
General Direction Routing Protocol

A Thesis

Presented to

the Faculty of California Polytechnic State University

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Sean Michael Lydon

June 2009

© 2009
Sean Michael Lydon

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: General Direction Routing Protocol

AUTHOR: Sean Michael Lydon

DATE SUBMITTED: June 2009

COMMITTEE CHAIR: Hugh M. Smith, Ph.D.

COMMITTEE MEMBER: John Bellardo, Ph.D.

COMMITTEE MEMBER: Michael L. Haungs, Ph.D.

iii

Abstract

General Direction Routing Protocol

Sean Michael Lydon

The General Direction Routing Protocol (GDRP) is a Wireless Sensor Network (WSN)

multi-path routing protocol which abstracts localization information (commonly GPS

coordinates) into relative direction information in order to perform routing decisions. By

generating relative direction information GDRP is able to operate with fewer precision

requirements than other protocols. This abstraction also allows the integration of other emerging

hardware-based localization techniques, for example, Beamforming Sensor Arrays.

GDRP does not specifically address the next hop a packet should take, but instead specifies a

direction it should travel. This direction abstraction allows for multiple paths to be taken through

the network thus enhancing network robustness to node mobility and failures. This indirect

addressing scheme also provides a solution to sensor node unique identification.

GDRP is simulated in a custom simulator written in Java. This simulator supports interfaces

for multiple protocols for layers 1, 2, 3, and 7 of the OSI model. For performance comparisons,

GDRP is compared against multiple WSN routing protocols. GDRP operates with a significantly

lower setup cost in terms of bytes transmitted and a lower setup latency for networks of varying

sizes. It also demonstrates an exponentially lower routing cost when compared to another multi-

path routing protocol due to a more efficient packet propagation in the network.

Keywords: Networking, Wireless Sensor Networks, GPS

iv

ACKNOWLEDGEMENTS

Thank you Dr. Hugh Smith for your long hours in helping me perfect this work and

encouraging me to produce a paper for publication. Thank you Cal Poly Computer Science

department for providing the majority of the funding needed to travel to Crete, Greece to present

GDRP at the IASTED Sensor Network conference in September 2008. Thank you Dr. John

Bellardo for your willingness to have many illuminating discussions about wireless protocols and

simulations. Thank you Dan Nelson for keeping me company in the networks lab for many days

leading up to our thesis defenses. Thank you my peers and my professors for providing a positive

educational atmosphere and many interesting and exciting projects and discussions.

To my family, thank you for supporting me as I spent extra years at school pursuing a

Master's degree and for the uncountable hours helping me to revise and perfect my wittings on

GDRP. Thank you Rachael, my beautiful and understanding fiancée, for always being there to

provide me with encouragement and copious amounts of caffeine.

v

Contents

List of Tables ... viii

List of Figures .. ix

Chapter 1 .. 1

1.1 Introduction .. 1

Chapter 2 .. 3

2.1 Background .. 3

2.2 Challenges in WSNs .. 4

Chapter 3 .. 6

3.1 Related Work ... 6

3.2 Routing Protocol Implementations ... 6

3.3 Unique Identification ... 16

3.4 Antenna Types ... 17

3.5 Beamforming Sensor Arrays .. 17

3.6 Simulator Types ... 18

Chapter 4 .. 20

4.1 Simulator Implementation .. 20

4.2 World Design ... 22

4.3 Node Design ... 27

4.4 Default Physical Layer ... 32

4.5 CSMA/CA MAC Layer ... 33

4.6 Bordercast ... 35

4.7 GPSR ... 38
vi

4.8 Simple Application Layer .. 40

4.9 Logger .. 40

Chapter 5 .. 42

5.1 GDRP ... 42

5.2 Direction Abstraction ... 43

5.3 Setup Phase .. 44

5.4 Operation ... 45

Chapter 6 .. 48

6.1 Testbed ... 48

6.2 Number of Nodes ... 49

6.3 Node Degree .. 54

6.5 Number of Slices in GDRP .. 56

6.4 Accuracy of GPS .. 59

6.6 MAC properties ... 61

Chapter 7 .. 62

7.1 Conclusions .. 62

7.2 Future Work ... 63

Bibliography ... 65

vii

List of Tables

Table 1: Default simulation parameters..25

viii

List of Figures

Figure 1: A Wireless Sensor Network (WSN). ..3

Figure 2: Exposed Terminal Problem. ...5

Figure 3: Hidden Terminal Problem. ...5

Figure 4: Simple flooding logic. ..7

Figure 5: Flooding with HTL. ..8

Figure 6: Flooding with caching and HTL. ..8

Figure 7: Two Bordercast zones with radius two. ..9

Figure 8: Pseudo-code of Bordercast operation. ..10

Figure 9: Minimum Cost Forwarding Algorithm (MFCA) operation. ...12

Figure 10: Dynamic Address RouTing (DART) setup. ..16

Figure 11: Simulator Object interaction. ..21

Figure 12: Example using Reflection to create an Object. ...28

Figure 13: Network layer transition diagram. ..31

Figure 14: CSMA/CA packet header. ..34

Figure 15: Bordercast (BC) packet header. ..35

Figure 16: Bordercast example setup. ..36

Figure 17: GPSR routing header. ...38

Figure 18: Pseudo-code of GPSR routing. ...39

Figure 19: Perimeter routing left-hand rule. ...39

Figure 20: Direction abstraction (8 slices). ..43

Figure 21: Pseudo-code of GDRP routing operation. ...45

Figure 22: GDRP routing header fields. ...46

Figure 23: GDRP routing procedure. ...47

Figure 24: Transmitted Bytes for Routing vs. Number of Nodes for Bordercast and GDRP.49

ix

Figure 25: Transmitted Bytes for Routing vs. Number of Nodes for GDRP and GPSR.50

Figure 26: Transmitted Bytes for Setup vs. Number of Nodes. ..51

Figure 27: Setup Latency vs. Number of Nodes. ...51

Figure 28: Collisions vs. Number of Nodes. ..52

Figure 29: Duplicity vs. Number of Nodes. ...53

Figure 30: Reliability vs. Number of Nodes. ...53

Figure 31: Transmitted Bytes for Routing vs. Node Degree. ...55

Figure 32: Duplicity vs. Node Degree. ...55

Figure 33: Reliability vs. Node Degree. ...56

Figure 34: Reliability vs. Number of Slices. ..57

Figure 35: Transmitted Bytes for Routing vs. Number of Slices. ...58

Figure 36: Duplicity vs. Number of Slices. ..58

Figure 37: Reliability vs. GPS Accuracy. ..59

Figure 38: Transmitted Bytes for Routing vs. GPS Accuracy. ...60

Figure 39: Duplicity vs. GPS Accuracy. ..61

x

Chapter 1

1.1 Introduction

Wireless Sensor Networks (WSNs) are a collection of devices referred to as nodes which

sense the environment around them and transmit this data via wireless communication to a sink

[1]. Typical applications require real time data from small, inexpensive, reliable, and disposable

equipment [2]. Therefore, sensor nodes must be inexpensively manufactured and are required to

operate at a minimal power cost. These applications require that the nodes self organize into an

ad-hoc network for routing information.

Battery lifetime is one of the major limiting variables in WSNs. Each time a sensor node

transmits information it utilizes significantly more power than the power required for typical

processing [2]. Once a node falls below a minimal energy threshold, it no longer functions.

Newer WSN network protocols attempt to conserve power by limiting the number of node

transmissions.

Applications also require that data arrives reliably. The sensor nodes are responsible for

routing the data to the sink. Obstacles to reliable data delivery include network congestion,

random world noise, and inaccuracy in any node assumptions about the network. Network

congestion causes packets in sensor nodes to be dropped by queues overflowing with packets

waiting for transmission. Some routing protocols make assumptions about the network and the

location of the nodes in the network. For example, GPSR assumes that a sensor node is at a

specific location as determined by its GPS hardware. Inaccuracies in these assumptions can

cause packets to become lost in the network and eventually dropped.

General Direction Routing Protocol (GDRP) [3] is the multi-path routing protocol presented

in this thesis. This protocol abstracts localization information into relative direction information,

1

which allows for inaccuracies in the localization information. GDRP routes data towards a

destination called the sink. Any nodes in the direction of the sink will forward the data. This

routing behavior includes the additional benefits of multi-path routing and the dropped

requirement of unique identification for sensor nodes.

GDRP is implemented in a custom WSN simulator written in Java. The simulator allows for

multiple network protocols to be dynamically loaded. The simulator enforces an abstraction

between network layers and requires that all sensor node communication be done by wireless

transmission.

GDRP is compared to Bordercast [4], a multi-path routing protocol, and GPSR [5], a

localization-based routing protocol which uses GPS hardware. Network properties such as setup

latency, setup cost, routing cost, network congestion, reliability, and duplicity are measured for

networks of varying number of nodes, node degree, MAC properties, and localization information

correctness.

GDRP operates significantly better than Bordercast in terms of setup cost, setup latency,

network congestion, and routing cost for networks consisting of a varying number of nodes and

node density. GDRP operates more reliably than GPSR when faced with localization inaccuracy

problems. It also operates with a reduced setup cost and setup latency. GDRP does have a

greater congestion level for networks with a very large node degree when compared to GPSR.

Other than the results mentioned above, GDRP operates similarly in all other categories to GPSR.

Chapter 2 is devoted to background information related to WSNs, and Chapter 3 is an

analysis of related work. The design and implementation of the custom Java simulator is

addressed in Chapter 4. Chapter 5 introduces the implementation of GDRP. Chapter 6 presents

the simulation results and provides a comparison between the GDRP, GPSR, and Bordercast

protocols. Finally, Chapter 7, serves as a conclusion and discussion of future work.

2

Chapter 2

2.1 Background

Wireless Sensor Networks (WSNs) are a collection of battery powered, wireless, sensor

nodes which self organize into a multi-hop wireless network, often called a peer-to-peer or Mesh

Network [6]. An edge device in the network which performs storage of sensed data or translation

to a different medium is called a sink. The figure below illustrates a simple WSN.

There are many network parameters which contribute to the power efficiency of a routing

protocol in WSNs. These include mobility, network node density, average node degree, the

number of nodes in a network, and the traffic pattern.

Mobility continually changes the network topology requiring a routing protocol to relearn

network state information. Based on how fast the network topology changes and the latency of a

routing protocol's setup phase, sensor nodes can usually rerun a setup phase to relearn this

information.

3

Figure 1: A Wireless Sensor Network (WSN).

Sink

Monitor

The average node degree is the average number of neighbors any node in the network. Node

degree is controlled by altering the distances a node can transmit and the network node density.

Network congestion increases as node degree increases. Network congestion usually leads to an

increase in energy cost for network operation due to retransmissions required by collisions

happening in the network. Network congestion also leads to a decrease in reliability, because a

sensor node will start dropping packets if its routing queue is full.

2.2 Challenges in WSNs

WSNs provide some unique challenges that make historically accurate routing and data-link

protocols less efficient and reliable. Most of these problems are directly attributable to WSNs

being multi-hop wireless networks. As such, each sensor node is in the same collision domain as

all of its neighboring nodes. This makes broadcast storms, routing loops, and packet collisions

much more likely than in wired networks. There are also some challenges introduced by routing

protocol implementations for WSNs that use GPS coordinates to perform greedy routing.

Most MAC protocols attempt to avoid packet collisions by checking the medium before

attempting to transmit a packet [7]. This can result in a false positive error known as the exposed

terminal problem. It is depicted in the figure below. Node A is transmitting to node B, and node

C wishes to transmit to node D. Node C will determine that another node is currently

transmitting, so it will hold off transmitting until the medium is free. This is a false positive,

because node C could successfully transmit to node D without interrupting B's ability to receive

the message from node A.

4

There is also the possibility of receiving a false negative when sensing the medium before

transmitting a packet. This problem is called the hidden terminal problem, and it is illustrated in

the figure below. Node A is sending to node B, and node C wants to send to node B. After node

C finds the medium free of transmissions, it starts to send to node B causing a collision in the

network.

Both of these inaccuracies can be improved by using a Request-To-Send(RTS)/Clear-To-

Send(CTS) scheme [8]. The RTS/CTS model can only improve congestion at the transmitting

node, and it is often the receiving node that needs to know about congestion. There have been

other attempts to share congestion information between sensor nodes and many are presented in

reference material [9].

5

Figure 2: Exposed Terminal Problem.

B

DA C

Figure 3: Hidden Terminal Problem.

B

A
C

Chapter 3

3.1 Related Work

There are several types of technologies that help to improve the capabilities and performance

of Wireless Sensor Networks, and distributed algorithms and network protocols is one of these

technologies [1]. This category of research defines more efficient operation in terms of fewer

wireless transmissions to communicate data, resulting in overall power conservation. The rest of

this Chapter is devoted to the routing technologies related to GDRP, covering an analysis of these

protocols, and a discussion of solutions to other less known networking issues.

3.2 Routing Protocol Implementations

There have been many routing protocols proposed for wireless sensor networks. These

routing protocols take differing approaches in order to exploit some property of the network to

optimize routing for a given application. As described in Chapter 2, there are numerous types of

categorizations of WSN routing protocols. This section will analyze three specific categories:

multi-path routing, single-path routing, and localization-based routing. Particular routing

protocols were selected to represent each of these categories. Flooding and Bordercast (ZRP)

represent multi-path routing protocols. MCFA represents a single-path non-localization routing

protocol, and GPSR, PAGER, and GeRaF represent localization-based routing protocols. The

rest of this section explores implementations of these types of routing protocols.

6

Flooding

Flooding is an elementary routing protocol. The crucial part of its operation is demonstrated

in pseudo-code in the figure below.

From this pseudo-code one can see that packets are exponentially created by being

continuously broadcast in this network. This leads to a network broadcast storm, which

exponentially decreases the lifespan of a sensor node and exponentially increases medium

contention due to multiple nodes attempting to transmit at the same time. Flooding also induces

many routing loops since it is perfectly valid in this setup for two adjacent nodes to just send the

same packet back-and-forth.

On the positive side, flooding will route packets to the destination if a path to the destination

exists. It does not rely on any forwarding path setup or maintenance, and it does not store any

routing information in the sensor nodes.

Flooding does in fact work if you introduce the idea of a “hop’s to live” or (HTL) field. This

field is initialized by the first node, and each node that receives the packet decreases the HTL

value before retransmitting. When the HTL field equals zero the packet is no longer

retransmitted. This approach can be seen in the figure below.

7

Figure 4: Simple flooding logic.

Forward (transmit):

if (pkt.dst != me)

broadcast (pkt);
else

sendToApplication (pkt);

The use of the HTL field reduces the exponentially increasing number of packets in the

network while still allowing the protocol to successfully route packets to the destination. This

routing protocol is classified as a multi-path stateless routing protocol. Packets will take several

paths through the network to communicate a packet from the source to the destination. Flooding

is a stateless protocol since it operates without the need to know any network information. This

stateless feature allows the protocol to accommodate all mobility and failure models.

Although the above modification allows the flood routing protocol to operate, it does not

prevent the case of two neighboring sensor nodes from transmitting a packet back and forth until

the HTL field is zero. The way to combat these short routing loops in the network is to have a

timed cache of recently received packets. This way identical packets that are received are

ignored. This is demonstrated in the pseudo-code below.

8

Figure 5: Flooding with HTL.

Forward (transmit):
if (pkt.dst != me && --pkt.HTL)

broadcast (pkt);
else if (pkt.dst == me)

sendToApplication (pkt);

Figure 6: Flooding with caching and HTL.

Forward (transmit):
if (pkt.dst != me && --pkt.HTL && notcached (pkt)) {

cache (pkt , time);

broadcast (pkt);
else if (pkt.dst == me)

sendToApplication (pkt);

Unfortunately, this improvement requires each sensor node to retain information about

packets they have received in the recent past. This modification greatly increases the amount of

processing and memory used in an active sensor node, and moves the classification of flood

routing to a semi-stateful multi-cast routing protocol.

Bordercast (Zone Routing Protocol)

Bordercast is an implementation of a Zone Routing Protocol (ZRP) [4][10]. This protocol

involves maintenance of the network topology information at each node. Rather than maintain

topology information on the entire network, Bordercast breaks the network into zones. A zone is

defined with an integer value, which corresponds to the maximum number of hops a sensor node

can be from any other sensor node to be considered within the same zone. This network

parameter is also called the zone radius. Each node knows the topology of all of the other nodes

in their zone. For example, if the zone radius was defined as three, then each node would

maintain a list of all nodes that are within three hops. The figure below portrays two zones with a

zone radius of two. B's zone includes nodes: S, G, F, E, A, D, C, and H. A's zone includes

nodes: G, B, F, C, H, D, I, E, J, and K.

9

Figure 7: Two Bordercast zones with radius two.

The routing operation of Bordercast is also depicted in the figure above. When node B

forwards a packet from G, it set nodes A and C as the next-hops. When node A receives the

packet, it will find the next hops that will reach edge nodes that neither nodes C nor B can reach.

This means it addresses its next-hops as D and E. This operation is illustrated in the figure

below.

Bordercast has several useful features. It does not allow the possibility of routing loops, the

sink is always reached, and only limited network state information is stored by the node.

One of the drawbacks of Bordercast is the overhead generated. Some of the overhead is

formed when generating next hop lists and the inclusion of these lists in the packets being

transmitted. The next hop list is a variable length field in packet header, which increases packet

size and increases the medium access contention in the network.

The Bordercast protocol has a couple of operational inefficiencies. This protocol will send a

copy of the packet to every node in the network and not just a subset of all the nodes in the

network. Visually, as nodes forward packets through the network the propagation forms an

expanding ring. Since no directional information is maintained, packets must propagate out of

each ring until the edge of the network is reached.

10

Figure 8: Pseudo-code of Bordercast operation.

Forward (transmit):
if (pkt.dst == me)

sendToApplication (pkt);
else if (contains (me , pkt.nextHops))

pkt.TTL--;
pkt.nextHops = getRoutesToUniqueEdgeNodes (pkt.src , pkt.nextHops);
pkt.src = me;

broadcast (pkt);

Other negatives of the Bordercast routing protocol include network topologies where a packet

could traverse the network forever. Another drawback is that the operation of this protocol relies

heavily on its configured parameters. If it is not parameterized correctly then occasionally fast

moving nodes may cause non-optimal routing. In the worst case, there exists the possibility of

dropped packets if the zone information is not updated quickly enough.

Minimum Cost Forwarding Algorithm (MCFA)

Another WSN routing protocol is the Minimum Cost Forwarding Algorithm (MCFA). This

protocol starts with a network setup algorithm which is initialized by the sink and expands to all

the nodes in the network. The setup accomplishes the initialization of a gradient descent tree to

the sink from any given node in the network. The creation of the gradient descent tree eliminates

the possibility of any routing loops in the network.

The gradient value can be derived from a number of variables. The simplest is the number of

hops to the sink, but it could also include available energy, distance, and/or received signal

strength (RSS). Each sensor node retains the gradient value for it to get to the sink and the cost of

the link to get to its parent sensor node in the gradient descent tree. This parent node is also

considered the next hop on the path from the node to the sink.

The gradient descent tree also solves the problem of getting stuck in local minima, which can

occur with localization-based routing protocols that use only greedy forwarding. The critical

section of the routing protocol is demonstrated in the pseudo-code in the figure below.

11

The MCFA protocol has several advantages and disadvantages. The major advantage is its

ability to establish a single path to the sink and this path is guaranteed to be loop free. The

disadvantages include the overhead of the entire network setup and its inability to accommodate

nodes failing in the network without having to do another entire network setup. Until such a

setup takes place all packets are dropped along the branch of the network tree where the failure

occurred. Therefore, this routing protocol does not perform well for networks that have node

mobility or node failure. As in Bordercast, the work around for this is to do persistent network

setup.

MCFA is classified as a stateful single-path routing protocol. It always takes the shortest

path, but it also must maintain network state information in each of the sensor nodes. The main

criticism of MCFA is the lack of robustness for networks with node failures. A single failure

could permanently partition much of the network, even if there were alternate routes that could

keep it connected.

Localization (GPS) Protocols

 Localization based routing protocols require the addition of new hardware. This hardware,

attached to each node, provides each node with its own point of reference. This hardware is often

in the form of a GPS locater. In general, the addition of new hardware to sensor nodes decreases

12

Figure 9: Minimum Cost Forwarding Algorithm (MFCA) operation.

Forward (transmit):
if (me != sink && (pkt.cost – pkt.linkcost == me.cost))

broadcast (pkt);
else if (me == sink)

sendToApplication (pkt);

their lifespan by increasing their operating cost (power consumption). Also important, when GPS

devices are used, each node does not need to be configured to have a unique identifier, because

their position can be used as a unique identifier.

Localization routing protocols usually assume that each node knows where the sink is

located. This is often not the case in real networks. The position of the sink must be broadcast

throughout the network at the start. Also, if the sink moves, then its new position needs to be

rebroadcast. Once the location of the base station is established, sensor nodes do greedy

forwarding of all packets. This means that each sensor node will only retransmit a packet if it is

closer (via Euclidean distance) to the sink than the node from which the packet came.

A problem with localization routing protocols arises when networks have holes in them. A

hole exists if a node has no other nodes closer to the sink within its transmission range, and there

still exists a path to the sink from this node. For example, there exists a path in a network, but it

requires backtracking away from the sink to reach a path that moves steadily towards the sink.

This type of network can have adverse effects on the efficiency of localization based routing

protocols [11].

Greedy Perimeter Stateless Routing, Geographic Random Forwarding algorithm, and Partial-

partition Avoiding Geographic Routing protocol (GPSR, GeRaF, and PAGER) [5][12][13] all are

localization single-path routing protocols which use GPS units as their localization hardware. In

solving the problem of holes in the network, these protocols define the set of nodes that route a

packet to a local minimum as a concave or shadow region.

GPSR was first proposed by a couple of students from Harvard, and it is extensively accepted

as one of the best routing protocols for WSNs (probably because it is very easy to implement in

its simplest form). GPSR introduces some very efficient ideas: it does not do any setup or

maintenance during the lifetime of the network, and it includes all state information in the packet

headers so that all future transmitting nodes have enough context to make a correct routing

13

decision. These two things alone make this protocol very efficient in terms of maintenance

overhead and packet delivery.

GPSR solves the problem of holes by taking a possibly non-optimal graph traversal of

concave regions. It accomplishes this by maintaining state information in the packet and

following the left-hand rule for following an edge around a hole: the node that is the closest to

the sink on the left of the transmitting node will retransmit the packet. There are two problems

with this. First, in the rare case the hole is shaped like a fractal, the left-hand rule could lead the

protocol to get stuck and data is then lost. Secondly, since state information for traversal is

included in the packet, the packet size grows linearly, and eventually if there are enough sensor

nodes in the concave region, the packet could exceed the maximum transmission unit (MTU)

size. Once this happens, the problem becomes more complex because the packet will need to be

fragmented into several packets.

The PAGER protocol solves this problem by having all sensor nodes not in concave regions

set up a gradient descent tree out of the region (the nodes entering the region have the highest

cost). The concave regions are identified as containing a node that is closer to the sink than all of

its neighbors. This node then initiates the setup of a gradient descent tree out of the concave

region. The sensor nodes at the border of this region act as gatekeepers and disallow any packets

to enter the concave region. Any packets that are generated in the concave region are routed out

of the region via the gradient descent tree. The setup internal to the concave region is very

similar to a MCFA setup. This state information needs to be retained on each of the sensor nodes

in the concave region. In this way, PAGER is no longer a stateless routing protocol, which

means if there is any node movement or any node failures, then the concave region will need to

be set up again.

GeRaF is slightly different than the other localization routing protocols, because it introduces

the idea of sleep/wake duty cycles for nodes to increase their lifespan. There is a decrease in

14

reliability when sensor nodes randomly sleep/wake, but there has been research that shows this is

less of a problem with an increased node degree [14]. GeRaF circumvents this problem by

having sensor nodes sleep and wake on an established duty cycle. In this fashion, all sensor

nodes know when their neighbors will be awake versus sleeping.

Although GeRaF is slightly different than GPSR and PAGER, it still relies on localization

based routing. The way it combats the problem of holes is to have the network partitioned into

good and bad regions. Sensor nodes located outside concave regions are classified as belonging

to the priority zone. Nodes not in this zone broadcast their packets until they reach the priority

zone where normal greedy forwarding is used. This technique is less effective than the one used

in PAGER, because the nodes in the concave region are not able to know when the packet has

reached the priority zone. Since sensor nodes in the concave region do not know when the packet

reaches the priority zone, they will continuously rebroadcast the packet in the concave region.

This will cause the sensor nodes in the concave region to exponentially lose power. It will also

results in multiple instances of the same packet be transmitted into the priority zone. This results

in the sink receiving the same packet multiple times.

There are other inherent problems which occur with GPS units which can limit their

usefulness in WSN routing protocols. This includes the fact that there are regions where a sensor

network would be useful but GPS is not available. Such physical locations could be around

mountains, inside buildings, or in caves. Another difficulty that arises in networks which use

GPS units is a possible lack of precision [15]. This lack of precision could cause the loss of

packets or the possible formation of routing loops by nodes with erroneous GPS location data.

15

3.3 Unique Identification

One of the limitations in previous network routing protocols was how sensor nodes obtain

unique identifiers for routing operation. This unique address often takes the form of a Medium

Access Control (MAC) address. Programming individual sensor nodes with unique addresses at

manufacturing time costs more, and sensor nodes are meant to be manufactured as cheaply as

possible. There has been very little research done on how to actually dynamically assign

identification numbers to a network where none exist.

Currently, the most sophisticated algorithm for assigning numbers is Dynamic Address

RouTing (DART) [16]. Once this complex algorithm is completed, the network is configured

into a hierarchical routing tree with sensor nodes knowing who their parents are and how to route

traffic to the sink.

The figure above contains an example of a hierarchical routing tree setup. The sink

(portrayed by node A in this diagram) chooses the lowest possible number, 000. As a single

neighbor joins A (node B in this case), it receives the number 100. This is because when a new

branch joins at an equal level, it receives half of the remaining address pool. Once a node joins

with B, it also receives half of the remaining pool and selects the lowest number possible. This is

the same operation performed by node D when it joins with node A. If the number of nodes in a

16

Figure 10: Dynamic Address RouTing (DART) setup.

single branch exceeds the number of available numbers the tree needs to be re-balanced. This re-

balancing is expensive in terms of network packets.

3.4 Antenna Types

The type of antennas used in a network make a significant difference in the way sensor nodes

can communicate. This is due to different antennas having different radiation patterns. The

radiation pattern, in addition to other important parameters, determines where a receiver must be

located to accurately receive and decode the signal.

Antenna models are typically broken into three different types. The dipole antenna is

typically considered an omni-directional antenna, at least in terms of the axis perpendicular to the

direction the antenna is pointing. There are also directional antennas which transmit signals with

a higher gain in a certain direction. In comparison to the omni-directional antennas, nodes in the

direction of the higher gain can be further away from the transmitter, while the nodes not in that

direction would need to be located closer to the transmitter.

Radiation patterns, gains, and interference can be very difficult to model in a simulation

environment, so quite often in research the selected antenna model is an isotropic radiator. This

antenna is a fictional type of hardware, because it occupies no space, has no mass, and has a

perfectly spherical radiation pattern.

3.5 Beamforming Sensor Arrays

GPS is not the only type of localization hardware which can be used in Wireless Sensor

Networks. Beamforming Sensor Arrays (BSA) [17] can determine the direction of an incoming

signal by looking at its strength and phase shift at several different points in the sensing array.

17

Some work has been done to greatly reduce the computations necessary to determine the

direction of an incoming signal. This reduction in computation reduces the power required to

perform the operation, and therefore makes this type of solution viable in WSNs.

By determining a signal's direction, sensor nodes are able to know relatively where they are

located with respect to their neighboring nodes. This is assuming that all nodes have a common

point of reference, which can be easily provided by a digital compass. A BSA also can share the

precision problems of GPS caused by environmental randomness and/or interference, requiring

fixing or adapting to these errors in the routing protocol.

3.6 Simulator Types

An ad-hoc wireless network simulator is the piece of software which allows researchers to

gather statistical information generated by their routing protocol as compared to other routing

protocols. It brings together various models, hardware interactions, parameters, and

environmental variables to test a WSN under various modes of operation. Typical measurements

from simulators include throughput, latency, bandwidth, packet count, and energy cost. Quite

frequently packet count can be directly mapped to an energy cost by some clever heuristics.

The biggest difference in types of simulators is how they simulate the passing of time for

many parallel operations on a single (or multi-core) processor. It is very inefficient to require a

full overlay network with a single processor for each sensor node in a network to simulate

network operation. In a simulator, time can be simulated as either a discrete time value or in a

vector approximation.

The discrete time model operates by having simulators allocate the same amount of time for

each sensor node. After all sensor nodes have finished a particular operation in this block of

time, the simulator increases the time value. A tunable parameter would be how large to make

18

each time slice. If too small, the simulator may take an unreasonable amount of time to run

because lots of sensor nodes might be idle while others run a single instruction. If the time value

is too large, the accuracy of the simulation decreases, because sensor nodes can perform multiple

operations seemingly instantly.

The vector time model operates on an event driven basis. The simulator knows how much

time each operation takes, and sensor nodes register the start time of each operation. The

simulator schedules when sensor nodes can perform their registered operations, and in this

manner dead times can be eliminated by skipping simulated time to the next scheduled event. In

this model, time is stretched and compressed and maintained across all nodes. This model can

significantly speed up the simulator and increase its accuracy.

19

Chapter 4

4.1 Simulator Implementation

General Direction Routing Protocol (GDRP) is implemented, tested, and compared to

Bordercast and GPSR using a custom, ad-hoc wireless network simulator written in Java. The

simulator is a discrete time simulator. It provides generic physical, data-link, network, and

application interfaces for each of the sensor nodes allowing researchers to quickly implement new

protocols and dynamically test different combinations of protocols. The simulator provides

typical research models for dispersion, communication, and failures. Also important, the

simulator includes a very helpful logging mechanism which allows researchers to easily log

information and then gather statistics at the end of the simulation.

The simulator is organized into several parts. The main simulator Object is named the World

Object and is responsible for setting up the simulation parameters, setting up the sensor nodes in

the network, directing sensor node operation, and controlling the physical medium. The World

Object has many Node Objects, each representing a sensor node in the network (or World). Each

Node Object has several interfaces. These interfaces line up with layers 1, 2, 3, and 7 of the OSI

Communications model. These are, respectively, the physical layer, medium access control layer,

routing layer, and application layer. Each interface allows for future protocol development by

abstracting the general operation of a particular layer. This allows researchers to easily integrate

and test new protocols while leveraging previous work. A diagram of the Object interaction in

the simulator is visualized in the figure below.

20

The simulator is a discrete time simulator. This means that each sensor node will run for

exactly one time-slice, then the time will increase to the next time-slice and all the sensor nodes

will run again. In this fashion, all of the sensor nodes are kept synchronized with “real” time.

This model is used because the design of a vector time simulator (discussed in section 3.6) is very

complex. A vector time simulator would also have the additional problem of parameterization:

knowing which actions to group into events that can be scheduled, and the run times for each type

of event. Data for these parameters would have been very difficult to collect accurately and are

not the focus of this research.

In this simulator, the time-slice represents the amount of time to process and transmit a single

byte. Not all sensor nodes fully utilize their time-slices, but this puts an upper limit on the

amount of time available to a sensor node to run, which keeps all sensor nodes synchronized in a

congruent time-line of actions. A different length of time could have been used, but some of the

common ones come with some disadvantages. For example, if the time-slice is the time to

21

Figure 11: Simulator Object interaction.

World

Application

Routing

Data-link (MAC)

Physical

 Node 1

Application

Routing

Data-link (MAC)

Physical

 Node n

Application

Routing

Data-link (MAC)

Physical

 Node 2

 . . .

transmit a single packet, then the probability of encountering hidden and exposed terminal

problems is very unlikely. If the time-slice was set to be the time to transmit x% of a packet, then

any measures of throughput will be identical for all protocols: a packet's header size would be

irrelevant. The amount of time to transmit a single byte seemed to be the longest chunk of time

per run cycle that allowed sufficiently good modeling of real world operation and was selected

for use.

Java provides the programmer with the capability to easily enforce the abstractions between

World, Nodes, and the Objects implementing the network layers. A strict hierarchy is

maintained, which disallows any information to be communicated between sensor nodes except

by wireless transmissions. If this enforcement was not present nodes could have capabilities not

possible in a real-world environment. This all is achieved through protected, public, and private

Object declarations and Object ownership.

Writing a simulation in the simulator is relatively easy. By design, the World Object contains

all simulation variables initialized for a default simulation. All a simulation driver needs to do is:

instantiate a new World Object, change any of the publicly available variables in the World

Object, call the member function createWorld with a String array containing the Class names for

each of the implementations of the network interfaces, and then call World's member function

run. When the simulation is finished the World Object combines the logs for each of the nodes in

the network into one big log and returns from the run function. The World's log Object is public

and available for statistics gathering by the driver.

4.2 World Design

The World Object is responsible for maintaining all simulation parameters, all simulation

variables, sensor node instantiation, sensor node dispersion, the mobility model, the failure

22

model, and control of the physical medium (the transmission model). As mentioned in the

previous section, World itself is instantiated, created, and then run. When it is instantiated, it

initializes all simulation parameters to default values.

When the World is created, it takes the simulation parameters and creates a network. This is

done by instantiating a number of Nodes and positioning them according to the dispersion model.

Before this function returns, the World checks to see if network is fully connected via the

transmission model. If it is not, then it tries the dispersion model again (if it is possible to obtain

a different result) or just returns a boolean false to the invoking Object. This means that if World

is not able to create a network that is fully connected, then the simulation fails to run.

Having a fully connected network is important for simulation. If a network is not fully

connected the parameters that define the simulation are effectively no longer correct. For

example, having 2 disjoint nodes in a network results in a simulation of (n-2) nodes. Another

example would be events witnessed by only disjoint nodes resulting in a reduced measurement of

protocol reliability.

There is a significant amount of randomness in the models implemented in the World Object.

This is why, when the World Object is instantiated a pseudo-random number generator (RNG)

seed is supplied. In this fashion, the operation of World is deterministic because the same path is

always taken through the code and calls to the RNG occur in the same sequence. A different seed

provided to the World effectively results in a different simulation bound by the same simulation

parameters. For example, a different seed would result in a different physical network topology.

When the World Object is run it calls the run function for each Node Object in the network,

and each Node can register a single byte of a packet to be broadcast if they are transmitting.

After each of the Nodes run, the bytes are broadcast to each Node via the transmission model.

Once each Node has run, an event generator is run. When this is finished, the time-slice is

increased and the whole process starts over. The World Object continues to perform these

23

actions in sequence until all events have been generated and all of the Nodes are idle (not

transmitting/receiving or processing).

Sensor data at each of the sensor nodes is collected by sensing the World Object. The World

Object contains an event generator which will randomly create events in the World environment.

An event is guaranteed to be able to be witnessed by at least one Node: it will always occur

within a Node's sensing distance. The reasoning supporting this design decision is analogous to

the argument of a tree falling in the woods with nobody around to witness it. These events only

last one time-slice, so the Application layer of a Node needs to sense the World every time the

Node runs. If it fails to do this, then it is possible it misses an event.

Events can only occur after all of the Nodes in the simulation have attempted a setup

procedure and the network becomes idle. The parameters determining the occurrence of events

limit how frequently events can happen and how many events will occur in a single simulation.

This shapes the traffic model of the network.

The World Object contains the master log. At the end of a simulation, it combines the logs

from all of the Node Objects for total simulation statistics. This log is very general and typically

contains counts of packets, collisions, number of witnesses for a particular event, and how many

events the Sink received. This information is then combined with simulation parameters, such as

the number of sensor nodes in the network, to measure protocol performance.

Parameters

There are many simulation parameters contained in the World Object. The large number of

parameters was the main motivation for allowing the parameters to be publicly mutable. The

parameters being publicly accessible also allows individuality in the creation of Simulation

drivers. These simulation parameters and their default values are the subject of the rest of this

section.

24

name value description

sink_on_outside TRUE This parameter sets a Node on the edge of the network as the Sink.

num_nodes 80 The number of Nodes in the network.

node_density 0.030 The minimum Node density of the network.

node_failure_rate 0.0 The rate at which nodes might cease to run.

trans_failure_rate 0.0 The rate at which network transmissions will be randomly corrupted.

num_events 50 The number of random events generated in the World.

event_chance 0.001 The random chance of an event being generated in the World.

debug FALSE A debug flag for printing out simulation status at runtime.

node_trans_dist 8 The length a broadcast transmission from a Node will travel.

node_view_dist 5 The distance a Node can view the World for an event.

mac_buffer_size 500 The maximum buffer size at the MAC layer.

mac_backoff_step 30 The initial back-off step taking in the back-off period of CSMA/CA.

cache_timeout 4000 The duration entries are valid in the routing layer cache of recently seen packets.

node_zone_radius 2 Bordercast's zone radius parameter.

num_slices 26 The number of slices of the 360° space in GDRP.

node_loc_accuracy 90% The accuracy of GPS location information for GPSR.

Table 1: Default simulation parameters.

The number of nodes in the network directly effects the number of routing decisions that need

to be made. In multi-path routing protocols, an increase in the number of nodes leads to a large

increase in the number of collisions in the network. The rate at which events are generated and

the average node degree also effect network congestion. Too high of network congestion leads to

congestion collapse and packets being lost due to a finite buffer size in the nodes.

The maximum buffer size serves as a hard limit on the congestion that can happen in a

network before congestion collapse occurs. If the buffer size were infinite it would be possible

for simulations to take a millennium to finish. Having the buffer size hard capped allows for

simulation time to be reasonable and to serve as a typical hardware limitation. This is also the

case of the routing level cache timeout value. It serves as a hardware limit on memory size and

an equalizer for performance and reliability when a network is forced to deal with congestion.

25

The location accuracy of GPS coordinates effects the reliability of GPSR's network

transmissions. This is similar to the number of slices used for GDRP. The greater the number of

slices for GDRP, the higher the likelihood is of accurate information.

Node degree is a very important network parameter, but creating a network from a known

node degree is a difficult problem. This results in measuring the node indirectly by changing the

node transmission distance and the network density.

Node Dispersion Model

The node dispersion model in the network is a random dispersion limited by the node density

and the transmission range of the nodes in the network. Since the network is on a two

dimensional plane and guaranteed to be connected, the network density only serves as a lower

bound for the actually network density. There is quite a bit of randomness in the dispersion

model, so it is a required that the World is seeded with a known value to ensure simulation

repeatability.

The model is an iterative algorithm. First an area is bounded by the node density and the

number of nodes in the network. This defines the area of a network in which nodes can reside.

Then all nodes are randomly generated inside this area. Once this is done, the iterative part of the

algorithm starts. A connected matrix is created to keep track of which nodes are within the

bounds presented by the transmission model. All nodes not in this connected matrix (all disjoint

nodes) are randomly placed in a new position in the network. This continues until all nodes are in

the connected matrix. At this point the fully connected network is created with a minimum

density of the value specified.

Transmission Model

The transmission model used in all simulations is one using isotropic radiating antennas.

These are antennas that: have no mass, occupy no space, and transmit with the same gain in all

26

directions. This radiation model is illustrated by a sphere with the antenna at the center and a

transmission radius limiting the distance of decipherable transmissions.

Since the network is on a single plane, all transmissions are modeled by circles. All

communication can be modeled by bidirectional links, because each node has an equal

transmission radius.

Each packet transmitted in the network is transmitted at a rate of one byte per time slice.

There allows plenty of opportunity to measure how well packet collisions and congestion are

handled by MAC and routing implementations, because transmissions are streams of bytes over

time and not discrete events.

Mobility/Failure Model

The mobility model is no mobility, and the failure model is no failures. There is no model to

mimic transmission errors resulting from random world noise. The implementation of a failure

model is a subset of a mobility model. Failure can be modeled by the removal of a node from the

network whereas a mobility model requires that a node be effectively removed from the network

and inserted at a new location. A mobility model basically requires a routing protocol to setup

state information again. Therefore, a routing protocol's ability to accommodate mobility can be

achieved by performing well on setup latency and setup cost. Both of these are able to be

measured without directly implementing mobility or failure models.

4.3 Node Design

Each Node Object models an entire sensor node. It contains Objects for each layer of the

network stack that is implemented for a Node. These Objects are dynamically loaded which

allows for a researcher to implement a particular layer's interface without changing any other

code. The Node Object itself represents the backplane of the sensor node, and provides

27

interconnection methods between all of the networking components. The Node Object forces

separation between all of its member Objects, and requires all communication to pass through the

Node Object.

The Node itself is run via its run method from the World Object during its turn in a time-

slice. At this point it handles the operation between each of the network Objects in the Node. It

only has one major constraint in that it can only transmit a single byte during its turn. It can do as

many calculations it needs, but if it tries to transmit more than once, only the final transmission

will actually be sent. This is because a Node is allowed to only transmit a single byte during a

single time-slice.

Dynamic Loading

The Node Object uses the Java Reflection Libraries to create the Objects for each of the

network layer interfaces. This allows researchers to implement a new network layer Object and

then just specify its name to have it Dynamically loaded at runtime. A sample set of code to

perform Object creation for a particular interface is in the figure below.

In the above example, Routing_protocol is an Interface. A researcher will create a Class that

implements this interface, and then pass in the name of this new Class as arg[0]. The constructor

for all network interfaces require that the Node Object be passed as the only parameter. This is
28

Figure 12: Example using Reflection to create an Object.

Object[] o = new Object[] { this };
Class[] params = new Class[] { Node.class };
Routing_protocol r;

try {
Class cls = Class.forName(arg[0]);
Constructor c = cls.getConstructor(params);
r = (Routing_protocol) c.newInstance(o);

} catch (Exception e);

why the Object[] and the Class[] contain just the invoking Node Class and its Class type

respectively. The Reflectance library will get the Class of the network layer implementation (in

this case a routing layer) by the name specified in arg[0]. From here, the Reflectance library will

get the Constructor that matches the parameter set specified by the variable params (a single

variable of type Node). After this is done, the Reflectance library will then create a new Object

using the constructor c and the parameters params. The returned Object is then cast as the type of

interface it represents, a Routing_protocol.

Each packet transmitted in the network contains the headers of each of the network layers

encapsulating the application data. Each network header has an interface of basic methods that

need to be implemented for basic operation for a new network layer. The networking layers are

responsible for knowing their type of header and casting the Interface descriptor accordingly.

This serves as an easy and generic way for any layer to implement custom headers.

Dynamic loading is very useful for leveraging previous work and implementing slight

changes without needing to change non-relevant code and recompile everything. It allows Nodes

to be of a single type and have any number of interior workings: otherwise, a researcher would

need to implement a new type of Node for each set of interior protocols.

Layer Interaction

During a time-slice a Node is run exactly once. When it is run, the Node makes sure that the

correct OSI layers are run in the correct order. This means the Node needs to model an interrupt

driven interaction between all of the OSI layers to handle three different types of data flows

which can occur at any time. These flows are: received data from the medium, received data

from the application layer, and sent data to the medium. The Node uses a state machine type

structure to manage the run order of the each of the layers in the network stack. Transitions

between states occur based on the state of each of the layers. There are some general limitations

which help to design the run order: the physical layer runs at most once (only sending or

29

receiving one byte per time-slice), the application layer runs at least once (to sense information

from the World), the MAC layer runs at least once (it manages the buffers of the Node and

handles the back-off sequence due to congestion), and the Routing layer may not need to run at

all. This is all diagrammed on the next page in a state diagram, including a legend for each type

of flow.

As mentioned previously, each of the layers communicates through the Node Object. For

example, for the MAC layer to communicate the newly received packet with the routing layer, it

needs to call a wrapper method in the Node Object. This prevents out of band communication

between the components in a Node, allowing for easy monitoring and logging. This model

simulates an asynchronous component interconnect bus controller, managing the flow of data

between components, which might not be the optimal model for a communications device where

all operations are usually contained in a single micro-controller.

30

31

Figure 13: Network layer transition diagram.

Physical

MAC

App

Routing

Final State

Transitional
State

Sending/Receiving a
packet

Initialization, start of setup
sequence

Just received a packet, including packet from
App layer

Function entry point

4.4 Default Physical Layer

The Default Physical layer is the implementation of the OSI layer one in each of the sensor

nodes. It handles the direct transmitting and receiving of bytes in the network, combining the

bytes into packets, and working with the MAC layer. The current methodology requires that the

Physical layer sends or receives only a single byte at a time.

The Default Physical layer has only one buffer. It is the size of the maximum packet length

in the network, and it will contain a single packet when transmitting or receiving. If the MAC

layer does not immediately read the packet from the physical layer after it is done being received,

then a later transmission will wipe away the data. Conversely, if the MAC layer does not wait for

an entire packet to be sent before sending another, the second packet will overwrite the first, and

the first packet is lost.

The Default Physical layer's interaction with the World is via wrapper functions in the Node

Object, recvPacket and sendPacket. The receive function provides the physical layer with the

entire packet and the index of the currently transmitted bit. The send function requires the same

pieces of information. The entire packet is passed in this transaction for the physical layer to

easily determine if a problem occurred. Typically this would be done by running a checksum

over a received packet, but in this simulator the packet is considered to be complete when all

bytes have been received.

There are several failure recovery mechanisms. If sufficient progress is not made on

receiving a packet due to a collision happening at the sending node, the packet is dropped. If a

node starts to receive a new packet while receiving another packet, a collision is detected. The

World Object will also detect collisions due to the hidden terminal problems in the network and

notify the corresponding Node Objects: this is similar to a notification mechanism used in

32

CSMA/CA when a collision is detected. The physical layer will clear all state information when

a collision is detected.

4.5 CSMA/CA MAC Layer

Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) is the MAC layer

implemented in the simulator. It attempts to control access to a medium that can have multiple

accesses (multiple nodes trying to transmit simultaneously). If it has a packet to transmit, it

senses the medium to see if any other transmissions are taking place before forwarding the packet

to the physical layer. If it detects that another transmission is taking place, then it will attempt to

transmit after a period of time. Typically, this period of time is initially the minimum size of a

packet, and then as the number of failed attempts increases the amount of time increases

exponentially. This can allow some nodes to monopolize the medium, which in turn prevents

other nodes from ever being able to transmit anything. This MAC protocol is able to detect if a

collision happens in the network. When a collision is detected, the same back-off mechanism is

used as when a packet is unable to be transmitted. In the back-off equation below, the delaystep

variable is a network parameter, and is usually the time to transmit a single packet. The

failurenumber is the number of failures that have occurred since the last successfully sent or received

transmission.

delay=delay step∗rand 2 failurenumber1rand delay step

The MAC layer is often responsible for buffering packets when there is congestion in the

network, and this simulator's implementation of CSMA/CA performs the same function. The

buffer size is limited as a simulation parameter, because it often controls the reliability of a

network: for example, if the buffer size was infinite, the network could be completely reliable,

but would take a millennium to complete any useful work. When the buffer is full, any new

33

packets that wish to be transmitted are dropped. A node is still able to receive a single new

packet at a time because the physical layer maintains a single packet buffer: if this was not the

case, then once the CSMA/CA implementation's buffer is filled all network operation would

cease.

There are relatively few operations to be handled in the CSMA/CA implementation in the

simulator. The CSMA/CA implementation maintains a queue (the buffer), where new packets are

added to the end of the queue (from the routing layer), and the front packets in the queue are

dequeued for transmission when the medium is idle. The CSMA/CA implementation senses the

medium before each transmission to make sure no other transmissions are currently taking place.

This can lead to exposed terminal problems, but solving this network issue for CSMA/CA is not

in the scope of this work. The CSMA/CA implementation also maintains the back-off delay.

When the back-off delay is in effect, the CSMA/CA implementation will perform no actions

other than decrementing the count of the remaining delay.

The CSMA/CA implementation keeps track of the current packet being sent by the physical

layer and is notified when a collision occurs in the network. When this happens the packet is put

back at the front of the queue, and the back-off procedure takes place.

The following figure illustrates the CSMA/CA implementation's header. It only utilizes two

fields, a flags field and a packet size field. In normal operation, the header would often contain

other useful information like version number and header checksum.

34

Figure 14: CSMA/CA packet header.

size flags <rest of packet>
0 7 8 15

4.6 Bordercast

The main operation of Bordercast was defined in the Related Work section 2.2. It is the first

of the two comparison routing algorithms used for GDRP validation and analysis. This section

serves as an explanation of how it is implemented in the simulator.

The setup part of the protocol is initiated during the first time-slice. Each node will broadcast

out a setup request packet. This involves setting: the source of the packet as the node index, the

Time-to-Live (TTL) value to equal the zone radius, and the destination as the broadcast address.

Each node that receives a request packet with a valid TTL value (greater than zero) will

decrement the TTL and retransmit it in the network. In the case where the TTL is equal to the

zone radius, then the node labels the sender as a neighbor. When the TTL of a setup request

packet equals one, then the packet should be at the edge of the zone for the setup node. The node

at the edge of the zone will generate a setup reply message. This reply message is set to have:

the source of the node where the TTL expired, the TTL value equal to the zone radius, the

destination as the source of the request packet, and, lastly, the via value as the node index. At

each hop along the way back to the source of the initial setup packet, nodes will decrement the

TTL and set their own identities as the via value of the packet. When the packet finally reaches

the source of the initial setup packet, the setup node has now identified a node that is at the edge

of its network. The header information is in the figure below, and the setup process is highlighted

on the next page.

35

Figure 15: Bordercast (BC) packet header.

flags <rest of packet>
0 15

ttlsrcdst
7 8 2316 24 31 32

n nextHops
31 + n * 8

36

Figure 16: Bordercast example setup.

a

e

d

f
g

c

b
h

Setup paths: Action taken: Reply paths: Action taken:

a→b→a drop
a→b→c drop
a→b→f drop
a→b→h generate reply h→b→a add h via b
a→c→a drop
a→c→b drop
a→c→d generate reply d→c→a add d via c

d→e→a add d via e
a→c→e drop
a→e→a drop
a→e→b drop
a→e→d generate reply d→c→a ignore

d→e→a ignore
a→e→f drop
a→e→g generate reply g→e→a add g via e

g→f→a add g via f
a→f→a drop
a→f→b drop
a→f→e drop
a→f→g generate reply g→e→a ignore

g→f→a ignore

Edge nodes by their via: h ← b | d ← c | d,g ← e | g ← e

There are a couple of edge cases that can cause problems if allowed to occur. The most

important case of neighbor nodes thinking they are edge nodes is solved by setting the source of

the packet as a neighbor in each of the recipient's routing tables if the packet has a TTL equal to

the zone radius. This will greatly limit the number of setup replies generated in each zone. If the

via value is set to the same value as the source address, then the reply packet is ignored, because

the zone edge node is really a neighboring node.

All of this information is contained in a large routing table at each node. Each neighboring

node, or via, entry in the table contains a list of edge nodes that are accessible through it. When a

packet comes in with the current node in the next-hops list, the node will determine the next-hops

the packet should traverse. If the packet destination is in the via list, then it is the obvious next-

hop. Otherwise, the node finds the set of vias disjoint from the union of the next-hops specified

in the current packet and the source of the packet. From this set, the node finds the edge nodes

that are not accessible by these neighbors, or vias. If all of the edge nodes are accessible by this

set, then the packet is dropped. If there are edge nodes not accessible from the set, then a list of

the fewest vias to access these nodes is generated (using a greedy method since the problem is NP

complete). This list is included in the packet that will be forwarded as the next-hops field. The

packet will also have its TTL and source fields update before transmission.

Between the setup of the network and the routing operation, this is a very bursty routing

protocol. As such, it creates a large amount of congestion in the network which causes a decrease

in performance and reliability, which in turn leads to a decrease in network performance in

general.

To help with some of the inefficiencies, the routing protocol has a timed cache to filter

duplicate packets that were recently seen in the network. The routing layer saves a hash of each

packet for a certain amount of time, and when an identical packet is received the packet is

ignored. This helps to eliminate some of the network congestion, therefore increasing reliability.

37

This technique is implemented, for consistency, in each of the other routing protocols in the

simulator.

4.7 GPSR

Greedy Perimeter Stateless Routing (GPSR) is a routing protocol that utilizes GPS

localization information to make routing decisions (section 3.2). It serves as the second of the

two comparison protocols to GDRP. It operates on the simple premise that nodes which are

closer to the destination should retransmit a packet, and the ones further away should not. This is

called greedy routing. An important edge case occurs when the current node responsible for

forwarding a packet does not have any neighbors closer to the destination. When this happens,

the node is a local minimum in the network. At this point, GPSR falls back to using perimeter

routing (using the left hand rule) to move around the network. The location of a node serves as a

unique identifier for addressing.

GPSR goes through a small setup phase. This setup phase disseminates the location of the

sink node to all of the rest of the nodes. It also serves to populate the neighbor list of each node.

Each node maintains a neighbor list, and when a packet needs to be routed, the closest (or the

left-most during the the fall-back perimeter routing) neighbor is selected as the next-hop of the

packet. The packet structure is defined in the figure below.

38

Figure 17: GPSR routing header.

0 127 128

nextHop src dst flags ttl <rest of packet>
255 256 383 384383 391 392 399 400

The above figure shows pseudo-code of the main portion of routing decisions made in a

sensor node using GPSR. When a new packet comes in with the current node set as the next-hop,

then the current node will find the closest neighbor via Euclidean distance. In the case where the

node is a local minimum, the next-hop is the left-most node from the vector from the source to

the destination. This decision is made by selecting the node with the smallest angular value

according to the equation below. This is illustrated in the next figure. The entire operation is

illustrated in the following figure.

=−arctan
dest x−neighbor x

dest y−neighbor y

39

Figure 18: Pseudo-code of GPSR routing.

Forward (transmit):
if (me == sink)

sendToApplication (pkt);
else if (pkt.nextHop == me)

pkt.nextHop = bestNodeToDest (pkt.dst);
pkt.TTL--;

broadcast (pkt);

Figure 19: Perimeter routing left-hand rule.

α

α

dest

me

neighbor

GPSR is implemented with an assumed 90% accuracy value in all cases not explicitly stated.

A 95% confidence level is used for localization accuracy, and this is defined to be 10% of a

node's transmission radius. Assuming a Gaussian distribution, 100% of sensor nodes are within

the measure d as defined in the equation below. This bounding region is then multiplied by the

error rate.

d=
0.1∗transradius

0.95

4.8 Simple Application Layer

The application layer implemented in the simulator is very simple. Each time nodes are run

they will sense the environment around themselves, via the wrapper methods provided in the

Node Object. If an event is detected, then a new packet is created with the event data and sent to

the routing layer.

The sink node's application layer has one additional responsibility. When it receives a

packet, it will log the data it receives. This is the typical operation of the sink node, because it is

the target of all data packets in the network. From here, in a real implementation, the data could

then be relayed to a monitor over different channels or saved for retrieval at a later date.

4.9 Logger

The Logger Object provides a naturally intuitive logging mechanism. The Logger Object

maintains a list of attributes, and each attribute contains two Strings identifying the attribute

being logged and a count variable to give it a value. The first String, referred from here on as the

top level String, serves as a categorical identification. The second level String serves as a

specific identification. For example, when logging packet counts, the category could be received

40

packets, the specific identification could be setup packets, and the value keeps track of how many

have occurred. Even though the count variable is not a floating point number, the Logger Object

can save attribute specific information as a String in the second level name. By this method,

difficult to log attributes such as node density, network reliability, and duplicated packets seen at

the Sink can be easily measured after the simulation is complete.

The Logger Object provides some sophisticated data manipulation methods which will:

merge two Logger Objects together, sort the attributes in a Logger Object, find all of the names of

specific attributes in a category, and sum the attributes matching a categorical description. These

methods allow for easy Logger Object manipulation and information extraction.

41

Chapter 5

5.1 GDRP

General Direction Routing Protocol (GDRP) is a multi-path routing algorithm which requires

the use of some type of localization technology, for example Beamforming Sensor Arrays or

GPS. The localization technology provides direction information to the routing layer, and is used

to route packets in a certain direction. This direction is typically towards the sink, where towards

is defined as in the general direction of the target location. This allows for multiple transmission

paths to be traversed through the network which enhances robustness of the network. The

multiple paths come at a cost and result in a reduction in power efficiency.

The general direction transmission technique allows GDRP to compensate for precision

errors in the localization hardware. These precisions errors could be caused by nodes not being

physically located where they think they are located or the direction of incoming transmissions

not being completely accurate. The general direction information also serves as a bounding

technique for the multi-cast transmissions of nodes using GDRP.

Another advantage of GDRP is that it does not need unique identifiers at any of the sensor

nodes in the WSN. This can significantly reduce manufacturing complexity. There only needs to

be a distinction between normal nodes and the sink, because the sink is responsible for collecting

all data (not routing) and initializing the setup sequence.

42

5.2 Direction Abstraction

GDRP works by finding the vector (direction) to the best next-hop to route traffic to the sink.

This can be done by using the locations of two sensor nodes in the case of GPS. If Beamforming

Sensor Arrays are used, then this abstraction is taken directly from the data provided by the

hardware. The direction abstraction requires a point of reference from which to start labeling the

directions. This is assumed north in GPS solutions, but requires the use of a digital compass

when BSAs are used.

This direction abstraction uses a variable number of slices to equally divide up the entire 360º

space around the sensor node. The greater the number of slices, the higher the sensor node

assumes the accuracy of localization information. The figure below illustrates a 360º space

divided up into eight different directions. Each direction has a number associated with it, and the

angle between all directions is 45º.

43

Figure 20: Direction abstraction (8 slices).

1

0

2

34

5

6

7

N

The GDRP implementation used for testing assumes the use of Beamforming Sensor Arrays,

but GPS could be easily integrated by passing location information around to create direction

vectors. The in general direction operation is defined as being any direction index adjacent to the

direction index provided. In the figure above, directions 2 and 4 would be considered in general

direction of direction 3.

This abstraction can also be used as a platform for new localization technologies. New

technologies would only need to provide some sort of relational information between adjacent

nodes to allow for direction information to be extrapolated.

There is no good conversion technique to compare the error percent used by GPS points to

the error percent provided by slice abstraction. For the slice abstraction to be 90% accurate, there

would need to be 108 slices in the 360º space. GDRP uses 26 slices in regular simulation.

5.3 Setup Phase

GDRP uses a setup phase similar to the one used by MCFA. Initially, all of the nodes besides

the sink start unconnected with a path cost of infinity in an unknown direction. The sink starts

the setup with a beacon packet that allows all of its neighbors to determine the direction of the

sink and correspondingly how many hops away it is (one in this case). Once each node

neighboring the sink receives a packet with a better hop count, the node updates it information

and sends out it its own setup packet. This cascades until all nodes know the direction and path

cost of the sink.

The setup procedure is simple and fairly quick. Similar to a distance vector routing protocol,

if a node in the network receives a beacon with a better path hop count back to the sink, then it

modifies its state to reflect the new path cost and direction of the neighboring node. If a node

never receives a beacon message, then it is disjoint from the network and therefore never tries to

44

transmit. This setup operates with a cost of O(n) in the best case and O(n2) in the worst case. The

worst case requires an exceedingly rare network topology.

This setup procedure has both advantages and disadvantages. As a disadvantage, it needs to

be run on a regular basis in mobile networks to accommodate topology changes. As both

Bordercast and GPSR also need to do a setup, this is not a major disadvantage.

5.4 Operation

Similar to GDRP's setup procedure, GDRP’s routing technique is very simple. Any node

which receives a valid packet compares the direction from which the packet was received to the

direction it was meant to be transmitted. As shown in the code sample below, if the packet was

received in the general direction of the intended transmission direction, then it will replace the

direction field of the packet with its own known direction to the sink, decrement the time-to-live

(TTL), and broadcast the packet.

Since all nodes in the general direction retransmit the packet, there are in fact multiple paths

possible through the network. The typical packet propagation follows the shape of a lens which

bounds the number of packets traveling through the network. This is in contrast to Bordercast’s

packet propagation which is in the form of an expanding ring. This allows for an equally robust

45

Figure 21: Pseudo-code of GDRP routing operation.

Forward (transmit):
if (me != sink && --pkt.ttl && inGeneralDir (pkt.dir , oppDir (dirOfLastPkt))

pkt.dir = myDirToSink;

broadcast (pkt);
else if (me == sink)

sendToApplication (pkt);

network while reducing power consumption. This also combats the main arguments against

MCFA's structured networking (the lack of robustness to failures and mobility). The figure

below shows the headers for GDRP. It has significantly fewer fields and is therefore smaller than

the routing headers for Bordercast and GPSR.

GDRP also requires less network state information retention for normal operation. This

information is just a hop count for path evaluation and a direction towards next-hop on the way to

the sink. GPSR maintains a list of all of its neighbors, and Bordercast maintains a table of its

zone.

The figure on the next page demonstrates packet propagation over several nodes in a generic

section of the network. The lines between the nodes show the known direction to the sink, in this

case the general direction of the sink (not shown) is in the upper left corner. The circles represent

the broadcast area and the shaded regions represent valid general direction regions per the

direction set in the packet. Only the transmissions for nodes a, b, and c are shown to simplify the

diagram. Extrapolating from these general direction regions, one can see how packets would

follow a multi-path route to the sink in the shape of a lens (for a uniformly distributed network).

46

Figure 22: GDRP routing header fields.

data(1) <rest of packet>
0 15

ttlflags
7 8 2316 31

47

Figure 23: GDRP routing procedure.

a

bc
d

e

f i

j

k
l

m

no

p

sink

h

g

Broadcast 1: Broadcast 2: Broadcast 3:
src = a src = c src = d
recipients = b, c, d, p recipients = a, d, g, h, k recipients = a, b, c, e, f, i
in-gen-dir = c, d in-gen-dir = f, I in-gen-dir = g, h

Chapter 6

6.1 Testbed

In this section the performance of GDRP is compared to the performance of GPSR and

Bordercast. All three protocols implement timed caching and a TTL value. Each sensor node in

the simulated network uses the same exact set of models and parameters for each comparison test.

The networks for each test are created with the same parameters and random seed, so they are

identical networks. Each test changes exactly one network parameter to test important

characteristics of the routing protocols. Unless specified otherwise, the default simulation

parameters outlined in Table 1 are used. Each data point is an average of twenty-five simulations

on different random networks with the same simulation parameters. This averaging of simulation

data, by virtue of the central limit theorem, increases the accuracy of results.

The two standard independent variables used in simulations are the average node degree and

the number of nodes in the network. These significantly change a routing protocol's performance

in terms of latency, congestion, reliability, duplicity, and energy cost.

Energy cost is measured in the following graphs for both routing operations and setup

operations. It is measured in terms of the number of transmitted bytes. This measurement is the

combination of both successfully transmitted packets and packets that collided in the network.

This measurement also accounts for protocol optimizations to reduce network header size.

 Reliability is the percentage of the number of events the sink should have known about

compared to the number it actually did know about. Duplicity is the number of extra packets the

sink saw per event that it witnessed. This can be above 100% when multiple paths are taken

through the network and serves as a method of measuring redundancy in the network.

48

6.2 Number of Nodes

This section compares the effects of increasing the number of nodes in a network to routing

protocol performance metrics. These metrics are: the number of transmitted bytes for routing

operations, the number of transmitted bytes for setup operations, the setup latency, collisions,

duplicity, and reliability respectively. The number of nodes in the networks tested range from

10 to 300.

The graph below is on the logarithmic scale to show GDRP and Bordercast on the same

graph. GPSR is shown separately on the next page, because it would overlap with GDRP. The

graph below shows a massive energy savings by GDRP when compared to Bordercast. As the

number of nodes increases in the network, Bordercast requires an exponentially increasing

amount of energy to perform routing functions.

49

Figure 24: Transmitted Bytes for Routing vs. Number of Nodes for Bordercast and GDRP.

0 50 100 150 200 250 300 350

100

1000

10000

100000

1000000

10000000

100000000

1000000000

10000000000

Transmitted Bytes for Routing

GDRP
BC

Number of Nodes

T
ra

n
sm

it
te

d
 B

yt
e

s

The graph below illustrates the differences in required energy cost for routing operation

between GDRP and GPSR on a more reasonable scale. GDRP and GPSR appear to operate with

a similar cost, with GDRP operating slightly better. Both curves appear to be exponentially

increasing when the number of nodes is above 260.

The next two graphs show the energy costs to perform the initial setup procedure and the

setup latency. These are the important metrics if the routing protocols are implemented in a

mobile environment. In the first graph, GDRP operates better than GPSR which operates

significantly better than Bordercast. All three trends are linear.

In the second graph, GDRP operates significantly better than GPSR which operates

exponentially better than Bordercast. Again, all three trends are linear.

50

Figure 25: Transmitted Bytes for Routing vs. Number of Nodes for GDRP and GPSR.

0 50 100 150 200 250 300 350

0

50000

100000

150000

200000

250000

Transmitted Bytes for Routing

GDRP
GPSR

Number of Nodes

T
ra

n
sm

it
te

d
 B

yt
e

s

51

Figure 26: Transmitted Bytes for Setup vs. Number of Nodes.

0 50 100 150 200 250 300 350

1

10

100

1000

10000

100000

1000000

10000000

Transmitted Bytes for Setup

GDRP
GPSR
BC

Number of Nodes

T
ra

n
sm

it
te

d
 B

yt
e

s

Figure 27: Setup Latency vs. Number of Nodes.

0 50 100 150 200 250 300 350

1

10

100

1000

10000

100000

1000000

10000000

Setup Latency

GDRP
GPSR
BC

Number of Nodes

S
e

tu
p

 L
a

te
n

c
y

(t
im

e
)

In the previous graphs, Bordercast was shown to be much worse than GDRP and GPSR. The

graph below illustrates there are many more packet collisions in Bordercast than in GDRP and

GPSR and this metric causes the evaluation of energy cost for routing and setup operations to go

up. The network congestion caused by Bordercast could be due to the fact that both its setup and

routing operations are very bursty or can be attributed to its routing operation being broadcast in

nature, causing every packet to be seen by every node in the network. When more packets see

each transmission there is a higher chance of collisions in the network.

The last two graphs for this section compare Duplicity and Reliability. In the first graph,

Bordercast is shown to operate at an extremely high duplicity. This means that for each event in

the network, the sink receives many duplicate packets. GDRP and GPSR are both consistently

less than 100%. The second graph shows that while Bordercast has operated at a higher cost in

all previous comparisons, it operates at a constant, good reliability for networks containing more

than 50 nodes. GDRP operates more reliably than GPSR for any number of nodes.

52

Figure 28: Collisions vs. Number of Nodes.

0 50 100 150 200 250 300 350

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

Collisions

GDRP
GPSR
BC

Number of Nodes

N
u

m
b

e
r

o
f

C
o

ll
is

io
n

s

53

Figure 29: Duplicity vs. Number of Nodes.

0 50 100 150 200 250 300 350

0.1

1

10

100

1000

10000

Duplicity

GDRP
GPSR
BC

Number of Nodes

%
 d

u
p

li
c

a
te

 e
ve

n
t

d
a

ta

Figure 30: Reliability vs. Number of Nodes.

0 50 100 150 200 250 300 350

0

0.2

0.4

0.6

0.8

1

1.2

Reliability

GDRP
GPSR
BC

Number of Nodes

%
 d

at
a

re
ce

iv
ed

6.3 Node Degree

The node degree is the number of neighbors of the average sensor node. Increasing this value

usually increases the congestion in the network, and congestion increases routing cost, increases

setup time, and decreases reliability. The node degree is typically controlled by modifying the

network density and the transmission radius of sensor nodes. In this section the transmission

radius of nodes is increased to change node degree. In research, it is typical to see the node

degree increase by a very large amount, but in practice it does not make much sense for nodes to

have an average node degree above 10. The node degrees tested in this section range from 5 to

about 60.

The figure below shows a comparison of the three routing protocols for the energy cost to

perform routing operations for an increasing node degree. This graph has an abnormal trend for

Bordercast with a large decrease in routing energy cost for a node degree above 35. Most nodes

are only one or two hops from the sink when the network has a node degree of about 35, and

packets are not fully dispersed through the network when this is the case. GDRP operates at an

increased operating cost as the node degree increases until it operates with the highest routing

cost for networks with a very large node degree. GPSR operates with a decreasing routing cost as

the node degree increases.

54

The anomaly seen in the graph above can also be explained by looking at the duplicity graph

below. When the node degree is above 35, the duplicity of Bordercast drops below 100%. Also

seen in this graph, GDRP has an increased duplicity for networks of large node degree. GPSR

never has duplicity, measured by its consistent 100% duplicity.

55

Figure 31: Transmitted Bytes for Routing vs. Node Degree.

0 10 20 30 40 50 60 70

100

1000

10000

100000

1000000

10000000

100000000

1000000000

Transmitted Bytes for Routing

GDRP
GPSR
BC

Node Degree

T
ra

n
s

m
it

te
d

 B
y

te
s

Figure 32: Duplicity vs. Node Degree.

0 10 20 30 40 50 60 70

0.1

1

10

100

1000

10000

100000

Duplicity

GDRP
GPSR
BC

Node Degree

%
 d

up
lic

at
e

ev
en

t
da

ta

The last figure in this section, below, is another very interesting graph. For a node degree

below 10, the standard reliability from the previous section is exhibited. As the node degree

increases all of the routing protocols have a decreased reliability. This is attributed to an increase

in network congestion. Once the node degree reaches 35, the reliability of each of the routing

protocols increases, particularly with Bordercast. GPSR operates at an almost consistent

reliability for a changing node degree, which is greatly desired. In general, for networks with a

very high node degree, GDRP does not perform as well as the other two routing protocols.

6.5 Number of Slices in GDRP

The number of slices in GDRP is how many divisions the 360° space is split into. It is also

the way to measure the precision of Beamforming Sensor Array data. As the number of slices

increases, GDRP operates with more precise localization data, and can make better routing

decisions. When this happens, packets tend to take fewer paths through the network (reducing

robustness), but the protocol starts to operate with higher efficiency.
56

Figure 33: Reliability vs. Node Degree.

0 10 20 30 40 50 60 70

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Reliability

GDRP
GPSR
BC

Node Degree

%
 d

a
ta

 r
e

c
e

iv
e

d

The figure below shows how the reliability of GDRP continually improves for an increasing

number of slices. Eventually the amount of increased reliability gained by increasing the number

of slices is very small. The reliability increase due to an increase in the number of slices is

probably due to a decrease in network congestion from less paths being taken through the

network. In default simulation the number of slices is 26, because it approximates the minimum

number of slices to gain the maximum amount of reliability.

The figure below shows that the energy requirement to perform routing in GDRP is quite

asymptotic. When the number of slices is very small, the protocol operates similar to flooding.

The value of 26 seems the best number to minimize the accuracy required and minimize the

energy cost to perform routing in GDRP.

57

Figure 34: Reliability vs. Number of Slices.

0 5 10 15 20 25 30 35 40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Reliability

GDRP

Number of Slices

%
 d

at
a

de
liv

er
ed

The last figure in this section shows how the duplicity of GDRP decreases with an increase in

accuracy, or slice count. This is to be expected, and if an increase in duplicity is desired, then

another implementation could increase the number of adjacent slices which are used in the

inGeneralDirection operation.

58

Figure 36: Duplicity vs. Number of Slices.

0 5 10 15 20 25 30 35 40

0

0.2

0.4

0.6

0.8

1

1.2

Duplicity

GDRP

Number of Slices

%
 S

in
k

E
ve

n
t

D
a

ta
 R

e
c

e
iv

e
d

Figure 35: Transmitted Bytes for Routing vs. Number of Slices.

0 5 10 15 20 25 30 35 40

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

Transmitted Bytes for Routing

GDRP

Number of Slices

T
ra

n
sm

it
te

d
 B

yt
e

s

6.4 Accuracy of GPS

The main contribution provided by GDRP is its ability to provide accurate routing when

faced with inaccurate localization information. This section analyzes how GPSR breaks down

when its localization information is less accurate. To provide similar comparisons in this section,

GDRP was quickly retrofitted to use GPS information to determine direction information. The

graphs in this section compare GPSR to a couple of versions of GDRP which uses GPS

information. One version of GDRP uses the usual 26 slices and the other uses 52 slices.

The figure below shows how the reliability of GPSR decreases significantly from a decrease

in location precision. While both versions of GDRP also decrease, neither decreases as much as

GPSR. At the worst accuracy of GPSR, GDRP operates with more than twice its reliability. This

graph also shows that increasing the number of slices increases the reliability of GDRP, as seen in

the previous section.

59

Figure 37: Reliability vs. GPS Accuracy.

2030405060708090100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Reliability

GPSR
GDRP (52 slices)
GDRP (26 slices)

% accuracy of GPS

%
 d

at
a

re
ce

iv
ed

The next figure shows that GPSR also starts operating at an increased routing energy cost

with a decrease in GPS information accuracy. GDRP with 52 slices is shown to operate at a near

constant routing cost. GDRP with 26 slices starts decreasing in operating cost to approach the

operating cost of GDRP with 52 slices.

The last figure in this section illustrates the duplicity of GDRP and GPSR for a decreasing

GPS accuracy. Interestingly, both protocols approach the same amount of duplicity when faced

with inaccurate localization information.

60

Figure 38: Transmitted Bytes for Routing vs. GPS Accuracy.

2030405060708090100

0

20000

40000

60000

80000

100000

120000

Transmitted Bytes for Routing

GPSR
GDRP (52 slices)
GDRP (26 slices)

% accurcy of GPS

T
ra

ns
m

itt
ed

 B
yt

es

6.6 MAC properties

The MAC Back-off Step size is the time of the initial backoff step plus a random amount of

time when a collision happens in the network (section 3.5). As its value increases, it reduces the

chances of medium contention while trying to maximize throughput. In simulation, increasing

the MAC back-off step size decreased the amount of collisions in the network until it reached the

amount of time to transmit an average packet. Although increasing this value increased latency

in the network, no other network characteristics were effected.

The MAC buffer size allows the MAC layer to buffer packets during periods of high

congestion. During the normal simulation parameter set, GDRP and GPSR did not create enough

congestion to show any differences caused by increasing the MAC Buffer size above 100.

Bordercast improved slightly, but not enough to even be close in terms of energy cost for routing

or setup latency.

61

Figure 39: Duplicity vs. GPS Accuracy.

2030405060708090100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Duplicity

GPSR
GDRP (26 slices)
GDRP (52 slices)

% accuracy of GPS

%
 d

up
lic

at
e

ev
en

t d
at

a

Chapter 7

7.1 Conclusions

This thesis introduced some of the important characteristics and types of Wireless Sensor

Networks (WSNs). It presented a new routing protocol, the General Direction Routing Protocol

(GDRP) which was compared to Greedy Perimeter Stateless Routing (GPSR) and Bordercast.

The setup and routing operations of these two other routing protocols were also explained.

The design of a custom, discrete time, WSN simulator written in Java was detailed. This

included detailing models for network distribution, communication, failures, and event

generation. The complex interaction between various components of the simulator were

described and analyzed. The interfaces allowing researchers to quickly test new protocols by

dynamically loading their implementations were also explained.

The OSI layers 1, 2, and 4 that were used for testing in the simulator were explained and

analyzed. These included a default physical layer implementation which would limit

transmissions to a single byte per time-slice, a CSMA/CA MAC layer implementation, and a

simple application layer implementation which would transmit location and time information

from sensed events.

Through simulation, GDRP performed better than Bordercast and GPSR in terms of energy

cost to perform network operations, latency, and reliability for networks of an increasing number

of nodes. For networks with an extremely high average node degree, GDRP operated worse in

each of the previously mentioned categories, but demonstrated that it takes multiple paths through

the network when the node degree is higher improving robustness. It was also shown that an

62

increase in the number of slices used in GDRP increases its reliability while decreasing its energy

cost requirements for network operations.

Through a quick retrofit, GDRP was adapted to use GPS localization information to obtain

direction information. This allowed for a direct comparison of the effects of a reduced accuracy

in GPS localization data between GDRP and GPSR. GDRP operated with a much higher

reliability than GPSR for low accuracy localization data. Unlike GPSR, GDRP did not have an

increased energy cost to perform routing with increasingly unreliable GPS data.

While having the ability to optimize unreliable localization information to perform routing,

GDRP is also able to use different types of localization data obtained form different types of

hardware. GDRP operates with a minimum routing header size and performs routing without

directly addressing the next hops to be taken through the network. GDRP is well suited to

perform routing functions in networks of many nodes with a respectable average node degree,

and it is better qualified than GPSR and Bordercast to perform routing in a mobile environment.

7.2 Future Work

Many of the results analyzed in this work were highly dependent on the data-link CSMA/CA

implementation, and using a better implementation should improve the performance of the

routing protocols and provide a more accurate comparison. There could be important exploration

of how a MAC layer change effects the number of slices used in GDRP and resulting reliability.

Also, GDRP uses only a simplified setup solution proposed by MCFA (section 3.2). Applying

MCFA's more complex setup features to reach a constant setup cost would be desirable.

GDRP could be adapted to use three dimensional directional information for three

dimensional network testing against GPSR. GDRP also operates at a higher cost in networks

with a large node degree, so providing a scheme to limit the number of nodes in the slice that will

63

route a message would be ideal for limiting the number of duplicate transmissions. Doing

research on the effectiveness of GDRP's direction abstraction by using different localization

hardware would be interesting.

There are additional testing scenarios that could be executed to test GDRP for a higher level

of confidence. Different models could be implemented including multiple mobility

approximations, non omni-directional transmissions, different node distributions, and different

application traffic approximations. Additional parameters could also be tested including multiple

sinks and node power failures.

Adding a visualizer to the simulator for easy protocol validation would greatly reduce

development overhead. Also, moving from a discrete time simulator to an event driven time

simulator to reduce the simulation time for complex simulations would decrease development

overhead.

64

Bibliography

[1] M. Vieira, C. Coelho, D. da Silva, and J. da Mata, “Survey on wireless sensor network
devices,” Emerging Technologies and Factory Automation, 2003. Proceedings. ETFA '03.
IEEE Conference, 2003, pp. 537-544 vol.1.

[2] T. Arampatzis, J. Lygeros, and S. Manesis, “A Survey of Applications of Wireless Sensors
and Wireless Sensor Networks,” Intelligent Control, 2005. Proceedings of the 2005 IEEE
International Symposium on, Mediterrean Conference on Control and Automation, 2005,
pp. 719-724.

[3] S. Lydon and H. Smith, “General Direction Routing Protocol (GDRP),” ACTA Press,
Sensor Networks '08, from Proceedings, Sep. 2008, pp. 1-6.

[4] Z. Haas and R. Barr, “Density-independent, scalable search in ad hoc networks,” Personal,
Indoor and Mobile Radio Communications, 2005. PIMRC 2005. IEEE 16th International
Symposium on, 2005, pp. 1401-1408 Vol. 2.

[5] B. Karp and H.T. Kung, “GPSR: greedy perimeter stateless routing for wireless networks,”
Proceedings of the 6th annual international conference on Mobile computing and
networking, Boston, Massachusetts, United States: ACM, 2000, pp. 243-254.

[6] Bangnan Xu, S. Hischke, and B. Walke, “The role of ad hoc networking in future wireless
communications,” Communication Technology Proceedings, 2003. ICCT 2003.
International Conference on, 2003, pp. 1353-1358 vol.2.

[7] “IEEE-SA GetIEEE 802.11 LAN/MAN Wireless LANS.”

[8] Kaixin Xu, M. Gerla, and Sang Bae, “How effective is the IEEE 802.11 RTS/CTS
handshake in ad hoc networks,” Global Telecommunications Conference, 2002.
GLOBECOM '02. IEEE, 2002, pp. 72-76 vol.1.

[9] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, “MACAW: a media access protocol
for wireless LAN's,” Proceedings of the conference on Communications architectures,
protocols and applications, London, United Kingdom: ACM, 1994, pp. 212-225.

[10] T. Banka, G. Tandon, and A. Jayasumana, “Zonal rumor routing for wireless sensor
networks,” Information Technology: Coding and Computing, 2005. ITCC 2005.
International Conference on, 2005, pp. 562-567 Vol. 2.

[11] G. Xing, C. Lu, R. Pless, and Q. Huang, “Impact of sensing coverage on greedy geographic
routing algorithms,” Parallel and Distributed Systems, IEEE Transactions on, vol. 17,
2006, pp. 348-360.

[12] M. Zorzi and R. Rao, “Geographic random forwarding (GeRaF) for ad hoc and sensor
networks: multihop performance,” Mobile Computing, IEEE Transactions on, vol. 2, 2003,
pp. 337-348.

65

[13] L. Zou, M. Lu, and Z. Xiong, “A Distributed Algorithm for the Dead End Problem of
Location Based Routing in Sensor Networks,” Vehicular Technology, IEEE Transactions
on, vol. 54, 2005, pp. 1509-1522.

[14] Fan Ye, A. Chen, Songwu Lu, and Lixia Zhang, “A scalable solution to minimum cost
forwarding in large sensor networks,” Computer Communications and Networks, 2001.
Proceedings. Tenth International Conference on, 2001, pp. 304-309.

[15] R. Bajaj, S. Ranaweera, and D. Agrawal, “GPS: location-tracking technology,” Computer,
vol. 35, 2002, pp. 92-94.

[16] Jakob Eriksson, Michalis Faloutsos, and Srikanth V. Krishnamurthy, “DART: Dynamic
Address RouTing for Scalable Ad Hoc and Mesh Networks,” Networking, IEEE/ACM
Transactions on, vol. 15, 2007, pp. 119-132.

[17] Yeo-Sun Yoon, L. Kaplan, and J. McClellan, “Pruned multi-angle resolution fast
beamforming,” Sensor Array and Multichannel Signal Processing Workshop Proceedings,
2002, 2002, pp. 490-494.

66

	Contents
	List of Tables
	List of Figures
	Chapter 1
	1.1		Introduction

	Chapter 2
	2.1		Background
	2.2		Challenges in WSNs

	Chapter 3
	3.1		Related Work
	3.2		Routing Protocol Implementations
	3.3		Unique Identification
	3.4		Antenna Types
	3.5		Beamforming Sensor Arrays
	3.6		Simulator Types

	Chapter 4
	4.1 Simulator Implementation
	4.2 World Design
	4.3 Node Design
	4.4 Default Physical Layer
	4.5 CSMA/CA MAC Layer
	4.6 Bordercast
	4.7 GPSR
	4.8 Simple Application Layer
	4.9 Logger

	Chapter 5
	5.1 GDRP
	5.2 Direction Abstraction
	5.3 Setup Phase
	5.4 Operation

	Chapter 6
	6.1 Testbed
	6.2 Number of Nodes
	6.3 Node Degree
	6.5 Number of Slices in GDRP
	6.4 Accuracy of GPS
	6.6 MAC properties

	Chapter 7
	7.1 Conclusions
	7.2		Future Work

	Bibliography

