite can safely complete the action. For example when the

Agent is about to execute any power intensive commands, the satellite model

is checked for low batteries. If there is not enough battery power available, the

RBS waits for 30 seconds and then sends the status command to check if the

satellite has charged to a safe battery level. If so, the power intensive command

is executed and operations proceed as normal.

4.2.4 Error Recovery Rules

While the preventative JESS rules work to avoid causing errors onboard the

satellite, error recovery rules work to fix the errors which do occur. These rules

analyze the satellite’s responses to determine if an error has occurred. For the

CPX brand of satellite, No Responses and Nacks are considered errors. If a

No Response is received, an error recovery rule fires and does not advance the

agenda pointer. In this way the next time the Agent calls the askNextAction

method, the previous command is resent. If a Nack is received by the RBS, the

error recovery rules’ reactions depend on the associated Nack code. For instance

if the Nack(not in normal ops) is received, the error recovery rule will push a

go-to-normal-ops subagenda onto the agenda stack as well as not advance the

agenda pointer. As a result, the Agent will first complete the subagenda to

correct the problem and then resend the command which originally caused the

43

Nack. This time, however, the error is corrected and progress is made on the

main agenda. The error recovery rules, in this way, compliment the preventative

rules (see Figure 4.8 for an example error recovery rule).

4.3 Results

Overall the RBS system accomplishes the goal of autonomous operations. The

following details its advantages and disadvantages.

4.3.1 Advantages

1. Error Recovery: The previously defined systems implement error recov-

ery as a fault decision tree via a rule base. Similarly, the RBS identifies

any NACKs it receives and then analyzes the satellite model to determine

what could have gone wrong. Once the RBS believes it knows the most

likely problem, it performs the corrective action. The RBS then resumes

the original action it was executing before the problem occurred.

2. Considers Satellite State: What satellite commands are sent not only

depends on the previous sequence of commands but also on the current

satellite state. For instance, sending a command which requires a lot of

power should only be sent when the satellite’s batteries are fully charged.

The RBS implementation considers satellite state through its in-memory

satellite model. This decision making process using previous commands

and the current believed satellite state is more aligned with how human

operators conduct operations.

3. Scalability: Since similar RBS systems have been developed and used

44

on many large NASA missions [17], RBS system scale to more complex

command structures and mission tasks. This ability to grow enables a

confident investment in the RBS model for future projects.

4.3.2 Disadvantages

1. Requires Human Involvement: While the RBS does conduct autonomous

operations and is able to handle errors it has never encountered before, its

creation relies on the knowledge of existing satellite operators. Satellite op-

erators must encode the command sequences required to accomplish each

task in addition to encoding the general error prevention and recovery rules.

Generating a rule set might take a satellite operator weeks and the result-

ing rules may be incomplete. A more automated method would eliminate

human slowness and errors present during the RBS creation process.

2. Bad Visibility into the Knowledge Base Activities: Even though

the current Jess agenda and fired rules can be displayed visually, RBS lacks

clear visibility into the system. This is a problem for both developers and

satellite operators. For the developers, it is difficult to debug a system when

it is hard visualize why certain rules have fired. For satellite operators, it

is hard to see the exact RBS reasoning and why it is executing the actions

it has chosen.

3. No Learning: Over time, it would be beneficial if the system could become

more capable. That is, if the system could use its operational experience to

better perform its tasks. While learning is possible for a RBS, it is outside

the scope of this simple RBS implementation.

45

4.3.3 Validation Framework Results

The following is an evaluation of the RBS system using the established vali-

dation framework.

• Inspectable: Satisfactory

The RBS system displays all tasks and Agent actions to the user via the

agenda stack. The RBS does not, however, show the rules which push new

subagendas onto the agenda stack. Therefore all of the high level tasks are

displayed but not all of the small details.

• Predictable: Satisfactory

Since the RBS does a direct conversion of tasks into Agent actions, nominal

operations are completely predictable. The RBS is not predictable when a

preventative or error recovery rule is fired since those decisions are based

on the non-visible satellite state.

• Repairable: Satisfactory

As the RBS is developed using the ASOF framework, recovery can be re-

sumed without the loss of progress. Fixing the fatal error, however, does

require a programmer to write a new error recovery rule in JESS.

• Extensible: Satisfactory

Since JESS rules are defined in a separate rule file, modifications can be

made without changing the source code. A programmer/knowledge engi-

neer is required to write the modifications in the form of JESS rules.

• Intelligent: Not Implemented

Since the RBS system does not remember any information from prior exe-

cutions, it possesses no intelligence.

46

Inspectable Predictable Repairable Extensible Intelligent Type
RBS Satisfactory Satisfactory Satisfactory Satisfactory Not Implemented Rules

Table 4.1: The RBS’ Evaluation Using the Validation Framework

47

Figure 4.2: Agenda Stack Right after
tellNextTask

Figure 4.3: Agenda Stack while Payload is
Off and Not in Normal Ops

48

Figure 4.4: Agenda Stack with Low Power
Situation

Figure 4.5: Agenda Stack after a Nack,
Not in Normal Ops is Received

49

(defrule CDHDataDump

// Get the task to complete

(taskToComplete (taskName ?taskName))

// Get stack

(agendaStack (OBJECT ?agendaStackObject))

// Make sure the task is the CDHDataDump task

(test (call ?taskName equals ‘‘CDHDataDump’’))

=>

// Create the new task agenda

(bind ?taskAgenda (new Agenda))

// Add the CDHDataDump command

(call ?taskAgenda addSatCmd ‘‘44’’)

// Added the finished action to the agenda

(call ?taskAgenda addFinish)

// Clear the agenda stack since there is a new task to execute

(call ?agendaStackObject clear)

// Add the new task agenda to the agenda stack

(call ?agendaStackObject addAgenda ?taskAgenda)

// Notify the user of the rule firing

(printout t \"TASK-TO-AGENDA: Pushing on a Dump CDH Data \" crlf)

)

Figure 4.6: Task-To-Agenda JESS Rule for the CDHDataDump Task

50

(defrule normalOpsRule

// Make sure we are in the preventative step

(preventative)

// Get stack

(agendaStack (OBJECT ?agendaStackObject))

// Make sure the action is a command

(test (call CP6SatCmdInfo isAgentActionACommand

(call ?agendaStackObject getNextAction)))

// Make sure the command is a normal ops command

(test (call CP6SatCmdInfo normalOpsCmd

(call CP6SatCmdInfo getCommandFromAgentAction

(call ?agendaStackObject getNextAction))))

// Make sure we are not in normal ops

(not (test (call CP6ReteEngine inNormalOps)))

=>

// Add the preventative agenda

(call ?agendaStackObject addGoToNormalOpsAgenda)

// Notify the user of the rule firing

(printout t \"PREVENTATIVE: Doing a Normal Ops Recovery\" crlf) "

)

Figure 4.7: CDHDataDump Command’s Preventative Normal Ops
Rule

51

(defrule nackNINO

// Get last response

(lastResponse (response ?satResponse))

// Get stack

(agendaStack (OBJECT ?agendaStackObject))

// Check if response is a Nack(not in normal ops)

(test (call CP6SatResponseInfo nackNINO ?satResponse))

=>

// Add the corrective agenda

(call ?agendaStackObject addGoToNormalOpsAgenda)

// Notify the user of the rule firing

(printout t \"ERROR RECOVERY: Doing a Go To Normal Ops\" crlf)

)

Figure 4.8: JESS Rule for Handling a Nack(Not in Normal Ops)

52

Chapter 5

Implementation 2:

DFA Process Model

A more straightforward method for automating satellite operations is a DFA

process model which uses a Deterministic Finite Automata (DFA) [42]. Such

a DFA contains Agent actions as its states and satellite actions as its transi-

tions. This model is very expressive since it can include any of the existing

Agent/satellite actions (see Section 3.8.2/3.8.2 for a list of these actions). New

actions can be derived using Java’s inheritance to increase the expressiveness of

the DFA process model. An example DFA process model used to execute the

CDHDataDump task can be seen in Figure 5.1.

5.1 DFA Process Model Execution

When the DFA process model Knowledge Base is told a task to complete via

the tellNextTask method, the Knowledge Base locates the corresponding DFA

53

F
ig

u
re

5
.1

:
C

D
H

D
a
ta

D
u
m

p
D

F
A

P
ro

ce
ss

M
o
d
e
l

54

to complete task. The Knowledge Base then sets its current state to the DFA’s

start state. When the askNextAction method is called, the Knowledge Base

returns the Agent action stored in the DFA’s current state (see Section 3.8.1 for

a list of all available Agent actions). After the Agent executes the Agent action,

the Knowledge Base is told the response via the tellResponse method. At this

point, the current state’s DFA transition which matches the response is fired.

This advances the DFA’s current state to another state in the DFA. If there is no

transisition from the current state which matches the response, the DFA process

model has failed and a human operator is required to fix the situation. This

only occurs, however, when the current operations situation has never before

occurred. If the situation had happened before, the interaction would have been

recorded in the operations event log and extracted during the creation of the DFA

process model. The DFA process model continues in this fashion until it reaches

a DFA state which contains the Finished Agent action. This process is formally

described in Algorithm 2.

5.2 Creation of a DFA Process Model

In order to create an autonomous system, there must be some source of opera-

tional intelligence. One of the benefits of using a DFA process model is that it can

be easily created from an existing operations log. That is, the DFA process model

construction procedure takes the result of a human operators’ interactions with

the satellite (the operations log) and uses it to reconstruct the human operators’

process.

The DFA process model creation procedure is started by first preprocessing

the operations log to make extraction easier. The processed log is then converted

55

Algorithm 2 ExecuteDFAProcessModel(TaskToExecute, DFALibrary)

DFA← DFALibrary.getDFA(TaskToExecute)

curState← DFA.getStartState()

while curState.getAgentAction() 6= FINISHED do

result← Execute curState.getAgentAction()

nextState← null

for each transition ∈ curState.getTransitions() do

if result = transition then

nextState = transition.getNextState()

break

end if

end for

if nextState = null then

Report Error to User

end if

curState← nextState

end while

56

into a MXML file which is standard for workflow extraction algorithms. The

MXML file is then provided as input to the α algorithm which results in a Petri

net. This Petri net representation of the process is then converted into a DFA

process model through a contraction procedure. This multi-step process can be

seen in Figure 5.2 and is further described below.

5.2.1 Data Source Selection

In order to dynamically create a DFA process model, a data source containing

all operations events must be available. This operations event log can be stored

in a database, comma separated value (CSV) file or any other data format. For

CPX satellites, PolySat has a MySql [44] database named MoredBs [4] to store

all operations events which occur around the world. The most important fields

MoredBs records are:

1. An event identifier

2. The time the event occurred

3. Specifics of the event (ie. event parameters)

These three simple fields are enough to generate a DFA process model. For

simple process model extraction techniques, the ordering of the operations events

is sufficient instead of the exact event time.

5.2.2 Preprocessing

Once the data source has been selected, a number of preprocessing steps must

occur to filter out data that is not useful in the extraction process. The following

57

Figure 5.2: The Data Structures and Steps to Create a DFA Process
Model

preprocessing steps are sufficient for correct DFA process model creation.

Beacon Removal For the purposes of task operations, beacons do not change

the onboard satellite state. While beacons do tell the ground operator the state

58

of the satellite, beacon events are not crucial and therefore are removed to avoid

confusion during process model creation.

Uplink and Downlink Passes In order for a pass to increase task operations

knowledge, there must be an interaction between the ground operator and the

satellite. That is, the operator must have made a conscious decision to complete

a task which mean he/she sent at least one command and the satellite responded

with a result. Any passes containing only uplinks or downlinks do not add to the

resulting DFA process model and are filtered out during preprocessing.

Group Operation Tasks into Process Instances Since the ASOF frame-

work uses a task list as its primary input, it is necessary to extract DFA models

which pertain to one particular task. This means that the events in the log

must be grouped together as task instances. Fortunately with the current CPX

satellites, only one task is typically completed per satellite pass which means pass

groupings are sufficient. For satellites which can accomplish many tasks per pass,

it is necessary to use session detection methods [19, 18, 43] to group operational

tasks into process instances.

Infer Missing Operation Events One of the most important preprocessing

steps is to infer events which occurred during operations but were not logged.

For instance when an operator sends a command be receives no response from

the satellite, the operator will resend that command a second time. Only these

two uplinks are recorded in the log and the implied No Response event by the

satellite is not stored. Since the operator’s second uplink was a result of the

No Response action, it is important that the No Response is represented in the

59

Inferred Agent Actions
WAIT FOR DATA

Inferred Satellite Actions
NO RESPONSE

Table 5.1: Inferred Actions for MoredBs

log. The actions found in Table 5.1 are not recorded in the MoredBs log for the

CPX satellites and have to be inferred.

5.2.3 MXML Formatting

In process extraction research, a standard file format called Mining XML

(MXML) has been defined to represent event logs. MXML files are formatted

in accordance with the MXML XSD [50] (see Appendix C.2 for the MXML file

format). The benefit of converting the event log into a MXML file is that there

exists open source implementations for many process extraction algorithms which

take an MXML file as input. This prepares the event log for the next step in the

DFA process model creation procedure.

5.2.4 Alpha Extraction

With an MXML version of the operations log, a process extraction algorithm

can be applied to create a process model. A number of open source process ex-

traction algorithms written in Java can be found in the Process Miner (ProM)

framework which is developed by the Process Mining Group at Eindhoven Tech-

nical University [9]. The open source algorithm used for the MoredBs log is a

simple process extraction method called the α-algorithm [5]. This step of the

process results in a verbose, but complete Petri net representation of the opera-

tions process. More information regarding Petri nets and the α-algorithm can be

found in the Appendices D and E respectively.

60

5.2.5 Contraction

While a Petri net representation contains all the necessary information re-

quired for executing an operations task, the Petri net is unnecessarily large (see

Figure 5.3(a)). In order to reduce the amount of graph nodes, a contraction pro-

cedure is used to convert the Petri net into the final DFA process model. The

contraction procedure first removes all connecting Place nodes from the Petri

net. This results in a bipartite graph of Petri net transition nodes containing

Agent and satellite actions. The contraction procedure then translates the Agent

actions into the states of the resulting DFA process model and the satellite ac-

tions into the transitions between those states. After the contraction procedure

is complete, the Petri net represented in Figure 5.3(a) becomes the DFA process

model represented in Figure 5.3(b).

5.3 Results

Overall the DFA process model implementation accomplishes the goal of au-

tonomous operations. The following details its advantages and disadvantages.

5.3.1 Advantages

1. Automatic Creation: Since only an existing operations log is needed to

create DFA process models, no human knowledge is required. This is benefi-

cial since most student satellite projects lack time to create an autonomous

system for end-of-life operations.

2. Easily Visualizable: Most individuals can understand a visual represen-

61

(a) Petri Net of the CDHDataDump Task Before the Contraction Procedure

(b) DFA Process Model of the CDHDataDump Task After the Contraction Procedure

Figure 5.3: The CDHDataDump Task Before and After the Contrac-
tion Procedure

62

tation of a DFA. The states and transitions can be easily rendered using

a graphics library such as Dot [25]. During DFA process model execution,

color coding can be used to easily show a human observer which state the

system is currently executing along with the path taken to get there (see

Figure 5.4 for an example DFA process model screenshot).

Figure 5.4: DFA Process Model Implementation Screenshot

3. Easily Editable: Since the DFA representation is simple, it is stored in

a plain text file. This file can be easily edited by a mission operator to

change any behavior which is undesirable. For instance, if a prior satellite

operator performed a risky operation and it was recorded in the operations

log, the extracted risky behavior can be modified or removed.

63

4. Scalable: DFA process models are bipartite graphs containing Agent and

satellite actions. Since both Agent and satellite actions can be subclassed

using Java’s inheritance, DFA process models can be scaled to accommo-

date any task by deriving new actions. The bipartite nature of the graph

can even be circumvented when two actions of the same type must occur

sequentially (as is the case with the CDHDataDump task which uses the

WAIT FOR DATA agent action). This functionality increases the scalabil-

ity of the DFA process model Knowledge Base. This scalability is beneficial

since as student satellites start to become increasingly more complex, com-

mand sequences will also become more complex.

5.3.2 Disadvantages

1. Satellite State Not Considered: Unlike the RBS implementation, the

DFA process model does not consider the satellite’s state when it is send-

ing commands. This is problematic since there are some decisions made

by satellite operators (e.g. is there enough battery power for this opera-

tion) which require the satellite state. While the extraction process can be

extended to include this information, this is not currently implemented.

2. No General Error Recovery: Currently the DFA process model is able

to recover from errors which previous operators have recovered from due

to the extraction process. The DFA process model, however, is unable to

recovery from never-before-seen errors. This issue is addressed in the next

Knowledge Base implementation.

3. No Learning: Like the RBS implementation, the DFA process model has

no capacity to recognize new issues, let alone fix them. The only way a DFA

64

process model can be modified is through a human operator modifying the

DFA file which changes the DFA’s behavior.

5.3.3 Validation Framework Results

The following is an evaluation of the DFA process model system using the

established validation framework.

• Inspectable: Good

Since all parts of the DFA process model are visible through the DFA graph

representation, all activities, including error scenarios, are displayed to the

user.

• Predictable: Good

The DFA process model is created solely based on the prior actions of

human operators so its actions are 100% predictable.

• Repairable: Good

Since the DFA process model is developed using the ASOF framework,

recovery can be resumed without the loss of progress. Any changes to the

DFA can be easily made by editing the saved DFA file. Since the DFA

file format is straightforward and easy to visualize, a mission operator can

make the necessary modifications to repair the system.

• Extensible: Good

The DFA process model’s intelligence is stored in an easy-to-read plain text

file. Any mission operator can extend the DFA process model by adding,

removing, or modifying its Agent/satellite actions.

65

• Intelligent: Not Implemented

The execution of a DFA process model statically follows the transitions of

the generated DFA. At no point during its execution does the DFA process

model modify its behavior based on prior executions.

Inspectable Predictable Repairable Extensible Intelligent Type
DFA Proc Model Good Good Good Good Not Implemented DFA

Table 5.2: The DFA Process Model’s Evaluation Using the Validation
Framework

66

Chapter 6

Implementation 3:

Hybrid Implementation

At this point, this thesis has introduced two different approaches to solving

the problem of autonomous satellite operations. Each implementation has its

own advantages and disadvantages which make them useful in different situa-

tions. In this chapter, a hybrid implementation is introduced which combines the

techniques of the two previous implementations into a single Knowledge Base.

6.1 Implementation

Since the hybrid method is a combination of the previous two implementa-

tions, its construction is very similar. First the DFA process models must be

extracted using the same process as described in Chapter 5. These DFA process

models will provide the basic knowledge required for operations.

After the DFA extraction process is complete, a satellite operator is required.

67

The human operator does not have to specify all the commands required to com-

plete a task since that information has already been extracted from the operations

log. The human operator also does not have to write the preventative rules since

they will not be used in the hybrid implementation. Instead, the operator only

needs to write the error recovery rules. This dramatically reduces the required

time to manually create the hybrid’s RBS.

Once the DFA process models and the recovery rules have been specified, the

hybrid model is ready for execution. The algorithm used by the hybrid process

is exactly the same as the DFA process model algorithm (Algorithm 2) but uses

the RBS when an error occurs (see Algorithm 3 for the hybrid algorithm). That

is when an operation event occurs that the DFA is not able to handle, the RBS is

queried for a solution (i.e. a command or action which would resolve the current

unseen event). After the RBS believes that the error is resolved, the DFA resumes

its activities at the point the error occurred. If the error persists, then the hybrid

implementation has failed and a human operator is required.

Once the human operator understands the problem which occurred, he/she

is able to modify the DFA process model or add a RBS error recovery rule which

would prevent the same problem from occurring. In this way, the benefit of

automatically creating the Knowledge Base for common operations is only slightly

offset by the error recovery rules which need to be handwritten.

6.2 Results

The hybrid implementation requires slightly more human interaction than

the pure DFA process model implementation but the added error recovery rules

68

Algorithm 3 The Hybrid Algorithm

while operating do

Use DFA Knowledge Base

if an error occurs then

Use RBS Knowledge Base on last response

end if

end while

make the hybrid implementation more robust than either the RBS or DFA pro-

cess model by themselves. This is due to the hybrid implementation using the

advantages of each implementation and diluting the disadvantages. The hybrid’s

specific advantages and disadvantages are listed below.

6.2.1 Advantages

1. Easily Visualizable: Since most of the choices made by the hybrid system

are based on the DFA process model, the easily understood DFA visualiza-

tion still applies. Therefore the only hard to visualize part of the hybrid

system are the rules used to handle unknown errors. The error recovery

rules are rarely used making the hybrid implementation overall easy to

visualize.

2. Recovery from Unexperienced Errors: Since error recovery rules are

provided via the RBS portion, the hybrid implementation is able to recover

from errors which would have caused the DFA process model alone to fail.

This is the primary reason for the RBS’ inclusion.

3. Only Need To Manually Make Error Recovery Rules: The hybrid

is a compromise between automated and manual creation which dramat-

69

ically reduces the burden placed on satellite operators. Since the tedious

components of operations can be extracted from the operations log, only

the error recovery rules need to be defined.

6.2.2 Disadvantages

There are still disadvantages, however, with the hybrid implementation.

1. Satellite State Not Considered: Similar to the DFA process model,

command are sent solely based on the previous sequence of commands and

satellite responses. This is the case since the RBS, which contains the error

recovery rules, is never called until the DFA process model has an error.

The hybrid implementation could be revised such that the RBS is called

before commands are sent to incorporate satellite state.

2. No Learning: While a human operator can modify the DFA process model

or the RBS when an error occurs, the hybrid implementation is not capable

of learning from its own experiences. This is due to the fact that the hybrid

implementation is a conglomeration of two non-learning implementations.

The no automated learning disadvantage, however, should not greatly hin-

der operations since most errors should have already been seen and cor-

rected by a human operator during critical mission operations. Their error

recovery actions should be present in the operations log and extracted dur-

ing the creation of the DFA process model. Additionally, most of the errors

not present in the operations log will be handled by the RBS’ error recovery

rules. This combination leaves only a few errors which could benefit from

the addition of learning.

70

6.2.3 Validation Framework Results

The following is an evaluation of the hybrid system using the established val-

idation framework. Since the hybrid implementation is the same as the DFA

process model implementation unless exceptional circumstances occur, their val-

idation results closely match.

• Inspectable: Good

As the hybrid implementation displays the DFA process model during ex-

ecution, it too shows all decisions being made by the system.

• Predictable: Good

Since the hybrid implementation follows the predicable nature of the DFA

process model, it too is completely predictable.

• Repairable: Good

The hybrid implementation can restart with no lost progress because it is

implemented using the ASOF framework. Repairs can also be made to the

system by changing the DFA files which can be accomplished by a mission

operator.

• Extensible: Good

The hybrid implementation can be extended in the same fashion that the

DFA process model is extended, via the DFA files. As was noted in the

DFA process model validation section, these modifications can be made by

a mission operator.

• Intelligent: Not Implemented

Since the hybrid implementation is a combination of two non-intelligent

systems, it has no intelligence.

71

Inspectable Predictable Repairable Extensible Intelligent Type
Hybrid Good Good Good Good Not Implemented Both

Table 6.1: The Hybrid’s Evaluation Using the Validation Framework

72

Chapter 7

Verification & Validation

7.1 Testing Overview

In order to test the correctness of each implementation, a set of system tests

were developed. Each test is defined in a specific file structure which specifies

all test parameters (see Figure 7.1 for an example test file structure). Since the

framework and Knowledge Bases are developed in Java, JUnit facilitated the

testing process [34] (see Figure 7.2 for an example JUnit result screen). The

general test process can be seen in Algorithm 4.

Algorithm 4 The Verification Test Algorithm

Start the Satellite Simulator with the provided response file

Create an ASOF model using the provided properties files

Start the Agent using the created satellite model

Verify when the Agent has successfully completed all operations

For each implementation (RBS, DFA process model, Hybrid), three operation

situations were tested.

73

Figure 7.1: Example Test Structure
Figure 7.2: Example JUnit Verification
Screen

1. Nominal: The nominal test was a CP6 CDHDataDump task which con-

tained no errors during operations.

2. Error with Recovery: During operations, multiple Nacks and No Responses

were sent from the satellite.

3. Error without Recovery: An error situation in which a fatal Nack is

received and the satellite is put into an unrecoverable infinite loop.

The results from these experiments can be found in Table 7.1

Nominal Error Correct Error Fail
RBS Passed Passed Failed
DFA Process Model Passed Passed Failed
Hybrid Passed Passed Failed

Table 7.1: Results of all Verification Tests with CP6

74

7.2 ASOF Verification With Another Satellite

Since the ASOF framework is intended to work with any satellite, a satellite

besides CP6 is required for verification purposes. The University of Tokyo’s XI-

IV CubeSat has been in orbit since 2003 and is still operational [36]. Cal Poly has

a signed agreement to operate XI-IV which makes it an ideal candidate to verify

the ASOF framework. To prove ASOF’s versatility, XI-IV was also executed

against the previously described test cases. The results can be seen in Table 7.2.

Nominal Error Correct Error Fail
RBS Passed Passed Failed
DFA Process Model Passed Passed Failed
Hybrid Passed Passed Failed

Table 7.2: Results of all Verification Tests with IX-IV

7.3 Validation Framework Results

Now that all of the autonomous systems have been introduced and placed in

the validation framework, an analysis can be completed. The following section

examines the results found in Table 7.3.

Inspectable Predictable Repairable Extensible Intelligent Type
Prior Systems
GENIE Satisfactory Satisfactory Not Implemented Good Not Implemented Rules
LOGOS Satisfactory Good Satisfactory Poor Not Implemented Rules
ASPEN Good Good Satisfactory Poor Poor Rules
Thesis Systems
RBS Satisfactory Satisfactory Satisfactory Satisfactory Not Implemented Rules
DFA Proc Model Good Good Good Good Not Implemented DFA
Hybrid Good Good Good Good Not Implemented Both

Table 7.3: Validation Framework Summary for Autonomous Systems

75

Majority Rule Based As was noted in the beginning of this thesis, all of the

existing systems are developed as rule based systems. Looking at the validation

framework results, the non-rule based systems scored higher than the rule based

systems. Therefore, it would be beneficial to investigate additional non-rule based

systems for autonomous operations.

Good Inspectability and Predictability Most all of the systems have decent

inspectability. This results since it is easier to debug a system which makes

available its internal operations. Predictability is also high across the autonomous

systems since an unpredictable system generally does not complete autonomous

operations very well. Therefore to have a working system typically means to have

a predictable system.

Bad Repairability and Extensibility While repairability and extensibility

scored worse than inspectability and predictability, there is an explanation. Since

most of these autonomous systems are prototypes, developers do not want to

spend time modifying/customizing their software above the source code level. To

do so would mean investing extra time in an idea which may be thrown away.

Additionally, once high level configurations are written, it is harder to change the

underlying system since the high level configurations lacks the expressive power

of source code. Therefore, most of these prototype systems lack repairability and

extensibility as defined by the validation framework.

Minimal Intelligence The ability to modify and remember behaviors is lack-

ing in all of the reviewed autonomous systems. While the systems do accomplish

the task of autonomous operations, greater intelligence would enable greater effi-

76

ciency and functionality. Learning and intelligence is therefore one of this thesis’

and the field of autonomous operations’ most important future work.

Hybrid vs DFA Process Model Using purely the validation framework, it

would appear that the Hybrid and the DFA process model implementations are

equivalent. This, however, is only due to a lack of resolution in the framework

regarding a system’s ability to recover from errors. Since the hybrid implementa-

tion primarily uses the DFA process model, the hybrid implementation can solve

any problem that the DFA process model can solve. Additionally, the hybrid

implementation can use the recovery rules of the RBS system when the DFA

process model fails. Therefore, the added power of the RBS makes the hybrid

implementation able to solve more problems than the DFA process model. This

argument can be found in a more structured form in Figure 7.3. Since all other

aspects are equal, the hybrid implementation is slightly more advantaged than

the pure DFA process model implementation.

1. DFAErrorsSolved = The amount of errors solved by the DFA process

model implementation (DFAErrorsSolved > 0)

2. RBSErrorsSolved = The amount of errors solved by the RBS’ error re-

covery rules that are not solved by the DFA process model

(RBSErrorsSolved ≥ 0)

3. HybridErrorsSolved = DFAErrorsSolved+RBSErrorsSolved

4. ∴ HybridErrorsSolved ≥ DFAErrorsSolved

Figure 7.3: Logic Showing the Hybrid Implementation has the Poten-
tial to Solve More Problems than the DFA Process Model Implemen-
tation

77

Chapter 8

Future Work

While a lot has been accomplished during the course of this masters thesis,

there is much work that has yet to be completed. This chapter addresses the

main items which still require action.

8.1 Learning Knowledge Base Library

Currently only a RBS, a DFA process model and a hybrid model are imple-

mented with the ASOF framework. None of these implementations, however,

utilize any experiences from previous executions. That is, they do not learn new

or more efficient ways to accomplish tasks. In order to promote the research of

learning Knowledge Bases, a set of libraries can be produced to facilitate devel-

opment. These libraries would include Neural Network implementations as well

as algorithms commonly found in Weka [16], Rapid Miner [38], and KNIME [35].

By lowering the barrier to entry, more people will see the benefit and develop

learning Knowledge Bases for the ASOF framework.

78

8.2 Advanced Monitor Interface

The central concept of the ASOF framework is to greatly reduce the amount

of human involvement required to operate a satellite. Continuing this thought,

ASOF should be easy to monitor and make users aware when serious problems

have occurred. For instance, a web monitoring interface should be created such

that a human operator can open a browser and simply determine the current

state of operations. Due to ASOF’s Model-View-Controller architecture [26], the

addition of a web view could be implemented with only minor changes to ASOF.

Additionally, a human operator should receive direct notification of problems

through either email or SMS so that corrective action can be taken as soon as

possible.

The web monitoring interface could further increase usability by allowing a

human operator to control ASOF from their browser. In this way, a human

operator could receive an SMS alert on their phone and open a browser to fix

any problems. These enhancements will greatly reduce the required involvement

from human operators during autonomous operations.

8.3 Add HamLib Driver Support

Currently the TNC API is a generic Java interface. That is, whenever a user

wants to use the ASOF framework at his/her ground station, they must write

a TNC driver from scratch. Luckily this problem has already been addressed

via HamLib which is a collection of drivers for the most common ground station

devices (which includes TNCs) [15]. It would be advantageous for the users of

ASOF to have HamLib integrated such that any HamLib driver is a selectable

79

TNC. Additionally since HamLib is actively being developed, when a new device

becomes available, only the first individual needs to write the driver. After the

driver is written once, the rest benefit from its addition to HamLib. This is the

approach that the GENSO project has taken to manage ground station drivers

[13].

8.4 Add Satellite State to Hybrid Implementa-

tion

Currently, the hybrid implementation does not does take any preventative

measures when operating a satellite. Unlike the RBS implementation which

changes its agenda based on the current satellite state, the hybrid model does no

such check. This check, however, would be an easy addition and could be imple-

mented in the following manner. Before a DFA process model Agent action is

executed, the rule base is queried for any potential issues with the current action.

If the RBS detects an issue, the Agent action is temporarily postponed and a

corrective action is taken instead. For example if the DFA process model’s next

action is a power intensive CDHDataDump operation, the RBS would be queried

to check if the power levels are sufficient. If not, the RBS would tell the Agent to

execute the WAIT FOR TIME PERIOD action. After this action is completed,

the RBS would again be queried for any issues. If the power levels were at this

time sufficient, the CDHDataDump operation would occur.

80

Chapter 9

Conclusion

This thesis addressed the problem of autonomous operations for CubeSat

satellites (see Table 9.1 for a summary of this thesis’ contributions). The Au-

tonomous Framework for Satellite Operations (ASOF) was introduced as a way

to rapidly develop different types of Knowledge Bases for different satellites. Us-

ing the ASOF framework, three Knowledge Base implementations were created.

The Rule Based System (RBS) implementation uses the Java Expert System

Shell (JESS) to conduct operations. The RBS is most similar to the existing au-

tonomous operation systems. The second implementation creates a DFA process

model using existing satellite operations logs. This dramatically reduces the time

to setup autonomous operations since there is no need to have human operators

write operation rules. The final implementation is a hybrid model using both

the DFA process model and the error recovery rules from the RBS. The hybrid

implementation receives the benefits of both while diluting the negative aspects

of each, making it the best option for autonomous operations. While all these im-

plementations successful accomplish autonomous operations, none of them learn

from prior executions. Incorporating learning into these Knowledge Bases is the

81

next step to improve autonomous operations for CubeSat satellites.

Thesis Contributions

• Defined a quantifiable validation framework based on five evaluation criteria

provided by Brann

• Surveyed existing autonomous operations systems and validated them using

the validation framework

• Created the Autonomous Satellite Operations Framework (ASOF)

• Used the ASOF framework to implement three types of Knowledge Bases

(RBS, DFA Process Model, and Hybrid)

• Validated the three Knowledge Base implementations with using the vali-

dation framework

• Verified the ASOF framework and three Knowledge Base implementations

using Cal Poly’s CP6 and University of Tokyo’s IX-IV CubeSats

Table 9.1: Summary of Thesis Contributions

82

Bibliography

[1] D. Brann, D. Thurman, and C. Mitchell. Human Interaction with Lights-

out Automation: A Field Study. In Third Annual Symposium on Human

Interaction with Complex Systems, HICS’96. IEEE Computer Society, 1996.

[2] S. Chien, G. Rabideau, R. Knight, R. Sherwood, B. Engelhardt, D. Mutz,

T. Estlin, B. Smith, F. Fisher, T. Barrett, et al. Aspen–automated planning

and scheduling for space mission operations. In Space Ops, 2000.

[3] A. Chin. CubeSat Community Website. http://www.cubesat.org/, March

2009.

[4] D. Cuddeback. MoredBs. http://moredbs.atl.calpoly.edu/, January

2010.

[5] A. de Medeiros, B. van Dongen, W. van der Aalst, and A. Weijters. Pro-

cess mining: Extending the α-algorithm to mine short loops. Eindhoven

University of Technology, Eindhoven, 2004.

[6] Dictionary.com Unabridged. Satellite. http://dictionary.reference.

com/browse/Satellite, February 2010.

[7] Dictionary.com Unabridged. Spacecraft. http://dictionary.reference.

com/browse/Spacecraft, February 2010.

83

http://www.cubesat.org/
http://moredbs.atl.calpoly.edu/
http://dictionary.reference.com/browse/Satellite
http://dictionary.reference.com/browse/Satellite
http://dictionary.reference.com/browse/Spacecraft
http://dictionary.reference.com/browse/Spacecraft

[8] Direct TV. Direct TV: Satellite Television. http://www.directv.com/

DTVAPP/index.jsp, March 2009.

[9] Eindhoven Technical University. ProM. http://prom.win.tue.nl/tools/prom,

July 2009.

[10] T. Estlin, F. Fisher, D. Gaines, C. Chouinard, S. Schaffer, and I. Nesnas.

Continuous planning and execution for an autonomous rover. In Proceedings

of the Third International NASA Workshop on Planning and Scheduling for

Space, 2002.

[11] N. Fedoseev. MixW - Multimode Software for Radio Amateurs. http:

//www.mixw.net/, November 2009.

[12] J. Foley. Personal Correspondance with Justin Foley, PolySat Project Man-

ager, 2009.

[13] S. Forsman. GENSO. http://genso.org/, March 2009.

[14] GENIE Development Team. GENIE Introduction. http://aaaprod.gsfc.

nasa.gov/gensaa/genie/, March 2009.

[15] T. H. Group. Ham Radio Control Libraries. http://hamlib.sourceforge.

net/, November 2009.

[16] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Wit-

ten. The WEKA Data Mining Software: An Update. SIGKDD Explorations,

11(1):10–18, 2009.

[17] J. Hartley, E. Luczak, and D. Stump. Spacecraft control center automation

using the Generic Inferential Executor (Genie). In International Symposium

84

http://www.directv.com/DTVAPP/index.jsp
http://www.directv.com/DTVAPP/index.jsp
http://www.mixw.net/
http://www.mixw.net/
http://genso.org/
http://aaaprod.gsfc.nasa.gov/gensaa/genie/
http://aaaprod.gsfc.nasa.gov/gensaa/genie/
http://hamlib.sourceforge.net/
http://hamlib.sourceforge.net/

on Space Mission Operations & Ground Data Systems-’SpaceOps 96’, 4 th,

Munich, Germany, pages 1007–1014, 1996.

[18] D. He, A. Goker, and D. Harper. Combining evidence for automatic Web

session identification. Information Processing and Management, 38(5):727–

742, 2002.

[19] X. Huang, F. Peng, A. An, and D. Schuurmans. Dynamic web log session

identification with statistical language models. Journal of the American

Society for Information Science and Technology, 55(14):1290–1303, 2004.

[20] D. Huerta. Development of a Highly Integrated Communication System for

use in Low Power Space Applications. Master’s thesis, California Polytechnic

State University, 2006.

[21] P. M. Hughes and E. C. Luczak. The Generic Spacecraft Analyst Assis-

tant (GenSAA): A Tool for Automating Spacecraft Monitoring with Expert

Systems. NASA Conference Publication, 3110:129–+, 1991.

[22] D. Johnson. Personal Correspondence with David Johnson, Software Devel-

oper for Black Pepper Software, 2009.

[23] Kantronics. Kantronics KPC-9612+ Radio Modem/TNC. http://www.

kantronics.com/products/kpc9612.html, November 2009.

[24] B. Klofas, J. Anderson, and K. Leveque. A Survey of CubeSat Communica-

tion Systems. AMSAT Journal, 2009.

[25] E. Koutsofios, S. North, et al. Drawing graphs with dot. Technical re-

port, Technical Report 910904-59113-08TM, AT&T Bell Laboratories, Mur-

ray Hill, NJ, 1991.

85

http://www.kantronics.com/products/kpc9612.html
http://www.kantronics.com/products/kpc9612.html

[26] G. Krasner and S. Pope. A description of the model-view-controller user

interface paradigm in the smalltalk-80 system. Journal of Object Oriented

Programming, 1(3):26–49, 1988.

[27] S. N. Laboratories. JESS, the Rule Engine for the JavaTM Platform. http:

//www.jessrules.com/, November 2009.

[28] J. P. Laboratory. Jet Propulsion Laboratory: California Institute of Tech-

nology. http://www.jpl.nasa.gov/, March 2009.

[29] W. Larson and J. Wertz. Space Mission Analysis and Design. Microcosm,

1999.

[30] R. Longman, R. Lindbergt, and M. Zedd. Satellite-Mounted Robot

Manipulators–New Kinematics and Reaction Moment Compensation. The

International Journal of Robotics Research, 6(3):87, 1987.

[31] N. Melville. Global Educational Network for Satellite Operations. Interna-

tional Space Education Board, Hyderabad, September 2007.

[32] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of

the IEEE, 77(4):541–580, 1989.

[33] P. Narayan, P. Wu, D. Campbell, and R. Walker. An Intelligent Control

Architecture for Unmanned Aerial Systems (UAS) in the National Airspace

System (NAS). In Australian International Aerospace Conference (AIAC),

Melbourne, 2007.

[34] Object Mentor. JUnit: Resources for Test Driven Development. http:

//www.junit.org/, February 2010.

[35] U. of Konstanz. KNIME. http://www.knime.org/, January 2010.

86

http://www.jessrules.com/
http://www.jessrules.com/
http://www.jpl.nasa.gov/
http://www.junit.org/
http://www.junit.org/
http://www.knime.org/

[36] U. of Tokyo. XI series totally work for 16 years. http://www.space.t.

u-tokyo.ac.jp/cubesat/index-e.html, January 2010.

[37] J. Puig-Suari. PolySat. http://polysat.calpoly.edu/, November 2009.

[38] Rapid-I GmbH. Rapid Miner. http://rapid-i.com/, February 2010.

[39] G. Riley. CLIPS: A Tool for Building Expert Systems. http://clipsrules.

sourceforge.net/, November 2009.

[40] R. Sherwood, A. Govindjee, D. Yan, G. Rabideau, S. Chien, and A. Fuku-

naga. Using ASPEN to automate EO-1 activity planning. In IEEE Aerospace

Conference, 1998. Proceedings, volume 3, 1998.

[41] G. Shirville and B. Klofas. GENSO: A Global Ground Station Network. In

Proceedings of the AMSAT-NA 21st Space Symposium, 2007.

[42] M. Sipser. Introduction to the Theory of Computation. International Thom-

son Publishing, 1996.

[43] M. Spiliopoulou, B. Mobasher, B. Berendt, and M. Nakagawa. A framework

for the evaluation of session reconstruction heuristics in web-usage analysis.

INFORMS Journal on Computing, 15(2):171–190, 2003.

[44] Sun Microsystems . MySql: The world’s most popular open source database.

http://www.mysql.com, January 2010.

[45] R. Thompson. Correspondence with R.J. Thompson, Chief of the USGS

Earth Resource Observation Systems Data Center, Sioux Falls, S.D. http://

www.space.com/spacenews/archive03/landsatarch_102003.html, 2003.

87

http://www.space.t.u-tokyo.ac.jp/cubesat/index-e.html
http://www.space.t.u-tokyo.ac.jp/cubesat/index-e.html
http://polysat.calpoly.edu/
http://rapid-i.com/
http://clipsrules.sourceforge.net/
http://clipsrules.sourceforge.net/
http://www.mysql.com
http://www.space.com/spacenews/archive03/landsatarch_102003.html
http://www.space.com/spacenews/archive03/landsatarch_102003.html

[46] A. Toorian. Redesign of the Poly Picosatellite Orbital Deployer for the Dnepr

Launch Vehicle. Master’s thesis, California Polytechnic State University,

2007.

[47] W. Truszkowski, H. Hallock, and J. Kurien. Agent Technology from a NASA

Perspective. In Proceedings of the Third International Workshop on Coop-

erative Information Agents III, pages 1–33. Springer-Verlag London, UK,

1999.

[48] W. Van der Aalst, B. Van Dongen, J. Herbst, L. Maruster, G. Schimm, and

A. Weijters. Workflow mining: A survey of issues and approaches. Data &

Knowledge Engineering, 47(2):237–267, 2003.

[49] W. Van der Aalst, A. Weijters, and L. Maruster. Workflow mining: Which

processes can be rediscovered. Eindhoven University of Technology, Eind-

hoven, Beta Working Paper Series, WP, 75, 2002.

[50] B. van Dongen. MXML: A Meta model for process mining

data. http://prom.win.tue.nl/research/wiki/_media/presentations/

miningmetamodelimoa2005.ppt, 2005.

[51] P. Wang and Y. Shtessel. Satellite Attitude Control Using Only Magne-

torquers. In American Control Conference, 1998. Proceedings of the 1998,

volume 1, 1998.

88

http://prom.win.tue.nl/research/wiki/_media/presentations/miningmetamodelimoa2005.ppt
http://prom.win.tue.nl/research/wiki/_media/presentations/miningmetamodelimoa2005.ppt

Appendix A

Glossary

This sections defines the terms used throughout this thesis.

Agent: The main processing unit of the ASOF framework which coordinates all

of the other components to conduct satellite operations.

Autonomous Space Operations Framework (ASOF): The framework which

enables satellite developers to quickly create Knowledge Bases in order to

autonomously control their satellites.

DFA Process Model: A Deterministic Finite Automata (DFA) which encodes

Agent actions as states and satellite responses as transitions for use as a

model of operations.

End-Of-Life Operations: All operations which are conducted after the critical

mission objectives have been completed or deemed unable to be completed.

Knowledge Base: The abstraction for all satellite specific intelligence needed

for autonomous operations. When a satellite owner wants to automate

their satellite operations, they start by implementing a Knowledge Base.

89

Lights-Out Operations: Operation of a ground control center without the

presence or direct intervention of people [47].

Line of Sight Executive (LOSE): The Line of Sight Executive is queried to

know if a satellite is currently available for communication. This simple

interface typically uses a satellite’s TLE for positioning.

MoredBs: The PolySat MySql database used to collect all packets sent to and

received from an orbiting satellite [4].

Operations Event: Any event which occurs during operations. This can be

anything from an operator sending a command to a response returned

from a satellite.

PolySat: PolySat is Cal Poly’s CubeSat program which started in 1999 [37].

Satellite: An object launched to orbit Earth or another celestial body [6]. At

the time of this writing, this includes all CubeSats. The more general

term spacecraft is defined below.

Satellite Pass: The interval that a spacecraft is in contact with the ground

operations center [14].

Spacecraft: Throughout this thesis, the word satellite will be used although

all instances can be replaced more generally with the term spacecraft (a

vehicle designed for travel or operation in space [7]). This is possible since

the ASOF framework makes no distinction.

Terminal Node Controller (TNC): The interface which takes binary com-

mands from the operator and translates them to an analog signal which is

transmitted over a radio channel to the satellite. The TNC also translates

analog satellite responses into binary on the return path.

90

Two-Line Element (TLE): Two-line elements specify the numerical parame-

ters which define a classical satellite orbit [29].

91

Appendix B

Satellite Simulator

In order to test the effectiveness of the ASOF framework, the result of system

execution must be checked. While verification using a real satellite would be ideal,

this setup is difficult and cumbersome to create. Alternatively, many issues can

be discovered by simulating the satellite in software. This satellite simulator

is more convenient for testing purposes since the simulator can be programmed

to respond in many different ways. That is, conditions and situations can be

simulated onboard the satellite using software.

B.1 Satellite Simulator Implementation

The satellite simulator is implemented using Java’s inheritance so it is easy

to create simulators for a particular satellite. Currently, satellite simulators have

been created for both Cal Poly’s CP6 and the University of Tokyo’s XI-IV. These

simulators mimic as much functionality as required to generate behavior which

appears externally to be equivalent to the real satellite. This includes beacon

92

functionality and randomly generated satellite data.

B.2 Satellite Link Quality

To simulate a real space link between ASOF and the satellite, a connection

model was implemented. This connection model allows an instantiation of the

satellite simulator to specify both the rate of dropped packets and the bit error

rate. In this way, one can test how ASOF reacts to poor link quality.

B.3 Responses File

In some instances, defining an explicit set of satellite responses is beneficial.

For example, when defining a specific test situation, it is easier to list the satellite

responses in a file as oppose to manually setting parameters in the satellite model.

This functionality is created using a ResponseSat which takes as input a response

file. The specific file format can be found in Appendix C.5.

93

Appendix C

File Formats

The following file formats are used throughout the ASOF framework.

C.1 MoredBs Log File Format

Instead of always using MoredBs’ MySql database directly, a MoredBs log file

format has been defined. Each pass is separated by a blank line and contains a

number of operations events, one per line.

((<UP | DOWN>,<hex satellite data> \n)* \n)*

C.2 MXML File Format

A Mining XML (MXML) file is an XML file which specifies instances of a

process. The complete file format can be found in the MXML XSD [50]. The

following is the subset of the XSD tags used in the ASOF framework.

<WorkflowLog>

94

<Process id="0" description="">

<ProcessInstance id="" description="">

<AuditTrailEntry>

<WorkflowModelElement>...</WorkflowModelElement>

<EventType>complete</EventType>

</AuditTrailEntry>

</Process>

<Process>

...

</Process>

.

.

.

</WorkflowLog>

C.3 DFA File Format

The DFA file format encodes all the necessary information to recreate a DFA

process model. The file format is as follows.

(<State Number>,<Agent Action> \n)*

(<From State Number>,<To State Number>,<Satellite Action> \n)*

C.4 Configuration File Formats

The following parameters are used in the ASOF framework’s configuration

files.

C.4.1 asof.prop

These properties relate to general ASOF operations.

95

• mainSat: The name of the satellite that this ASOF instance operates.

• downImage: The path of the downlink image.

• upImage: The path of the uplink image.

• timeBetweenCommands: The time to wait between sending commands.

• defaultDataFormat: Sets the default data format for uplinked and down-

linked data. The available values are

– dec

– hex

– ascii

• defaultShowTimestamp: The default setting to show timestamp infor-

mation for all uplinked and downlinked data.

C.4.2 satellite.prop

The following properties relate to the specific satellite being operated.

• lose: The fully qualified package name of the Line of Sight Executive.

• knowledgebase: The fully qualified package name of the Knowledge Base.

• dfaProcessModelLibPath: Used for the DFA process model Knowledge

Base, the path to the DFA process model files.

• taskfile: The path to the task file used for operations.

• defaultTaskFile: The path to the task file which will be executed after

the main task file is completed.

96

• tnc: The fully qualified package name of the TNC.

• tncHost: Used for the TCP socket TNC, this is the host name of the server

running the Satellite Simulator.

• tncPort: Used for the TCP socket TNC, this is the port number on which

to connect to the Satellite Simulator.

• tncResponseFile: Used for the ResponseSat TNC, specifies the response

file path to use as input.

• tncCommPortUp: Used for the serial TNC, specifies the comm port to

use for uplinks.

• tncCommPortDown: Used for the serial TNC, specifies the comm port

to use for downlinks.

• tncCommPort: Used for the serial TNC, specifies the uplink and down-

link comm port if they are the same.

C.5 Satellite Simulator Response File

A set of responses can be defined for the satellite simulator to use by creating

a file of the following format.

(((DataResponse | SatAction) \n)* \n)*

Each satellite response is on its own line and a blank line separates response sets.

97

Appendix D

Petri Nets Background

Petri nets are used as an intermediate data structure during DFA process

model creation. Petri nets are bipartite graphs made up of Place and Transition

nodes [32]. Places and Transitions can be connected together using directed arcs

but a Place can never connect to another Place and a Transition can never con-

nect to another Transition. A Place can have a number of tokens located in it

at any time and a Transition can fire if all of its input Place nodes have tokens.

Once a Transition fires, the tokens are moved from its input Place nodes to its

output Place nodes. Petri nets have been used to model processes and resources

in distributed environments. The formal definition can be found below.

Petri nets: A Petri net is a 5-tuple, PN = (P,T,F,W,M 0) where:

• P = {p1, p2, · · · , pm} is a finite set of places,

• T = {t1, t2, · · · , tm} is a finite set of transitions,

• F ⊆ (P × T) ∪ (T × P) is a set of arcs (flow relation),

98

• W: F → {1, 2, 3, · · ·} is a weight function,

• M0: P → {1, 2, 3, · · ·} is the initial marking,

• P ∩ T = ∅ and P ∪ T 6= ∅

Petri nets can represent a number of relationships [48] between transitions (see

Figure D.1 for a graphical representation of these relationships) which are

1. Follows (A < B): Task B occurs after Task A

2. Causal (A → B): Task B is always proceeded by Task A

3. Parallel (A || B): Task A and Task B are done in parallel

4. Unrelated (A # B): Task A occurs independently of Task B

Figure D.1: Relationships Between Transitions

99

D.1 Workflow Nets

Workflow nets (WF-nets) are a subset of Petri nets and are more closely

related to a DFA process model (see Figure D.2 for an example workflow net)

[49]. Formally, a WF-net is N = (P, T, F), a Place-Transition net (P/T net) and

t̄ a fresh identifier not in P ∪ T. N must fulfill the following requirements:

1. Object creation: P contains an input place i such that •i = ∅,

2. Object completion: P contains an output place o such that o• = ∅,

3. Connectedness: N̄ = (P,T ∪ {t̄}, F ∪ {(o, t̄), (t̄, i)}) is strongly connected,

Figure D.2: An Example Workflow Net

100

Appendix E

The α-Algorithm

The following is the α-algorithm used during DFA process model creation [5].

1. TW = {t ∈ T | ∃σ∈W t ∈ σ}

TW is the set of all the distinct events which occur in the workflow log. These will be
used to define all of the transitions in the resulting WF-net.

2. TI = {t ∈ T | ∃σ∈W t = first(σ)}

TI is the set of all the possible ways for a process to start. This set will be used to create
the connections from the starting place node.

3. TO = {t ∈ T | ∃σ∈W t = last(σ)}

TO is the set of all the possible ways for a process to end. This set will be used to create
the connections going to the ending place node.

101

4. XW = {(A,B) | A ⊆ TW ∧ B ⊆ TW ∧ ∀a∈A∀b∈B a→W b ∧
∀a1,a2∈A a1#Wa2 ∧ ∀b1,b2∈B b1#W b2}

XW is the set of tuples (A, B) such that A causes B. That is for every B in our workflow
log, it is always preceded by at least one A.

5. YW = {(A,B) ∈ XW | ∀(A′,B′)∈XW
A ⊆ A′ ∧B ⊆ B′ =⇒ (A,B) = (A′, B′)}

YW is a subset of XW , (A, B), such that A occurs immediately before B in at least one of
the workflow log cases.

6. PW = {p(A,B) | (A,B) ∈ YW} ∪ {iW , oW}

PW is the set of places connecting the transitions. They are constructed using the set of
directly connected transitions defined in YW such that for every pair of transitions in YW ,
(A, B) there is a place between them defined as P(A,B).

7. FW = {(a, p(A,B)) | (A,B) ∈ YW ∧ a ∈ A} ∪ {(p(A,B),b) | (A,B) ∈ YW ∧ b ∈ B} ∪
{(iW , t) | t ∈ TI} ∪ {(t, oW) | t ∈ TO}

FW is the set of directed arcs in the resulting WF-net. The arcs are the connections from
places to transitions and transitions to places using the previously created sets TW and
PW . FW contains the directed arcs (A, P(A,B)) and (P(A,B), B) for every ‘A’ and ‘B’ from
TW and P(A,B) from PW .

8. α(W) = (PW , TW , FW)

Using the sets created in previous steps(PW , TW , FW) create the triple that is the WF-net.

102

E.1 α-Algorithm Example

The following is an example of the α-Algorithm in action.

Case # Process Event
1 A
1 B
2 A
1 C
1 D
2 C
3 A
3 B
2 B
2 D
4 E
3 C
3 D
4 F

Table E.1: An Example Workflow Log

Case 1
A
B
C
D

Case 2
A
C
B
D

Case 3
A
B
C
D

Case 4
E
F

Table E.2: Organized Cases from the Example Workflow Log

103

1. TW = {A,B,C,D,E, F}
2. TI = {A,E}
3. TO = {D,F}
4. XW = {(A,B), (A,C), (A,D), (B,D), (C,D), (E,F)}

NOTE: (B, C) and (C, B) are not included in XW since the causual relationship is not
true.

5. YW = {(A,B), (A,C), (B,D), (C,D), (E,F)}

NOTE: Only (A, D) is in XW and not in YW since there is no case where a ‘D’ is directly
followed by an ‘A’.

6. PW = {P(A,B), P(A,C), P(B,D), P(C,D), P(E,F)}
7. FW = { (A, P(A,B)), (P(A,B), B), (A, P(A,C)), (P(A,C), C), (B, P(B,D)), (P(B,D),

D), (C, P(C,D)), (P(C,D), D), (E, P(E,F)), (P(E,F), F) }
8. α(W) = (PW , TW , FW)

The resulting WF-net is shown in Figure E.1.

Figure E.1: The Completed Workflow Net Generated

104

E.2 α-Algorithm Assumption

In order for the alpha algorithm to work correctly, we must assume that the

workflow log is complete. That is we must assume that all possible events and

paths are present in the log. This assumption is made since if an event is not

present in the log, then it cannot be included in the generated WF-net.

E.3 α-Algorithm Limitation

One of the greatest drawbacks of this version of the α-algorithm is that it does

not support cycles of length 1. That is an event can never be repeated directly

after it have been completed as is represented in Figure E.2.

Figure E.2: No Single Loops Possible with the Basic α-Algorithm

105

	List of Tables
	List of Figures
	Introduction
	Thesis Outline
	Use of General Terms

	Literature Review
	Evaluation of Existing Systems
	Inspectable Scoring Definition
	Predictable Scoring Definition
	Repairable Scoring Definition
	Extensible Scoring Definition
	Intelligent Scoring Definition

	GENIE
	Advantages
	Disadvantages
	Validation Framework Results

	LOGOS
	Advantages
	Disadvantages
	Validation Framework Results

	ASPEN
	Advantages
	Disadvantages
	Validation Framework Results

	Summary of Existing Research

	Automation Framework
	The Agent
	The Knowledge Base Interface
	The Task File
	The TNC Interface
	Line of Sight Executive Interface
	Standard Program Execution
	Historical Data Record
	Framework Actions
	Agent Actions
	Satellite Actions

	Implementation 1: Rule Based System
	RBS Execution
	RBS Execution Example

	Implementation
	Satellite Model
	Task to Agenda Rules
	Preventative Rules
	Error Recovery Rules

	Results
	Advantages
	Disadvantages
	Validation Framework Results

	Implementation 2: DFA Process Model
	DFA Process Model Execution
	Creation of a DFA Process Model
	Data Source Selection
	Preprocessing
	MXML Formatting
	Alpha Extraction
	Contraction

	Results
	Advantages
	Disadvantages
	Validation Framework Results

	Implementation 3: Hybrid Implementation
	Implementation
	Results
	Advantages
	Disadvantages
	Validation Framework Results

	Verification & Validation
	Testing Overview
	ASOF Verification With Another Satellite
	Validation Framework Results

	Future Work
	Learning Knowledge Base Library
	Advanced Monitor Interface
	Add HamLib Driver Support
	Add Satellite State to Hybrid Implementation

	Conclusion
	Bibliography
	Glossary
	Satellite Simulator
	Satellite Simulator Implementation
	Satellite Link Quality
	Responses File

	File Formats
	MoredBs Log File Format
	MXML File Format
	DFA File Format
	Configuration File Formats
	asof.prop
	satellite.prop

	Satellite Simulator Response File

	Petri Nets Background
	Workflow Nets

	The -Algorithm
	-Algorithm Example
	-Algorithm Assumption
	-Algorithm Limitation

