
A COMPARISON OF OBJECT-RELATIONAL AND RELATIONAL

DATABASES

A Thesis

Presented to

the Faculty of California Polytechnic State University

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Lara Nichols

December 2007

AUTHORIZATION FOR REPRODUCTION OF MASTER’S THESIS

I reserve the reproduction rights of this thesis for a period of seven years from the

date of submission. I waive reproduction rights after the time span has expired.

Signature

Date

ii

APPROVAL PAGE

TITLE: A Comparison of Object-Relational and Relational Databases

AUTHOR: Lara Nichols

DATE SUBMITTED: December 2007

Dr. Laurian Chirica
Advisor or Committee Chair Signature

Dr. David Janzen
Committee Member Signature

Dr. Alexander Dekhtyar
Committee Member Signature

iii

Abstract

A Comparison of Object-Relational and Relational Databases

by

Lara Nichols

Object-oriented programming concepts have been studied and used in aca-

demics and industry for some time. These concepts, although highly disputed by

some, are not new [19]. However, the ability for engineers to have persistent ob-

jects in an object-oriented application has more recently become an area interest

for developers and researchers [13] [20]. Application programmers have tradi-

tionally used Relational Database Management Systems (RDBMSs) to retain

application data [12] . This method of data persistence, although familiar and

standard practice for some engineers, is inadequate for object-oriented applica-

tions [7]. This work investigates the reasons why traditional relational databases

are inadequate for object persistence, an overview of object-relational database

systems (ORDBMSs), a comparison of ORDBMs to object-oriented programming

language and RDBMS features, and object-relational database performance test-

ing results.

iv

Contents

Contents v

List of Tables viii

List of Figures ix

1 Introduction 1

2 Background Information 3

2.1 Relational database basics . 4

2.1.1 Relational data model . 4

2.1.2 Physical data independence 8

2.1.3 Access Control . 9

2.1.4 Transaction Management 9

2.2 Relational databases weaknesses 10

2.3 Object-Oriented Language Concepts 12

2.3.1 Objects, Methods, and Classes 13

2.3.2 Abstraction . 13

2.3.3 Encapsulation . 14

2.3.4 Inheritance . 14

2.3.5 Polymorphism and Overriding 15

2.4 Object-Oriented Language Features 15

2.4.1 Reusability . 15

2.4.2 Maintainability . 16

2.4.3 Ease of modeling real-world objects 17

2.4.4 Chapter Summary . 18

v

3 The Object-Relational Approach to Data Management 20

3.1 The Need for Object-Relational Database Systems 21

3.1.1 Removal of impedance mismatch 23

3.1.2 Ease of modeling real-world objects and the relationships
between them . 26

3.1.3 Ability to create user defined data types 27

3.1.4 Objects and methods stored together 29

3.1.5 Object references . 29

3.2 Overview of Object-Relational Database Systems 30

3.2.1 Data modeling . 32

3.2.2 Standards in object-relational database systems 33

3.2.3 Database modeling . 34

3.2.4 Data structures used to store data 37

3.2.5 Integrity Constraints . 39

3.2.6 Operations . 56

3.2.7 Relationships . 60

3.2.8 Object-relational encapsulation 65

3.2.9 Object-relational abstraction 67

3.2.10 Object-relational polymorphism and overriding 68

3.2.11 Access control . 70

3.2.12 Transaction Management 72

4 Performance Comparison Between ORDBMS and RDBMS 76

4.1 Relational table insert vs. Object table insert 77

4.2 Relational table select vs. Object table select 78

4.3 Relational table update vs. Object table update 80

4.4 Relational table delete vs. Object table delete 80

4.5 Relational Joins vs. Object References 82

5 Future Work 90

6 Conclusion 92

Bibliography 94

vi

A 99

vii

List of Tables

viii

List of Figures

1.1 Stonebraker’s four-quadrants . 2

2.1 EMPLOYEE schema and tuple . 6

2.2 Object with attributes and method 13

2.3 Polymorphism in OOPLs . 16

3.1 Impedance mismatch between relational model and objects 25

3.2 person and business table schemas 28

3.3 Creating and using object REF’s 30

3.4 Creating and using object REF’s 31

3.5 Object type . 37

3.6 Object stored as row object . 38

3.7 Object stored as object column 38

3.8 Nested object table . 38

3.9 Storage of PERSON TABLE . 39

3.10 Create constraint on type attribute 40

3.11 Object table NOT NULL constraint 42

3.12 Relational table NOT NULL constraint 42

3.13 OBJ PERSON TABLE NOT NULL constraint 43

3.14 All NULL values with NOT NULL constraint allowed 44

3.15 NOT NULL constraint on object type 45

3.16 Relational add NOT NULL constraint to existing table 45

3.17 Add NOT NULL constraint to existing object table 46

ix

3.18 Drop NOT NULL constraint on existing relational table 46

3.19 Drop NOT NULL constraint on existing object table 47

3.20 Create unique constraint on object table 47

3.21 Insert multiple NULL valued rows 48

3.22 Unique NOT NULL constraint . 48

3.23 Create object types for OBJ PERSON TABLE 49

3.24 Create OBJ PERSON TABLE.address as unique 49

3.25 Create unique constraint on OBJ PERSON TABLE 50

3.26 Test PERSON UNIQUE constraint on address type 50

3.27 Add unique constraint to existing object table 51

3.28 Test drop PERSON UNIQUE constraint on address.street 51

3.29 Create primary key constraint . 52

3.30 Add primary key constraint to relational table 52

3.31 Add primary key constraint . 53

3.32 Delete relational table primary key 53

3.33 Delete object table primary key 54

3.34 Alter PERSON TYPE . 54

3.35 Create OBJ ADDRESS TABLE with foreign key 55

3.36 Test foreign key constraint . 56

3.37 Create nested object foreign key 57

3.38 Drop foreign key constraint . 58

3.39 Create and test check constraint DOB CK 58

3.40 Create check constraint . 59

3.41 Add check constraint to existing object table 60

3.42 Drop object table check constraint 61

3.43 MAP method . 62

3.44 ORDER method . 63

3.45 Association many-to-many . 64

3.46 Association one-to-many . 65

3.47 Association one-to-one . 66

3.48 Aggregation using nested tables 67

x

3.49 Create PERSON TYPE . 69

3.50 Create EMPLOYEE TYPE . 69

3.51 Create STUDENT TYPE . 70

3.52 Create PERSON TABLE . 70

3.53 Insert EMPLOYEE TYPE . 71

3.54 Insert STUDENT TYPE . 71

3.55 Select from PERSON TABLE . 72

3.56 Select EMPLOYEE TYPE . 73

3.57 Add method to STUDENT TYPE 73

3.58 Add method to STUDENT TYPE 74

3.59 Add method to EMPLOYEE TYPE 74

3.60 Describe EMPLOYEE TYPE . 75

3.61 Use overridden who am i methods 75

4.1 Relational and Object table schemes 77

4.2 Relational vs. Object table insert 78

4.3 Relational vs. Object table select 79

4.4 Object select statement . 79

4.5 Relational select statement . 79

4.6 Object update statement . 80

4.7 Relational update statement . 80

4.8 Relational vs. Object table update 81

4.9 Object delete SQL statement . 82

4.10 Relational delete SQL statement 82

4.11 Relational vs. Object table deletes 83

4.12 Relational join query . 83

4.13 Relational schema . 84

4.14 Object REF query . 85

4.15 Object schema . 87

4.16 Object DREF query . 88

4.17 Relational four table join . 89

xi

4.18 Object table DREF with four tables 89

xii

Chapter 1

Introduction

Ever since Postgres released the first object-relational database system (OR-

DBMS) in 1986, ORDBMSs have been seen as the next generation database sys-

tem [26] [12]. Currently the three leading database management systems —Ora-

cle, Microsoft, and IBM —have extended their database systems to support the

SQL:2003 standard which includes object-relational features [12]. Some analysts

predict that because of support for ORDMBSs from all three database manage-

ment vendors, in the near future ORDBMSs will have a 50% larger share of

the market than the RDBMS market [12]. Since an ORDBMS is an extension

of RDBMSs with object-oriented programming concepts, using an ORDBMS is

appealing to many users because the concepts involved are already known from

relational database systems and object-oriented programming languages.

According to Stonebraker the world of database systems and uses for these

systems are broken into four quadrants —shown in Figure 1.1 [1]. The first lower-

left quadrant represents applications that have simple data and do not require any

query capability such as word processing applications. These types of applications

do not need a database system. The lower-right quadrant represents applications

1

that have complex data and do not need query capabilities such as computer-

aided design applications (CAD). These applications are best suited using an

object-oriented database system (OODBMS). The upper-left quadrant represents

applications that have simple data and need query capabilities such as traditional

banking applications. Finally, the upper-right quadrant represents applications

that have complex data, but also need query capabilities. Stonebraker proposes

that applications of this type can benefit most from using ORDMBSs [1].

Figure 1.1. Stonebraker’s four-quadrants

This thesis presents an overview of ORDBMSs comparing OOPL features to

OR features and also gives performance comparisons between using object ta-

bles and relational tables for SQL insert, select, update, delete, and table joins

operations. The remaining chapters are organized as follows. Chapter two gives

background information for OOPLs and relational database systems. Chapter

three gives an overview of features available in an ORDBMS. Chapter four pro-

vides performance testing for Data Manipulation Language (DML) statements

for object-relational tables and relational tables. Chapter five gives an overview

of future work. Finally, Chapter six provides a conclusion for this work.

2

Chapter 2

Background Information

When software engineers design applications they often need a system that

provides reliability, durability, concurrency control, recovery, and data integrity

for persistent application data. These features are available to engineers us-

ing both RDBMSs and ORDBMSs. In addition, both database systems provide

a non-procedural query language that allows ad hoc data retrieval and simple

data representation in the form of relational tables [24]. However, the object

data model allows designers to represent real-world relationships and complex

data while also taking advantage of object-oriented programming features such

as reusability, robustness, convenience, maintainability, and expressiveness. In

addition, features of object-relational database systems also include support for

object oriented language concepts such as extensibility, inheritance, encapsula-

tion, polymorphism, dynamic binding, and user defined types (ADT) by extend-

ing the RDBMS using the SQL:2003 standard [26] [24] [38] [27] [12] [5] [17].

This chapter gives some background information about relational database

systems (RDBMSs) the advantages and limitations of RDBMSs that create the

need for ORDBMSs.

3

2.1 Relational database basics

RDBMSs have been the leading data management software used in industry

since the late 1970’s [12] [27]. The relational model defined by Codd in 1970 is the

basis of a RDBMS [11]. The relational model logically stores data in relations,

also referred to as tables. A relation is structured with attributes (columns) and

tuples (rows) of data. Humans can easily understand this logical representation

since it can be mapped to something that is known in the real world. For example,

long before computers, mathematicians and office workers stored information in

tables (columns and rows). The relational model‘s simplicity and mathematical

foundation are two reasons why it has remained the leading database manage-

ment system for the past thirty years [36]. This subsection presents RDBMS

terminology and concepts and an overview of RDBMS functionality.

2.1.1 Relational data model

The relational model, despite its simple structure, theoretically bases itself

on a mathematical relation [17] [36]. In mathematics, the definition of a relation

is “a subset of a Cartesian product of a list of domains” [36]. In a RDBMS, a

mathematical relation is a database table. The relational model’s mathematical

basis defines a set of basic algebraic operations that can operate on tables in

a relational database. Basic algebraic operations include insert, delete, update,

select, projection, rename, set difference, union, and Cartesian product using the

assignment operators used in relational algebra [36]. Additional operators defined

in the relational model extend these relational algebra operations. Following are

the three components of Coddś relational model [11]:

4

1. Data structures used to store data: relation (table), attributes (columns),

tuples (rows), relation instance, and relation schema (table header)

2. Integrity Constraints: domain, key, refererential, procedural (applica-

tion dependant constraints)

3. Operations: relational algebra and relational calculus

2.1.1.1 Data structures used to store data in a relational database

The relational model defines an attribute as a <Name, Domain> pair where

the domain is the set of values and operators that are in the attributes domain.

For example, an attribute is <HireDate, DATE>where the attribute name is

HireDate and the domain is the set of valid dates and operations of the DATE

attribute type.

The relational model defines a relation schema as a < Name, Set of Attributes

> pair. For example, a table schema used to store business information could

have a relation schema EMPLOYEE(SSN, Lname, Fname, HireDate, Dept). Given

a relation schema R, a tuple t for R is a mapping from each attribute of R into the

domain of that attribute. As shown in Figure 2.1, tuple t for the table EMPLOYEE,

t(Lname) = ’Smith’. A relation instance is defined as any finite set of tuples

for a particular schema. For the schema in Figure 2.1, the relation instance

r is as follows: r(EMPLOYEE) = {t1,t2} where t1 = (234, ’Jones’, ’Tom’,

’1-Mar-1998’,’IT’) and t2=(123,’Smith’,’Joe’,’1-Dec-2006’,’IT’).

5

Figure 2.1. EMPLOYEE schema and tuple

2.1.1.2 Integrity constraints

The second component of the relational model components is a set of integrity

constraints. A database system requires integrity constraints to guarantee its

users that data stored in the database is valid. Business rules are implemented

as integrity constraints to guarantee that only valid data is stored. For example,

in the EMPLOYEE schema in Figure 2.1 business rules for the attribute HireDate

to be less than or equal to today‘s date can be implemented using the integrity

constraint HireDate <= trunc(sysdate). Primary and foreign keys can also be

used as integrity constraints to prevent storing duplicate data. More information

regarding integrity constraints can be found in Dietrich and Urban‘s 2005 study

and also in Connelly and Begg‘s 2005 textbook [12] [37].

6

2.1.1.3 Operations

Relational algebra provides operations on tuples (rows) a set-at-a-time in a

single operation that is non-procedural. Codd‘s model defines operations to ma-

nipulate and retrieve data from a database using relational algebra [11] [36]. The

fundamental relational algebra operations are separated into two groups, unary

and binary operations. The unary operation selection is used to select tuples that

satisfy a predicate. For example, using the EMPLOYEE schema in Figure 2.1, an ap-

plication would use selection to select employees that have worked at the company

for more than one year. In general, selections use boolean expressions to specify

the logical properties of data to be retrieved. A projection operation allows users

to specify what relation attributes (columns) they want to see. For example,

in Figure 2.1, a projection would be “show the first names of all employees”.

This would project only the first name relation attribute from the EMPLOYEE

schema. The relational model‘s binary set operations Union, Set difference, In-

tersection, and Cartesian Product operate on relational pairs. In addition, the

relational model defines division and join operations for Theta join, Equijoin,

Natural join, Outer join, and Semi joins. Extensions to relational-algebra oper-

ations include grouping operations and aggregate functions that take collections

of values and return a single value as a result [36].

In 1974, IBM researchers used Codd‘s relational model as specifications to

create the query language Structured English Query Language (SEQUEL) [12]

[11]. Designers of SEQUEL were force to change the query language name in

1976 to SQL because of legal reasons. Soon after, researchers at IBM created

the first relational database system called System R —used as an engineering

prototype —to validate Codd’s relational model [36]. Since then, SQL has been

7

the “only standard database language to gain wide acceptance” by over one

hundred database management vendors [12].

SQL allows users to manipulate data by using the DML operations SELECT,

INSERT, UPDATE, and DELETE with a WHERE clause for row selection (equivalent to

the relational algebra selection operator). SQL also allows users to use compar-

ison and compound search strings by providing the WHERE clause and the ORDER

BY clause to sort query results. In addition, SQL provides aggregate and grouping

functions to operate on data sets.

The importance of SQL is two-fold. First, SQL gives the database community

a standard that all database systems can use in order to allow compatibility

between different DBMS vendors. Secondly, SQL is non-procedural and because

it uses a Standard English language structure, different types of users can easily

use SQL whether they are database administrators, applications developers, or

business users.

2.1.2 Physical data independence

The relational model supports physical data independence between an ap-

plication and a database. This is very important because before the relational

model, changes made to physical data storage required changing application code.

The relational model provides a more flexible data management approach in that

physical data storage changes do not affect how applications access the data. The

relational model can support physical data independence because it contains a

separation between the physical and logical data structure.

8

2.1.3 Access Control

In a relational database access control is managed by using SQL grant and

revoke statements on database objects (tables, views, methods, packages, proce-

dures, database roles, and system privileges). Since every user of the database

has a username and password, database administrators control access to data and

methods based on usernames. For example, a database user account can exist

in the database and administrators can revoke what tables, methods, or columns

of data the user can access. Administrators an also grant users of the database

access to execute procedures and packages. This provides database users the

ability to create procedures and packages once and allow multiple users in the

database to access them.

The granularity of access control provided by relational database systems

allows database administrators an easy method of managing the need for users

to access data and business rules regarding what data users can access.

2.1.4 Transaction Management

A transaction is a “collection of operations that form a single logical unit of

work” [36]. For example, adding a class to a student’s class list includes updating

the class enrollment number (the number of seats let in a class) and the student‘s

class list. It is important that both of these updates complete successfully or both

fail. This is referred to as the atomicity property of transactions. Additionally,

it is important if more then one user is adding classes to their schedule that

each transaction is processed separately so inconsistent data is not stored in the

database. This is referred to as isolation, which guarantees that transactions will

not be affected by other transactions running concurrently.

9

Once a class has been successfully added, it is important that the transaction

persist even if there is a power or system failure. This is called the durability

property [36].

The last transaction property is consistency. Consistency is the requirement

for data to remain consistent before and after a transaction. For instance, the

number of students allowed in a class should remain consistent when added a

student to a class. If the student capacity is 30 before the transaction, the

seats available before the transaction is 10 and students enrolled is 20, if the

add transaction is successful, the available seats should be 9, the capacity should

remain at 30, and enrolled students should be 21. The consistency property

eliminates the possibility of class seats being created or lost during the student

add class transaction.

Transaction management in a relational database with support for the ACID

properties gives application developers and database administrators the guaran-

tee of concurrency control and fault tolerance.

2.2 Relational databases weaknesses

Developers most often use a relational database system because of its maturity

and simplicity [24]. However, according to many researchers and industry leaders,

the relational model in not adequate to model real-world static and dynamic

relationships that exist in applications currently being developed [38] [34]. For

instance, application developers often need persistence for nontraditional data

structures, such as graphics, multimedia, or voice data [37] [14]. The relational

model does not support storing and manipulating complex data types such as

nested objects, multi-valued attributes, user-defined types, unstructured data

10

(voice, video), and inheritance relationships [36] [9]. Therefore, developers cannot

use a relational database to store data for complex object-oriented applications.

The relational model is not scalable for applications needing access to many

related tables, which requires joins [38]. Joining several tables leads to inefficient

query processing times [37] [38]. Application developers encountered this weak-

ness when mapping inheritance relationships from object-oriented applications

to relational tables. Developers can use different methods to map inheritance to

relational tables; however, no matter what method is used, overhead from trans-

lation is unavoidable [38]. In object-oriented programming languages (OOPLs),

developers use inheritance primarily because of its reuse advantages and elim-

ination of duplicate data. Developers introduce duplicate attributes for each

inherited object (storing attributes multiple times for different tables) when con-

verting inheritance to relational tables, since advantages of OOPL inheritance

cannot be utilized. According to Rahayu et al.[38], the cost of converting inher-

itance to relational tables is dependant on the number of objects inherited from

a superclass in addition to the number of attributes each object contains.

In addition, converting inheritance to relational tables also decreases overall

application performance because it involves joining tables. The cost to join tables

in a RDBMS is very significant since joins are the most expensive operation in

relational databases [27] [38]. In contrast, an object-relational database can han-

dle access to related tables using object references instead of expensive relational

joins to access tables (see Chapter 3.0).

There are many advantages to using the relational data model for data access

and storage; however, because of new requirements for object-oriented applica-

tions with complex data and relationships, the relational model is not adequate

for storing all object-oriented data [12]. The following section presents object-

11

oriented programming language concepts as background information to object-

relational database systems.

2.3 Object-Oriented Language Concepts

According to Coad and Yourdon [10], an object is an abstraction of something

in the domain of a problem or its implementation, reflecting the capabilities of a

system to keep information about it, interact with it, or both. Software engineers

can represent real-world artifacts as objects that applications can manipulate

using classes and methods [4]. For example, in an object-oriented banking ap-

plication, engineers can create objects to represent different types of customers,

accounts, and transactions. These objects can be manipulated by users or appli-

cations using classes and methods to model real-world phenomena that a banking

institutions need to manage.

The most basic critical object-oriented model concepts are abstraction, encap-

sulation, and inheritance [3]. Object technology goals are to construct software

out of standard, reusable parts whenever possible and to reduce software main-

tenance cost [12]. This development approach allows software engineers to reuse

components from one application to another. For example, if developers create

a geographic information system (GIS) application that has the objects water,

land, location, roads, and methods to manipulate those objects, applications us-

ing the same types of objects could later use the objects, classes, and methods

developers have already created. The following contains brief definitions of basic

object-oriented concepts. These section definitions are important in understand-

ing the concepts presented in Chapter 3.

12

2.3.1 Objects, Methods, and Classes

An object is an abstract representation of an artifact that engineers can use

when developing applications. Each object is an instance of a class and has a

state and behavior describing it at any point in time. An object state such as

the person object in Figure 2.2, is defined by the attributes name, address, and

SSN. An object’s behavior includes the set of methods that are used to manipulate

the object, such as changeAddress() in Figure 2.2. The concept of an object

is simple, but, at the same time, very powerful: each object can be defined and

maintained independently of the others [12].

Figure 2.2. Object with attributes and method

2.3.2 Abstraction

Abstraction is the principle of ignoring aspects of a subject that are not

relevant to the current purpose in order to concentrated more fully on those that

are [10]. By using abstraction, software engineers can break processes into sub

processes, making complex problems easier to solve by focusing on a few concepts

at a time. Abstraction also allows developers to abstract common procedures

out of an algorithm and write the procedure once, but use it multiple times

throughout the program as needed.

13

2.3.3 Encapsulation

Encapsulation involves hiding information from other modules so that users

or programs cannot see what methods contain [22]. Encapsulation groups data

and methods together creating a well-defined boundary around an object. Classes

allow software engineers to use public or private access to control access to object

variables and methods. This is helpful for developers who do not want outside

modules or applications to either access or manipulate methods while still pro-

viding reuse advantages [5] [15].

2.3.4 Inheritance

Inheritance is the means of defining one class in terms of another [3]. Objects

with similar attributes are abstracted into generalized and specialized classes.

The generalized classes create superclasses and specialized classes become sub-

classes inheriting from the superclass [16]. For example, a university application

could create a superclass person and subclasses student and instructor that

inherit from the person class. Attributes from a superclass are inherited by a sub-

class. In the university example, all attributes in the person class are available

to the instructor and student classes.

In addition to a class inheriting from one superclass, subclasses can also inherit

from multiple superclasses. This is referred to as multiple inheritance. For in-

stance, the subclass graduate instructor is both an instructor and a student

and thus inherits from both superclasses. Using inheritance allows software en-

gineers to develop less applications code since a superclass can define attributes

for multiple subclasses.

14

2.3.5 Polymorphism and Overriding

Using inheritance, generalized methods contained in a superclass can be spe-

cialized by overriding them in a subclass. For instance, in a person class the

method getName() can be declared and then in the subclasses that inherit from

it student, instructor, graduate instructor can implement the method to

return the correct information when each subclass method is called. This is shown

in Figure 2.3. Polymorphism is the capability for the same method to have multi-

ple implementations. The correct implementation is selected that corresponds to

the subclass method is called. In Figure 2.3 if the function getName() is called

for an instance of the employee class, the string Employee Name: will be re-

turned and not the string Person:. Polymorphism is implemented by overriding

superclass methods.

2.4 Object-Oriented Language Features

In addition to abstraction, inheritance, overriding, and polymorphism OOPLs,

object-oriented languages also provide features of reusability, maintainability and

ease of modeling real-world objects over non-OOPLs. This section gives an

overview of reusability, maintainability, and ease of modeling objects in OOPLs.

2.4.1 Reusability

Reusability in OOPLs includes code reuse within a single software project

and code reuse between multiple projects. According to Brooks [19], reusability

of code in software engineering is the most effective way to increase productivity

in software development. An in-depth study done by Lewis et. al [33] found

15

public class Person{
public String getName(){
System.out.println(‘‘Person’’);
return name;
}

}
public class Student extends Person{

public String getName(){
System.out.println(‘‘Student Name:’’ name);
return name;
}

}

public class Employee extends Person{
public String getName(){
System.out.println(‘‘Employee Name:’’ name);
return name;
}

}

Figure 2.3. Polymorphism in OOPLs

increased productivity when developers used reusability when developing object-

oriented applications. To take full advantage of code reuse, developers must

identify redundant code and create methods and procedures that increase code

reuse. This process of abstraction can be difficult in large software projects;

however, by creating smaller methods that only complete one task and planning

for reuse during the design phase, reusability can increase productivity.

2.4.2 Maintainability

Maintenance of a system is the most costly part of the software process [21].

According to Brooks [19], the cost of maintenance can be more than forty per-

16

cent of the total cost of the entire software system. One of the most important

part of the maintenance cycle is being able to understand how changes will affect

an application. Fisher et. al. states, “Maintainability and controlled evolution

of a system is dependent on the understanding of what is currently present, as

changes in design are affected by the prior design” [29]. Using OOPLs to develop

applications produces a cleaner, easier to understand system because application

implementation is separated into classes and methods instead of having applica-

tion code in a single function as in non OOPLs [17].

2.4.3 Ease of modeling real-world objects

Ease of use is defined as something that is easy to find, easy to understand, or

is sufficient for the task at hand [25]. Using an object-relational database to store

application objects gives developers a more expressive way to solve problems.

This makes the database design process easier understand, since OOPL objects

can be mapped to database objects, and easier to use because developers can

create data models that accurately describe application objects and relationships

between them[24] .

For example, database designers can use both object and relational tables to

store data for an object-oriented application. The developer is not confined to

only using object or relational tables but instead has the option of choosing what

type of table works best for the data type being stored. Also, object tables can

contain one or more object types along with SQL supported data types such as

number, varchar2, or date [30]. In addition, there are also many options that

developers can choose from when designing the database schema such as object

references versus joins, object methods or PL/SQL procedures, ADTs or scalar

17

types. Using an OR database to store object-oriented data, allows database

designers to create database schemas that are easier to understand and that

adequately represent application objects and relationships between these objects.

2.4.4 Chapter Summary

The relational data model is important because it is a formal definition for

RDBMSs to store, access, and manipulate data with support for data indepen-

dence, integrity constraints, access control, and transaction management.

RDBMSs provide a high level of abstraction by using a table structure that is

easily understood by its‘ users, possessing different data representation levels in

column, row, table, tablespace, and schema form, and hiding the physical storage

structures from users [11]. Separation of physical data storage from logical data

representation allows users and applications to continue to access data even if

database administrators move or change physical data structure thus giving a

RDBMS data independence [8]. Integrity constraints support data validation and

business rules that can be stored and imposed on RDBMS data when applications

or users manipulated data [8]. Access control allows businesses to control data

access privileges and manipulation for RDBMS data. The relational model also

includes transaction management providing concurrency control, failure recovery,

and preservation of data [8]. Using the relational model also provides developers

ease of use by providing a non-procedural query language and seamless data

retrieval for applications..

There are many advantages to using the relational data model for data access

and storage; however, because of new requirements for object-oriented applica-

tions with complex data and relationships the relational model is not adequate

18

for storing persistent object-oriented application data [12]. The relational model

lacks the ability to adequately map inheritance in object-oriented applications to

relational tables without encountering the high cost of duplicate attributes and

costly joins or the need to use object-mapping tools (OMTs) such as Hibernate.

The relational model inadequacies point to a need for a new data model that can

support the different data relationship types used in object-oriented applications.

Not all researchers and database designers share this view. For instance, Date

and Darwen firmly believe in the relational model and do not see a need to change

the model to include object-relational data. Instead, they firmly believe think

“those close to the problem should create solutions to address inheritance and

user-defined types without changing the relational model” [14].

Object-oriented languages and concepts are not new to the software engineer-

ing field [17]. Software engineers use languages such as C++, C#, and Java

when creating object-oriented applications. This application development ap-

proach promotes maintainability, flexibility, code reusability, software quality,

and makes it easier for software engineers to solve complex problems [10].

This chapter presented the most basic relational database and object-oriented

concept definitions that are important to understanding this work‘s remaining

chapters. Object-relational database management systems (ORDBMSs), like

OOPLs, incorporate the use of objects, classes, methods, inheritance, abstrac-

tion, and encapsulation. Chapter 3.0 goes into more detail of how developers can

use these concepts when creating object-oriented applications to store persistent

objects in ORDBMSs.

19

Chapter 3

The Object-Relational Approach

to Data Management

An object-relational (OR) approach to data management using ORDBMSs

includes objects that need persistence, a data model, a query language to manip-

ulate, retrieve, and store data, and a database system [26] [14] [17]. Persistence

is the process of storing information that is retained after an application is ter-

minated. There are three basic types of databases that developers can use for

persistence: a RDBMS, an object-oriented database system (OODBMS), or an

ORDBMS. This work focuses on the use of an ORDBMS for methods of object

persistence in contrast to using a traditional RDBMS.

A data model is a “logical organization of the real-world objects (entities),

constraints on them, and relationships among them” [26]. Real-world objects and

the relationships between them can be represented in entity-relationship (ER) di-

agrams using modeling techniques such as Coad/Yourdon notation, Shlaer/Mellor

notation, Booch notation, or the more widely used Unified Modeling Language

20

(UML) [22] [10]. No matter what method developers choose, modeling notation

is important because it allows developers to represent relationships between en-

tities using a standard representation, which database designers can transform

into database schemas used to store database objects and relationships.

An OR database is a collection of objects whose behavior, state, and relation-

ships can be viewed or manipulated using object methods, stored procedures, or

a query language [30]. As discussed in Section 2.2.1, in an ORDBMS methods

can be stored with objects to manipulate or view the state of an object. Alterna-

tively, stored procedures can be used for the same purpose where procedures are

developed using PL/SQL and called by applications to retrieve and manipulate

database objects. In Oracle 10g, SQL can also be used to view or manipulate the

behavior, state, and relationships for objects stored in its ORDBMS.

The following sections present the need for ORDBMSs, an OR database

overview, and a comparison of OOPL and RDBMS features to ORDBMS fea-

tures.

3.1 The Need for Object-Relational Database

Systems

If the relational model has met the data storage needs for the last thirty years,

what has changed in order that developers need to store complex data types and

relationships when creating applications? To answer this, one must identify why

complex data and relationships exist, whether software engineers have created

this new phenomenon, or whether this indicates that the relational model has al-

ways been inadequate to store the types of data and relationships that are needed

21

to develop applications. According to Cook and Ibrahim [13], the use of object-

oriented programming languages has resulted in a set of new issues that “arise at

the boundary between programming languages and databases”. Object persis-

tence introduces issues of impedance mismatch between programming languages

and databases because of complex relationships and user defined data types [12].

In this paper, complex relationships are defined as many-to-many relationships

and inheritance [3]. Likewise, the definition of complex data is nested objects,

multi-dimensional arrays, unstructured data (voice, video), data in non-first nor-

mal form, and user-defined data types [42]. Complex data and relationships,

such as inheritance, nested objects, and user-defined data types are properties of

OOPLs. Therefore, the need to store complex relationships and data is in part

a result of using OOPLs to develop applications. Before OOPLs, the relational

model was adequate for storing application data [14].

The need to store complex data has increased partly because of the increase of

unstructured digital media such as photos, voice, and videos due to the reduced

cost of storage and the increase of digital recording and transferring technology.

As the development of object-oriented applications and digital media storage con-

tinue to increase, the issues they create with current RDBMSs will also continue

to remain [7]. Therefore, because of the relational model inability to represent

concepts of OOPLs and store complex data, developers need a new data model

to store persistent application objects.

In order to persuade software engineers to use OR databases for object per-

sistence, this work presents a list of ORDBMSs advantages. Following are the

advantages to using an ORDBMS for application object persistence.

1. Impedance mismatch removal

22

2. Ease of modeling real-world objects and relationships

3. Ability to create user-defined types

4. Persistent object encapsulation

5. Object Referencing

The following sections present an overview of the advantages to using an OR

database for storing persistent objects when creating applications compared to

using relational databases..

3.1.1 Removal of impedance mismatch

A main advantage to using an OR database —as opposed to a relational

database —for object-oriented applications is the removal of the impedance mis-

match between the object-oriented applications and the relational model [12]

[4] [41] [7] [37]. Impedance mismatch is the “incompatibilities that occur at each

interface between two set of tools due to the different models for importation rep-

resentation” [18]. Since the application programming language and the database

system are based on different data and computation types, application develop-

ers are forced to manually map application data to relational tables or use an

object mapping tool (OMT) to convert the application object data to the rela-

tional model [3] [37] [23]. An impedance mismatch between an application and

a database affects overall application development time, performance, and leads

to discrepancies between the design and implementation [7] [18].

Added development time for mapping objects to relational tables depends on

the applications object types [2]. If developers can easily map application objects

23

to relational tables, the design does not need substantial changes thus adding neg-

ligible development time. However, the higher the impedance mismatch (i.e the

more complex the objects and relationships in the application needing persis-

tence), the more developers must develop additional code to represent objects in

relational tables, which translates to more application-development time [37] [38].

According to Olofson, as quoted by Leavitt, “Programmers sometimes spend more

than 25 percent of their coding time mapping program objects to the database”

[27].

When developers map object-oriented applications to relational databases,

not only is there added time for development, there is also a decrease in perfor-

mance because the relational model does not support very well some relationships

in OOPLs. One such relationship is inheritance [27] [24] [38] [17] [37]. In order

to map object-oriented program inheritance to the relational model —whether

developers do it by hand or with a mapping program —the objects that use

inheritance must each be created as a table.

This means that if an application needs to retrieve persistent data from all

three tables (a superclass query), a relational database must join all three tables.

Since joins in a relational database are expensive, this cost can be substantial

[27] [38].

As shown in Figure 3.1, four objects (two students, one instructor, and one

graduate student lecturer) map to four relational tables. Since the relational

model requires each table to have a primary key, each mapped table has an

extra attribute ID [38]. Although an added attribute for each relational ta-

ble may not seem significant, when hundreds of thousands of tuples and nu-

merous tables are involved, an added attribute for each table is a significant

overhead. In addition to the added attributes for primary keys, if the rela-

24

Figure 3.1. Impedance mismatch between relational model and objects

tional table graduateStudentLecturer is queried, the tables person, student,

instructor, and graduateStudentLecturer must all be joined. In comparison,

an object-relational database can store all information in one object table where

each row is person object. Examples of inserts for a student object type that

inherites from the super type person are shown later in Chapter 3 in Figures 3.51

and 3.54.

Using object tables instead of relational tables to store data in an object-

oriented application removes the impedance mismatch between OOPLs and the

relational model by mapping application objects to database objects. In contrast,

if a relational database is used to store application data, application objects must

be mapped to relational tables [24]. According to some database researchers

25

[24] [27], removing the impedance mismatch between object-oriented applications

and database systems leads to developing less application code, which reduces

development time. Not only is less application code developed, the mapping

between application and database code is also less complex since the object-

oriented features can be utilized in both the application and the database system.

3.1.2 Ease of modeling real-world objects and the rela-

tionships between them

Using ORDBMS for applications that need persistence offers application de-

velopers a more natural way to represent real-world entities and relationships.

Not only does it improve designers‘ abilities to represent problems in an applica-

tion, but using an ORDBMS also allows designers to think of problems at a higher

abstraction level without having the burden of mapping application data to rela-

tional tables [38] [15] [12] [17]. This idea is closely related to Section 3.1.1 in that

developers do not have to work around the relational model’s limitations. The

difference between impedance mismatch and ease of modeling real-world prob-

lems is that the former is measured by additional time and code for development,

whereas the latter is measured by the developed applications overall quality [5].

The application‘s overall quality could be defined as how closely the overall

design models the real world, how resilient it is to change, and how maintainable

the application is throughout the software life-cycle [17] [5]. It has been stated

by many that an object-oriented development approach can lead to an over-

all better-designed application that is maintainable and flexible, and can better

model artifacts in the natural world [32] [17] [5]. Therefore, using an object-

oriented approach to solving application data persistence could allow developers

26

to design higher-quality applications [22] For example, if developing a computer-

aided design (CAD) application, and software engineers are limited to using the

relational model, they must not only map objects to tables, they are also limited

in application development by what can be represented in the database. Thus,

the overall design of the CAD application is limited to data representation of

the relational model. This could result in a poorly designed application and

make them hard to maintain if new features are needed that are either hard or

impossible to represent using the relational model.

3.1.3 Ability to create user defined data types

The ability to create user defined data types (UDTs) in a database is some-

thing that experts in database systems agree is needed [14] [35] [1]. The ability

to create new data types increases expressiveness and maintainability in object-

oriented applications since objects can be stored directly in a database without

the need to convert application objects to relational data types. According to

Stonebraker and Brown [1], UDTs are necessary in order to solve data storage

for applications in quadrant four of Figure 1.1. Without UDTs a table column

is limited to data types supported by SQL [1]. Although the SQL data types

are sufficient for many applications, quadrant four applications are complex and

limiting data types to only those supported by SQL forces developers to create

complex application code that increases runtime and could be eliminated if a

UDT were created.

For example, the software application ArcGIS (a quadrant four type appli-

cation) is a geographic information system (GIS) mapping application used by

business analysts‘ to determine the number of potential customers in a specific lo-

27

cation. In order to compute the number of customers from a shopping center, the

application needs to be able to compute distance from a customers’ home address

to the shopping center address. In order to compute the distance between poten-

tial customers and a business, a geographic position of each potential customer

is needed as a (longitude, latitude) point. Given the person and business table

relational schemas in Figure 3.2 queries can be developed to answer the question

“how many potential customers are within 5 miles of the business”. However,

not only are these queries complex they also are inefficient. They are inefficient

because since customers‘ distance from the business is not calculated until the

query is ran, indexes will not be used so the distance from the business must be

calculated for every person in the database. If the database stored information

about every residence address in the United States, it would result in over three

hundred million calculations to determine how many potential customers live

within five miles of a given business. If instead, a UDT is created that supports

(longitude, latitude) point calculations and logic to identify “points that are close

by” the application will be less complex and also have much better performance

[1].

Overall, UDTs are necessary to support quadrant four applications because

they give application developers the ability to solve complex problems without

the limitations of only using data types supported by SQL.

person(id number, long number, lat number);

business(id number, long number,lat number);

Figure 3.2. person and business table schemas

28

3.1.4 Objects and methods stored together

In traditional RDBMSs data is stored in relational tables while stored proce-

dures are stored in the database schema. However, in an ORDBMS object data

and methods to manipulate that data are stored together [30]. In a RDBMS data

is manipulated by application procedures, stored procedures, or SQL commands.

In contrast, applications using an ORDMBS can manipulate data using meth-

ods stored with the database attributes [24]. This is achieved by having getters

and setters for data attributes in addition to basic data manipulation methods

as shown in Section 2.2.1 in Figure 2.1. Using database manipulation methods

reduces the amount of application methods created by developers and guaran-

tees database administrators correct data manipulation. For example, if the data

attribute salary is stored in the database as an annual value the database can

provide methods to getMonthlySal() and getAnnualSal(), to guarantee the

correct values are retrieved. The technique of storing methods and data together

is a property of OOPL (encapsulation); therefore, it is best practice to provide

encapsulation for persistent application objects.

3.1.5 Object references

In a RDBMS, relational joins are considered to be one of the most expensive

operations [27] [38]. In an ORDBMS, related tables can be accessed by using

object references instead of table joins. Object references provide an easy way

to navigate between objects using the object-oriented dot notation. Figure 3.3

shows the commands to create a table with an object reference (REF) as well as

the query to access the referenced object.

29

SQL >create type instructor t as object

(name varchar2(25)

dept id varchar2(10),

dept name varchar2(25));

SQL >create table instructor of instructor t(

primary key(person id));

SQL >create table course(

course id varchar2(25),

course name varchar2(25),

course desc varchar2(256),

instructor REF instructor type scope is

instructor table);

SQL >select c.* ,c.instructor.name,

c.instructor.dept name from course c;

Figure 3.3. Creating and using object REF’s

Using an object reference to a related table has the potential of being more

efficient then using a relational foreign key. Performance testing for object refer-

ences versus relational table joins is presented in Chapter 4.

3.2 Overview of Object-Relational Database Sys-

tems

As more object-oriented applications are developed, increasingly more com-

plex requirements exist for the types of relationships and data these applications

must manipulate [13]. Object-relational databases have the ability to represent

complex data and the relationships between complex objects. Object-relational

database systems are based on the combination of OOPL and relational database

system features [32]. Object types and object tables are the most basic ORDBMS

30

concepts. An object is defined as a representation of an artifact that is being

modeled by the database. Each object represents a class instance and contains

the data structures from its class definition, along with access to class methods

[5]. Before an object table can exist an object type must be created with the

attributes of the object. Once an object type is created, an object table can be

created from the type where each row in the object table is an instastance of the

object [12]. When an object is created, the database system assigns it a system

generated unique object identifier (OID). An OID is never reused even if the

object is deleted and will never be modified. These features of OIDs allow each

object in an OR database to be unique. Although related objects are referenced

using OIDs, database users also have the option of using primary keys that are

used in RDBMSs for uniqueness as shown in Figure 3.4. RDBMS primary keys

and OIDs are different in that a user can choose and alter a primary key while an

OID cannot be chosen or altered (see Section 3.1.5). The stability of an OID is

important in an object-relational database when referencing objects because an

OID is guaranteed not to change causing an object reference to become invalid

[30].

SQL >create type PERSON TYPE as object(

person id varchar2(10),

first name varchar2(25),

last name varchar2(25));

SQL >create table person of PERSON TYPE (

person id primary key)

object identifier primary key

Figure 3.4. Creating and using object REF’s

Once objects are created, the majority of ORDMSs use SQL:2003 standards to

define OR integrity constraints, operations, object data structures, relationships,

31

transaction management, and OOPL features such as encapsulation, abstraction,

polymorphism, overriding, and overloading. The following sections present this

information in detail.

3.2.1 Data modeling

Data modeling is one of the most important parts of database and application

development because it specifies the kinds of real-world properties and operations

that must be represented in the database [35] [16]. A data model consists of a

set of data structures to store data, relationships, integrity constraints. There

are different levels of abstraction involved in database modeling.

The first level of abstraction is mapping real-world problems to a conceptual

model. The conceptual model is an in-depth analysis of how the system will be

used and the attributes needed to develop the system. For example, engineers

developing a conceptual model for a simple banking system might identify that

the system will be used to open and close personal and business accounts.

Once the purpose of the system has been identified, developers can determine

what attributes are needed to develop the system. This stage of data modeling

helps engineers, and users define the attributes and operations needed instead of

creating attributes and operations that could relate to the system, but are not

needed. For example, many attributes are available to engineers about banking

customers that could be used in developing a banking system; however, if the

system‘s use is only to open and close accounts only attributes relevant to those

operations are represented in the conceptual model. A conceptual model is usu-

ally created using design tools and is written in normal language that can be

understood by engineers and those the system is being developed for.

32

Besides determining the use of the system, conceptual modeling also in-

cludes identifying objects, methods, relationships and events between objects,

and behavior at the system external boundary [16]. During analysis, engineers

may determine the classes person, account, and the operations getBalance(),

deposit(), withdrawal(), and closeAccount() are needed. Once the use of

the system and all the classes, methods, relationships, and events have been

identified, the logical model can be developed.

The second level of database modeling is taking the conceptual model and

mapping it to a logical model that can be represented by a database system. The

purpose of a logical model is to use the capabilities of a database system to imple-

ment the conceptual model. From the simple banking system example engineers

would map the conceptual model to a logical model by creating a diagram that

shows objects, relationships, and methods involved in the data model.

The third level of abstraction involved in database modeling is the physical

data model. The physical model is the implementation of the logical model. For

the banking example, engineers would develop the SQL commands to create the

objects, methods, relationships, events, and interaction at the system boundaries

that were identified in the conceptual and logical models.

3.2.2 Standards in object-relational database systems

According to Connolly and Begg [12], there is no single OR data model, in-

stead database management creators use the SQL: 2003 standard as a guideline

and implemented the standard to whatever degree they desire. Although there

is not one OR model, since database vendors use the SQL:2003 standard, all

ORDBMSs do have relational tables, a query language, object types, object ta-

33

bles, methods, procedures, and the ability to store object data [12]. For example,

Oracle‘s 10g ORDBMS documentation states what standards from SQL: 2003 it

has implemented and which it has not implemented [30] .

History

The first standard to support object-relational databases was the ISO/IEC

9075/1999, commonly referred to as SQL:1999 [12]. Included in the SQL: 1999

standard are core and non-core standards. In order for a database vendor to say

that they comply with the SQL standard they must at least meet the core SQL

standards. The core SQL:1999 standards came from the SQL:1992 standard and

the non-core or extended standard was created to manage object-oriented data

by adding Binary Large Objects (BLOBs), Character Large Objects (CLOBs),

REFs, and user defined data types (UDTs).

Included in the ISO/IEC 9075/2003 standard —usually referred to as SQL:

2003 —is support for user-defined types, procedures, methods, functions, and

operators in addition to type constructors for types, and type constructors for

collection types such as arrays, sets, lists, and multisets [12]. To date, SQL:

2003 provides the greatest support for managing object-oriented data within a

relational framework.

3.2.3 Database modeling

The following sections present an overview of database modeling history and

OR database modeling.

34

3.2.3.1 Database modeling history

Currently the most used database model is the relational model (Section

2.1.1); however, in order to understand object-relational database modeling this

section provides information about the hierarchical and network database models.

The hierarchical database model, created in the mid 1960’s, represents data as

collections of records and relationships as trees whose nodes are these records [12].

The model represents the database as a set of trees, where the data (records) are

nodes and the relationships (sets) are represented as edges between the nodes

(parent/child relationships). The physical storage of data in the hierarchical

database model is collections of files linked by physical pointers; a main record is

at the top level, and subsequent types of records branch below. The hierarchical

data model’s best-known product is IBM’s IMS DBMS [12]. The model is also

used in the lightweight directory access protocol (LDAP) —a protocol to query

and modify organization directory information stored in systems such as Oracle

Internet Directory [17].

The network database model, created in 1964 by Charles Bachman, is a su-

perset of the hierarchical model where data is stored as collections of records

and relationships are stored as sets. The network model stores records and sets

the same way the hierarchical model stores them as nodes and edges respectively

[12]. The physical storage of data in the network model is also the same as the

hierarchical model —collections of files linked by physical pointers [12]. The main

difference in the network model from the hierarchical model is that the network

model can represent many-to-many relationships between nodes. This creates a

network of nodes instead of a tree graph. Although the network model can repre-

35

sent many-to-many relationships, it is still not adequate to manage data because

it still lacks the ability to support data independence.

The disadvantage for both models is that writing queries to retrieve informa-

tion required a deep understanding of the navigational structure of the data itself.

Consequently, users of the system had to know not only what data to retrieve

from the system (for example, select business customers), they had to know how

the data should be retrieved based on the physical storage of the data. This was

a complicated task and was generally left to experienced procedural programmers

[36].

In 1970, Codd proposed a solution to data storage in his paper, “A Relational

Model of Data for Large Shared Data Banks” [11]. Codd’s proposal was to

store data independently from hardware and create a nonprocedural language for

accessing data. Codd’s solution suggested that data should be stored in simple

tables with rows and columns instead of being stored in hierarchical or network

structures [11]. This method of data storage eliminates the need for a database

user or application to know the structure of the data in order to access that data.

Although the relational model has been adequate to this time it does not

support objects, UDT, or relationships between multiple objects [1]. To remedy

this, database vendors have extended the relational model to include support for

UDTs, objects and their relationships. It should be noted that not all researchers

and database users agree with extending the relational model to include support

for objects. For example, Date and Darwen [14] strongly disagree that the rela-

tional model is inadequate and do not believe that the relational model should

be changed. The following subsection discusses what the OR approach to data

modeling should include and presents its advantages and disadvantages.

36

3.2.3.2 Object-relational database modeling

Similar to the relational model (see Section 2.1.1), an OR data model must

have the following components [11]:

1. Data Structures used to store data: object tables

2. Integrity Constraints: object identifiers, relationships

3. Operations: query language

3.2.4 Data structures used to store data

SQL:2003 provides object types and object tables to store object data [30].

An object type is not the same as an object table. An object type is a logical

structure containing the attributes of an object. Before creating an object table,

an object type must be created with the attributes that define the object type.

Once an object type exists, an object table can be created using the SQL create

table statement shown in Figures 3.5 and 3.6.

Each row in an object table is a single object instance with the data types

specified in the object type [30]. For example, each row in the object table

name table in Figure 3.6 is an object instance with the attributes first and

last.

SQL >create type NAME TYPE as object(

first varchar2(25),

last varchar2(25));

Figure 3.5. Object type

37

Objects are stored in a relational table as either column objects, row objects,

or nested tables [30]. Object types used as attributes in an object table are

stored as column objects. Object tables created as an object type are stored as

row objects [30]. Objects can also be stored in nested tables where each column

object is a table. Examples of row, column, and nested table objects are given

in Figures 3.6, 3.7, and 3.8.

SQL >create table NAME TABLE of NAME TYPE;

Figure 3.6. Object stored as row object

SQL >create table PERSON TABLE(
id number(10) as primary key,
name col name type,
age number);

Figure 3.7. Object stored as object column

SQL >create table PERSON TABLE(

id number(10) as primary key,

name history name type,

age number(3))

NESTED TABLE name history store as h name tb;

Figure 3.8. Nested object table

According to Oracle’s documentation, their DBMS stores objects as a tree like

structure where the branches represent attributes and attributes that are objects

are stored as a subbranch of that attribute [30]. Each branch eventually ends

with an attribute that is a SQL data type such as number or varchar2 [30]. An

example of the storage structure for the person table from Figure 3.7 is shown

in Figure 3.9.

38

Figure 3.9. Storage of PERSON TABLE

3.2.5 Integrity Constraints

Constraints exist in both real-world objects and relationships between objects

[16]. Dates, times, and physical properties of objects are examples of constraints

on physical entities. There are constraints in both the physical world and the

abstract world. In the abstract world constraints are placed on objects either

by humans or by limits in technology. In databases, constraints are used to

implement business rules. For example, in a HR application, constraints on

employee hire dates, office numbers, and the department that an employee works

in can be defined to implement business rules defined in a company. There may

also be constraints placed on attributes from engineers creating the application

due to hardware or software limitations. For example, database designers may

put constraints on the maximum size of a tablespace because of a limited amount

of physical storage.

Constraints define what values are valid for each attribute. Starting with

Codd’s relational model, the ability to use constraints in database systems be-

came one of the standards for distinguishing relational database systems from

non-relational database systems [12]. This section compares constraints in an

39

OR database to constraints in a relational database system. Comparisons will

be made using Oracle’s 10g database system for both RDBMS and ORDBMS

schemas.

As shown in Figure 3.10, Oracle does not allow developers to create constraints

on type attributes [30].

SQL>create type ADDRESS TYPE as object (

street varchar2(50),

city varchar2(25),

state varchar2(2) NOT NULL,

zip varchar2(9));

PLS-00218: a variable declared NOT NULL must have

an initialization assignment.

Figure 3.10. Create constraint on type attribute

Constraints on types can be created in object tables when an object type is

used as either a row or column object [30]. Not allowing constraints on type

definitions is a feature of usability—enabling the type to be used by many dif-

ferent applications—since constraints are made specifically by each object table

using the objec type. For example, ADDRESS TYPE could have a constraint in one

application to only except addresses for the state ’CA’ while another applica-

tion or table may want to include all U.S. states. In both cases, even though

the constraints on each type are different, the same type can be used since the

constraints are not created on the definition of the type.

Similarly, in OOPLs constraints on types are not allowed. Some researchers

have proposed and implemented type constraints in OOPLs to efficiently analyze

and optimize object-oriented programs; however, this is an extension to OOPLs

[40]. SQL:2003 provides the following five types of constraints for relational table

40

attributes.

I. Not null

I I. Unique

I I I. Primary key

IV. Foreign key

V. Check constraints

These same five types of constraints should also work with object table and

type attributes. In the following subsections the five constraint types are created

on object table attributes in the create table statement. In addition, the basic

functionality of adding a constraint to an existing object table, and dropping a

constraint on an object table are tested.

I. Not Null constraint

Constraints in Oracle’s 10g ORDBMS are implemented on columns in object

tables. Figure 3.11 shows the SQL statement to implement a not null constraint

on the column street in the object table OBJ ADDRESS TABLE.

The ORA-01400 error in Figure 3.11 indicates that Oracle used the NOT NULL

constraint on the OBJ ADDRESS TABLE.STREET column. For comparison, a similar

NOT NULL constraint is implemented on the relational table REL ADDRESS TABLE

in Figure 3.12 that has the same attributes as OBJ ADDRESS TABLE from Fig-

ure 3.11. Once again, Oracle uses the NOT NULL constraint on the column street

and does not allow a NULL value to be inserted into the REL ADDRESS TABLE.

The next test of Oracle’s OR implementation of the NOT NULL constraint is

testing constraints on an object table created from an object type that has an

object type as one of its data types. Figure 3.13 shows implementation for the

41

SQL>create table OBJ ADDRESS TABLE of

ADDRESS TYPE(street not null);

SQL>insert into OBJ ADDRESS TABLE values

(null,null,null,99999);

ORA-01400: cannot insert NULL into (OBJ USER

.OBJ ADDRESS TABLE.STREET)

Figure 3.11. Object table NOT NULL constraint

SQL>create table REL ADDRESS TABLE(

street varchar2(50) not null,

city varchar2(25),

state char(2),

zip number);

SQL >insert into REL ADDRESS TABLE values

(null,null,null,99999);

ORA-01400: cannot insert NULL into

(RELATIONAL.REL ADDRESS TABLE.STREET)

Figure 3.12. Relational table NOT NULL constraint

NAME TYPE and PERSON TYPE created for use in the OBJ PERSON TABLE that has

the object types NAME TYPE and ADDRESS TYPE.

However, it may be confusing to application developers or database admin-

istrators that the NOT NULL constraint on the type address from Figure 3.12 is

not checked by Oracle if NULL is inserted for all attributes in the ADDRESS TYPE

as shown in Figure 3.14. The first insert statement in Figure 3.14 inserts null

for all attributes of the ADDRESS TYPE and the values are inserted into the table;

however, the second insert statement inserts a null ADDRESS TYPE and the values

are not inserted into the table [39].

42

SQL >create type NAME TYPE as object(

first name varchar2(15),

middle name varchar2(10),

last name varchar2(15)

);

SQL >create type PERSON TYPE as object(

name NAME TYPE,

address ADDRESS TYPE,

dob date);

SQL >create table OBJ PERSON TABLE of PERSON TYPE

(constraint add street nn

check(address.street is NOT NULL));

SQL >insert into OBJ PERSON TABLE values (

NAME TYPE(’George’, ’D’, ’Smith’),

ADDRESS TYPE(null, ’city’, ’CA’, 99999),

’12-DEC-1973’);

ORA-02290: check constraint

(OBJ USER.OBJ ADD STREET NN) violated

Figure 3.13. OBJ PERSON TABLE NOT NULL constraint

The first ADDRESS TYPE insert is identified as an object with null values and

the second ADDRESS TYPE insert is identified as a null object [30]. Although

by definition it may be clear why the first insert statement succeeded and the

second insert failed this behavior should be understood by application developers

and database administrators. To remedy confusion between null attributes of an

object type and null object types the syntax in Figure 3.15 should be used for a

NOT NULL constraint on an object type.

Another feature available in relational tables is the ability to add constraints

to existing tables. This feature allows changes to a table without having to take

the database offline, export data in the table, drop and recreate the table with

the correct not null columns and import the data into the newly created table.

43

SQL >create table OBJ PERSON TABLE of PERSON TYPE(

address not null);

SQL >insert into OBJ PERSON TABLE values (

NAME TYPE(’George’, ’D’, ’Doe’),

ADDRESS TYPE(null, null, null, null),

’12-DEC-1973’);

1 row inserted

SQL >insert into OBJ PERSON TABLE values (

NAME TYPE(’George’, ’D’, ’Doe’),

null,

’12-DEC-1973’);

ORA-01400: cannot insert NULL into

(OBJ USER.OBJ PERSON TABLE.ADDRESS)

Figure 3.14. All NULL values with NOT NULL constraint allowed

As shown in Figures 3.16 and 3.17, this feature is easy to implement with both a

relational and object tables.

Another feature available to database administrators is to drop NOT NULL

constraints from a table column. Figure 3.18 illustrates how NOT NULL constraints

are dropped from columns in a relational table. Likewise, the same syntax is used

to drop a NOT NULL constraint in an object table (Figure 3.19).

I I. Unique constraint

Another type of integrity constraint available in Oracle‘s 10g relational database

are unique constraints. A unique constraint specifies that a column must have

a unique value. In Figure 3.20 the object table OBJ ADDRESS TABLE is created

with the street column as unique. This guarantees the street column in the

OBJ ADDRESS TABLE will have unique values.

44

SQL >create table OBJ PERSON TABLE of PERSON TYPE(
address not null),
check ((address.street is not null) AND
(address.city is not null) AND
(address.state is not null) AND
(address.zip is not null)));

Figure 3.15. NOT NULL constraint on object type

SQL>alter table REL ADDRESS TABLE modify(

city varchar2(25) not null);

Table altered

Figure 3.16. Relational add NOT NULL constraint to existing table

However, as shown in Figure 3.21 if a column is not explicitly defined as NOT

NULL, nulls can be inserted multiple times even if a there is a unique constraint on

the attribute. This is the same functionality of nulls inserted in unique attributes

in relational tables. This is remedied in an object table by using the unique not

null constraint as shown in Figure 3.22.

The next type of unique constraint investigated is a unique constraint imposed

on an object table created from an object type that has a nested object type.

To show this the object types ADDRESS TYPE, NAME TYPE, and PERSON TYPE are

created (Figure 3.23). The object table PERSON TYPE has the nested objec type

ADDRESS TYPE, NAME TYPE.

As shown in Figure 3.24, a unique constraint is created on the address column

in OBJ PERSON TABLE; however, the SQL statement fails with an ORA-02329

error because unique constraints are not allowed to be created on object type

45

SQL>alter table OBJ ADDRESS TABLE modify city not

null;

Table altered

SQL>insert into OBJ ADDRESS TABLE values(

’1111 street name’,null,null,99999);

ORA-01400: cannot insert NULL into

(OBJ USER.OBJ ADDRESS TABLE.CITY)

Figure 3.17. Add NOT NULL constraint to existing object table

SQL>alter table REL ADDRESS TABLE modify city null;

Table altered

SQL>commit;

SQL>insert into REL ADDRESS TABLE values(

’1111 street name’,null,null,99999);

1 row inserted

Figure 3.18. Drop NOT NULL constraint on existing relational table

column attributes [30]. Instead, unique constraints on an object type must be

implemented by creating a unique constraint on every attribute in the object type

as shown in Figure 3.25. The insert statements in Figure 3.26 indicate that the

unique constraint is implemented correctly.

Another unique constraint function in Oracle for relational tables is the ability

to add unique constraints to existing relational tables. This gives database users

the ability to add constraints to a table after it is created [30] [39]. Without this

functionality it would be necessary to export the table, recreate the table, and

import in to the newly created table anytime a unique constraint was added to

46

SQL>alter table OBJ ADDRESS TABLE modify city null;

Table altered

SQL>insert into OBJ ADDRESS TABLE values(

’1111 street name’,null,null,99999);

1 row inserted

Figure 3.19. Drop NOT NULL constraint on existing object table

SQL>create table OBJ ADDRESS TABLE of ADDRESS TYPE(

street unique);

SQL>insert into OBJ ADDRESS TABLE values(

’111 any street’,null,null,’99999’);

1 row inserted

SQL>insert into OBJ ADDRESS TABLE values(

’111 any street’,null,null,’99999’);

ORA-00001: unique constraint (OBJ USER.SYS C006924) violated

Figure 3.20. Create unique constraint on object table

a table. As shown in Figure 3.27, an object table can be altered to add a unique

constraint in the same way that a unique constraint can be added to a relational

table. This does not require recreating the table.

Another functionality available for relational tables is the ability to drop

unique constraints. As shown in Figure 3.28, unique constraint PERSON UNIQUE is

dropped from the object table OBJ PERSON TABLE. Once the constraint is dropped,

two identical objects are inserted into the OBJ PERSON TABLE. This is the same

result if a unique constraint is dropped on a relational table.

47

SQL>insert into OBJ ADDRESS TABLE values(null,null,null,’99999’);

1 row inserted

SQL>insert into OBJ ADDRESS TABLE values(null,null,null,’99999’);

1 row inserted

Figure 3.21. Insert multiple NULL valued rows

SQL>create table OBJ ADDRESS TABLE of ADDRESS TYPE(

street unique not null);

SQL>insert into OBJ ADDRESS TABLE values (null,null,null,’99999’);

ORA-01400: cannot insert NULL into (OBJ USER.OBJ ADDRESS TABLE.STREET)

Figure 3.22. Unique NOT NULL constraint

I I I . Primary key constraint

As discussed in Section 3.2, by default in Oracle REFs are used for object

references instead of primary keys. Although REFs are used in an OR database

to reference related object tables, primary keys can be created if they are needed.

This section gives examples of how to create, add, and drop primary keys on

object tables in Oracle.

The SQL syntax to create a primary key for an object table is shown in

Figure 3.29. Null values are inserted into the object table OBJ ADDRESS TABLE

to check if the primary key on the object table OBJ ADDRESS TABLE is similar to

a primary key in a relational table. The null value inserted in the object table

48

SQL >create type ADDRESS TYPE as object (

Street varchar2(50),

City varchar2(25),

State varchar2(2),

Zip varchar2(9));

SQL>create type NAME TYPE as object(

first name varchar2(15),

middle name varchar2(10),

last name varchar2(15));

SQL>create type PERSON TYPE as object(

name NAME TYPE,

address ADDRESS TYPE,

dob date);

Figure 3.23. Create object types for OBJ PERSON TABLE

SQL>create table OBJ PERSON TABLE of PERSON TYPE(

address unique);

ORA-02329: column of datatype ADT cannot be unique or a primary

key

Figure 3.24. Create OBJ PERSON TABLE.address as unique

results in an ORA-01400 showing that the primary key constraint in an object

table does not allow null values to be inserted for primary key attributes.

As shown in Figures 3.30 and 3.31, similar to primary key constraints in

relational tables, primary keys in object tables can be added to existing tables

[31]. Like unique constraints on the OBJ PERSON TABLE attribute address, primary

keys can not be created on object types in an object table. Instead, a primary

key should be create on the object type attributes [31].

In a relational table a primary key can also be dropped from an existing table

(Figure 3.32). This may be necessary when a primary key changes and the old

49

SQL>create table OBJ PERSON TABLE of PERSON TYPE(

constraint person unique unique(

address.street,address.city,address.state,address.zip));

Table created

Figure 3.25. Create unique constraint on OBJ PERSON TABLE

SQL>insert into OBJ PERSON TABLE values (

NAME TYPE(’george’, ’D’, ’Doe’),

ADDRESS TYPE(’111 any street’,null,null,’99999’),

’12-DEC-1973’);

SQL>insert into OBJ PERSON TABLE values (

NAME TYPE(’george’, ’D’, ’Doe’),

ADDRESS TYPE(’111 any street’,null,null,’99999’),

’12-DEC-1973’);

ORA-00001: unique constraint (OBJ USER.PERSON UNIQUE) violated

Figure 3.26. Test PERSON UNIQUE constraint on address type

primary key is not longer necessary. This same functionality is also available

for object tables —dropping a primary keys is supported for an object table

(Figure 3.33) [31].

IV. Foreign key constraint

Included in the SQL:2003 standard are reference data types (i.e. REF type)

that allow object tables to be referenced from related object tables. This elimi-

nates the need for foreign keys in object tables. However, the SQL standard gives

database users the flexibility of adding foreign keys to object tables. This section

shows examples of how to implement foreign keys in an ORDBMS.

50

SQL>alter table OBJ PERSON TABLE add constraint person uniq

unique(address.street);

Figure 3.27. Add unique constraint to existing object table

SQL>alter table OBJ PERSON TABLE drop constraint person unique;

Table altered

SQL>insert into OBJ PERSON TABLE values (

NAME TYPE(’george’, ’D’, ’Doe’),

ADDRESS TYPE(’111 any street’,null,null,’99999’),

’12-DEC-1973’);

1 row inserted

SQL>insert into OBJ PERSON TABLE values (

NAME TYPE(’george’, ’D’, ’Doe’),

ADDRESS TYPE(’111 any street’,null,null,’99999’),

’12-DEC-1973’);

1 row inserted

Figure 3.28. Test drop PERSON UNIQUE constraint on address.street

Since columns cannot be added to object tables, as shown in Figure 3.34, the

PERSON TYPE is altered by adding a column person id. The person id attribute

in the OBJ PERSON TABLE is used as a foreign key in OBJ ADDRESS TABLE. If there

were any rows in the object table OBJ PERSON TABLE the column person id would

need to be populated with a valid value before it was used as a primary key.

In Figure 3.35, OBJ PERSON TABLE is altered with a primary key on person id

and the OBJ ADDRESS TABLE is created for storing secondary addresses. The ob-

ject table OBJ ADDRESS TABLE should not have values if the OBJ PERSON TABLE

address is null. This is implemented by a primary key in the OBJ PERSON TABLE

and a foreign key in the OBJ ADDRESS TABLE. This implementation allows a per-

51

SQL>create table OBJ ADDRESS TABLE of ADDRESS TYPE (

constraint address pk primary key (street,city,state));

SQL>insert into OBJ ADDRESS TABLE values(

’1111 any street’,null,null,’99999’) ;

ORA-01400: cannot insert NULL into (OBJ USER.OBJ ADDRESS TABLE.CITY)

Figure 3.29. Create primary key constraint

SQL>alter table REL ADDRESS TABLE add constraint

address pk primary key (street,city,state,zip);

Table altered

Figure 3.30. Add primary key constraint to relational table

son to have many different addresses, yet not have to store them all in the

OBJ PERSON TABLE. For example, a student may have an address at school, a

home address, a parent’s address, and an address while studying abroad. In-

stead of changing the primary address every time, the business rule for student

addresses may be to have the home address as the primary address and add in

other addresses as the student moves while at school or studies abroad.

The foreign key created in Figure 3.35 on the person id column is tested by

the insert statement in Figure 3.36. A valid row is inserted into the OBJ PERSON TABLE

table. A row is then inserted into the OBJ ADDRESS TABLE table with a valid for-

eign key. Both these inserts succeed. In order to test the foreign key in the

OBJ ADDRESS TABLE an invalid person id is inserted into the table. Since this

person id does not exist in the OBJ PERSON TABLE the row should not be inserted

in the the OBJ ADDRESS TABLE. Figure 3.36 shows that the invalid values are not

inserted into the OBJ ADDRESS TABLE.

52

SQL>alter table OBJ PERSON TABLE add constraint

person pk primary key (name.first name,name.last name,dob);

Table altered

Figure 3.31. Add primary key constraint

SQL>alter table REL ADDRESS TABLE drop primary key;

Table altered

Figure 3.32. Delete relational table primary key

Dropping the foreign key constraint, as shown in Figure 3.38, allows users

of the database system to insert a row with a person id that does not exist in

the OBJ PERSON TABLE (since the person id 1111111112 does not exist in the

OBJ PERSON TABLE). This example shows that the foreign key on person id is

actually dropped.

V. Check constraints

Check constraints are used to implement business rules and constraints on

data stored in a relational database. Since check constraints can be implemented

in relational tables, the same functionality should be available when creating ob-

ject tables. This section compares functionality of check constraints in relational

tables to check constraints in object tables.

The types ADDRESS TYPE and PERSON TYPE are used in Figure 3.39 to create

a check constraint on the attribute dob in the table OBJ PERSON TABLE. Testing

shown in Figure 3.39 confirms that the check constraint DOB CK is used when

inserting into the OBJ PERSON TABLE.

53

SQL>alter table OBJ PERSON TABLE drop constraint person pk;

Table altered

Figure 3.33. Delete object table primary key

SQL>alter table OBJ PERSON TABLE add person id number;

ORA-22856: cannot add columns to object tables

SQL>alter type PERSON TYPE add attribute person id number(10)

CASCADE;

Type altered

SQL>desc PERSON TYPE;

Element Name Type

——— ————

NAME NAME TYPE

ADDRESS ADDRESS TYPE

DOB DATE

PERSON ID NUMBER(10)

Figure 3.34. Alter PERSON TYPE

It should also be possible to create check constraints on a object table created

from an object type that has a nested object type. As shown in Figure 3.40,

the check constraint state ck is created on the address.state attribute in the

OBJ PERSON TABLE . A row is then inserted into the OBJ PERSON TABLE with an

invalid value in the address.state attribute. As shown in Figure 3.40, the invalid

row value is not inserted into the OBJ PERSON TABLE.

As with the previous constraints, it should be possible to add a check con-

straint to an existing table. In Figure ??, the address.state is added to the

54

SQL>alter table OBJ PERSON TABLE add

constraint person pk primary key (person id);

Type altered

SQL>alter type ADDRESS TYPE add attribute person id number(10)

cascade;

Type altered

SQL>create table OBJ ADDRESS TABLE of ADDRESS TYPE(

constraint address fk foreign key(person id)

referencing OBJ PERSON TABLE(person id));

Table created

Figure 3.35. Create OBJ ADDRESS TABLE with foreign key

OBJ PERSON TABLE to check that the state value is ’CA’. The invalid value ’NV’

in the inserted statement results in an ORA-02290 error “check constraint vio-

lated”. This shows that it is possible to add a check constraint to an existing

object table.

As shown in Figure ??, it is also possible to drop check constraints on object

tables. After the check constraint is dropped, the insert statement that previously

failed because of the address.state value ’NV’ is now inserted. The ability to

drop check constraints allows database administrators to drop business rules for

an object the same way the can be dropped in a relational table.

As shown in the previous five subsections, Oracle provides the same func-

tionality for constraints on object tables as relational tables. Constraints can

be created on object tables and attributes of object types in an object table. It

is necessary for application developers and database administrators to be aware

of using the NOT NULL constraint on object types in an object table. Instead of

creating the NOT NULL constraint on the object type, it should be created on the

55

SQL>insert into OBJ PERSON TABLE values (

NAME TYPE(’george’, ’D’, ’Doe’),

ADDRESS TYPE(’111 L street’,’Los Osos’,’CA’,93412,111111111),

’12-DEC-1978’,

1111111111);

1 row inserted

SQL>insert into OBJ ADDRESS TABLE values (

’111 A street’,’Los Osos’,’CA’,’93412’,1111111111);

1 row inserted

SQL>insert into OBJ ADDRESS TABLE values (

’111 A street’,’Los Osos’,’CA’,’93412’,1111111112);

ORA-02291: integrity constraint (OBJECT USER.ADDRESS FK) violated

- parent key not found

Figure 3.36. Test foreign key constraint

object type attributes to guarantee that an object type with all null values can

not be inserted (Figure 3.14).

It is also possible to create primary and unique constraints on an object type

in an object table; however, instead of using the object type name the object

type attributes should be used (Figure 3.28 and Figure 3.24).

3.2.6 Operations

In an RDBMS operators for manipulating tables are done using SQL and

PL/SQL procedures. An object-relational database system must also provide

operators for manipulating objects. These operators are provided through exten-

sions to SQL to include operations on objects, vendor specific database functions,

and PL/SQL procedures. These operators include functionality to create, insert,

56

SQL>create type ADDRESS TYPE as object(

person id varchar2(10),

street varchar2(25),

city varchar2(25),

state varchar2(2),

zip varchar2(9));

SQL>create type NAME TYPE as object(

person id varchar2(10),

first name varchar2(15),

middle name varchar2(10),

last name varchar2(15));

SQL>create type PERSON TYPE as object(

name NAME TYPE,

address ADDRESS TYPE);

SQL>create table OBJ PERSON TABLE of PERSON TYPE(

constraint person pk primary key(person id));

SQL>alter table OBJ PERSON TABLE add

constraint person pk foreign key(address.person id)

referencing OBJ PERSON TABLE(person id) ;

Figure 3.37. Create nested object foreign key

delete, and update objects, alter and drop object types in addition to functions

to compare objects, convert user-defined types to another type, and reference and

deference object references.

Operators provided by the SQL standard include select, update, alter, create,

and delete statements that contain clauses used to manipulate object types, in

addition to functions CAST, TREAT, DEREF, VALUE, IS OF TYPE.

The function CAST converts one built-in datatype or object type value into

another built-in datatype or object type [31]. This is similar to casting in OOPLs.

The function TREAT allows you to change the declared type of a SQL expression

argument, as shown in Figure 3.55. TREAT is useful when converting a supertype

57

SQL>alter table OBJ ADDRESS TABLE drop constraint address fk;

SQL>insert into OBJ ADDRESS TABLE values (

’111 A street’,’Los Osos’,’CA’,’93412’,1111111112); 1 row inserted

Figure 3.38. Drop foreign key constraint

SQL>create table OBJ PERSON TABLE of PERSON TYPE (

constraint dob ck check(dob >’1-JAN-1900’));

Table created

SQL>insert into OBJ PERSON TABLE values (

NAME TYPE(’george’, ’D’, ’Doe’),

ADDRESS TYPE(’2 street’, ’city’, ’CA’, ’99999’),

’12-DEC-1865’);

ORA-02290: check constraint (OBJ USER.DOB CK) violated

Figure 3.39. Create and test check constraint DOB CK

to a more specialized subtype [31]. The DEREF function returns the values in an

object instance referenced by a REF [31]. For example, the DEREF SQL statement

select DEREF(c.instructor) from OBJ COURSE c using the obj course table

schema in Figure 4.15 to return values in the OBJ INSTRUCTOR object instances.

In comparison, the SQL statement select c.instructor from OBJ COURSE c

returns the OID reference to the OBJ INSTRUCTOR object.

The VALUE function treats a row as an object and returns the attributes for the

object within a constructor for the object type. An example of using the VALUE

function is shown In Figure 3.56. In addition, Figure 3.55 shows an example of

the function IS OF VALUE which has the key words IS OF TYPE (type name) or

IS OF (only type name) [31]. This function is useful when specialized subtypes

are selected from a supertype table.

58

SQL>drop table OBJ PERSON TABLE;

Table dropped

SQL>create table OBJ PERSON TABLE of PERSON TYPE (

constraint state ck check(address.state in (’CA’,’WA’,’OR’));

Table created

SQL>insert into OBJ PERSON TABLE values (

NAME TYPE(’Jane’, ’D’, ’Doe’),

ADDRESS TYPE(’2 B street’, ’Los Osos’, ’CA’, ’93412’),

’12-DEC-1969’);

1 row inserted

SQL>insert into OBJ PERSON TABLE values (

NAME TYPE(’Jane’, ’D’, ’Doe’),

ADDRESS TYPE(’2 street’, ’Las Vegas’, ’NV’, ’99999’),

’12-DEC-1969’);

ORA-02290: check constraint (OBJ USER.STATE CK) violated

Figure 3.40. Create check constraint

The last two SQL object operators are the map and order functions. SQL

data types such as varchar2 or number have a predefined order that is used

for comparison [30]. In order to perform object comparisons either a map or

order method must be implemented [31]. A map method compares objects by

mapping an object instance to a SQL scalar data type such as NUMBER shown

in Figure ??. Once a map method is defined, it can be used in less-than and

greater-than comparisons in addition to GROUP BY, UNION and ORDER BY clauses.

An order method compares objects instances without mapping them to scalar

SQL types [30]. Each order method has one parameter of the object type that is

being compared as shown in Figure ??. The return value from an order method

is either -1, 0, or 1 which indicates less than, equal, or greater than respectively.

59

SQL>create table OBJ PERSON TABLE of PERSON TYPE;

Table created

SQL>alter table OBJ PERSON TABLE add constraint state ck

check (address.state in (’CA’));

Table altered

SQL>insert into OBJ PERSON TABLE values (

NAME TYPE(’Jane’, ’D’, ’Doe’),

ADDRESS TYPE(’2 street’, ’Las Vegas’, ’NV’, ’99999’),

’12-DEC-1969’);

ORA-02290: check constraint (OBJ USER.STATE CK) violated

Figure 3.41. Add check constraint to existing object table

To avoid conflicts, only a map method or an order method can be defined for an

object type, not both.

3.2.7 Relationships

One of the main differences between a RDBMS and an ORDBMS is how rela-

tionships are managed. A relational database has primary and foreign keys that

relate tables to one another; however, in an OR database, relationships between

objects are related by default with OIDs. Neither human users nor query lan-

guages ever modify or assign OIDs; rather, the ORDBMS automatically assigns

the objects an OID, which are only seen internally. An OID is unique to an

object for the object’s lifespan and operates independently from its attributes’

values [12]. Since relationships in an object-relational database are based on

values that cannot change, an OID automatically provides entity integrity [24].

Although OID’s result in entity integrity, it does not guarantee that object in-

60

SQL>alter table OBJ PERSON TABLE drop constraint state ck;

Table altered

SQL>insert into OBJ PERSON TABLE values (

NAME TYPE(’Jane’, ’D’, ’Doe’),

ADDRESS TYPE(’2 street’, ’Las Vegas’, ’NV’, ’99999’),

’12-DEC-1969’);

1 row inserted

Figure 3.42. Drop object table check constraint

stance values will be unique [30]. Using an OID to represent relationships, versus

using primary and foreign keys, is thought to result in better performance for

OR databases since joins are not needed to access data in related tables [15] [22].

Performance testing for object reference versus relational joins is given in Chapter

4. Besides OIDs, other relationships that exist in the OR model are inheritance,

association, and aggregation [24].

3.2.7.1 Inheritance

Inheritance allows developers to take objects that have similar attributes and

methods and abstract out the similarities —creating subclasses that inherit from

a superclass. All instances of subclasses are also instances of the superclass,

and all properties of the superclass are properties of the subclass [24] [30]. The

relationship between a subclass and an inherited class is called an IS—A rela-

tionship. For example, in Figures 3.49 and 3.51, the person and student types

have an inheritance relationship.

There are several types of inheritance: single, multiple, union, mutual ex-

clusion, partial, repeated, and selective inheritance [12] [38]. The primary in-

61

SQL> create type employee_type as object(
start_date date,
manager NAME TYPE,
depart_id varchar2(5),
salary number,
MAP MEMBER FUNCTION income RETURN NUMBER);

CREATE TYPE BODY income AS
MAP MEMBER FUNCTION income RETURN NUMBER IS

BEGIN
RETURN salary;

END income;
END;

Figure 3.43. MAP method

heritance types software engineers use when developing an application are single

inheritance and multiple inheritance. Single inheritance is a subclass that inherits

from only one superclass. In contrast, multiple inheritances imply that a subclass

inherits from more than one superclass [37]. ORDBMS object inheritance allows

direct mapping from application objects to persistent database objects. This is

identified as a main shortcoming of the relational model by application developers

[13] [14].

Besides direct mapping from application objects to database objects, inheri-

tance allows software engineers to design an overall better application by increas-

ing applications expressiveness, convenience, and maintainability [5] [17]. For

instance, changes made in a superclass, will automatically be propagated to all

subclasses [26]. This increases maintainability in OR databases compared to a

relational database, where database administrators or applications must update

each related table [37]. Moreover, inheritance provides convenience and expres-

62

SQL> create type employee_type as object(
start_date date,
manager NAME TYPE,
depart_id varchar2(5),
salary number,
ORDER MEMBER FUNCTION income (e employee_type) RETURN INTEGER);

CREATE TYPE BODY income AS
MAP MEMBER FUNCTION income (e employee_type) RETURN INTEGER IS

BEGIN
IF salary < e.salary then

RETURN -1;
IF salary > e.salary then

RETURN 1;
ELSE
RETURN 0;

END IF;
END income;
END;

Figure 3.44. ORDER method

siveness in a database system by creating high coupling between the database

and the application accessing it. These are all desirable and well-developed ap-

plication features that will provide valuable throughout the lifetime of the object-

oriented application.

3.2.7.2 Association relationships

Association relates two or more independent objects creating a “membership-

of” relationship between them [18]. An association relationship is often referred

to as a grouping or partitioning mechanism [16]. For example, an association

relationship would be between the employee and corporation objects since an

employee has a membership relationship with their employer. Association rela-

63

tionships are binary and can be one-to-one, one-to-many, or many-to-many [37].

Examples of association relationships include worksFor, memberOf, worksIn,

and presidentOf. SQL: 2003 supports the binary relationships of one-to-one,

one-to-many, and many-to-many [35]. It also specifies that an OR database

must maintain referential integrity of these relationships [35]. For instance, if

an employee object is deleted from the previous example, the relationship paths

referencing the object in the corporation object must also be deleted.

SQL> create type PERSON_TYPE(
person_id varchar2(10),

name NAME_TYPE);

SQL> create type COURSE_TYPE(
course_id varchar2(10),
course_name varchar2(30));

SQL> create table STUDENT_TB of PERSON_TYPE(
person_id primary key);

SQL> create table COURSE_TB of COURSE_TYPE(
course_id primary key);

SQL> create table ENROLLS_IN(
student REF PERSON_TYPE,
course REF COURSE_TYPE);

Figure 3.45. Association many-to-many

3.2.7.3 Aggregation relationships

In addition to inheritance and association, OR databases also provide ag-

gregation relationships between objects. In an OR database, aggregation is the

grouping of objects that have the WHOLE-PART relationship [37]. This rela-

64

SQL> create type PERSON_TYPE(
person_id varchar2(10),
name NAME_TYPE);

SQL> create type COURSE_TYPE(
course_id varchar2(10),
course_name varchar2(30,
course_instructor REF PERSON_TYPE);

SQL> create table INSTRUCTOR_TB of PERSON_TYPE(
person_id primary key);

SQL> create table COURSE_TB of COURSE_TYPE(
course_id primary key);

Figure 3.46. Association one-to-many

tionship is a collection of objects (subparts) that make up a whole collection [18].

For example, in manufacturing an airplane, many objects make up the final ar-

tifact being created; an airplane is made of body, wings, rudders, flaps, engines,

instruments, wheels, and seats, just to name a few parts. If an engineer uses an

OR database with aggregation to model an airplane, the airplane is viewed as a

single object and only exists if each object that is part of the whole plane exists

[24] [26].

3.2.8 Object-relational encapsulation

Encapsulation, a feature of OOPLs, is the ability to store both data and

methods together in an object. Encapsulation in an ORDBM provides logical

data independence by allowing modifications to object data methods without

having to make changes to applications that access them [7] For example, Fig-

65

SQL> create type OFFICE_TYPE(
office_id varchar2(10),
building_num varchar2(10));

SQL> create type PERSON_TYPE(
person_id varchar2(10),
name NAME_TYPE,
office REF OFFICE_TYPE);

SQL> create table OFFICE_TB of OFFICE_TYPE(
office_id primary key);

SQL> create table INSTRUCTOR_TB of PERSON_TYPE(
course_id primary key);

Figure 3.47. Association one-to-one

ure ?? has a person object with the data attributes name, address, id, and

the method who am i()all stored in the same object. If developers modified the

method who am i() to also return age, the application calling who am i() would

not have to be modified. Encapsulation in ORDBMSs also reduces the amount

code applications developers must create (see Section 3.1.4). In most companies

Database Administrators (DBAs) that manage data and developers using the

data in applications work together closely. In ORDBMSs application developers

and DBAs have the flexibility to choose whether methods should be stored with

the data and managed by DBA’s or created in the application and managed by

application developers. One advantage to storing methods in ORDBMSs is that

database methods can return objects containing multiple data values instead of

applications making multiple selects or joins to get the same data. This reduces

the number of calls from the application to the database. A disadvantage to us-

66

SQL> create type QUESTION_TYPE(
quest_id varchar2(10),
question varchar2(256));

SQL> create type QUESTION_TB_TYPE as
table of QUESTION_TYPE;

SQL> create type HOMEWORK_TYPE(
HW_id varchar2(10),
questions QUESTION_TB_TYPE);

SQL> create type HOMEWORK_TB_TYPE

SQL> create table COURSE_MATERIAL(
course_id primary key,
homework_assign HOMEWORK_TB_TYPE)
NESTED TABLE homework_assign STORE AS HW_TB

(NESTED TABLE questions STORE AS Q_TB);

Figure 3.48. Aggregation using nested tables

ing database methods to manipulate database objects is encountered if database

methods change names or new methods are added.

3.2.9 Object-relational abstraction

Abstraction, as defined in Section 2.3.2, is a feature of OOPLs that is con-

cerned with having the ability to isolate aspects of a problem or certain data

elements that are important while suppressing the information that is unim-

portant to solving the problem. This section compares OOPLS abstraction to

abstraction in an ORDBMS. Abstraction in OOPLs allows developers to break

problems into smaller problems by using public data with methods that access

public data. For example, developers may need to create software to close bank

67

accounts. Instead of writing one long algorithm in a file to solve the problem,

OOPLs provide functions that allow developers to break the problem into sub

problems getName(), getBalance() for example.

Abstraction is also available to DBAs through the use of PL/SQL procedures

and functions and methods stored with an object as in Figure 3.49. This allows

designers to abstract out unimportant information by creating functions that

have a single purpose.

3.2.10 Object-relational polymorphism and overriding

One advantage to using OOPLs is polymorphism —the ability to have a

subtype to use a supertype. This subsection compares OOPL polymorphism (see

Section 2.3.5) to polymorphism in an ORDBMS. SQL:2003 uses under in the

create type statement in order to implement type polymorphism (see Figure 3.51).

As a subtype of PERSON TYPE, STUDENT TYPE inherits all attributes and methods

declared in or inherited by PERSON TYPE.

After a student row is inserted in Figure 3.54, notice that the employee at-

tributes and student attributes are not returned in the SQL statement in Fig-

ure 3.55. This is for a very good reason. The attributes salary, major, minor etc

are not valid identifiers in the PERSON TABLE. Instead, SQL provides the TREAT()

function (see Figure 3.56) to retrieve the attributes salary, major, minor etc from

the PERSON TABLE. Besides providing object polymorphism through inheritance,

SQL also implements OOPL polymorphism with object views.

Another feature of OOPL polymorphism is the ability to override super type

member methods with subtype methods [30]. To compare OOPL overriding

functionality, the types PERSON TYPE, EMPLOYEE TYPE, and STUDENT TYPE are

68

SQL>alter type PERSON TYPE add

member function who am i return varchar2

cascade;

SQL>alter type PERSON TYPE

add attribute id number(10) not final cascade;

Type altered

SQL>create or replace type body PERSON TYPE as

member function who am i return varchar2 is

begin

return ’PERSON’;

end;

end;

Figure 3.49. Create PERSON TYPE

SQL>create type EMPLOYEE TYPE under PERSON TYPE(

start date date,

manager NAME TYPE,

depart id varchar2(5),

salary number

member function who am i return varchar2);

Figure 3.50. Create EMPLOYEE TYPE

altered to override the PERSON TYPE member methods. Before a method can be

overridden, it must be declared as not final in the super type, as shown in Fig-

ure 3.49. In Figure 3.58, the function who am i() inherited from the PERSON TYPE

is overridden by the type STUDENT TYPE.

Next, as shown in Figures 3.59 and 3.60, the type EMPLOYEE TYPE is altered to

also override the who am i() method inherited from PERSON TYPE. Now both the

EMPLOYEE TYPE and the STUDENT TYPE have overridden the who am i() method.

Since the method is overridden, if the method is called for a STUDENT TYPE or

69

SQL>create type STUDENT TYPE under PERSON TYPE(

major varchar2(4),

minor varchar2(4),

gwr score number(3),

start date date);

Figure 3.51. Create STUDENT TYPE

SQL>create table PERSON TABLE of PERSON TYPE (

constraint person pk primary key(id));

Table created

Figure 3.52. Create PERSON TABLE

EMPLOYEE TYPE, the method should return ’STUDENT’ or ’EMPLOYEE’ respectively

[30].

As shown in Figure 3.61, when the method who am i() is used, the correct

value is returned depending on what type called the method. This is the same

functionality of OOPL when overriding an inherited method [16].

Similar to OOPLs, there are restrictions in an ORDMS for overriding a su-

pertype. The overridden method must have the same default parameter values

and static supertype methods can not be overridden.

3.2.11 Access control

Access control is ability for data administrators to have control over what

data can be accessed by each user. This is a feature of a RDBMS (see Section

2.3.1). This subsection compares access control in a RDBMS to access control in

an ORDBMS.

70

SQL>insert into PERSON TABLE values (

EMPLOYEE TYPE(NAME TYPE(’Employee’,’D’,’Jones’),

ADDRESS TYPE(’12345 A Street’,’Los Osos’,’CA’,’93412’),

’01-JAN-80’,

1234567890,

’01-JAN-07’,

NAME TYPE (’Manager’, ’A’, ’Jones’),

11111,

37000));

Figure 3.53. Insert EMPLOYEE TYPE

SQL>insert into PERSON TABLE values (

STUDENT TYPE(

NAME TYPE(’Student’,’B’,’Jones’),

ADDRESS TYPE(’1333 B Street’,’Los Osos’,’CA’,’93412’),

’01-JAN-85’,

1234567899,

’CSC’,

null,

8,

’01-JAN-07’));

1 row inserted

Figure 3.54. Insert STUDENT TYPE

Database administrators can implement access control in a relational database

by granting and revoking privileges to database users [12]. The granted privileges

allow users to create or view database objects for example tables, packages, views.

Granting or revoking privileges determines what database objects each user has

access to and what changes they can make. Likewise in Oracle’s 10g ORDBMS,

privileges are used to implement access control. Database administrators can

grant or deny access to objects, object tables, object types, object view,packages,

procedures, views, and tables to allow or deny access to database users.

71

SQL>select * from PERSON TABLE;

NAME(FIRST NAME, MIDDLE NAME, LAST NAME)

NAME TYPE(’Employee’, ’D’, ’Jones’)

NAME TYPE(’Student’, ’B’, ’Jones’)

ADDRESS(STREET, CITY, STATE, ZIP)

———————————————————

ADDRESS TYPE(’12345 A Street’, ’Los Osos’, ’CA’, ’93412’)

ADDRESS TYPE(’1333 B Street’, ’Los Osos’, ’CA’, ’93412’)

DOB ID

——— ———–

01-JAN-80 1234567890

01-JAN-85 1234567899

Figure 3.55. Select from PERSON TABLE

3.2.12 Transaction Management

In a relational database transaction management provides concurrency control

and fault tolerance by using commit, rollback, and locks(Section 2.1) [30]. Before

using an ORDBMS to store persistent application data, database administrators

and application developers must know that transactions in an ORDBMS also

provide concurrency control and fault tolerance. The SQL:2003 standard specifies

the use of commit, rollback, and locks for transaction managment. Since the

three major ORDBMS vendors —Oracle, IBM and Microsoft —have extended

their relational databases to include objects following the SQL:2003 standard,

they all provide transaction management.

72

SQL>select

treat(value(p) as PERSON TYPE).name.first name ‘‘First’’,

treat(value(p) as PERSON TYPE).name.last name ‘‘Last Name’’,

treat(value(p) as EMPLOYEE TYPE).salary ‘‘Salary’’,

treat(value(p) as EMPLOYEE TYPE).start date ‘‘start dt’’,

treat(value(p) as EMPLOYEE TYPE).depart id ‘‘Dept’’,

treat(value(p) as EMPLOYEE TYPE).manager.first name ‘‘Mgr First’’,

treat(value(p) as EMPLOYEE TYPE).manager.last name ‘‘Mgr Last’’

from PERSON TABLE p

where value(p) is of (only EMPLOYEE TYPE);

First Last Name Salary Start dt Deptment Mgr First Mgr Last

———————————————————————————

Worker Jones 37000 1/1/2007 11111 Manager Jones

Figure 3.56. Select EMPLOYEE TYPE

SQL>alter type STUDENT TYPE add

overriding member function who am i return varchar2

cascade;

SQL>create or replace type body STUDENT TYPE as

overriding member function who am i return varchar2 is

begin

return ‘STUDENT‘;

end;

end;

Figure 3.57. Add method to STUDENT TYPE

73

SQL>desc STUDENT TYPE

Element Name Type

———- ————

NAME NAME TYPE

ADDRESS ADDRESS TYPE

DOB DATE

ID NUMBER(10)

MAJOR VARCHAR2(4)

MINOR VARCHAR2(4)

GWR SCORE NUMBER(3)

START DATE DATE

who am i FUNCTION

Figure 3.58. Add method to STUDENT TYPE

SQL>alter type EMPLOYEE TYPE add

overriding member function who am i return varchar2

cascade;

create or replace type body EMPLOYEE TYPE as

overriding member function who am i return varchar2 is

begin

return ’EMPLOYEE’;

end;

end;

Figure 3.59. Add method to EMPLOYEE TYPE

74

SQL>desc EMPLOYEE TYPE

Element Name Type

————- ————

NAME NAME TYPE

ADDRESS ADDRESS TYPE

DOB DATE

ID NUMBER(10)

START DATE DATE

MANAGER NAME TYPE

DEPART ID VARCHAR2(5)

SALARY NUMBER

who am i FUNCTION

Figure 3.60. Describe EMPLOYEE TYPE

SQL >select

treat(value(p) as PERSON TYPE).name.first name ‘‘First’’,

treat(value(p) as PERSON TYPE).name.last name ‘‘Last’’,

p.who am i() who

from PERSON TABLE p;

First Last Who

Employee Jones EMPLOYEE

Student Jones STUDENT

Figure 3.61. Use overridden who am i methods

75

Chapter 4

Performance Comparison

Between ORDBMS and RDBMS

In order to determine the cost of using an ORDBMS for persistent object

storage, performance testing was done using a database management system that

can store object-relational and relational data.

The machine used for testing was an Intel Pentium 3.0GHz with 1G of mem-

ory. All tests were done on a cold database by restarting the machine before each

test to avoid any data caching problems. The object-relational and relational

testing was done using the data schema in Figure 4.1. Similar to BORD and 007

benchmark testing, SQL insert, select, update, delete, and join statements were

tested [6] [28]. In order to determine if the number of attributes in an object type

increased or decreased performance for inserts, deletes, and updates compared to

a relational table, each test was done varying the attributes starting with four

and ending with sixteen attributes. Primary keys with indexes were created for

each table to follow best practices in the testing scenario.

76

Results from testing found that overall the cost of using an object table com-

pared to a relational table is minimal for inserts, selects, updates and deletes.

However, it is substantially faster to use object reference to access related tables

instead of using relational joins.

Figure 4.1. Relational and Object table schemes

4.1 Relational table insert vs. Object table in-

sert

For each insert test results where recorded for 10, 100, 1,000, and 10,000 rows

inserted. Performance results for inserting 1000 rows are shown in Figure 4.2.

Insert testing results for inserting 10, 100, 10,000 rows are in Appendix B. Results

77

for inserting 10, 100, 1000, 10,000 rows into an object table with one type and

four to sixteen attributes show that on average it is ten percent faster to insert

into an object table than a relational table.

Figure 4.2. Relational vs. Object table insert

4.2 Relational table select vs. Object table se-

lect

Selects were tested using the person table schemas in Figure 4.1. For each

select test, results where recorded for 10, 100, and 1,000 rows inserted. Perfor-

mance results for inserting 1000 rows are shown in Figure 4.3. Insert testing

results for inserting 10, 100 rows are in Appendix B. The object and relational

select statements are shown in Figures 4.4 and 4.5. Results for selecting 10, 100,

78

and 1000 rows from an object table with one type and four to sixteen attributes

show that on average it is five percent slower to select from an object table than

a relational table.

Figure 4.3. Relational vs. Object table select

SQL >select * from obj person table;

Figure 4.4. Object select statement

SQL >select * from rel person table;

Figure 4.5. Relational select statement

79

4.3 Relational table update vs. Object table

update

Performance testing for updates in the person table object and relational

table was done using the same number of attributes as inserts and deletes. In

the same manner, the number of updates tested were 10, 100, and 1000 for each

number of attributes tested. The SQL update statement updated every row in

the OBJ PERSON TABLE and REL PERSON TABLE tables (Figures 4.6 and 4.7). Each

test was run ten times and the average of the results are recorded. Results for

updating 1000 rows are shown in Figure 4.8. Results for updating 10, 100 and

1000 rows show that on average it is two percent slower to update an object table

then a relational table.

SQL >update obj person table

set middle name=’S’ where first name=’L’;

Figure 4.6. Object update statement

SQL >update rel person table

set middle name=’S’ where first name=’L’;

Figure 4.7. Relational update statement

4.4 Relational table delete vs. Object table delete

Performance testing for deletes was done using the person table schema in

Figure 4.1 varying the number of attributes in both the object table and the

relational table from four to sixteen attributes. In addition, the number of rows

80

Figure 4.8. Relational vs. Object table update

in the table deleted was tested using 10, 100, and 1000 rows. The SQL statements

used when testing deletes are shown in Figures 4.9 and 4.10. Each test was run ten

times and the average of the results are recorded. Figure 4.11 shows performance

testing results for deleting 100 rows from the object and relational person table

varying the number of attributes from four to sixteen.

Comparing the test results for object and relational table deletions shows

that on average there is a two percent performance overhead to delete from an

object compared to a relational table. These results were expected because the

database vendor for the object and relational database is the same and deletes

from relational tables are suspected to be the same as deletes from object tables.

81

SQL >delete from obj person table;

Figure 4.9. Object delete SQL statement

SQL >delete from rel person table;

Figure 4.10. Relational delete SQL statement

4.5 Relational Joins vs. Object References

A more interesting test is the performance difference between using a rela-

tional join and object references to access data in related tables. Testing was done

using small, medium, and large data sets for the object and relational course and

instructor schemas from Figure 4.14. The small data set had 1,200 and 3,500 rows

in the instructor and course tables respectively. The medium data set had 17,000

and 50,000 rows in the instructor and course tables respectively. The large data

set had 35,000 and 100,000 rows in the instructor and course tables respectively.

First, the relational join and object reference queries shown in Figures 4.12

and 4.13 where tested. Results for the small data set showed that it was one

percent slower to use the object reference query in Figure 4.13 than the rela-

tional join query in Figure 4.12. In the medium size data set the relational join

query in Figure 4.12 was twenty-eight percent slower then the object reference

query in Figure 4.13. Finally, for the large data set the object reference query in

Figure 4.13 was eight percent slower than the relational join query in Figure 4.12.

After analyzing the queries in Figure 4.12 and Figure 4.13, it was found that

by retrieving all attributes from the COURSE TABLE and also using the dot notation

to retrieve all rows from the INSTRUCTOR TABLE in the object tables, the object

82

Figure 4.11. Relational vs. Object table deletes

table was accessed multiple times for every row —one access to get the OID, and

one table access for every attribute for each row. In contrast, using the DEREF

Oracle operator to retrieve referenced objects in the INSTRUCTOR TABLE resulted

in only access the referenced object table once for every OID in the COURSE TABLE.

SQL>select c.*, i.*
from rel course table c, rel instructor table i
where c.person id=i.person id;

Figure 4.12. Relational join query

Performance testing for the object reference query in Figure 4.15 using the

DEREF operator for the large data set was fifty-two percent faster then using the

relational join query in Figure 4.12. The difference in retrieving references using

a the DEFRE operator compared to retrieving table attributes using the object

83

Figure 4.13. Relational schema

reference dot notation is very substantial. After realizing this difference, perfor-

mance tests were also done to determine if the number of objects referenced using

the DEREF operator in an object table resulted in better or worse performance

than joining the same number of relational tables.

The object and relational schemas from Figure 4.16 were used to test multi-

ple object references versus joining multiple relational tables with small, medium,

and large data sets. The small data set had 1,200 in the DEPT TABLE and 3,500

rows in the PERSON TABLE, ADDRESS TABLE, and NAME TABLE tables The medium

data set had 17,000 in the DEPT TABLE and 50,000 rows in the PERSON TABLE,

ADDRESS TABLE, and NAME TABLE tables. The large data set had 35,000 in the

DEPT TABLE and 100,000 rows in the PERSON TABLE, ADDRESS TABLE, and NAME TABLE

tables. The queries in Figures 4.17 and 4.18 were used to test relational join of

84

SQL>select c.*,c.instructor.first name,

c.instructor.m initial,

c.instructor.last name,

c.instructor.birth dt,

c.instructor.street,

c.instructor.city,

c.instructor.state,

c.instructor.zip,

c.instructor.phone,

c.instructor.email address,

c.instructor.ethnicity,

c.instructor.us citizen,

c.instructor.salary,

c.instructor.start dt,

c.instructor.rehire dt,

c.instructor.termination dt,

c.instructor.title,

c.instructor.supervisor id,

c.instructor.years of service,

c.instructor.dept id,

c.instructor.dept name from course c;

Figure 4.14. Object REF query

four tables versus using the DEREF operator to retrieve objects from four object

tables.

Results from testing Figure 4.17 and 4.18 queries using the small data set

showed that on average over ten runs the object deref was eighteen percent

slower then the relational join of four tables. Using the same two queries with

the medium and large data sets, the object deref for four tables was also eighteen

percent slower then relational joins. Considering that with one dref the perfor-

mance increase was fifty-two percent faster then a relational join and with four

object tables the performance decrease was eighteen percent it is clear that as

the number of references increase there is a decrease in performance to access the

referenced object tables.

85

0

10

20

30

40

50

60

70

80

90

100

large

Ti
m
e!
(m

in
)

Object!reference!using!DREF!vs.!Relational!join Object DREF

Relational Join

86

Figure 4.15. Object schema

87

SQL>select c.course id,

c.course id,

c.course desc,

c.day,

c.start time,

c.stop time,

c.building num,

c.room,

c.max enrollment,

deref(c.instructor)

from course c;

Figure 4.16. Object DREF query

0

10

20

30

40

50

60

70

80

90

100

large

Ti
m
e!
(m

in
)

Object!reference!using!DREF!vs.!Relational!join Object DREF

Relational Join

88

SQL>select p.*, a.*, n.*,d.*

from rel person p, rel name n, rel address a, rel dept d

where p.person id = a.person id

and p.person id = n.person id

and p.dept id =d.dept id;

Figure 4.17. Relational four table join

SQL>select p.person id,

p.dob,

deref(p.name),

deref(p.address),

deref(p.dept)

from obj person dref table;

Figure 4.18. Object table DREF with four tables

89

Chapter 5

Future Work

This thesis has presented background information for relational database sys-

tems and OOPLs. In addition, performance testing has been presented for in-

serts, selects, updates, and deletes for simple object-relational tables. If more

time was available, testing done in Chapter 4 could be extended to include test-

ing of more complex object-relational tables including object tables with multiple

object references to other object tables. Comparing performance testing of re-

trieving objects from object-relational tables with one REF with object-relational

tables with three REF’s, it is clear that performance decreases as the number of

object REF increase. By testing inserts, deletes, and updates using more complex

object schemas this overhead could be better quantified.

Testing could also be extended to included linear references between mul-

tiple tables. For this test, an object-relational table would reference a second

object-relational (object table schema in Figure 4.14) and the second table would

reference a third object-relational table. In addition to testing linear references in

object-relational tables, inserts, updates, deletes, and selects could also be tested

for linear reference schemas. These tests would provide helpful information to

90

application developers as they determine the best design for applications using

ORDBMSs.

Information provided in this text has been from a database point of view. No

information has been given for how an application would access and store object-

oriented data in an ORDBMS. This information is very important to software

engineers as they make design decisions of how to best store and retrieve OR data.

Further work could investigate the mapping from object-oriented applications to

ORDBMS storage and retrieval. This information is vital because at this time it

is not available to engineers as they design object-oriented applications.

91

Chapter 6

Conclusion

This thesis has provided important information by presenting reasons why

traditional relational databases are inadequate for object persistence, a compari-

son of object-relational and relational databases. and performance testing results

for select, update, delete, insert, and object references for an OR database. At

this time, no other work has investigated the potential increase or decrease of

performance from using OR databases.

The advantages presented in this thesis from using an ORDBMS to store

object-oriented application data are impedance mismatch removal, ease of mod-

eling real-world objects and relationships, ability to create user-defined types,

persistent object encapsulation, and object referencing. In addition, performance

testing results presented in Chapter four show that the decrease in performance

for OR selects, deletes, inserts, updates is very minimal, and the increase in per-

formance for object tables with one object reference is fifty-two percent faster

than using a relational join.

92

In addition to the advantages presented in this thesis and the performance

testing results, the tree major database vendors all support storing and ma-

nipulating OR data (object types and tables). Given this information, it can be

anticipated that the popularity and number of users of object-relational database

systems will increase as more object-oriented application developers become fa-

miliar with using ORDBMSs for object persistence.

Acknowledgments

93

Bibliography

[1] Stonebraker M. (1996). Object-Relational DRMSs: The Next Great Wave.

Morgan Kaufmann Publishers Inc, San Francisco, CA, 1999.

[2] S. Ambler. Building Object Applications that Work. Cambridge University

Press and Sigs Books, New York, NY, USA, 1998.

[3] B. K. Barry. The Object database handbook. Wiley Computer Publishing,

New York, NY, USA, 1996.

[4] E. Bertino and L. Martino. Object-oriented database systems – concepts and

architecutres. Addison-Westley, Workingham, 1993.

[5] D. K. Burleson. Inside the Database Object Model. CRC Press, Boca Raton,

1999.

[6] Michael J. Carey, David J. DeWitt, and Jeffrey F. Naughton. A status

report on the 007 00dbms benchmarking effort. In In Proceedings of the

ACM 00PSLA Conference, pages 414–426, October 1994.

[7] A.B. Chaudhri and R. Zicari. Succeeding with Object databases: a practical

look at today’s implementations with Java and XML. Wiley and Sons, New

York, NY, USA, 2001.

[8] L. Chirica. Discussion, May 2007.

94

[9] D. N. Chorafas and H. Steinmann. Object-Oriented Databases. Prentice Hall,

Englewood Cliffs, 1993.

[10] P. Coad and E. Yourdon. Object-oriented analysis. Yourdon Press, Upper

Saddle River.

[11] E. F. Codd. A relational model of data for large shared data banks. Com-

munications ACM, 13(6):377–387, 1970.

[12] Thomas M. Connolly and Carolyn Begg. Database Systems: A Practical

Approach to Design, Implementation, and Management. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[13] William R. Cook, Robert Greene, Patrick Linskey, Erik Meijer, Ken Rugg,

Craig Russell, Bob Walker, and Christof Wittig. Objects and databases:

state of the union in 2006. In OOPSLA ’06: Companion to the 21st ACM

SIGPLAN conference on Object-oriented programming systems, languages,

and applications, pages 926–928, New York, NY, USA, 2006. ACM.

[14] C. J. Date and H. Darwen. Foundation for Future Database Systems the

Third Manifesto. Addison-Westley, New York, NY, USA, 2000.

[15] R. S. Devarakonda. Object-relational database systems - the road ahead.

ACM Crossroads, 7(3):15–18, March 2001.

[16] Tharam S. Dillon and Poh L. Tan. Object-Oriented Conceptual Modeling.

Prentice Hall PTR, Upper Saddle River, NJ, 1993.

[17] J. Rumbaugh M. Blaha W. Premerlani F. Eddy and W. Lorensen. Object-

oriented modeling and design. Prentice-Hall, Inc, New York, NY, USA, 1991.

95

[18] M. J. Egenhofer and A.U. Frank. Object-oriented modeling for gis. URISA

Journal, 4(2):3–19, 1992.

[19] Jr. Frederick P. Brooks. No silver bullet: essence and accidents of software

engineering. Computer, 20(4):10–19, 1987.

[20] Jim Grey. The next database revolution. In SIGMOD ’04: Proceedings of

the 2004 ACM SIGMOD international conference on Management of data,

pages 1–4, New York, NY, USA, 2004. ACM.

[21] Jonathan Grudin. Evaluating opportunities for design capture. Design ra-

tionale: concepts, techniques, and use, 1996.

[22] J. L. Harrington. Object-Oriented Database Design Clearly Explained. Mor-

gan Kaufmann, San Diego, CA USA, 2000.

[23] T. Dillon J. Raharu, E. Chang and D. Taniar. A methology for transform-

ing inheritance relationships in an object-oriented conceptual model tables.

Information and Software Technology, 42:571–592, 2000.

[24] Eric Pardede Johanna Wenny Rahayu, David Taniar. Object-Oriented Ora-

cle. Hersey: CyberTech Publishing, London, UK, 2005.

[25] J. Lee K. Sau, S. Kim. End-user computing abilities and the use of infor-

mation systems. SIGCPR Computing, 15(1):3–14, 1994.

[26] W. Kim and F.H. Lochovsky. Object-oriented concepts, databases, and ap-

plications. ACM Press, New York, NY, USA, 1989.

[27] N. Leavitt. Whatever happened to object-oriented databases? Computer,

33(8):16–19, August 2000.

96

[28] Sang Ho Lee, Sung Jin Kim, and Won Kim. The bord benchmark for object-

relational databases. In DEXA ’00: Proceedings of the 11th International

Conference on Database and Expert Systems Applications, pages 6–20, Lon-

don, UK, 2000. Springer-Verlag.

[29] G. Fisher A. C. Lemke R. McCall A. I. Morch. Making argumentation serve

design. Human-Computer Interaction, 6(3), 1991.

[30] Oracle. Oracle Database Application Developer’s Guide - Object Relational

Features, 2005.

[31] Oracle. Oracle Database SQL Reference, 2005.

[32] B. R. Rao. Object-Oriented Databases: Technology, Applications, and Prod-

ucts. McGraw-Hill, New York, NY, USA, 1994.

[33] J. A. Lewis S.M. Henry D. G. Kafura R. S. and Schulman. An empirical

study of the object-oriented paradigm and software reuse. In In Conference

Proceedings on Object-Oriented Programming Systems, Languages, and Ap-

plications, pages 184–196, Phoenix, Arizona, United States, October 1991.

ACM Press.

[34] Karen E. Smith and Stanley B. Zdonik. Intermedia: A case study of the dif-

ferences between relational and object-oriented database systems. In OOP-

SLA ’87: Conference proceedings on Object-oriented programming systems,

languages and applications, pages 452–465, New York, NY, USA, 1987. ACM.

[35] R. Cattell B. Barry M. Berler J. Eastman D. Jordan C. Russell O.

Schadow T. Stanienda and F. Velez. The Object data standard: ODMG

3.0. Morgan Kaufmann Publishers Inc, San Francisco, 2000.

97

[36] A. Silberschatz H.F. Korth S. Sudarhan. Database System Concepts.

McGraw-Hill, Inc, New York, NY, USA, 2006.

[37] S. W. S.W. Dietrich and S.D. Urban. An Advanced Course in Database

Systems Deyond Relational Databases. Pearson Prentice Hall, Upper Saddle

River, 2005.

[38] J.W. Rahayu E. Chang T.S. Dillon D. Taniar. Performance evaluation of the

object-relational transformation methodology. Data Knowledge Engineering,

38(3):265–300, September 2001.

[39] Can Türker and Michael Gertz. Semantic integrity support in sql:1999 and

commercial (object-)relational database management systems. The VLDB

Journal, 10(4):241–269, 2001.

[40] Tiejun Wang and Scott F. Smith. Precise constraint-based type inference

for Java. Leture Notes in Computer Science, 2072, 2001.

[41] M. P. Atkinson F. Bancilhon D. J. DeWitt K. R. Dittrich D. Maier S. B.

Zdonik. The object-oriented database system manifesto. In International

Conference on Deductive and Object-Oriented Databases, pages 223–240,

1989.

[42] Q. Zhang. Object-oriented database systems in manufacturing: selection

and applications. Industrial Management and Data Systems, 101(3):97–105,

2001.

98

Appendix A

0

20

40

60

80

100

120

140

4 5 6 7 8 9 10 11 12 13 14 15 16

T
im

e
/
S

e
le

ct
 (

m
s)

Number of Attributes

Select 10 rows

Object

Relational

99

0

20

40

60

80

10

50

70

90

30

8 1 5 7 9 3 20 22 24 26 28 21 25

T
im

e
/
S

e
le

ct
 (

m
s)

Number of Attributes

Select 100 rows

Object

Relational

100

0

20

40

60

80

10

50

70

8 1 5 7 9 3 20 22 24 26 28 21 25

T
im

e
/
U

p
d

a
te

 (
m

s)

Number of attributes

Update 10 rows
Object

Relational

101

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16 18

T
im

e
/
U

p
d

a
te

 (
m

s)

Number of attributes

Update 100 rows
Object

Relational

102

0

20

40

60

80

10

50

8 1 5 7 9 3 20 22 24 26 28 21 25

T
im

e
/
D

e
le

te
 (

m
s)

Number of Attributes

Delete 10 Rows

Object

Relational

103

0

2

4

6

8

1

5

8 1 5 7 9 3 20 22 24 26 28 21 25

T
im

e
/
D

e
le

te
 (

m
s)

Number of Attributes

Delete 100 rows

Object

Relational

104

