
NATIVE XML SUPPORT FOR SEMISTRUCTURED PROBABILISTIC
DATA MANAGEMENT

A Thesis
Presented to

the Faculty of California Polytechnic State University
San Luis Obispo

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Computer Science

by
Evan Pierce Rosson

ii

AUTHORIZATION FOR REPRODUCTION OF MASTER’S THESIS

I reserve the reproduction rights of this thesis for a period of seven years
from the date of submission. I waive reproduction rights after the time span
has expired.

Signature

Date

iii

APPROVAL PAGE

TITLE: Native XML Support for Semistructured Probabilistic Data Man-
agement

AUTHOR: Evan Pierce Rosson

DATE SUBMITTED: June 2007

Dr. Alexander Dekhtyar
Advisor or Committee Chair Signature

Dr. John Clements
Committee Member Signature

Dr. Clark Turner
Committee Member Signature

iv

Abstract

Native XML Support for

Semistructured Probabilistic Data

Management
Evan Pierce Rosson

Many applications require storing and querying probabilistic information;
for example, the risk analysis software used by insurance companies. Prob-
abilistic databases are designed to store such data and support queries us-
ing operations based on probability theory. Semistructured databases, of-
ten based on XML, allow storage of data that may not strictly conform to
a schema, which permits data imported from sources with many different
schema. The Semistructured Probabilistic Database Management System
(SPDBMS) combines these two approaches. It stores Semistructured Prob-
abilistic Objects (SPOs), probability distributions of variables with discrete
and finite domains expressed as XML documents. The SQL-like Semistruc-
tured Probabilistic Object Query Language (SPOQL) is used to query and
manipulate SPOs using operations based on probability theory.

We present a native XML implementation of SPDBMS, better suited to
the semistructured nature of this data than the original relational backend.
This is implemented using XQuery, a functional query language for processing
XML; and ExistDB, an open-source XML database. The performance of this
new implementation is compared with the existing relational implementation.
We also implement a new SPDBMS query operation, MIX, and a distinction
between LEFT and RIGHT JOIN queries.

CONTENTS v

Contents

List of Figures viii

1 Introduction 1

1.1 Probabilistic Databases . 1

1.2 Our Semistructured Probabilistic Database 1

1.3 Motivation for an XML backend 2

1.4 Outline . 3

2 Background 4

2.1 Data Model . 4

2.2 SPOQL and SP-Algebra Operations 7

2.2.1 Simple Selection . 8

2.2.2 Projection . 10

2.2.3 Conditionalization . 13

2.2.4 Cartesian Product . 13

2.2.5 Join . 15

2.2.6 Mix . 15

2.3 Data Modification . 16

2.3.1 Operations . 16

2.4 Related Work . 17

3 SPDBMS Design 19

3.1 Existing System Design . 19

CONTENTS vi

3.2 XML Database Adapter Design 21

3.3 XQuery Interface Design . 23

4 XQuery API Implementation 25

4.1 Simple Selection . 25

4.1.1 OR . 25

4.1.2 AND . 26

4.2 Projection on Variables . 27

4.3 Conditionalization . 29

4.4 Cartesian Product . 29

4.5 Join . 32

4.6 Mix . 34

5 Experiments 36

5.1 Design . 36

5.1.1 Experimental Variables 36

5.1.2 Construction and Execution 37

5.2 Results and Analysis . 40

5.2.1 Module Compilation Speed 40

5.2.2 Results for Projection on Variables 41

5.2.3 Memory Usage . 42

6 Conclusion and Future Work 43

7 Bibliography 44

CONTENTS vii

A XQuery 46

B Experimental Results 68

B.1 Baseline experiments . 68

B.2 2 variables, 100 SPOs . 73

B.2.1 Simple Selection . 73

B.2.2 Select on Context . 76

B.2.3 Select on Conditional 80

B.2.4 Select on Variables . 84

B.2.5 Select on Table . 88

B.2.6 Project on Context . 92

B.2.7 Project on Conditional 96

B.2.8 Project on Variables 100

B.2.9 Conditional . 104

B.2.10 Conditional . 108

B.2.11 Select on Probability 112

B.2.12 Complex Select Conditions 116

B.2.13 Complex Project Conditions 121

C SPO Schema Document 126

LIST OF FIGURES viii

List of Figures

1 Example: SPO table format 4

2 Example: SPO XML format 5

3 SP-Algebra and SPOQL operations summary 8

4 Example: projection on context 10

5 Example: projection on conditional 10

6 Example: projection on variables 11

7 Example: conditionalization 12

8 Example: product . 14

9 Original SPDBMS architecture 20

10 Where-OR implementation . 26

11 Projection on variables implementation 28

12 Conditionalization implementation 30

13 Product implementation . 31

14 Left join implementation . 33

15 Right join implementation . 34

16 Left mix implementation . 34

17 Right mix implementation . 35

18 Baseline experiment results 1 38

19 Baseline experiment results 2 39

20 Projection on variables experiment results 41

1 INTRODUCTION 1

1 Introduction

1.1 Probabilistic Databases

Many applications require storing and querying probabilistic information:

stock market prediction, risk analysis software used by insurance companies,

and image recognition, to name a few [10] [11]. Such probabilistic data is

poorly suited to a traditional relational database - operations common to

probabilistic data are not provided by relational databases. A probabilis-

tic database allows one to apply transformations to the database’s content,

based on the laws of probability theory, and perform queries based on these

probabilistic transformations. Probabilistic databases have been the subject

of much research, and a number of different models have been proposed ([11],

[7] and section 2.4).

1.2 Our Semistructured Probabilistic Database

The existing structured probabilistic systems cited above lack the flexibility

to work well with real-world data taken from multiple sources, or probabilistic

data that otherwise fails to match a common schema [11]. A solution is pre-

sented in [9] in the form of a Semistructured Probabilistic Database (SPDB).

SPDB is a system for storing probabilistic data as Semistructured Probabilis-

tic Objects, SPOs. An SPO specifies a probability distribution for any num-

ber of random variables of finite domain, along with non-probabilistic data;

the structure described in detail in section 2.1. Semistructured probabilistic

1 INTRODUCTION 2

relations store an arbitrary collection of SPOs; as semistructured data, no

common schema is needed for the storage of SPOs in a relation.

SPOs are manipulated via a semistructured probabilistic algebra, also

described in [9], through which the probability distribution of a set of SPOs

can be queried. SP-algebra is implemented via a Semistructured Probabilis-

tic Object Query Language (SPOQL), an SQL-like language. SPOQL and

SP-algebra support - among other operations - conditionalizing SPOs to re-

calculate probability based on known values, and creation of joint probability

distributions from multiple SPOs via join and Cartesian product.

1.3 Motivation for an XML backend

XML is particularly well-suited to the semistructured nature of SPO data. In

addition, because SPDB currently presents SPOs to the user in XML form,

storing SPO data in a relational database is unnatural and the conversion

adds a great deal of overhead. We propose an XML backend to SPDB, imple-

mented with an XML-based database and XQuery, to alleviate performance

problems and simplify the system as a whole. Our solution is implemented

using the open-source XML database ExistDB.

Our primary contribution is the design, implementation, testing, and per-

formance evaluation of the native XML backend described above. We also

implement a distinction between LEFT and RIGHT JOIN operations and im-

plement the MIX operation; these operations are specified in earlier works,

but were not implemented until now. We also provide a suite of automated

1 INTRODUCTION 3

tests for verifying the correctness of SPDB.

1.4 Outline

Section 2 provides background information on the project, including the se-

mantics of each SPOQL operation. Section 3 describes the design of the

SPDBMS server and its integration with the native XML backend, and sec-

tion 4 goes into further detail on the design and implementation of the

XQuery SPDB library. Section 5 discusses the design and results of ex-

periments which test the performance of the new storage.

2 BACKGROUND 4

ω: SPO-1

university : Cal Poly

CSC560 CSC305 P

A A 0.34476
A B 0.32192
B A 0.05507

CSC101 = A

Figure 1: An example of an SPO in table format. “University: Cal Poly”
is context information. CSC560 and CSC305 are random variables. The
rows of grades for each random variable and the probability for each form
the probability table. The precondition of an A in CSC101 is conditional
information.

2 Background

2.1 Data Model

SPOs - Semistructured Probabilistic Objects - are the structure SPDB uses

to represent probabilistic data. An SPO is a tuple consists of four parts:

Context, Variables, the Probability Table, and Conditionals [9].

Examples of SPOs in tabular and XML formats are shown in figures 1

and 2, respectively.

More formally, consider the set R of all possible relational attributes; and

V , the set of all possible random variables and their domains. An SPO is a

tuple S = �T, V, P, C$, where: [11, section 3] [9]

• T is a relational tuple of a semistructured schema over R, all possible

relational attributes.

• V = {v1, . . . , vq} ⊆ V is the set of participating random variables in S,

2 BACKGROUND 5

<spo>
<context>

<elem><name>university</name><val>Cal Poly</val></elem>
</context>
<table>

<variable><name>CSC560</name> <name>CSC305</name></variable>
<row> <val>A</val> <val>A</val> <P>0.34476</P> </row>
<row> <val>A</val> <val>B</val> <P>0.32192</P> </row>
<row> <val>B</val> <val>A</val> <P>0.05507</P> </row>

</table>
<conditional>

<elem><name>CSC101</name> <val>B</val></elem>
</conditional>

</spo>

Figure 2: An example of an SPO in XML format. “University: Cal Poly”
is context information. CSC560 and CSC305 are random variables. The
rows of grades for each random variable and the probability for each form
the probability table. The precondition of an A in CSC101 is conditional
information. This SPO is equivalent to the example in table format from
figure 1.

2 BACKGROUND 6

where V is the set of all possible random variables, and V)= ∅.

• P : dom(V) −→ P [0, 1] is the probability table of s. P need not be

complete: total probability may be less than one.

• C = {(u1, X1), . . . (us, Xs)}, where {u1, . . . , us} = U ⊆ V and Xi ⊆

dom(ui), 1 ≤ i ≤ n such that V ∩ U = ∅, is the conditional of S.

To elaborate on this definition, less formally:

• Participating random variables are the names of each column seen in

figures 1 and 2. Participating variables are part of the probability table,

and distinct from the variables found within an SPO’s conditionals but

not in the table. Each variable has a finite domain, represented as the

range of values for each variable in the probability table and condition-

als. In the above example, CSC560 and CSC305 are all participating

random variables.

• The probability table specifies the probability distribution for each set

of events. Each column in the table is a participating random variable.

Each row in the table contains a set of values for each variable within

the domain of that variable, and the probability that this combination

of values will occur.

A probability table is complete if it contains a probability for every

possible instance - that is, every possible combination of values within

the domain of each variable. Incomplete tables may be stored and

2 BACKGROUND 7

queried as well. The table in our example above is not complete -

observe that a row for (CSC560=B, CSC305=B) is missing, and other

possible values for each random variable (in our example, grades of C,

D, and F) may account for other missing rows as well.

• Conditional information represents random variables with a known

value or restricted to a subset of its domain. When analyzing a proba-

bility distribution, we often have prior information on the value of some

variables. Our definition represents this restriction as (u, X), where u

is a random variable and X is a subset of the domain of u. Unlike

context, conditionals are subject to change: conditionalization queries

may add new conditions to the SPO.

• Context is any supporting information for this probability distribution.

Context may contain any set of name-value pairs whose values are cer-

tain, and these values has has no effect on the probability calculations

performed elsewhere. In the example of figures 1 and 2, university is

part of the context - it is known in advance, not a random variable,

and plays no part in probability calculations.

2.2 SPOQL and SP-Algebra Operations

SPOQL - Semistructured Probability Object Query Language - is an SQL-

like language used to extract information from the database. Like SQL,

SPOQL queries have no side effects - the operations discussed below do not

2 BACKGROUND 8

Operation Section SP-Algebra SPOQL Syntax

Selection 2.2.1 σc(S) SELECT * FROM S WHERE c
Projection 2.2.2 πf (S) SELECT f FROM S
Conditionalization 2.2.3 µd(S) SELECT * FROM S CONDITIONAL d
Cartesian Product 2.2.4 S1 × S2 SELECT * FROM S1 TIMES S2

Left Join 2.2.5 S1 � S2 SELECT * FROM S1 [LEFT]JOIN S2

Right Join 2.2.5 S1 " S2 SELECT * FROM S1 RIGHTJOIN S2

Left Mix 2.2.6 S1 ⊗L S2 SELECT * FROM S1 [LEFT]MIX S2

Right Mix 2.2.6 S1 ⊗R S2 SELECT * FROM S1 RIGHTMIX S2

Figure 3: A summary of conceptual operations on SPOs, the relevant section
in this paper, the SP-algebra symbols, and the corresponding SPOQL syntax.
For left join/left mix, SPOQL in [brackets] is optional: left is the default
direction if none is specified.

modify the contents of the database.

SP-Algebra, specified in [11], is the theoretical basis for SPOQL; similar

to relational algebra as a basis for SQL. SPDBMS input is in the form of

SPOQL. In the following sections, we’ll outline each SP-algebra operation.

The table in figure 3 summarizes each operation, including the SP-algebra

symbol, SPOQL syntax, and section in which it is discussed.

2.2.1 Simple Selection

The familiar SELECT statement is used to view the SPOs stored in a given

relation.

WHERE statements, also familiar from SQL, can be used to restrict the set

of SPOs viewed. WHERE conditions may be based on equality or compar-

isons with the following fields:

2 BACKGROUND 9

• Selection on Variables: Show only SPOs that have the given variable

somewhere in their probability table, with any value.

SELECT * FROM relation WHERE var.CSC101 IN V

• Selection on Table: Show only SPOs where the given variable exists

with the given value.

SELECT * FROM relation WHERE tbl.CSC101 = A

• Selection on Probability: Show only rows in the probability table where

probability is within the given bounds.

SELECT * FROM relation WHERE tbl.prob > 0.10

• Selection on Conditionals: Show only SPOs where the given conditional

exists with the given value.

SELECT * FROM relation WHERE cnd.CSC101 = A

• Selection on Context: Show only SPOs containing the given context

element.

SELECT * FROM relation WHERE cnt.year = 1999

Multiple WHERE conditions may be combined using AND and OR operators:

SELECT * FROM relation WHERE cnt.year = 1999 AND cnd.CSC101 = A

2 BACKGROUND 10

ω: S

university : Cal Poly
department : CSC

CSC560 CSC305 P

A A 0.34476
A B 0.32192
B A 0.05507

CSC101 = A
CSC102 = A

ω: πcnt.university(S)

university : Cal Poly

CSC560 CSC305 P

A A 0.34476
A B 0.32192
B A 0.05507

CSC101 = A
CSC102 = A

Figure 4: Example of the projection operation on context information. The
context information ’department’ is removed and ’university’ is selected.

ω: S

university : Cal Poly
department : CSC

CSC560 CSC305 P

A A 0.34476
A B 0.32192
B A 0.05507

CSC101 = A
CSC102 = A

ω: πcnd.CSC101(S)

university : Cal Poly
department : CSC

CSC560 CSC305 P

A A 0.34476
A B 0.32192
B A 0.05507

CSC101 = A

Figure 5: Example of the projection operation on a conditional. The condi-
tional ’CSC101’ is selected and ’CSC102’ is removed.

2.2.2 Projection

Projection simplifies an SPO by returning the SPO with only a subset of its

original variables, conditionals, or context values.

Projection on Conditional and Projection on Context Conditional

and context projection are easy to understand: given an initial SPO, these

select only a subset of that SPO’s conditional or context tuples, respectively.

See the examples in figures 4 and 5.

2 BACKGROUND 11

ω: S

university : Cal Poly

CSC560 CSC305 P

A A 0.34476
A B 0.32192
B A 0.05507

CSC101 = A

(Step 1)
ω: πvar.CSC305(S)

university : Cal Poly

CSC305 P

A 0.34476
B 0.32192
A 0.05507

CSC101 = A

(Step 2)
ω: πvar.CSC305(S)

university : Cal Poly

CSC305 P

A 0.39983
B 0.32192

CSC101 = A

Figure 6: Example of the projection operation on a variable, shown in two
steps for clarification. Step 1 removes all variables not selected by the pro-
jection; step 2 merges all duplicate rows. In step 1, observe the two rows
whose events are identical: both have only a single variable with value ’A’.
These rows are merged in step 2 by summing their probabilities.

Projection on Variables Much like relational projection, SPO projection

on variables modifies the SPO by selecting only a subset of its columns.

Projection on variables may not result in duplicate rows - if all values for

two rows are identical after a projection, the rows are merged and their

probabilities are summed. The example in figure 6 illustrates this process.

Unlike the conditionalization operation (2.2.3), an SPO’s conditionals are

not modified by projection on a variable.

2 BACKGROUND 12

ω: S
university : Cal Poly

CSC560 CSC305 P

A A 0.300
A B 0.100
B A 0.200
CSC101 = A

(Step 1)
ω: µvar.CSC560=A(S)
university : Cal Poly

CSC560 CSC305 P

A A 0.300 ∗ (0.600/0.400)
A B 0.100 ∗ (0.600/0.400)
B A —
CSC101 = A
CSC560 = A

(Step 2)
ω: µvar.CSC560=A(S)
university : Cal Poly

CSC560 CSC305 P

A A 0.450
A B 0.150
CSC101 = A
CSC560 = A

(Final step)
ω: µvar.CSC560=A(S)
university : Cal Poly

CSC305 P

A 0.450
B 0.150
CSC101 = A
CSC560 = A

Figure 7: Example of the conditionalization operation, shown in four steps
for clarity. In the first step, we add the new conditional value ’CSC560 =
A’ and show our calculations for new probabilities for each existing row.
Probabilities are scaled such that the total probability after the conditional-
ization is equal to the total before the conditionalization: in this example,
the pre-conditionalized total is 0.6 and the intermediate total is 0.400 (0.300
+ 0.100), so the remaining rows’ probability is scaled up by (0.6 / 0.4) = 1.5.
Step 2 removes rows that are incompatible with the new conditional (here,
rows where CSC560 != A). In the final step, the conditionalized column is
finally removed from the probability table.

2 BACKGROUND 13

2.2.3 Conditionalization

Conditionalization fixes the value of a given variable. This has the effect of

removing columns from the probability table, like projection, but the variable

is not removed from the simulation - it is instead moved to the conditional

section with the specified value. Rows without the specified value are re-

moved from the probability table - after fixing the value for this variable,

these rows need not be analyzed - and the probability of all remaining rows

is normalized. An example of this process is shown in figure 7.

If a CONDITIONAL operation on variable V is applied to an SPO which does

not reference V , that SPO’s conditional data is updated, but the SPO’s

probability table is unchanged. This makes sense: requiring a condition to

an irrelevant variable should have no effect on the probability of each result.

The sum of probabilities for a complete table is unchanged after con-

ditionalization. For complete tables, the sum of probabilities is always 1.

Incomplete tables may be conditionalized as well.

2.2.4 Cartesian Product

A Cartesian product constructs a joint probability distribution from two

product-compatible SPOs. Two SPOs are product-compatible if they have

matching conditionals, and have no random variables in common [11]. The

result looks similar to a Cartesian product in a relational database - each pair

of rows in the probability table is returned. One important difference from

relational databases is, of course, the probability of each row. Probabilities

2 BACKGROUND 14

ω: S1

university : Cal Poly

CSC560 P

A 0.4
B 0.5

CSC101 = A

ω: S2

university : Cal Poly

CSC305 P

A 0.1
B 0.8

CSC101 = A

ω: S1 × S2

university : Cal Poly

CSC560 CSC305 P

A A 0.04
A B 0.32
B A 0.05
B B 0.40

CSC101 = A

Figure 8: Example of the Cartesian product operation. We begin with two
SPOs for this operation: S1 and S2. These are product compatible: condi-
tionals are identical and they have no common participating random vari-
ables. The result contains all participating random variables from both SPOs.
Rows are a Cartesian product of rows from the original SPOs, much like a
Cartesian product in a relational database; probability for each row is the
product of the probabilities from each row that created it.

2 BACKGROUND 15

for each pair of rows are multiplied to find the probability used in the product

row. This operation is illustrated in figure 8.

2.2.5 Join

A join is similar to a Cartesian product - it constructs a joint probability

distribution from two join-compatible SPOs. Two SPOs are join-compatible

if their conditionals match, as with product-compatibility; and they must

have at least one common random variable [11].

To perform a join, one of the two SPOs is conditionalized (Conditional-

ization is explained in section 2.2.3.) Results differ depending on which side

is conditionalized. We may specify which side is conditionalized by using

LEFTJOIN or RIGHTJOIN.

2.2.6 Mix

Cartesian product and join are mutually exclusive. Mix chooses the appropri-

ate operation for a pair of SPOs: if the pair is join-compatible, mix executes

a join; if the pair is product-compatible,

While a pair of SPOs cannot be both product- and join-compatible, note

that a pair can be neither product- or join-compatible if their conditionals

are not equal.

As discussed in the previous section, JOIN may have a direction: LEFTJOIN

or RIGHTJOIN. Since MIX may execute joins, we specify the direction of joins

by using two types of mixes as well: LEFTMIX and RIGHTMIX. The direction

2 BACKGROUND 16

of a mix is irrelevant for a pair of product-compatible SPOs; product does

not have a direction.

2.3 Data Modification

All SPOs in the database are stored in a parent relation. Each relation is

a named grouping of any set of SPOs. Any two SPOs may be part of the

same relation - because SPOs are semistructured data, no schema must be

enforced.

TIMES, JOIN, and MIX operations (see sections 2.2.4, 2.2.5, and 2.2.6

respectively) can operate on any two relations, provided the SPOs each re-

lation contains are product-compatible or join-compatible.

2.3.1 Operations

• CREATE Creates a new relation in the database. A name for the

relation must be provided. Relations are empty when created - use

INSERT to populate relations with SPO data.

• INSERT Adds new SPO data to a given relation. SPO data is provided

via an XML file.

• DELETE Remove all SPOs from a relation matching the given WHERE

conditions (see section 2.2.1).

• DROP Removes an existing relation, given the name of the relation to

drop. All SPOs in the relation are destroyed.

2 BACKGROUND 17

2.4 Related Work

SPDBMS has been the subject of much past work. Zhao and Dekhtyar de-

fined SP-algebra and implemented the original system, including its relational

backend [11]. Mathias specified the SPOQL language and implemented it on

top of Zhao and Dekhtyar’s work [9].

Numerous models for probabilistic relational databases have been developed[11].

A data model proposed by Barbará, Garcia-Molina and Porter [5] extends the

relational model to support uncertain data. Each relation must have a deter-

ministic key, and all other attributes may be either deterministic (certain) or

stochastic (uncertain). Stochastic attributes have an associated probability.

Attributes may also be specified as independent or interdependent: the prob-

ability of an independent attribute is not tied to that of any other attribute;

the probability of an interdependent attribute is tied to another attribute.

Cavallo and Pittarelli [8] incorporate probability into relational databases

as a tuple (V, ∆, dom, p): V is a set of unique attributes, δ is the set of

attribute domains, dom provides the mapping V → ∆, and p is a probability

distribution over V . Their model required a sum of 1 for the probabilities of

all tuples in a relation. They define projection and join operators.

MystiQ [6] is a relatively recent probabilistic database system, imple-

mented as middle ware on a standard relational database. MystiQ manip-

ulates probabilistic data stored in a standard relational database; however,

MystiQ has a different concept of probabilistic data than our work. MystiQ

issues queries on a standard relational database using ’fuzzy’ queries, where

2 BACKGROUND 18

query restrictions are not completely defined. MystiQ will return standard

relational rows as results, each row paired with a probability that it was what

the user wanted.

These probabilistic databases based on the relational model have inher-

ent weaknesses. Many works describe a single probabilistic object as a single

database row with attributes whose values are uncertain. We instead repre-

sent a probabilistic object as a set of random variables that form a probability

distribution, where the probability of multiple combinations of values can be

specified. Another strength of our work over related work is its semistruc-

tured nature - SPOs from a single relation, representing the same type of

object, need not have identical schema. This allows us to import and work

with data from multiple sources with varying schema.

3 SPDBMS DESIGN 19

3 SPDBMS Design

3.1 Existing System Design

The original SPDB server design, as described in [9, section 2.2], is shown

in figure 9. The SPDB server stores all SPO data in a relational database.

Clients connect to the server via TCP/IP, and manipulate stored data or

issue SPOQL queries. The SPO Request Dispatcher parses SPOQL queries

into SP-algebra strings, further parses SP-algebra strings into an SP-algebra

based abstract tree, and passes the final structure to the database adapter

for execution. The database adapter constructs DBMS-specific SQL based

on this structure to either update the SPOs/relations as requested by an

INSERT, DELETE, CREATE, or DROP operation; or the SQL required to construct

the SPO XML returned by the application for a SELECT operation [2]. In the

original design, these operations may require the execution of any number of

SQL statements against the underlying database.

Decoupling the database adapter from the rest of the application in this

design allows new database backends to be constructed with minimum effort

- most application logic is not tied to the DBMS backend.

The implementation of this database adapter design required a JDBC

interface to the database. All other details of database access are left to the

database adapter implementer.

3 SPDBMS DESIGN 20

Figure 9: The original SPDBMS system architecture, as described in [9,
section 2.2]. (Image source: [2, figure 2])

3 SPDBMS DESIGN 21

3.2 XML Database Adapter Design

The SPDB server design (figure 9) specifies a relational database beneath the

database adapter, but the implementation does not enforce this; we generalize

this design to allow XML databases.

The design for our Exist-DB adapter for SPDB consists of two stages:

• Query planning: given the abstract query tree sent to the database

adapter from the query parser, construct a single XQuery statement.

• Query execution: execute the planned XQuery statement.

This is modeled after the query planning and execution stages employed by

many relational databases. The advantages of this separation have been

shown many times for relational databases, and these advantages (discussed

below) are applicable here as well. 1

One advantage of this approach is that only one XQuery statement is

constructed per SPOQL query. This minimizes the overhead required by

database round-trips. This is a dramatic improvement over the current Or-

acle implementation’s ad-hoc approach to querying the underling database,

where many round-trips are required per SPOQL query. An advantage of a

native XML backend is that no post-processing of data returned from XQuery

is necessary - SPDB returns the same XML data that XQuery excels at pro-

cessing.

1In particular, we appreciated having query execution decoupled from query planning
when creating automated tests for query planning.

3 SPDBMS DESIGN 22

All SPO-related logic is processed by the XQuery backend as XQuery

functions, rather than Java-based SPO server. This has advantages similar

to stored procedures in a relational environment: among other things, the

caller need not be aware of the XQuery implementation. Removing this logic

from the caller also allows us to take full advantage of XQuery’s ability to

manipulate semistructured XML data.

All XQuery commands sent to the server begin with the following, in

order to access this XQuery function library

import module spdb="http://www.csc.calpoly.edu/~erosson/spdb"

as "resource:spdb.xqm";

spdb.xqm is the name of our XQuery function library, implemented as

an XQuery module. http://www.csc.calpoly.edu/~erosson/spdb is the

XML namespace required for the module. According to [1] this module is only

compiled once, and cached for all queries thereafter. (See our experimental

results, section 5.2.1 for further discussion of this.)

In addition, the strategy described above greatly simplifies query plan-

ning. For example, consider the following SPOQL statement:

SELECT * FROM relation1 LEFTJOIN relation2

The SPOQL query planner translates this to reasonably concise and readable

XQuery:

import module spdb="http://www.csc.calpoly.edu/~erosson/spdb"

3 SPDBMS DESIGN 23

as "resource:spdb.xqm";

spdb:leftjoin(spdb:relation("relation1"), spdb:relation("relation2"))

The complex logic behind JOIN is abstracted behind an interface of XQuery

functions.

3.3 XQuery Interface Design

Each SP-Algebra operation specified in section 2 is implemented as an XQuery

function. These XQuery functions provide all of the system’s probability

analysis features - the SPDB server merely translates SPOQL queries into

the matching XQuery calls.

All functions in the XQuery API - that is, any function referenced from

the SPDB server corresponding to an SP-Algebra operation - will always

accept input and require output of the same form:

<spos>

<spo>

...data...

</spo>

<spo>

...data...

</spo>

...more SPOs...

</spos>

3 SPDBMS DESIGN 24

This can be verified by examining the method signature for any XQuery

function called from SPDB:

declare function spdb:sp-some-function($spos as element(spos), ...)

as element(spos);

This signature allows the output of any one function to be passed to an-

other. Arbitrary complex SPOQL queries can be planned before any results

are computed.

4 XQUERY API IMPLEMENTATION 25

4 XQuery API Implementation

See appendix A for the source of the XQuery module. All functions are

written by Evan Pierce Rosson unless another author is noted. To sum-

marize, Dustin Anderson implemented all simple selection WHERE-clauses

(section 2.2.1), and projection on context and conditionals (2.2.2). Evan

Pierce Rosson implemented all other operations: the current projection on

variables (2.2.2); AND and OR conditions used in WHERE-clauses; CONDI-

TIONAL, JOIN, TIMES, and MIX operations (2.2.3, 2.2.4, 2.2.5, and 2.2.6

respectively).

Note that there are a number of auxiliary functions present. Functions

called by the SPDB server are differentiated from helper functions only by

function name - ’public’ functions have names beginning with ’sp-’. All other

functions are exposed only to allow for thorough unit testing.

The following sections will discuss the implementation of each function

implemented by Evan Pierce Rosson, including relevant code.

4.1 Simple Selection

4.1.1 OR

The implementation of OR is straightforward. Each parameter of the OR

operation is evaluated, and the union of the results is returned. To avoid

returning duplicates - SPOs included in both arguments to OR - the built-in

function distinct-deep performs a distinct union - SPOS present in both

4 XQUERY API IMPLEMENTATION 26

1 declare function spdb:sp -where -or($spos1 as element(
spos), $spos2 as element(spos)) as element(spos)
{

2 element spos {$spos1/@*, functx:distinct -deep((
$spos1/spo , $spos2/spo)) }

3 };

Figure 10: WHERE condition: OR implementation. “WHERE X OR Y”
becomes “sp-where-or(X, Y)”

arguments are included only once.

4.1.2 AND

AND could have been implemented in our XQuery library as an intersection.

Instead, we chose a solution that required no XQuery function implementa-

tion, and a simple implementation in the SPDBMS server. The SPOQL query

SELECT * FROM Relation WHERE X AND Y is translated to XQuery similar

to spdb:X(spdb:Y(spdb:relation("Relation"))). The requirements of

WHERE filter X are applied only to the results of filter Y, not the entire

relation. This leads to a more efficient implementation and more concise

XQuery.

In the above example, the XQuery statements

spdb:Y(spdb:X(spdb:relation("Relation"))) and

spdb:X(spdb:Y(spdb:relation("Relation"))) are equivalent. One of these

may be faster than the other: we would prefer to execute the faster, more

selective (fewer results) condition first. This minimizes the number of re-

4 XQUERY API IMPLEMENTATION 27

sults that need to be processed by the slower, less selective outer function.

Currently we do not attempt this optimization: order of functions in the gen-

erated XQuery is based solely on the order of WHERE conditions in the SPOQL

input. Estimating the cost of each function for this sort of optimization is a

good opportunity for future work (section 6).

4.2 Projection on Variables

The general algorithm used in our implementation of projection on variables

is:

• Remove all projected columns from the result.

• Merge all duplicate rows by summing their probabilities.

Recall from section 2.2.2 that projection on variables must not create du-

plicate rows. Rows that are identical (except for probability) after removing

a column are to be merged by summing their probabilities into a single row.

Identifying duplicate rows proved to be an expensive operation in XQuery.

Given n rows, every possible pair of rows must be compared, for a total of

n2

2
, comparisons.

Oracle uses a hash table, with hashed rows as keys, to achieve linear

complexity. XQuery, however, lacks the concept of a hash table. We hoped

ExistDB’s XQuery processor would be able to optimize this case. This, and

further optimization possibilities, are further discussed in our experimental

results, section 5.2.2.

4 XQUERY API IMPLEMENTATION 28

1 declare function spdb:rows -project -var($rawrows as
element(row)*,

2 $visiblenums as xs:integer *) as element(row)*
3 {
4 let $rowsviscols := for $row in $rawrows
5 return element row {$row/@*,
6 $row/val[position () = $visiblenums],
7 $row/P
8 }
9 return for $row1 at $i in $rowsviscols

10 (: where no previous rows have identical values
:)

11 where fn:empty($rowsviscols[position () lt $i][
not(val != $row1/val)])

12 return element row {$row1/@*,
13 $row1/val ,
14 element P {$row1/P/@*,
15 (: sum all rows with identical values. skip

previous rows: we checked those already
:)

16 sum(for $p in $rowsviscols[position () ge $i
][not(val != $row1/val)]/P

17 return xs:decimal($p))
18 }
19 }
20 };

Figure 11: Implementation of projection on variables.

4 XQUERY API IMPLEMENTATION 29

4.3 Conditionalization

Our XQuery conditionalization implementation is shown in figure 12.

Notice that it’s possible for a conditionalization to change an SPO’s

<conditional> data without modifying its probability table, as described

in 2.2.3. conditionalize-table will return an unmodified probability table

if the conditionalized variable is not present in the table. However, its caller

conditionalize will always modify the SPO’s conditional information, even

if the probability table is unchanged.

At first, conditionalization appears very similar to projection on variables

(sections 2.2.2, 4.2) - both remove a column and multiple rows from the table.

Conditionalization, however, has no need to identify and merge duplicate

rows. Projection on variables must compare against other rows to determine

duplicates; conditionalization simply chooses which rows to remove based on

the new condition, and has no need to compare with other rows in the same

table. Thus, conditionalization does not have the same complexity problems

as projection on variables, and is expected to run in linear time.

4.4 Cartesian Product

The implementation of Cartesian product (”TIMES”), specified in section

2.2.4, is shown in figure 13.

Note that TIMES has two double FOR loops: one iterating each possible pair

of SPOs; another iterating each possible pair of rows in each SPO’s table. If

4 XQUERY API IMPLEMENTATION 30

1 declare function spdb:conditionalize -table($table as
element(table), $name as xs:string , $value as xs

:string) as element(table) {
2 let $num := spdb:table -column -num($table/variable/

name , $name)
3 (: If var isn ’t in table , return the original

table.
4 This isn ’t silent failure , but an irrelevant

conditionalization. :)
5 return if (fn:empty($num)) then $table else
6 let $newrows := $table/row[exists(val[$num][text()

eq $value])]
7 let $oldprob := sum(for $i in $table/row/P return

xs:decimal($i))
8 let $newprob := sum(for $i in $newrows/P return xs

:decimal($i))
9 let $probmult := if ($newprob gt 0) then $oldprob

div $newprob else 1
10 return element table {
11 element variable {$table/variable/name[position

() ne $num]},
12 for $row in $newrows
13 let $p := xs:decimal($row/P) * $probmult
14 return element row {$row/val[position () ne

$num], element P{$p}}
15 }
16 };
17
18 declare function spdb:conditionalize($spo as element

(spo), $name as xs:string , $value as xs:string)
as element(spo) {

19 element spo {$spo/@*,
20 $spo/context ,
21 spdb:conditionalize -table($spo/table , $name ,

$value),
22 element conditional {
23 $spo/conditional /*,
24 element elem {element name{$name}, element val

{$value }}
25 }
26 }
27 };

Figure 12: Conditionalization implementation.

4 XQUERY API IMPLEMENTATION 31

1 declare function spdb:table -product($table1 as
element(table), $table2 as element(table)) as
element(table) {

2 if (not(spdb:common -vars -empty($table1 , $table2)))
then () else

3 element table {
4 element variable {$table1/variable/name , $table2

/variable/name},
5 spdb:rows -product($table1/row , $table2/row)
6 }
7 };
8
9 declare function spdb:rows -product($rows1 as element

(row)*, $rows2 as element(row)*) as element(row)*
{

10 for $row1 in $rows1
11 for $row2 in $rows2
12 let $prob := element P { $row1/P/number () *

$row2/P/number () }
13 return element row {$row1/val , $row2/val ,

$prob}
14 };
15
16 declare function spdb:sp -product($spos1 as element(

spos), $spos2 as element(spos)) as element(spos)
{

17 element spos {
18 for $spo1 in $spos1/spo
19 for $spo2 in $spos2/spo
20 where (spdb:product -compatible($spo1 , $spo2)

)
21 return spdb:product($spo1 , $spo2)
22 }
23 };

Figure 13: Partial Cartesian product (”TIMES”) implementation.

4 XQUERY API IMPLEMENTATION 32

all SPOs are product-compatible and have many rows, this operation can take

a very long time. These nested loops are difficult to avoid: the specification

of TIMES (section 2.2.4) requires that it return n∗m SPOs given two relations

of size n and m; and r∗s rows per SPO given a pair of SPOs with row counts

r and s. These nested loops perform exactly this many iterations.

4.5 Join

Our JOIN implementation is shown in figure 14. JOIN has complexity prob-

lems similar to those of TIMES. Two double FOR loops are required, for each

pair of SPOS and each pair of rows.

As with TIMES, all SPOs are join-compatible and have many rows, this

operation can take a very long time. These nested loops are difficult to avoid:

the specification of JOIN (section 2.2.5) requires that it return n ∗ m SPOs

given two relations of size n and m; and r ∗ s rows per SPO given a pair

of SPOs with row counts r and s. These nested loops perform exactly this

many iterations.

Our implementation removes all common columns from the JOINed SPOs

by conditionalizing on variables common to both SPOs (spdb:leftjoin-conditionalize(),

figure 14). Without any common columns, the two SPOs are product-

compatible and we perform a Cartesian product.

The implementation of RIGHTJOIN is shown in figure 17: the parameters

are simply switched to form a left join. This means variables from the second

parameter to a RIGHTJOIN are displayed before the variables from the first

4 XQUERY API IMPLEMENTATION 33

1 declare function spdb:leftjoin -conditionalize -table(
$table as element(table), $vars as element(name)
, $vals as element(val)) as element(table) {

2 if (fn:empty($vars)) then $table else
3 let $var := $vars [1]
4 let $val := $vals [1]
5 return spdb:leftjoin -conditionalize -table(element

table {$table/@*,
6 element variable {$table/variable/name[. ne $var

]},
7 spdb:conditionalize -table($table , $var , $val)/

row
8 }, $vars[position () ne 1], $vals[position () ne 1])
9 };

10
11 declare function spdb:table -leftjoin($table1 as

element(table), $table2 as element(table)) as
element(table)? {

12 let $common := spdb:common -vars($table1/variable ,
$table2/variable)/name

13 return if (fn:empty($common)) then () else
14 element table {$table1/@*,
15 element variable {$table1/variable/name , $table2

/variable/name[not(. = $common)]},
16 for $row1 in $table1/row
17 let $values := spdb:row -column -vals($table1/

variable/name , $row1 , $common/text())
18 let $condtable2 := spdb:leftjoin -

conditionalize -table($table2 , $common ,
$values)

19 return spdb:rows -product($row1 , $condtable2/
row)

20 }
21 };

Figure 14: Partial JOIN implementation. Some parts are very similar to
TIMES and have been omitted from this figure.

4 XQUERY API IMPLEMENTATION 34

1 declare function spdb:sp -rightjoin($spos1 as element
(spos), $spos2 as element(spos)) as element(spos)
{

2 spdb:sp -leftjoin($spos2 , $spos1)
3 };

Figure 15: Right-join implementation, based on left-join.

1 declare function spdb:table -leftmix($table1 as
element(table), $table2 as element(table)) as
element(table) {

2 let $common := spdb:common -vars($table1/variable ,
$table2/variable)/name

3 return if (fn:empty($common))
4 then spdb:table -product($table1 , $table2)
5 else spdb:table -leftjoin($table1 , $table2)
6 };

Figure 16: Mix implementation.

parameter in the probability table, which may be unintuitive. This is accept-

able, however, as the order in which variables are displayed in the results is

not significant.

The names LEFTJOIN and RIGHTJOIN are used in SPOQL queries, instead

of LEFT JOIN and RIGHT JOIN, to avoid making large changes to the existing

SPOQL parser.

4.6 Mix

As described in section 2.2.6, MIX simply chooses between JOIN and TIMES

for each pair of SPOs, depending on their compatibility. Note that, while

4 XQUERY API IMPLEMENTATION 35

1 declare function spdb:sp -rightmix($spos1 as element(
spos), $spos2 as element(spos)) as element(spos)
{

2 spdb:sp -leftmix($spos2 , $spos1)
3 };

Figure 17: Right-mix implementation, based on left-mix.

JOIN and TIMES are mutually exclusive, there exist SPOs which are neither

join- nor product-compatible that will not be included in MIX’s results.

The implementation of RIGHTMIX is similar to that of RIGHTJOIN (4.5),

as shown in figure 17.

The names LEFTMIX and RIGHTMIX are used in SPOQL queries, instead

of LEFT MIX and RIGHT MIX, for the same reason as the similar care for

JOIN operations (section 4.5): to avoid making large changes to the existing

SPOQL parser.

5 EXPERIMENTS 36

5 Experiments

5.1 Design

A major motivation for our native XML SPDBMS backend was improving

system performance: the existing Oracle implementation was reported to

have trouble with both memory and processing time. We need to justify

performance improvements with appropriate experiments. Our experiments

focus on measuring the time required to process queries.

5.1.1 Experimental Variables

Factors we planned to vary in experiments include:

• Relation size: The number of SPOs included in each relation

• Number of random variables: The average number of variables in each

SPO

• Domain size: the typical number of possible values for each random

variable

• Join-compatibility and Product-Compatibility: the number of results

expected for JOIN, TIMES, and MIX operations. (Recall the explana-

tions of join- and product-compatibility from sections 2.2.5 and 2.2.4.)

Later, we discovered that execution speed was also dependent on our

XQuery module size as it influenced the time required to compile the module

5 EXPERIMENTS 37

for every query, and we set up further experiments to show this. See section

5.2.1 for details.

5.1.2 Construction and Execution

A custom XML generator was written to provide test data for experiments

varying the above parameters. An existing set of experimental data and

queries, provided with the existing source code from [9], was included and

adapted to our needs.

To collect timing information, the SPDB server was instrumented to log

two pieces of data - time spent performing database queries, and time spent

processing the data outside of the database. All times recorded are in mil-

liseconds. Graphs are generated using Gnuplot.

Experiments are automated by a collection of custom shell scripts. Given

a set of test data, a list of files containing experimental queries, and a prop-

erties file specifying which database backend to use (ExistDB or Oracle): we

start the SPDB server, clean out the database, populate the database with

test data required throughout the experiment, and run all queries specified

for the experiment. After experiments are complete, graphs of the results

are generated using custom Gnuplot scripts.

5 EXPERIMENTS 38

Figure 18: Baseline experiments: running the simplest possible query (SE-
LECT * FROM Relation) on an empty database. Exist tends to lag behind
Oracle a bit, but the difference is reasonable.

5 EXPERIMENTS 39

Figure 19: Baseline experiments: running the simplest possible query (SE-
LECT * FROM Relation) on an empty database. ”Exist(minimal)” uses
the smallest possible XQuery module to run this set of experiments, whereas
”Exist(full)” uses the full module supporting all SPDBMS operations. Using
the full XQuery module dramatically slows Exist.

5 EXPERIMENTS 40

5.2 Results and Analysis

5.2.1 Module Compilation Speed

Early experiments showed our ExistDB backend to be dramatically slower

than Oracle, even for a baseline measurement - the simplest possible opera-

tion, SELECT * FROM Relation performed on an empty database. Further

experiments, shown in figures 18 and 19, showed that reducing our XQuery

module to only a minimum set of functions needed to support this opera-

tion dramatically improved our results. ExistDB appeared to be recompiling

our XQuery module once for every XQuery execution, or once per SPOQL

statement!

This module does not change between runs and should only need to be

compiled once to be used for all queries. ExistDB’s built-in function libraries

suggest that this is possible, but we were unable to determine how to imple-

ment this ourselves. ExistDB’s documentation suggests that this should be

done automatically[1]:

XQuery modules executed via the REST interface, the XQuery-

Servlet or XQueryGenerator are automatically cached: the com-

piled expression will be added to an internal pool of prepared

queries. The next time a query or module is loaded from the

same location, it will not be compiled again. Instead, the already

compiled code is reused.

5 EXPERIMENTS 41

Figure 20: Projection on variables experiments. Performance compared to
the original relational implementation was disappointing.

5.2.2 Results for Projection on Variables

Figure 20 shows our XQuery backend’s results for the projection on variables

operation (section 2.2.2). These results were particularly disappointing. Sec-

tion 4.2 discusses the relevant code.

When projected columns are removed from the result, some rows will

have the same values for all remaining columns - probabilities for these rows

must be merged. Identifying and merging these duplicate rows using XQuery

is expensive: each pair of rows must be checked for equality, leading to

a complexity of O(n2) for n rows. It’s certainly possible to optimize this

5 EXPERIMENTS 42

case in XQuery. We could manually construct indexes on discrete values

for each column in such a way that each row has a unique integer index

based on the values of its random variables. When one column is removed

and indexes recalculated, rows with identical values would also have identical

indexes. Exist is much more likely to be able to optimize the comparison of

a single integer, improving performance and complexity. This has not yet

been implemented.

5.2.3 Memory Usage

While experiments focused on execution time rather than memory usage, it

was apparent that our XQuery implementation handled memory more effi-

ciently than the existing Oracle implementation. Oracle ran out of memory

on some experiments with large joins and products; ExistDB was able to

complete the same experiments. This problem with the Oracle implemen-

tation existed in previous implementations, and our focus is on the new

ExistDB implementation, so we made no attempt to diagnose or repair the

Oracle backend’s memory problems.

6 CONCLUSION AND FUTURE WORK 43

6 Conclusion and Future Work

We have presented a native XML database backend to an XML-centric

semistructured probabilistic database. Our original goal of improved exe-

cution time over the previous Oracle backend was not met. We analyzed the

problems behind these disappointing results and developed several ideas for

relevant future work:

• Improve the execution time of all queries by recompiling and reloading

our XQuery module, or by compiling only the functions required for a

particular operation.

• Port our XQuery module to other XML database backends. Compare

their performance.

• Improve the execution time of projection on variables, perhaps using

the indexing scheme described in section .

• Implement the AND optimization discussed in section 4.1.2.

• Improve the execution time of join and product operations.

7 BIBLIOGRAPHY 44

7 Bibliography

References

[1] Existdb documentation: Xquery documentation: Xquery caching.

[2] Anderson, D., Reed, A., Rosson, E., and Sideropoulos, A.

Native xml support for semistructured probabalistic data management.

Tech. rep., Computer Science Department, California Polytechnic State

University, Dec 2007.

[3] Anderson, D., Reed, A., Rosson, E., and Sideropoulos, A.

Native xml support for semistructured probabalistic data management.

Tech. rep., Computer Science Department, California Polytechnic State

University, Oct 2007.

[4] Anderson, D., Reed, A., Rosson, E., and Sideropoulos, A.

Native xml support for semistructured probabalistic data management:

A progress report. Tech. rep., Computer Science Department, California

Polytechnic State University, Nov 2007.

[5] Barbará, D., Garcia-Molina, H., and Porter, D. The man-

agement of probabilistic data. IEEE Trans. on Knowledge and Data

Engineering 4 (1992), 487–502.

REFERENCES 45

[6] Boulos, J., Dalvi, N., Mandhani, B., Mathur, S., Re, C., and

Suciu, D. Mystiq: A system for finding more answers by using proba-

bilities.

[7] Cavallo, R., and Pittarelli, M. The theory of probabilistic

databases. pp. 71–81.

[8] Cavallo, R., and Pittarelli, M. The theory of probabilistic

databases. In Proc. VLDB’87 (1987), pp. 71–81.

[9] Dekhtyar, A., Gutti, P., and Mathias, K. Structured queries for

semistructured probabilistic data. ACM TDM (2006).

[10] Pearl, J. Probabilistic Reasoning in Intelligent Systems. Morgan Kauf-

mann, 1988.

[11] Zhao, W., Dekhtyar, A., and Goldsmith, J. A framework for

management of semistructured probabilistic data. Journal of Intelligent

Information Systems 25, 3 (2004), 293–332.

A XQUERY 46

A XQuery

1 module namespace spdb="http :// www.csc.calpoly.edu/~
erosson/spdb";

2
3 declare function spdb:sp -select -var($spos as element

(spos), $varname as xs:string)
4 as element(spos)
5 {
6 element spos {
7 $spos/spo[table/variable/name = $varname]
8 }
9 };

10
11 (: @author Dustin Anderson :)
12 declare function spdb:sp -select -table($sp as element

(spos),
13 $varname as xs:string , $value as xs:string , $comp as

xs:string) as element(spos)
14 {
15 let $ret := (
16 for $spo in $sp// variable/name[text() eq $varname]/

ancestor ::spo
17 let $n := (for $var in $spo// variable
18 for $e at $i in $var/name
19 return if ($e eq $varname) then $i else ()
20)
21 let $rows := (
22 if ($comp eq "=") then
23 $spo//row/val[position ()=$n and (text() eq

$value)]/ parent ::row
24 else if ($comp eq "!=") then
25 $spo//row/val[position ()=$n and (text() ne

$value)]/ parent ::row
26 else if ($comp eq "<") then
27 $spo//row/val[position ()=$n and (text() lt

$value)]/ parent ::row

A XQUERY 47

28 else if ($comp eq "<=") then
29 $spo//row/val[position ()=$n and (text() le

$value)]/ parent ::row
30 else if ($comp eq ">") then
31 $spo//row/val[position ()=$n and (text() gt

$value)]/ parent ::row
32 else if ($comp eq ">=") then
33 $spo//row/val[position ()=$n and (text() ge

$value)]/ parent ::row
34 else ()
35)
36 let $variables := $rows/parent ::*/ variable
37 let $context := $rows/ancestor ::*/ context
38 let $table := element table {$variables , $rows}
39 let $conditional := $rows/ancestor ::*/ conditional
40 let $spo := <spo path ="{ $spo/@path }">{$context ,

$table , $conditional }</spo >
41 return $spo
42)
43 return <spos >{$ret}</spos >
44 };
45
46 (: @author Dustin Anderson :)
47 declare function spdb:sp -select -prob($sp as element(

spos), $value as xs:string ,
48 $comp as xs:string) as element(spos)
49 {
50 let $spos := (
51 for $node in $sp//spo
52 let $context := $node/descendant :: context
53 let $conditional := $node/descendant :: conditional
54 let $variables := $node/descendant :: variable
55 let $rows := (
56 if ($comp eq "=") then
57 $node/descendant ::P[text() eq $value]/ parent

::row
58 else if ($comp eq "!=") then

A XQUERY 48

59 $node/descendant ::P[text() ne $value]/ parent
::row

60 else if ($comp eq "<") then
61 $node/descendant ::P[text() lt $value]/ parent

::row
62 else if ($comp eq "<=") then
63 $node/descendant ::P[text() le $value]/ parent

::row
64 else if ($comp eq ">") then
65 $node/descendant ::P[text() gt $value]/ parent

::row
66 else if ($comp eq ">=") then
67 $node/descendant ::P[text() ge $value]/ parent

::row
68 else ()
69)
70 let $table := element table {$variables , $rows}
71 let $spo := <spo path ="{ $node/@path }">{$context ,

$table , $conditional }</spo >
72 return $spo
73)
74 return <spos > {$spos} </spos >
75 };
76
77 (: @author Dustin Anderson :)
78 declare function spdb:sp -select -conditional($sp as

element(spos),
79 $varname as xs:string , $value as xs:string , $comp as

xs:string) as element(spos)
80 {
81 let $thespos := (
82 for $node in $sp//spo
83 let $elem := (
84 if ($comp eq "=") then
85 $node/descendant :: conditional/child ::elem[(

descendant ::name/text() eq $varname) and (
descendant ::val eq $value)]

86 else if ($comp eq "!=") then

A XQUERY 49

87 $node/descendant :: conditional/child ::elem[(
descendant ::name/text() eq $varname) and (
descendant ::val ne $value)]

88 else if ($comp eq "<") then
89 $node/descendant :: conditional/child ::elem[(

descendant ::name/text() eq $varname) and (
descendant ::val lt $value)]

90 else if ($comp eq "<=") then
91 $node/descendant :: conditional/child ::elem[(

descendant ::name/text() eq $varname) and (
descendant ::val le $value)]

92 else if ($comp eq ">") then
93 $node/descendant :: conditional/child ::elem[(

descendant ::name/text() eq $varname) and (
descendant ::val gt $value)]

94 else if ($comp eq ">=") then
95 $node/descendant :: conditional/child ::elem[(

descendant ::name/text() eq $varname) and (
descendant ::val ge $value)]

96 else()
97)
98 let $spo := $elem/ancestor ::spo
99 return $spo

100)
101 return <spos > {$thespos} </spos >
102 };
103
104 (: @author Dustin Anderson :)
105 declare function spdb:sp -select -context($sp as

element(spos),
106 $varname as xs:string , $value as xs:string , $comp as

xs:string) as element(spos)
107 {
108 let $thespos := (
109 for $node in $sp//spo
110 let $elem := (
111 if ($comp eq "=") then

A XQUERY 50

112 $node/descendant :: context/child ::elem[descendant
::name/text() eq $varname and descendant ::val
eq $value]

113 else if ($comp eq "!=") then
114 $node/descendant :: context/child ::elem[descendant

::name/text() eq $varname and descendant ::val
ne $value]

115 else if ($comp eq "<") then
116 $node/descendant :: context/child ::elem[descendant

::name/text() eq $varname and descendant ::val
lt $value]

117 else if ($comp eq "<=") then
118 $node/descendant :: context/child ::elem[descendant

::name/text() eq $varname and descendant ::val
le $value]

119 else if ($comp eq ">") then
120 $node/descendant :: context/child ::elem[descendant

::name/text() eq $varname and descendant ::val
gt $value]

121 else if ($comp eq ">=") then
122 $node/descendant :: context/child ::elem[descendant

::name/text() eq $varname and descendant ::val
ge $value]

123 else ()
124)
125 let $spo := $elem/ancestor ::spo
126 return $spo
127)
128
129 return <spos >{ $thespos}</spos >
130 };
131
132 (: @author Dustin Anderson :)
133 declare function spdb:sp -project -context($sp as

element(spos),
134 $varnames as xs:string *) as element(spos)
135 {
136 let $thespos := (

A XQUERY 51

137 for $varname in $varnames
138 for $node in $sp//spo
139 let $conditional := $node/descendant :: conditional
140 let $variables := $node/descendant :: variable
141 let $rows := $node/descendant ::row
142 let $table := element table {$variables , $rows}
143 let $elem := $node/descendant :: context/child ::

elem[descendant ::name/text() eq $varname]
144 let $context := <context > {$elem} </context >
145 let $spo := <spo path ="{ $node/@path }">{$context ,

$table , $conditional }</spo >
146 return $spo
147)
148
149 return <spos >{ $thespos}</spos >
150 };
151
152 (: @author Dustin Anderson :)
153 declare function spdb:sp -project -conditional($sp as

element(spos),
154 $varnames as xs:string *) as element(spos)
155 {
156 let $thespos := (
157 for $varname in $varnames
158 for $node in $sp//spo
159 let $context := $node/descendant :: context
160 let $variables := $node/descendant :: variable
161 let $rows := $node/descendant ::row
162 let $table := element table {$variables , $rows}
163 let $elem := $node/descendant :: conditional/child

::elem[descendant ::name/text() eq $varname]
164 let $conditional := <conditional > {$elem} </

conditional >
165 let $spo := <spo path ="{ $node/@path }">{$context ,

$table , $conditional }</spo >
166 return $spo
167)
168 return <spos >{ $thespos}</spos >

A XQUERY 52

169 };
170
171
172
173
174
175
176
177
178
179 (: http :// www.xqueryfunctions.com/xq/functx_value -

intersect.html :)
180 declare namespace functx = "http :// www.functx.com";
181 declare function functx:value -intersect
182 ($arg1 as xs:anyAtomicType* ,
183 $arg2 as xs:anyAtomicType*) as xs:

anyAtomicType* {
184
185 distinct -values($arg1 [.= $arg2])
186 } ;
187
188 declare function functx:is -node -in -sequence -deep -

equal
189 ($node as node()? ,
190 $seq as node()*) as xs:boolean {
191
192 some $nodeInSeq in $seq satisfies deep -equal(

$nodeInSeq ,$node)
193 } ;
194
195 declare function functx:distinct -deep
196 ($nodes as node()*) as node()* {
197
198 for $seq in (1 to count($nodes))
199 return $nodes[$seq][not(functx:is -node -in -

sequence -deep -equal(
200 .,$nodes[position () < $seq

]))]

A XQUERY 53

201 } ;
202
203
204 declare function spdb:QName($code as xs:string) as

xs:QName {
205 fn:QName ("http :// www.csc.calpoly.edu/~ erosson/spdb

/errors", $code)
206 };
207 declare function spdb:error($code as xs:string , $msg

as xs:string) as node() {
208 fn:error(spdb:QName($code), fn:concat ("SPO error:

", $msg))
209 };
210 declare function spdb:error($msg as xs:string) as

node() {
211 spdb:error ("???" , $msg)
212 };
213
214 declare function spdb:relation($name as xs:string)

as element(spos) {
215 let $ret := document($name)/spos
216 return if (fn:empty($ret)) then spdb:error ("

relation_dne",fn:concat (" Relation does not
exist: ", $name)) else

217 $ret
218 };
219
220 declare function spdb:cond -normalize($cond as

element(conditional)) as element(conditional) {
221 element conditional {
222 for $elem in $cond/elem
223 order by $elem/name
224 return $elem
225 }
226 };
227
228 (:
229 Match a SPO ’s <cond > blocks. Order doesn ’t matter.

A XQUERY 54

230 :)
231 declare function spdb:cond -match($cond1 as element(

conditional), $cond2 as element(conditional)) as
xs:boolean {

232 deep -equal(spdb:cond -normalize($cond1), spdb:cond -
normalize($cond2))

233 };
234
235 declare function spdb:common -vars($vars1 as element(

variable), $vars2 as element(variable)) as
element(variable) {

236 element variable {
237 for $name in functx:value -intersect($vars1/name/

text(), $vars2/name/text())
238 return element name {$name}
239 }
240 };
241
242 declare function spdb:common -vars -empty($elem1 as

element (), $elem2 as element ()) as xs:boolean {
243 fn:empty(spdb:common -vars($elem1 //variable , $elem2

// variable)/name)
244 };
245
246 declare function spdb:product -compatible($spo1 as

element(spo), $spo2 as element(spo)) as xs:
boolean {

247 if (spdb:cond -match($spo1/conditional , $spo2/
conditional))

248 then spdb:common -vars -empty($spo1 , $spo2)
249 else false ()
250 };
251
252 declare function spdb:join -compatible($spo1 as

element(spo), $spo2 as element(spo)) as xs:
boolean {

253 if (spdb:cond -match($spo1/conditional , $spo2/
conditional))

A XQUERY 55

254 then not(spdb:common -vars -empty($spo1 , $spo2))
255 else false ()
256 };
257
258 declare function spdb:table -product($table1 as

element(table), $table2 as element(table)) as
element(table) {

259 if (not(spdb:common -vars -empty($table1 , $table2)))
then () else

260 element table {
261 element variable {$table1/variable/name , $table2

/variable/name},
262 spdb:rows -product($table1/row , $table2/row)
263 }
264 };
265
266 declare function spdb:rows -product($rows1 as element

(row)*, $rows2 as element(row)*) as element(row)*
{

267 for $row1 in $rows1
268 for $row2 in $rows2
269 let $prob := element P { $row1/P/number () *

$row2/P/number () }
270 return element row {$row1/val , $row2/val ,

$prob}
271 };
272
273 declare function spdb:context -merge($con1 as element

(context), $con2 as element(context)) as element(
context) {

274 element context {
275 functx:distinct -deep(($con1/elem , $con2/elem))
276 }
277 };
278
279 declare function spdb:binary -spo -wrap($spo1 as

element(spo), $spo2 as element(spo), $table as
element(table)) as element(spo) {

A XQUERY 56

280 element spo {
281 spdb:context -merge($spo1/context , $spo2/context)

,
282 $table ,
283 $spo1/conditional
284 }
285 };
286
287 declare function spdb:product($spo1 as element(spo),

$spo2 as element(spo)) as element(spo)? {
288 if (not(spdb:product -compatible($spo1 , $spo2)))

then () else
289 spdb:binary -spo -wrap($spo1 , $spo2 , spdb:table -

product($spo1/table , $spo2/table))
290 };
291
292 declare function spdb:sp -product($spos1 as element(

spos), $spos2 as element(spos)) as element(spos)
{

293 element spos {
294 for $spo1 in $spos1/spo
295 for $spo2 in $spos2/spo
296 return spdb:product($spo1 , $spo2)
297 }
298 };
299
300
301 declare function spdb:table -column -num($vars as

element(name)*, $name as xs:string) as xs:integer
? {

302 spdb:table -column -nums($vars , $name)
303 };
304 declare function spdb:table -column -nums($vars as

element(name)*, $names as xs:string *) as xs:
integer* {

305 for $var at $index in $vars
306 where $var/text() = $names
307 return $index

A XQUERY 57

308 };
309
310 declare function spdb:table -column -vals -by -nums(

$rows as element(row)*, $num as xs:integer) as
element(val)* {

311 $rows/val[position () eq $num]
312 };
313
314 declare function spdb:row -column -vals -by -nums($row

as element(row), $nums as xs:integer *) as element
(val)* {

315 $row/val[position () = $nums]
316 };
317
318 declare function spdb:table -column -vals($table as

element(table), $name as xs:string) as element(
val)* {

319 let $num := spdb:table -column -num($table/variable/
name , $name)

320 return if (fn:empty($num)) then $table/row/val
else

321 spdb:table -column -vals -by -nums($table/row , $num)
322 };
323
324 declare function spdb:row -column -vals($vars as

element(name)*, $row as element(row), $names as
xs:string *) as element(val)* {

325 spdb:row -column -vals -by -nums($row , spdb:table -
column -nums($vars , $names))

326 };
327
328 declare function spdb:conditionalize -table($table as

element(table), $name as xs:string , $value as xs
:string) as element(table) {

329 let $num := spdb:table -column -num($table/variable/
name , $name)

330 (: If var isn ’t in table , return the original
table.

A XQUERY 58

331 This isn ’t silent failure , but an irrelevant
conditionalization. :)

332 return if (fn:empty($num)) then $table else
333 let $newrows := $table/row[exists(val[$num][text()

eq $value])]
334 let $oldprob := sum(for $i in $table/row/P return

xs:decimal($i))
335 let $newprob := sum(for $i in $newrows/P return xs

:decimal($i))
336 let $probmult := if ($newprob gt 0) then $oldprob

div $newprob else 1
337 return element table {
338 element variable {$table/variable/name[position

() ne $num]},
339 for $row in $newrows
340 let $p := xs:decimal($row/P) * $probmult
341 return element row {$row/val[position () ne

$num], element P{$p}}
342 }
343 };
344
345 declare function spdb:conditionalize($spo as element

(spo), $name as xs:string , $value as xs:string)
as element(spo) {

346 element spo {$spo/@*,
347 $spo/context ,
348 spdb:conditionalize -table($spo/table , $name ,

$value),
349 element conditional {
350 $spo/conditional /*,
351 element elem {element name{$name}, element val

{$value }}
352 }
353 }
354 };
355
356 declare function spdb:sp -conditionalize($spos as

element(spos), $name as xs:string , $value as xs:

A XQUERY 59

string) as element(spos) {
357 element spos {$spos/@*,
358 for $spo in $spos/spo
359 return spdb:conditionalize($spo , $name , $value

)
360 }
361 };
362 declare function spdb:leftjoin -conditionalize -table(

$table as element(table), $vars as element(name)
, $vals as element(val)) as element(table) {

363 if (fn:empty($vars)) then $table else
364 let $var := $vars [1]
365 let $val := $vals [1]
366 return spdb:leftjoin -conditionalize -table(element

table {$table/@*,
367 element variable {$table/variable/name[. ne $var

]},
368 spdb:conditionalize -table($table , $var , $val)/

row
369 }, $vars[position () ne 1], $vals[position () ne 1])
370 };
371
372 declare function spdb:table -leftjoin($table1 as

element(table), $table2 as element(table)) as
element(table)? {

373 let $common := spdb:common -vars($table1/variable ,
$table2/variable)/name

374 return if (fn:empty($common)) then () else
375 element table {$table1/@*,
376 element variable {$table1/variable/name , $table2

/variable/name[not(. = $common)]},
377 for $row1 in $table1/row
378 let $values := spdb:row -column -vals($table1/

variable/name , $row1 , $common/text())
379 let $condtable2 := spdb:leftjoin -

conditionalize -table($table2 , $common ,
$values)

A XQUERY 60

380 return spdb:rows -product($row1 , $condtable2/
row)

381 }
382 };
383
384 declare function spdb:leftjoin($spo1 as element(spo)

, $spo2 as element(spo)) as element(spo)? {
385 if (not(spdb:join -compatible($spo1 , $spo2))) then

() else
386 spdb:binary -spo -wrap($spo1 , $spo2 , spdb:table -

leftjoin($spo1/table , $spo2/table))
387 };
388
389 declare function spdb:sp -leftjoin($spos1 as element(

spos), $spos2 as element(spos)) as element(spos)
{

390 element spos {
391 for $spo1 in $spos1/spo
392 for $spo2 in $spos2/spo
393 return spdb:leftjoin($spo1 , $spo2)
394 }
395 };
396
397 declare function spdb:sp -rightjoin($spos1 as element

(spos), $spos2 as element(spos)) as element(spos)
{

398 spdb:sp -leftjoin($spos2 , $spos1)
399 };
400
401 declare function spdb:table -leftmix($table1 as

element(table), $table2 as element(table)) as
element(table) {

402 let $common := spdb:common -vars($table1/variable ,
$table2/variable)/name

403 return if (fn:empty($common)) then spdb:table -
product($table1 , $table2) else spdb:table -
leftjoin($table1 , $table2)

404 };

A XQUERY 61

405
406 declare function spdb:leftmix($spo1 as element(spo),

$spo2 as element(spo)) as element(spo)? {
407 if (not(spdb:cond -match($spo1/conditional , $spo2/

conditional))) then () else
408 spdb:binary -spo -wrap($spo1 , $spo2 , spdb:table -

leftmix($spo1/table , $spo2/table))
409 };
410
411 declare function spdb:sp -leftmix($spos1 as element(

spos), $spos2 as element(spos)) as element(spos)
{

412 element spos {
413 for $spo1 in $spos1/spo
414 for $spo2 in $spos2/spo
415 return spdb:leftmix($spo1 , $spo2)
416 }
417 };
418
419 declare function spdb:sp -rightmix($spos1 as element(

spos), $spos2 as element(spos)) as element(spos)
{

420 spdb:sp -leftmix($spos2 , $spos1)
421 };
422
423 declare function spdb:sp -where -or($spos1 as element(

spos), $spos2 as element(spos)) as element(spos)
{

424 element spos {$spos1/@*, functx:distinct -deep((
$spos1/spo , $spos2/spo)) }

425 };
426
427 (: Existdb -specific: http :// exist.sourceforge.net/

update_ext.html :)
428 declare function spdb:sp -update -insert($dest as

element(spos), $data as element(spos)) as node()*
{

429 update insert $data/spo into $dest

A XQUERY 62

430 };
431
432 declare function spdb:sp -update -delete($dest as xs:

string , $matches as element(spos)) as node()* {
433 for $match in $matches/spo
434 for $spo in spdb:relation($dest)/spo
435 where deep -equal($match , $spo)
436 return update delete $spo
437 };
438
439 declare function spdb:rows -project -var($rawrows as

element(row)*, $visiblenums as xs:integer *) as
element(row)* {

440 let $rowsviscols := for $row in $rawrows
441 return element row {$row/@*,
442 $row/val[position () = $visiblenums],
443 $row/P
444 }
445 return for $row1 at $i in $rowsviscols
446 (: where no previous rows have identical values

:)
447 where fn:empty($rowsviscols[position () lt $i][

not(val != $row1/val)])
448 return element row {$row1/@*,
449 $row1/val ,
450 element P {$row1/P/@*,
451 (: sum all rows with identical values. skip

previous rows: we checked those already
:)

452 sum(for $p in $rowsviscols[position () ge $i
][not(val != $row1/val)]/P

453 return xs:decimal($p))
454 }
455 }
456 };
457
458 declare function spdb:table -project -var($table as

element(table), $visiblevars as xs:string *) as

A XQUERY 63

element(table) {
459 let $visiblenums := spdb:table -column -nums($table/

variable/name , $visiblevars)
460 return element table {$table/@*,
461 element variable {$table/variable/@*,
462 $table/variable/name[position () = $visiblenums

]
463 },
464 spdb:rows -project -var($table/row , $visiblenums)
465 }
466 };
467
468 declare function spdb:project -var($spo as element(

spo), $visiblevars as xs:string *) as element(spo)
{

469 element spo {$spo/@*,
470 $spo/context ,
471 spdb:table -project -var($spo/table , $visiblevars)

,
472 $spo/conditional
473 }
474 };
475
476 declare function spdb:sp-project -var($spos as

element(spos), $visiblevars as xs:string *) as
element(spos) {

477 element spos {$spos/@*,
478 for $spo in $spos/spo
479 return spdb:project -var($spo , $visiblevars)
480 }
481 };
482
483 declare function spdb:rows -project -var -2($rawrows as

element(row)*, $visiblenums as xs:integer *) as
element(row)* {

484 let $rowsviscols := for $row in $rawrows
485 return element row {$row/@*,
486 $row/val[position () = $visiblenums],

A XQUERY 64

487 $row/P
488 }
489 return for $row1 at $i in $rowsviscols
490 (: where no previous rows have identical values

:)
491 where fn:empty($rowsviscols[position () lt $i][

deep -equal(val , $row1/val)])
492 return element row {$row1/@*,
493 $row1/val ,
494 element P {$row1/P/@*,
495 (: sum all rows with identical values. skip

previous rows: we checked those already
:)

496 sum(for $p in $rowsviscols[position () ge $i
][deep -equal(val , $row1/val)]/P

497 return xs:decimal($p))
498 }
499 }
500 };
501
502 declare function spdb:table -project -var -2($table as

element(table), $visiblevars as xs:string *) as
element(table) {

503 let $visiblenums := spdb:table -column -nums($table/
variable/name , $visiblevars)

504 return element table {$table/@*,
505 element variable {$table/variable/@*,
506 $table/variable/name[position () = $visiblenums

]
507 },
508 spdb:rows -project -var -2($table/row , $visiblenums

)
509 }
510 };
511
512 declare function spdb:project -var -2($spo as element(

spo), $visiblevars as xs:string *) as element(spo)
{

A XQUERY 65

513 element spo {$spo/@*,
514 $spo/context ,
515 spdb:table -project -var -2($spo/table ,

$visiblevars),
516 $spo/conditional
517 }
518 };
519
520 declare function spdb:sp-project -var -2($spos as

element(spos), $visiblevars as xs:string *) as
element(spos) {

521 element spos {$spos/@*,
522 for $spo in $spos/spo
523 return spdb:project -var -2($spo , $visiblevars)
524 }
525 };
526
527 (: @author Dustin Anderson :)
528 declare function spdb:sp -project -var -3($sp as

element(spos), $visiblevars as xs:string *) as
element(spos)

529 {
530 let $hiddenvars := $sp// variable/name[. !=

$visiblevars]
531
532 let $thespos := (
533 (:Only iterate over spos that have CS113

in them as <name > elements :)
534 for $varname in $hiddenvars
535 for $node in $sp/descendant :: variable/name[text() eq

$varname]/ ancestor ::spo
536 (: Get the position of ’CS113 ’ in the <

names > :)
537 let $n := (for $w in $node // variable
538 for $e at $i in $w/child ::name
539 return
540 if ($e eq $varname) then $i

else ()

A XQUERY 66

541)
542
543 (: Remove $varnames from the <variable >

element :)
544 let $variable := (
545 for $v in $node // table/child :: variable
546 let $name := $v/child ::name[position () !=

$n]
547 return element variable{$name}
548)
549
550 (: Remove elements in table that match

with position of $varnames :)
551 let $rowswithP := (
552 for $r in $node // table/row
553 let $vals := $r/child ::val[position () !=

$n]
554 return element row{$vals , $r/child ::P

}
555)
556
557 (: Remove elements in table that match

with position of $varnames :)
558 let $rowswithoutP := (
559 for $r in $node // table/row
560 let $vals := $r/child ::val[position () !=

$n]
561 return element row{$vals}
562)
563
564 let $table := (
565 for $xx at $ii in $rowswithoutP
566 for $yy at $jj in $rowswithoutP
567 return if (($xx eq $yy) and ($jj > $ii))

then
568 element row {$xx/val , <P>{($rowswithP[

position ()=$ii]/P + $rowswithP[
position ()=$jj]/P)}</P>}

A XQUERY 67

569 else
570 ()
571)
572
573 let $context := $node // context
574 let $conditional := $node // conditional
575
576 return <spo path ="{ $node/@path }">{$context , <

table >{$variable , $table}</table >,
$conditional }</spo >

577)
578
579 return <spos >{ $thespos}</spos >
580 };

B EXPERIMENTAL RESULTS 68

B Experimental Results

B.1 Baseline experiments

Comparison

B EXPERIMENTAL RESULTS 69

B EXPERIMENTAL RESULTS 70

Oracle Data

B EXPERIMENTAL RESULTS 71

1 QUERY XML select * from empty: (time: 147 db: 7)
2 QUERY XML select * from empty: (time: 22 db: 5)
3 QUERY XML select * from empty: (time: 18 db: 6)
4 QUERY XML select * from empty: (time: 16 db: 4)
5 QUERY XML select * from empty: (time: 20 db: 6)
6 QUERY XML select * from empty: (time: 23 db: 4)
7 QUERY XML select * from empty: (time: 14 db: 5)
8 QUERY XML select * from empty: (time: 15 db: 7)
9 QUERY XML select * from empty: (time: 94 db: 6)

10 QUERY XML select * from empty: (time: 18 db: 6)
11 QUERY XML select * from empty: (time: 17 db: 4)
12 QUERY XML select * from empty: (time: 24 db: 5)
13 QUERY XML select * from empty: (time: 14 db: 7)
14 QUERY XML select * from empty: (time: 21 db: 8)
15 QUERY XML select * from empty: (time: 20 db: 6)
16 QUERY XML select * from empty: (time: 19 db: 11)
17 QUERY XML select * from empty: (time: 18 db: 4)
18 QUERY XML select * from empty: (time: 23 db: 6)
19 QUERY XML select * from empty: (time: 27 db: 13)
20 QUERY XML select * from empty: (time: 13 db: 6)

Exist (minimal) Data

1 QUERY XML select * from empty: (time: 71 db: 44)
2 QUERY XML select * from empty: (time: 62 db: 50)
3 QUERY XML select * from empty: (time: 48 db: 35)
4 QUERY XML select * from empty: (time: 39 db: 30)
5 QUERY XML select * from empty: (time: 71 db: 56)
6 QUERY XML select * from empty: (time: 63 db: 52)
7 QUERY XML select * from empty: (time: 47 db: 40)
8 QUERY XML select * from empty: (time: 57 db: 49)
9 QUERY XML select * from empty: (time: 44 db: 34)

10 QUERY XML select * from empty: (time: 36 db: 26)
11 QUERY XML select * from empty: (time: 43 db: 34)
12 QUERY XML select * from empty: (time: 32 db: 22)
13 QUERY XML select * from empty: (time: 69 db: 64)
14 QUERY XML select * from empty: (time: 43 db: 38)
15 QUERY XML select * from empty: (time: 29 db: 24)
16 QUERY XML select * from empty: (time: 34 db: 22)

B EXPERIMENTAL RESULTS 72

17 QUERY XML select * from empty: (time: 29 db: 23)
18 QUERY XML select * from empty: (time: 27 db: 23)
19 QUERY XML select * from empty: (time: 24 db: 19)
20 QUERY XML select * from empty: (time: 29 db: 19)

Exist (full) Data

1 QUERY XML select * from empty: (time: 776 db: 668)
2 QUERY XML select * from empty: (time: 796 db: 784)
3 QUERY XML select * from empty: (time: 486 db: 472)
4 QUERY XML select * from empty: (time: 523 db: 513)
5 QUERY XML select * from empty: (time: 502 db: 486)
6 QUERY XML select * from empty: (time: 509 db: 497)
7 QUERY XML select * from empty: (time: 463 db: 458)
8 QUERY XML select * from empty: (time: 528 db: 520)
9 QUERY XML select * from empty: (time: 486 db: 476)

10 QUERY XML select * from empty: (time: 450 db: 440)
11 QUERY XML select * from empty: (time: 506 db: 494)
12 QUERY XML select * from empty: (time: 477 db: 468)
13 QUERY XML select * from empty: (time: 450 db: 444)
14 QUERY XML select * from empty: (time: 449 db: 445)
15 QUERY XML select * from empty: (time: 457 db: 450)
16 QUERY XML select * from empty: (time: 436 db: 430)
17 QUERY XML select * from empty: (time: 457 db: 445)
18 QUERY XML select * from empty: (time: 443 db: 438)
19 QUERY XML select * from empty: (time: 444 db: 439)
20 QUERY XML select * from empty: (time: 447 db: 442)

B EXPERIMENTAL RESULTS 73

B.2 2 variables, 100 SPOs

B.2.1 Simple Selection

Comparison

B EXPERIMENTAL RESULTS 74

Oracle Data

B EXPERIMENTAL RESULTS 75

1 QUERY XML select * from First: (time: 806 db: 379)
2 QUERY XML select * from First: (time: 234 db: 167)
3 QUERY XML select * from First: (time: 195 db: 135)
4 QUERY XML select * from First: (time: 184 db: 120)
5 QUERY XML select * from First: (time: 141 db: 111)
6 QUERY XML select * from Second: (time: 241 db: 209)
7 QUERY XML select * from Second: (time: 148 db: 113)
8 QUERY XML select * from Second: (time: 142 db: 113)
9 QUERY XML select * from Second: (time: 148 db: 113)

10 QUERY XML select * from Second: (time: 145 db: 116)
11 QUERY XML select * from Third: (time: 231 db: 204)
12 QUERY XML select * from Third: (time: 153 db: 123)
13 QUERY XML select * from Third: (time: 146 db: 111)
14 QUERY XML select * from Third: (time: 131 db: 109)
15 QUERY XML select * from Third: (time: 142 db: 109)
16 QUERY XML select * from Fourth: (time: 239 db: 194)
17 QUERY XML select * from Fourth: (time: 133 db: 107)
18 QUERY XML select * from Fourth: (time: 129 db: 105)
19 QUERY XML select * from Fourth: (time: 131 db: 107)
20 QUERY XML select * from Fourth: (time: 127 db: 106)

Exist Data

1 QUERY XML select * from First: (time: 1109 db: 660)
2 QUERY XML select * from First: (time: 689 db: 575)
3 QUERY XML select * from First: (time: 620 db: 507)
4 QUERY XML select * from First: (time: 617 db: 505)
5 QUERY XML select * from First: (time: 722 db: 597)
6 QUERY XML select * from Second: (time: 639 db: 536)
7 QUERY XML select * from Second: (time: 601 db: 485)
8 QUERY XML select * from Second: (time: 618 db: 507)
9 QUERY XML select * from Second: (time: 667 db: 558)

10 QUERY XML select * from Second: (time: 591 db: 490)
11 QUERY XML select * from Third: (time: 589 db: 490)
12 QUERY XML select * from Third: (time: 599 db: 489)
13 QUERY XML select * from Third: (time: 593 db: 488)
14 QUERY XML select * from Third: (time: 580 db: 483)
15 QUERY XML select * from Third: (time: 581 db: 477)
16 QUERY XML select * from Fourth: (time: 584 db: 489)

B EXPERIMENTAL RESULTS 76

17 QUERY XML select * from Fourth: (time: 588 db: 485)
18 QUERY XML select * from Fourth: (time: 579 db: 480)
19 QUERY XML select * from Fourth: (time: 597 db: 500)
20 QUERY XML select * from Fourth: (time: 581 db: 483)

B.2.2 Select on Context

Comparison

B EXPERIMENTAL RESULTS 77

Oracle Data

B EXPERIMENTAL RESULTS 78

1 QUERY XML select * from First where cnt.college =XX:
(time: 238 db: 120)

2 QUERY XML select * from First where cnt.comments=OO:
(time: 69 db: 50)

3 QUERY XML select * from First where cnt.year =1976: (
time: 64 db: 49)

4 QUERY XML select * from First where cnt.year =1995: (
time: 71 db: 60)

5 QUERY XML select * from First where cnt.comments=GG:
(time: 55 db: 47)

6 QUERY XML select * from Second where cnt.semester =
PP: (time: 86 db: 63)

7 QUERY XML select * from Second where cnt.major=XX: (
time: 54 db: 45)

8 QUERY XML select * from Second where cnt.major=II: (
time: 62 db: 46)

9 QUERY XML select * from Second where cnt.year =1999:
(time: 74 db: 61)

10 QUERY XML select * from Second where cnt.semester=FF
: (time: 58 db: 48)

11 QUERY XML select * from Third where cnt.major=MM: (
time: 80 db: 70)

12 QUERY XML select * from Third where cnt.instructor=
HH: (time: 53 db: 42)

13 QUERY XML select * from Third where cnt.semester=TT:
(time: 60 db: 50)

14 QUERY XML select * from Third where cnt.comments=PP:
(time: 56 db: 45)

15 QUERY XML select * from Fourth where cnt.comments=WW
: (time: 77 db: 68)

16 QUERY XML select * from Fourth where cnt.year =1981:
(time: 56 db: 45)

17 QUERY XML select * from Fourth where cnt.major=DD: (
time: 58 db: 45)

18 QUERY XML select * from Fourth where cnt.major=WW: (
time: 76 db: 64)

19 QUERY XML select * from Fourth where cnt.semester=GG
: (time: 54 db: 44)

B EXPERIMENTAL RESULTS 79

Exist Data

1 QUERY XML select * from First where cnt.college =XX:
(time: 1318 db: 1298)

2 QUERY XML select * from First where cnt.comments=OO:
(time: 1029 db: 1004)

3 QUERY XML select * from First where cnt.year =1976: (
time: 1083 db: 1061)

4 QUERY XML select * from First where cnt.year =1995: (
time: 989 db: 980)

5 QUERY XML select * from First where cnt.comments=GG:
(time: 958 db: 948)

6 QUERY XML select * from Second where cnt.semester =
PP: (time: 955 db: 943)

7 QUERY XML select * from Second where cnt.major=XX: (
time: 950 db: 936)

8 QUERY XML select * from Second where cnt.major=II: (
time: 986 db: 977)

9 QUERY XML select * from Second where cnt.year =1999:
(time: 936 db: 928)

10 QUERY XML select * from Second where cnt.semester=FF
: (time: 979 db: 971)

11 QUERY XML select * from Third where cnt.major=MM: (
time: 918 db: 906)

12 QUERY XML select * from Third where cnt.instructor=
HH: (time: 916 db: 902)

13 QUERY XML select * from Third where cnt.semester=TT:
(time: 944 db: 931)

14 QUERY XML select * from Third where cnt.comments=PP:
(time: 914 db: 904)

15 QUERY XML select * from Fourth where cnt.comments=WW
: (time: 947 db: 937)

16 QUERY XML select * from Fourth where cnt.year =1981:
(time: 943 db: 934)

17 QUERY XML select * from Fourth where cnt.major=DD: (
time: 934 db: 926)

18 QUERY XML select * from Fourth where cnt.major=WW: (
time: 913 db: 902)

B EXPERIMENTAL RESULTS 80

19 QUERY XML select * from Fourth where cnt.semester=GG
: (time: 947 db: 935)

B.2.3 Select on Conditional

Comparison

B EXPERIMENTAL RESULTS 81

Oracle Data

B EXPERIMENTAL RESULTS 82

1 QUERY XML select * from First where cnd.CS120=B: (
time: 153 db: 57)

2 QUERY XML select * from First where cnd.CS101=B: (
time: 53 db: 44)

3 QUERY XML select * from First where cnd.CS106=A: (
time: 73 db: 60)

4 QUERY XML select * from First where cnd.CS143=B: (
time: 52 db: 40)

5 QUERY XML select * from First where cnd.CS103=B: (
time: 55 db: 47)

6 QUERY XML select * from Second where cnd.CS143=B: (
time: 53 db: 44)

7 QUERY XML select * from Second where cnd.CS146=A: (
time: 62 db: 50)

8 QUERY XML select * from Second where cnd.CS135=A: (
time: 51 db: 43)

9 QUERY XML select * from Second where cnd.CS102=A: (
time: 59 db: 47)

10 QUERY XML select * from Second where cnd.CS127=B: (
time: 67 db: 55)

11 QUERY XML select * from Second where cnd.CS144=A: (
time: 30 db: 12)

12 QUERY XML select * from Third where cnd.CS144=A: (
time: 75 db: 63)

13 QUERY XML select * from Third where cnd.CS138=A: (
time: 54 db: 40)

14 QUERY XML select * from Third where cnd.CS112=B: (
time: 51 db: 42)

15 QUERY XML select * from Third where cnd.CS140=A: (
time: 59 db: 48)

16 QUERY XML select * from Third where cnd.CS122=A: (
time: 57 db: 46)

17 QUERY XML select * from Fourth where cnd.CS117=B: (
time: 57 db: 46)

18 QUERY XML select * from Fourth where cnd.CS124=A: (
time: 51 db: 41)

19 QUERY XML select * from Fourth where cnd.CS107=A: (
time: 58 db: 46)

B EXPERIMENTAL RESULTS 83

20 QUERY XML select * from Fourth where cnd.CS128=A: (
time: 51 db: 42)

21 QUERY XML select * from Fourth where cnd.CS130=B: (
time: 63 db: 51)

Exist Data

1 QUERY XML select * from First where cnd.CS120=B: (
time: 998 db: 987)

2 QUERY XML select * from First where cnd.CS101=B: (
time: 896 db: 887)

3 QUERY XML select * from First where cnd.CS106=A: (
time: 894 db: 883)

4 QUERY XML select * from First where cnd.CS143=B: (
time: 880 db: 872)

5 QUERY XML select * from First where cnd.CS103=B: (
time: 896 db: 888)

6 QUERY XML select * from Second where cnd.CS143=B: (
time: 890 db: 878)

7 QUERY XML select * from Second where cnd.CS146=A: (
time: 885 db: 874)

8 QUERY XML select * from Second where cnd.CS135=A: (
time: 880 db: 872)

9 QUERY XML select * from Second where cnd.CS102=A: (
time: 899 db: 892)

10 QUERY XML select * from Second where cnd.CS127=B: (
time: 883 db: 871)

11 QUERY XML select * from Second where cnd.CS144=A: (
time: 887 db: 880)

12 QUERY XML select * from Third where cnd.CS144=A: (
time: 883 db: 871)

13 QUERY XML select * from Third where cnd.CS138=A: (
time: 885 db: 877)

14 QUERY XML select * from Third where cnd.CS112=B: (
time: 882 db: 873)

15 QUERY XML select * from Third where cnd.CS140=A: (
time: 890 db: 873)

16 QUERY XML select * from Third where cnd.CS122=A: (
time: 900 db: 892)

B EXPERIMENTAL RESULTS 84

17 QUERY XML select * from Fourth where cnd.CS117=B: (
time: 888 db: 877)

18 QUERY XML select * from Fourth where cnd.CS124=A: (
time: 882 db: 874)

19 QUERY XML select * from Fourth where cnd.CS107=A: (
time: 888 db: 880)

20 QUERY XML select * from Fourth where cnd.CS128=A: (
time: 894 db: 885)

21 QUERY XML select * from Fourth where cnd.CS130=B: (
time: 881 db: 872)

B.2.4 Select on Variables

Comparison

B EXPERIMENTAL RESULTS 85

Oracle Data

B EXPERIMENTAL RESULTS 86

1 QUERY XML select * from First where var.CS299 in V:
(time: 252 db: 144)

2 QUERY XML select * from First where var.CS205 in V:
(time: 63 db: 52)

3 QUERY XML select * from First where var.CS286 in V:
(time: 59 db: 49)

4 QUERY XML select * from First where var.CS268 in V:
(time: 57 db: 47)

5 QUERY XML select * from Second where var.CS211 in V:
(time: 65 db: 56)

6 QUERY XML select * from Second where var.CS141 in V:
(time: 56 db: 42)

7 QUERY XML select * from Second where var.CS279 in V:
(time: 52 db: 42)

8 QUERY XML select * from Second where var.CS269 in V:
(time: 56 db: 48)

9 QUERY XML select * from Second where var.CS251 in V:
(time: 55 db: 48)

10 QUERY XML select * from Third where var.CS127 in V:
(time: 61 db: 51)

11 QUERY XML select * from Third where var.CS200 in V:
(time: 21 db: 14)

12 QUERY XML select * from Third where var.CS112 in V:
(time: 67 db: 59)

13 QUERY XML select * from Third where var.CS224 in V:
(time: 54 db: 43)

14 QUERY XML select * from Third where var.CS239 in V:
(time: 57 db: 48)

15 QUERY XML select * from Fourth where var.CS124 in V:
(time: 60 db: 50)

16 QUERY XML select * from Fourth where var.CS157 in V:
(time: 56 db: 46)

17 QUERY XML select * from Fourth where var.CS270 in V:
(time: 52 db: 44)

18 QUERY XML select * from Fourth where var.CS129 in V:
(time: 54 db: 46)

19 QUERY XML select * from Fourth where var.CS166 in V:
(time: 52 db: 43)

B EXPERIMENTAL RESULTS 87

Exist Data

1 QUERY XML select * from First where var.CS299 in V:
(time: 613 db: 586)

2 QUERY XML select * from First where var.CS205 in V:
(time: 500 db: 492)

3 QUERY XML select * from First where var.CS286 in V:
(time: 504 db: 493)

4 QUERY XML select * from First where var.CS268 in V:
(time: 505 db: 497)

5 QUERY XML select * from Second where var.CS211 in V:
(time: 519 db: 505)

6 QUERY XML select * from Second where var.CS141 in V:
(time: 502 db: 491)

7 QUERY XML select * from Second where var.CS279 in V:
(time: 494 db: 484)

8 QUERY XML select * from Second where var.CS269 in V:
(time: 502 db: 490)

9 QUERY XML select * from Second where var.CS251 in V:
(time: 498 db: 489)

10 QUERY XML select * from Third where var.CS127 in V:
(time: 495 db: 488)

11 QUERY XML select * from Third where var.CS200 in V:
(time: 490 db: 483)

12 QUERY XML select * from Third where var.CS112 in V:
(time: 503 db: 492)

13 QUERY XML select * from Third where var.CS224 in V:
(time: 499 db: 488)

14 QUERY XML select * from Third where var.CS239 in V:
(time: 512 db: 505)

15 QUERY XML select * from Fourth where var.CS124 in V:
(time: 494 db: 485)

16 QUERY XML select * from Fourth where var.CS157 in V:
(time: 498 db: 488)

17 QUERY XML select * from Fourth where var.CS270 in V:
(time: 498 db: 490)

18 QUERY XML select * from Fourth where var.CS129 in V:
(time: 492 db: 483)

B EXPERIMENTAL RESULTS 88

19 QUERY XML select * from Fourth where var.CS166 in V:
(time: 500 db: 481)

B.2.5 Select on Table

Comparison

B EXPERIMENTAL RESULTS 89

Oracle Data

B EXPERIMENTAL RESULTS 90

1 QUERY XML select * from First where tbl.CS239=B: (
time: 171 db: 62)

2 QUERY XML select * from First where tbl.CS255=A: (
time: 63 db: 54)

3 QUERY XML select * from First where tbl.CS211=A: (
time: 85 db: 64)

4 QUERY XML select * from First where tbl.CS217=B: (
time: 86 db: 78)

5 QUERY XML select * from First where tbl.CS219=A: (
time: 60 db: 51)

6 QUERY XML select * from Second where tbl.CS292=B: (
time: 73 db: 63)

7 QUERY XML select * from Second where tbl.CS107=A: (
time: 64 db: 55)

8 QUERY XML select * from Second where tbl.CS244=B: (
time: 55 db: 47)

9 QUERY XML select * from Second where tbl.CS279=B: (
time: 36 db: 24)

10 QUERY XML select * from Second where tbl.CS183=B: (
time: 58 db: 50)

11 QUERY XML select * from Third where tbl.CS277=A: (
time: 54 db: 45)

12 QUERY XML select * from Third where tbl.CS228=B: (
time: 58 db: 51)

13 QUERY XML select * from Third where tbl.CS298=A: (
time: 71 db: 63)

14 QUERY XML select * from Third where tbl.CS281=B: (
time: 73 db: 60)

15 QUERY XML select * from Third where tbl.CS183=B: (
time: 64 db: 52)

16 QUERY XML select * from Fourth where tbl.CS136=A: (
time: 81 db: 67)

17 QUERY XML select * from Fourth where tbl.CS251=B: (
time: 67 db: 56)

18 QUERY XML select * from Fourth where tbl.CS277=B: (
time: 68 db: 60)

19 QUERY XML select * from Fourth where tbl.CS249=B: (
time: 58 db: 50)

B EXPERIMENTAL RESULTS 91

Exist Data

1 QUERY XML select * from First where tbl.CS239=B: (
time: 686 db: 679)

2 QUERY XML select * from First where tbl.CS255=A: (
time: 521 db: 514)

3 QUERY XML select * from First where tbl.CS211=A: (
time: 527 db: 518)

4 QUERY XML select * from First where tbl.CS217=B: (
time: 517 db: 510)

5 QUERY XML select * from First where tbl.CS219=A: (
time: 527 db: 515)

6 QUERY XML select * from Second where tbl.CS292=B: (
time: 516 db: 507)

7 QUERY XML select * from Second where tbl.CS107=A: (
time: 516 db: 507)

8 QUERY XML select * from Second where tbl.CS244=B: (
time: 526 db: 514)

9 QUERY XML select * from Second where tbl.CS279=B: (
time: 523 db: 515)

10 QUERY XML select * from Second where tbl.CS183=B: (
time: 545 db: 534)

11 QUERY XML select * from Third where tbl.CS277=A: (
time: 516 db: 506)

12 QUERY XML select * from Third where tbl.CS228=B: (
time: 510 db: 504)

13 QUERY XML select * from Third where tbl.CS298=A: (
time: 525 db: 517)

14 QUERY XML select * from Third where tbl.CS281=B: (
time: 527 db: 518)

15 QUERY XML select * from Third where tbl.CS183=B: (
time: 513 db: 506)

16 QUERY XML select * from Fourth where tbl.CS136=A: (
time: 518 db: 510)

17 QUERY XML select * from Fourth where tbl.CS251=B: (
time: 509 db: 501)

18 QUERY XML select * from Fourth where tbl.CS277=B: (
time: 515 db: 508)

B EXPERIMENTAL RESULTS 92

19 QUERY XML select * from Fourth where tbl.CS249=B: (
time: 514 db: 505)

B.2.6 Project on Context

Comparison

B EXPERIMENTAL RESULTS 93

Oracle Data

B EXPERIMENTAL RESULTS 94

1 QUERY XML select cnt.year from First: (time: 327 db:
126)

2 QUERY XML select cnt.college from First: (time: 126
db: 110)

3 QUERY XML select cnt.comments from First: (time: 127
db: 114)

4 QUERY XML select cnt.major from First: (time: 124 db
: 115)

5 QUERY XML select cnt.semester from First: (time: 138
db: 121)

6 QUERY XML select cnt.instructor from Second: (time:
142 db: 129)

7 QUERY XML select cnt.comments from Second: (time:
130 db: 118)

8 QUERY XML select cnt.semester from Second: (time:
115 db: 104)

9 QUERY XML select cnt.college from Second: (time: 123
db: 109)

10 QUERY XML select cnt.major from Second: (time: 126
db: 115)

11 QUERY XML select cnt.year from Third: (time: 135 db:
123)

12 QUERY XML select cnt.major from Third: (time: 127 db
: 116)

13 QUERY XML select cnt.instructor from Third: (time:
131 db: 121)

14 QUERY XML select cnt.college from Third: (time: 132
db: 118)

15 QUERY XML select cnt.comments from Third: (time: 199
db: 182)

16 QUERY XML select cnt.instructor from Fourth: (time:
140 db: 124)

17 QUERY XML select cnt.year from Fourth: (time: 127 db
: 116)

18 QUERY XML select cnt.comments from Fourth: (time:
111 db: 102)

19 QUERY XML select cnt.major from Fourth: (time: 117
db: 107)

B EXPERIMENTAL RESULTS 95

20 QUERY XML select cnt.college from Fourth: (time: 113
db: 104)

Exist Data

1 QUERY XML select cnt.year from First: (time: 1107 db
: 993)

2 QUERY XML select cnt.college from First: (time: 958
db: 836)

3 QUERY XML select cnt.comments from First: (time: 915
db: 827)

4 QUERY XML select cnt.major from First: (time: 896 db
: 807)

5 QUERY XML select cnt.semester from First: (time: 904
db: 814)

6 QUERY XML select cnt.instructor from Second: (time:
889 db: 802)

7 QUERY XML select cnt.comments from Second: (time:
897 db: 804)

8 QUERY XML select cnt.semester from Second: (time:
886 db: 799)

9 QUERY XML select cnt.college from Second: (time: 885
db: 795)

10 QUERY XML select cnt.major from Second: (time: 882
db: 795)

11 QUERY XML select cnt.year from Third: (time: 885 db:
796)

12 QUERY XML select cnt.major from Third: (time: 886 db
: 799)

13 QUERY XML select cnt.instructor from Third: (time:
905 db: 813)

14 QUERY XML select cnt.college from Third: (time: 905
db: 813)

15 QUERY XML select cnt.comments from Third: (time: 891
db: 806)

16 QUERY XML select cnt.instructor from Fourth: (time:
888 db: 802)

17 QUERY XML select cnt.year from Fourth: (time: 889 db
: 796)

B EXPERIMENTAL RESULTS 96

18 QUERY XML select cnt.comments from Fourth: (time:
900 db: 809)

19 QUERY XML select cnt.major from Fourth: (time: 896
db: 808)

20 QUERY XML select cnt.college from Fourth: (time: 882
db: 787)

B.2.7 Project on Conditional

Comparison

B EXPERIMENTAL RESULTS 97

Oracle Data

B EXPERIMENTAL RESULTS 98

1 QUERY XML select cnd.CS115 from First: (time: 260 db
: 57)

2 QUERY XML select cnd.CS146 from First: (time: 55 db:
49)

3 QUERY XML select cnd.CS105 from First: (time: 57 db:
51)

4 QUERY XML select cnd.CS134 from First: (time: 51 db:
44)

5 QUERY XML select cnd.CS130 from First: (time: 65 db:
52)

6 QUERY XML select cnd.CS132 from Second: (time: 60 db
: 53)

7 QUERY XML select cnd.CS146 from Second: (time: 52 db
: 45)

8 QUERY XML select cnd.CS109 from Second: (time: 56 db
: 51)

9 QUERY XML select cnd.CS100 from Second: (time: 51 db
: 46)

10 QUERY XML select cnd.CS122 from Second: (time: 59 db
: 52)

11 QUERY XML select cnd.CS105 from Third: (time: 56 db:
48)

12 QUERY XML select cnd.CS117 from Third: (time: 58 db:
54)

13 QUERY XML select cnd.CS147 from Third: (time: 49 db:
42)

14 QUERY XML select cnd.CS122 from Third: (time: 41 db:
31)

15 QUERY XML select cnd.CS123 from Third: (time: 49 db:
44)

16 QUERY XML select cnd.CS111 from Fourth: (time: 59 db
: 54)

17 QUERY XML select cnd.CS119 from Fourth: (time: 53 db
: 45)

18 QUERY XML select cnd.CS128 from Fourth: (time: 36 db
: 30)

19 QUERY XML select cnd.CS132 from Fourth: (time: 53 db
: 47)

B EXPERIMENTAL RESULTS 99

20 QUERY XML select cnd.CS116 from Fourth: (time: 54 db
: 49)

Exist Data

1 QUERY XML select cnd.CS115 from First: (time: 965 db
: 861)

2 QUERY XML select cnd.CS146 from First: (time: 869 db
: 772)

3 QUERY XML select cnd.CS105 from First: (time: 862 db
: 774)

4 QUERY XML select cnd.CS134 from First: (time: 875 db
: 781)

5 QUERY XML select cnd.CS130 from First: (time: 874 db
: 776)

6 QUERY XML select cnd.CS132 from Second: (time: 866
db: 776)

7 QUERY XML select cnd.CS146 from Second: (time: 867
db: 776)

8 QUERY XML select cnd.CS109 from Second: (time: 881
db: 783)

9 QUERY XML select cnd.CS100 from Second: (time: 864
db: 771)

10 QUERY XML select cnd.CS122 from Second: (time: 871
db: 777)

11 QUERY XML select cnd.CS105 from Third: (time: 864 db
: 770)

12 QUERY XML select cnd.CS117 from Third: (time: 873 db
: 777)

13 QUERY XML select cnd.CS147 from Third: (time: 869 db
: 776)

14 QUERY XML select cnd.CS122 from Third: (time: 868 db
: 774)

15 QUERY XML select cnd.CS123 from Third: (time: 880 db
: 787)

16 QUERY XML select cnd.CS111 from Fourth: (time: 875
db: 773)

17 QUERY XML select cnd.CS119 from Fourth: (time: 872
db: 778)

B EXPERIMENTAL RESULTS 100

18 QUERY XML select cnd.CS128 from Fourth: (time: 875
db: 779)

19 QUERY XML select cnd.CS132 from Fourth: (time: 865
db: 776)

20 QUERY XML select cnd.CS116 from Fourth: (time: 873
db: 779)

B.2.8 Project on Variables

Comparison

B EXPERIMENTAL RESULTS 101

Oracle Data

B EXPERIMENTAL RESULTS 102

1 QUERY XML select var.CS214 from First: (time: 171 db
: 61)

2 QUERY XML select var.CS249 from First: (time: 145 db
: 139)

3 QUERY XML select var.CS239 from First: (time: 38 db:
31)

4 QUERY XML select var.CS282 from First: (time: 76 db:
69)

5 QUERY XML select var.CS299 from First: (time: 41 db:
36)

6 QUERY XML select var.CS297 from Second: (time: 67 db
: 60)

7 QUERY XML select var.CS265 from Second: (time: 56 db
: 49)

8 QUERY XML select var.CS265 from Second: (time: 25 db
: 18)

9 QUERY XML select var.CS244 from Second: (time: 45 db
: 39)

10 QUERY XML select var.CS244 from Second: (time: 24 db
: 19)

11 QUERY XML select var.CS128 from Second: (time: 58 db
: 53)

12 QUERY XML select var.CS244 from Third: (time: 61 db:
56)

13 QUERY XML select var.CS299 from Third: (time: 64 db:
57)

14 QUERY XML select var.CS113 from Third: (time: 65 db:
58)

15 QUERY XML select var.CS192 from Third: (time: 66 db:
60)

16 QUERY XML select var.CS169 from Third: (time: 68 db:
60)

17 QUERY XML select var.CS126 from Fourth: (time: 64 db
: 59)

18 QUERY XML select var.CS210 from Fourth: (time: 83 db
: 76)

19 QUERY XML select var.CS164 from Fourth: (time: 56 db
: 50)

B EXPERIMENTAL RESULTS 103

20 QUERY XML select var.CS270 from Fourth: (time: 46 db
: 39)

21 QUERY XML select var.CS213 from Fourth: (time: 56 db
: 49)

Exist Data

1 QUERY XML select var.CS214 from First: (time: 4844
db: 4795)

2 QUERY XML select var.CS249 from First: (time: 4384
db: 4338)

3 QUERY XML select var.CS239 from First: (time: 4798
db: 4741)

4 QUERY XML select var.CS282 from First: (time: 4214
db: 4153)

5 QUERY XML select var.CS299 from First: (time: 4149
db: 4092)

6 QUERY XML select var.CS297 from Second: (time: 3714
db: 3654)

7 QUERY XML select var.CS265 from Second: (time: 4491
db: 4431)

8 QUERY XML select var.CS265 from Second: (time: 3764
db: 3716)

9 QUERY XML select var.CS244 from Second: (time: 4044
db: 3999)

10 QUERY XML select var.CS244 from Second: (time: 4309
db: 4254)

11 QUERY XML select var.CS128 from Second: (time: 4305
db: 4240)

12 QUERY XML select var.CS244 from Third: (time: 4284
db: 4240)

13 QUERY XML select var.CS299 from Third: (time: 4666
db: 4620)

14 QUERY XML select var.CS113 from Third: (time: 4595
db: 4546)

15 QUERY XML select var.CS192 from Third: (time: 5810
db: 5767)

16 QUERY XML select var.CS169 from Third: (time: 4679
db: 4635)

B EXPERIMENTAL RESULTS 104

17 QUERY XML select var.CS126 from Fourth: (time: 4843
db: 4798)

18 QUERY XML select var.CS210 from Fourth: (time: 4894
db: 4851)

19 QUERY XML select var.CS164 from Fourth: (time: 4919
db: 4870)

20 QUERY XML select var.CS270 from Fourth: (time: 5014
db: 4965)

21 QUERY XML select var.CS213 from Fourth: (time: 5137
db: 5091)

B.2.9 Conditional

Comparison

B EXPERIMENTAL RESULTS 105

Oracle Data

B EXPERIMENTAL RESULTS 106

1 QUERY XML select * from First conditional var.CS172=
A: (time: 184 db: 65)

2 QUERY XML select * from First conditional var.CS113=
A: (time: 142 db: 135)

3 QUERY XML select * from First conditional var.CS229=
B: (time: 61 db: 53)

4 QUERY XML select * from First conditional var.CS251=
B: (time: 58 db: 48)

5 QUERY XML select * from First conditional var.CS256=
B: (time: 55 db: 49)

6 QUERY XML select * from Second conditional var.CS233
=A: (time: 62 db: 56)

7 QUERY XML select * from Second conditional var.CS219
=B: (time: 55 db: 47)

8 QUERY XML select * from Second conditional var.CS190
=B: (time: 58 db: 52)

9 QUERY XML select * from Second conditional var.CS297
=B: (time: 28 db: 22)

10 QUERY XML select * from Second conditional var.CS297
=B: (time: 26 db: 18)

11 QUERY XML select * from Third conditional var.CS138=
A: (time: 58 db: 49)

12 QUERY XML select * from Third conditional var.CS251=
A: (time: 64 db: 48)

13 QUERY XML select * from Third conditional var.CS202=
B: (time: 60 db: 51)

14 QUERY XML select * from Third conditional var.CS144=
A: (time: 57 db: 51)

15 QUERY XML select * from Third conditional var.CS240=
B: (time: 59 db: 53)

16 QUERY XML select * from Fourth conditional var.CS112
=B: (time: 60 db: 53)

17 QUERY XML select * from Fourth conditional var.CS206
=A: (time: 62 db: 55)

18 QUERY XML select * from Fourth conditional var.CS217
=A: (time: 59 db: 49)

19 QUERY XML select * from Fourth conditional var.CS275
=A: (time: 56 db: 49)

B EXPERIMENTAL RESULTS 107

20 QUERY XML select * from Fourth conditional var.CS111
=A: (time: 73 db: 59)

Exist Data

1 QUERY XML select * from First conditional var.CS172=
A: (time: 795 db: 694)

2 QUERY XML select * from First conditional var.CS113=
A: (time: 802 db: 707)

3 QUERY XML select * from First conditional var.CS229=
B: (time: 781 db: 688)

4 QUERY XML select * from First conditional var.CS251=
B: (time: 846 db: 720)

5 QUERY XML select * from First conditional var.CS256=
B: (time: 770 db: 675)

6 QUERY XML select * from Second conditional var.CS233
=A: (time: 799 db: 703)

7 QUERY XML select * from Second conditional var.CS219
=B: (time: 785 db: 688)

8 QUERY XML select * from Second conditional var.CS190
=B: (time: 807 db: 713)

9 QUERY XML select * from Second conditional var.CS297
=B: (time: 780 db: 686)

10 QUERY XML select * from Second conditional var.CS297
=B: (time: 803 db: 684)

11 QUERY XML select * from Third conditional var.CS138=
A: (time: 794 db: 697)

12 QUERY XML select * from Third conditional var.CS251=
A: (time: 772 db: 679)

13 QUERY XML select * from Third conditional var.CS202=
B: (time: 779 db: 682)

14 QUERY XML select * from Third conditional var.CS144=
A: (time: 782 db: 684)

15 QUERY XML select * from Third conditional var.CS240=
B: (time: 805 db: 710)

16 QUERY XML select * from Fourth conditional var.CS112
=B: (time: 780 db: 686)

17 QUERY XML select * from Fourth conditional var.CS206
=A: (time: 803 db: 707)

B EXPERIMENTAL RESULTS 108

18 QUERY XML select * from Fourth conditional var.CS217
=A: (time: 776 db: 683)

19 QUERY XML select * from Fourth conditional var.CS275
=A: (time: 807 db: 710)

20 QUERY XML select * from Fourth conditional var.CS111
=A: (time: 785 db: 691)

B.2.10 Conditional

Comparison

B EXPERIMENTAL RESULTS 109

Oracle Data

B EXPERIMENTAL RESULTS 110

1 QUERY XML select * from First conditional var.CS172=
A: (time: 184 db: 65)

2 QUERY XML select * from First conditional var.CS113=
A: (time: 142 db: 135)

3 QUERY XML select * from First conditional var.CS229=
B: (time: 61 db: 53)

4 QUERY XML select * from First conditional var.CS251=
B: (time: 58 db: 48)

5 QUERY XML select * from First conditional var.CS256=
B: (time: 55 db: 49)

6 QUERY XML select * from Second conditional var.CS233
=A: (time: 62 db: 56)

7 QUERY XML select * from Second conditional var.CS219
=B: (time: 55 db: 47)

8 QUERY XML select * from Second conditional var.CS190
=B: (time: 58 db: 52)

9 QUERY XML select * from Second conditional var.CS297
=B: (time: 28 db: 22)

10 QUERY XML select * from Second conditional var.CS297
=B: (time: 26 db: 18)

11 QUERY XML select * from Third conditional var.CS138=
A: (time: 58 db: 49)

12 QUERY XML select * from Third conditional var.CS251=
A: (time: 64 db: 48)

13 QUERY XML select * from Third conditional var.CS202=
B: (time: 60 db: 51)

14 QUERY XML select * from Third conditional var.CS144=
A: (time: 57 db: 51)

15 QUERY XML select * from Third conditional var.CS240=
B: (time: 59 db: 53)

16 QUERY XML select * from Fourth conditional var.CS112
=B: (time: 60 db: 53)

17 QUERY XML select * from Fourth conditional var.CS206
=A: (time: 62 db: 55)

18 QUERY XML select * from Fourth conditional var.CS217
=A: (time: 59 db: 49)

19 QUERY XML select * from Fourth conditional var.CS275
=A: (time: 56 db: 49)

B EXPERIMENTAL RESULTS 111

20 QUERY XML select * from Fourth conditional var.CS111
=A: (time: 73 db: 59)

Exist Data

1 QUERY XML select * from First conditional var.CS172=
A: (time: 795 db: 694)

2 QUERY XML select * from First conditional var.CS113=
A: (time: 802 db: 707)

3 QUERY XML select * from First conditional var.CS229=
B: (time: 781 db: 688)

4 QUERY XML select * from First conditional var.CS251=
B: (time: 846 db: 720)

5 QUERY XML select * from First conditional var.CS256=
B: (time: 770 db: 675)

6 QUERY XML select * from Second conditional var.CS233
=A: (time: 799 db: 703)

7 QUERY XML select * from Second conditional var.CS219
=B: (time: 785 db: 688)

8 QUERY XML select * from Second conditional var.CS190
=B: (time: 807 db: 713)

9 QUERY XML select * from Second conditional var.CS297
=B: (time: 780 db: 686)

10 QUERY XML select * from Second conditional var.CS297
=B: (time: 803 db: 684)

11 QUERY XML select * from Third conditional var.CS138=
A: (time: 794 db: 697)

12 QUERY XML select * from Third conditional var.CS251=
A: (time: 772 db: 679)

13 QUERY XML select * from Third conditional var.CS202=
B: (time: 779 db: 682)

14 QUERY XML select * from Third conditional var.CS144=
A: (time: 782 db: 684)

15 QUERY XML select * from Third conditional var.CS240=
B: (time: 805 db: 710)

16 QUERY XML select * from Fourth conditional var.CS112
=B: (time: 780 db: 686)

17 QUERY XML select * from Fourth conditional var.CS206
=A: (time: 803 db: 707)

B EXPERIMENTAL RESULTS 112

18 QUERY XML select * from Fourth conditional var.CS217
=A: (time: 776 db: 683)

19 QUERY XML select * from Fourth conditional var.CS275
=A: (time: 807 db: 710)

20 QUERY XML select * from Fourth conditional var.CS111
=A: (time: 785 db: 691)

B.2.11 Select on Probability

Comparison

B EXPERIMENTAL RESULTS 113

Oracle Data

B EXPERIMENTAL RESULTS 114

1 QUERY XML select * from First where tbl.prob >0.64: (
time: 286 db: 91)

2 QUERY XML select * from First where tbl.prob >0.60: (
time: 56 db: 47)

3 QUERY XML select * from First where tbl.prob >0.56: (
time: 95 db: 87)

4 QUERY XML select * from First where tbl.prob >0.52: (
time: 94 db: 86)

5 QUERY XML select * from First where tbl.prob >0.48: (
time: 115 db: 105)

6 QUERY XML select * from First where tbl.prob >0.44: (
time: 120 db: 110)

7 QUERY XML select * from First where tbl.prob >0.40: (
time: 159 db: 149)

8 QUERY XML select * from First where tbl.prob >0.36: (
time: 175 db: 162)

9 QUERY XML select * from First where tbl.prob >0.28: (
time: 228 db: 207)

10 QUERY XML select * from First where tbl.prob >0.24: (
time: 212 db: 194)

11 QUERY XML select * from First where tbl.prob >0.20: (
time: 169 db: 142)

12 QUERY XML select * from First where tbl.prob >0.18: (
time: 165 db: 144)

13 QUERY XML select * from First where tbl.prob >0.16: (
time: 168 db: 145)

14 QUERY XML select * from First where tbl.prob >0.14: (
time: 166 db: 146)

15 QUERY XML select * from First where tbl.prob >0.12: (
time: 180 db: 144)

16 QUERY XML select * from First where tbl.prob >0.10: (
time: 169 db: 144)

17 QUERY XML select * from First where tbl.prob >0.08: (
time: 170 db: 149)

18 QUERY XML select * from First where tbl.prob >0.04: (
time: 174 db: 154)

19 QUERY XML select * from First where tbl.prob >0.02: (
time: 180 db: 163)

B EXPERIMENTAL RESULTS 115

Exist Data

1 QUERY XML select * from First where tbl.prob >0.64: (
time: 754 db: 700)

2 QUERY XML select * from First where tbl.prob >0.60: (
time: 708 db: 658)

3 QUERY XML select * from First where tbl.prob >0.56: (
time: 737 db: 685)

4 QUERY XML select * from First where tbl.prob >0.52: (
time: 711 db: 659)

5 QUERY XML select * from First where tbl.prob >0.48: (
time: 750 db: 690)

6 QUERY XML select * from First where tbl.prob >0.44: (
time: 716 db: 661)

7 QUERY XML select * from First where tbl.prob >0.40: (
time: 748 db: 664)

8 QUERY XML select * from First where tbl.prob >0.36: (
time: 728 db: 666)

9 QUERY XML select * from First where tbl.prob >0.28: (
time: 757 db: 682)

10 QUERY XML select * from First where tbl.prob >0.24: (
time: 753 db: 676)

11 QUERY XML select * from First where tbl.prob >0.20: (
time: 757 db: 672)

12 QUERY XML select * from First where tbl.prob >0.18: (
time: 790 db: 703)

13 QUERY XML select * from First where tbl.prob >0.16: (
time: 758 db: 672)

14 QUERY XML select * from First where tbl.prob >0.14: (
time: 1062 db: 881)

15 QUERY XML select * from First where tbl.prob >0.12: (
time: 771 db: 681)

16 QUERY XML select * from First where tbl.prob >0.10: (
time: 808 db: 711)

17 QUERY XML select * from First where tbl.prob >0.08: (
time: 769 db: 673)

18 QUERY XML select * from First where tbl.prob >0.04: (
time: 813 db: 710)

B EXPERIMENTAL RESULTS 116

19 QUERY XML select * from First where tbl.prob >0.02: (
time: 773 db: 672)

B.2.12 Complex Select Conditions

Comparison

B EXPERIMENTAL RESULTS 117

Oracle Data

B EXPERIMENTAL RESULTS 118

1 QUERY XML Select * from First where First.tbl.CS115
="A" and First.tbl.prob >0.01: (time: 292 db: 177)

2 QUERY XML Select * from First where First.tbl.CS242
="B" and First.tbl.prob >0.03: (time: 111 db: 98)

3 QUERY XML Select * from First where First.tbl.CS219
="A" and First.tbl.prob >0.06: (time: 74 db: 63)

4 QUERY XML Select * from First where First.tbl.CS211
="B" and First.tbl.prob >0.08: (time: 70 db: 56)

5 QUERY XML Select * from First where First.tbl.CS172
="B" and First.tbl.prob >0.09: (time: 70 db: 60)

6 QUERY XML Select * from Second where Second.tbl.
CS292 ="B" and Second.tbl.prob >0.01: (time: 84 db:
76)

7 QUERY XML Select * from Second where Second.tbl.
CS107 ="A" and Second.tbl.prob >0.03: (time: 65 db:
54)

8 QUERY XML Select * from Second where Second.tbl.
CS244 ="B" and Second.tbl.prob >0.06: (time: 66 db:
56)

9 QUERY XML Select * from Second where Second.tbl.
CS279 ="B" and Second.tbl.prob >0.08: (time: 61 db:
50)

10 QUERY XML Select * from Second where Second.tbl.
CS183 ="B" and Second.tbl.prob >0.09: (time: 65 db:
55)

11 QUERY XML Select * from Third where Third.tbl.CS277
="A" and Third.tbl.prob >0.01: (time: 89 db: 79)

12 QUERY XML Select * from Third where Third.tbl.CS228
="B" and Third.tbl.prob >0.03: (time: 65 db: 54)

13 QUERY XML Select * from Third where Third.tbl.CS298
="A" and Third.tbl.prob >0.06: (time: 70 db: 60)

14 QUERY XML Select * from Third where Third.tbl.CS281
="B" and Third.tbl.prob >0.08: (time: 70 db: 62)

15 QUERY XML Select * from Third where Third.tbl.CS183
="B" and Third.tbl.prob >0.09: (time: 69 db: 54)

16 QUERY XML Select * from Fourth where Fourth.tbl.
CS136 ="A" and Fourth.tbl.prob >0.09: (time: 77 db:
68)

B EXPERIMENTAL RESULTS 119

17 QUERY XML Select * from Fourth where Fourth.tbl.
CS251 ="B" and Fourth.tbl.prob >0.09: (time: 70 db:
59)

18 QUERY XML Select * from Fourth where Fourth.tbl.
CS277 ="B" and Fourth.tbl.prob >0.09: (time: 73 db:
63)

19 QUERY XML Select * from Fourth where Fourth.tbl.
CS249 ="B" and Fourth.tbl.prob >0.09: (time: 62 db:
54)

20 QUERY XML Select * from Fourth where Fourth.tbl.
CS271 ="A" and Fourth.tbl.prob >0.09: (time: 90 db:
81)

Exist Data

1 QUERY XML Select * from First where First.tbl.CS115
="A" and First.tbl.prob >0.01: (time: 645 db: 635)

2 QUERY XML Select * from First where First.tbl.CS242
="B" and First.tbl.prob >0.03: (time: 571 db: 564)

3 QUERY XML Select * from First where First.tbl.CS219
="A" and First.tbl.prob >0.06: (time: 844 db: 834)

4 QUERY XML Select * from First where First.tbl.CS211
="B" and First.tbl.prob >0.08: (time: 518 db: 512)

5 QUERY XML Select * from First where First.tbl.CS172
="B" and First.tbl.prob >0.09: (time: 511 db: 504)

6 QUERY XML Select * from Second where Second.tbl.
CS292 ="B" and Second.tbl.prob >0.01: (time: 622 db
: 615)

7 QUERY XML Select * from Second where Second.tbl.
CS107 ="A" and Second.tbl.prob >0.03: (time: 518 db
: 511)

8 QUERY XML Select * from Second where Second.tbl.
CS244 ="B" and Second.tbl.prob >0.06: (time: 517 db
: 510)

9 QUERY XML Select * from Second where Second.tbl.
CS279 ="B" and Second.tbl.prob >0.08: (time: 509 db
: 502)

10 QUERY XML Select * from Second where Second.tbl.
CS183 ="B" and Second.tbl.prob >0.09: (time: 514 db

B EXPERIMENTAL RESULTS 120

: 507)
11 QUERY XML Select * from Third where Third.tbl.CS277

="A" and Third.tbl.prob >0.01: (time: 513 db: 507)
12 QUERY XML Select * from Third where Third.tbl.CS228

="B" and Third.tbl.prob >0.03: (time: 510 db: 503)
13 QUERY XML Select * from Third where Third.tbl.CS298

="A" and Third.tbl.prob >0.06: (time: 514 db: 506)
14 QUERY XML Select * from Third where Third.tbl.CS281

="B" and Third.tbl.prob >0.08: (time: 518 db: 509)
15 QUERY XML Select * from Third where Third.tbl.CS183

="B" and Third.tbl.prob >0.09: (time: 512 db: 504)
16 QUERY XML Select * from Fourth where Fourth.tbl.

CS136 ="A" and Fourth.tbl.prob >0.09: (time: 516 db
: 509)

17 QUERY XML Select * from Fourth where Fourth.tbl.
CS251 ="B" and Fourth.tbl.prob >0.09: (time: 516 db
: 507)

18 QUERY XML Select * from Fourth where Fourth.tbl.
CS277 ="B" and Fourth.tbl.prob >0.09: (time: 509 db
: 502)

19 QUERY XML Select * from Fourth where Fourth.tbl.
CS249 ="B" and Fourth.tbl.prob >0.09: (time: 514 db
: 508)

20 QUERY XML Select * from Fourth where Fourth.tbl.
CS271 ="A" and Fourth.tbl.prob >0.09: (time: 526 db
: 519)

B EXPERIMENTAL RESULTS 121

B.2.13 Complex Project Conditions

Comparison

B EXPERIMENTAL RESULTS 122

Oracle Data

B EXPERIMENTAL RESULTS 123

1 QUERY XML Select First.cnt.college ,First.cnd.CS101
from First: (time: 159 db: 50)

2 QUERY XML Select First.cnt.comments ,First.cnd.CS106
from First: (time: 139 db: 133)

3 QUERY XML Select First.cnt.year ,First.cnd.CS143 from
First: (time: 58 db: 50)

4 QUERY XML Select First.cnt.semester ,First.cnd.CS103
from First: (time: 55 db: 49)

5 QUERY XML Select First.cnt.instructor ,First.cnd.
CS121 from First: (time: 100 db: 93)

6 QUERY XML Select Second.cnt.semester ,Second.cnd.
CS143 from Second: (time: 53 db: 46)

7 QUERY XML Select Second.cnt.major ,Second.cnd.CS146
from Second: (time: 53 db: 46)

8 QUERY XML Select Second.cnt.major ,Second.cnd.CS135
from Second: (time: 58 db: 51)

9 QUERY XML Select Second.cnt.year ,Second.cnd.CS102
from Second: (time: 85 db: 78)

10 QUERY XML Select Second.cnt.semester ,Second.cnd.
CS127 from Second: (time: 50 db: 44)

11 QUERY XML Select Third.cnt.major ,Third.cnd.CS144
from Third: (time: 63 db: 55)

12 QUERY XML Select Third.cnt.instructor ,Third.cnd.
CS138 from Third: (time: 54 db: 47)

13 QUERY XML Select Third.cnt.semester ,Third.cnd.CS112
from Third: (time: 102 db: 97)

14 QUERY XML Select Third.cnt.comments ,Third.cnd.CS140
from Third: (time: 55 db: 46)

15 QUERY XML Select Third.cnt.comments ,Third.cnd.CS122
from Third: (time: 47 db: 40)

16 QUERY XML Select Fourth.cnt.comments ,Fourth.cnd.
CS117 from Fourth: (time: 54 db: 47)

17 QUERY XML Select Fourth.cnt.major ,Fourth.cnd.CS124
from Fourth: (time: 48 db: 42)

18 QUERY XML Select Fourth.cnt.major ,Fourth.cnd.CS107
from Fourth: (time: 51 db: 46)

19 QUERY XML Select Fourth.cnt.major ,Fourth.cnd.CS128
from Fourth: (time: 46 db: 41)

B EXPERIMENTAL RESULTS 124

20 QUERY XML Select Fourth.cnt.semester ,Fourth.cnd.
CS130 from Fourth: (time: 124 db: 116)

Exist Data

1 QUERY XML Select First.cnt.college ,First.cnd.CS101
from First: (time: 1319 db: 1241)

2 QUERY XML Select First.cnt.comments ,First.cnd.CS106
from First: (time: 1239 db: 1158)

3 QUERY XML Select First.cnt.year ,First.cnd.CS143 from
First: (time: 1255 db: 1177)

4 QUERY XML Select First.cnt.semester ,First.cnd.CS103
from First: (time: 1238 db: 1151)

5 QUERY XML Select First.cnt.instructor ,First.cnd.
CS121 from First: (time: 1280 db: 1198)

6 QUERY XML Select Second.cnt.semester ,Second.cnd.
CS143 from Second: (time: 1284 db: 1205)

7 QUERY XML Select Second.cnt.major ,Second.cnd.CS146
from Second: (time: 1245 db: 1167)

8 QUERY XML Select Second.cnt.major ,Second.cnd.CS135
from Second: (time: 1262 db: 1175)

9 QUERY XML Select Second.cnt.year ,Second.cnd.CS102
from Second: (time: 1283 db: 1199)

10 QUERY XML Select Second.cnt.semester ,Second.cnd.
CS127 from Second: (time: 1250 db: 1174)

11 QUERY XML Select Third.cnt.major ,Third.cnd.CS144
from Third: (time: 1246 db: 1167)

12 QUERY XML Select Third.cnt.instructor ,Third.cnd.
CS138 from Third: (time: 1282 db: 1196)

13 QUERY XML Select Third.cnt.semester ,Third.cnd.CS112
from Third: (time: 1255 db: 1176)

14 QUERY XML Select Third.cnt.comments ,Third.cnd.CS140
from Third: (time: 1237 db: 1156)

15 QUERY XML Select Third.cnt.comments ,Third.cnd.CS122
from Third: (time: 1288 db: 1206)

16 QUERY XML Select Fourth.cnt.comments ,Fourth.cnd.
CS117 from Fourth: (time: 1243 db: 1166)

17 QUERY XML Select Fourth.cnt.major ,Fourth.cnd.CS124
from Fourth: (time: 1237 db: 1156)

B EXPERIMENTAL RESULTS 125

18 QUERY XML Select Fourth.cnt.major ,Fourth.cnd.CS107
from Fourth: (time: 1293 db: 1213)

19 QUERY XML Select Fourth.cnt.major ,Fourth.cnd.CS128
from Fourth: (time: 1229 db: 1153)

20 QUERY XML Select Fourth.cnt.semester ,Fourth.cnd.
CS130 from Fourth: (time: 1253 db: 1169)

C SPO SCHEMA DOCUMENT 126

C SPO Schema Document

This is the Structured Probability Object XSD, used to validate XML de-
scribing an SPO. The original document is available at http://www.csr.
uky.edu/wtw/schema/spo.xsd. This document was not created as part of
this thesis.

1 <?xml version ="1.0"? >
2 <xsd:schema xmlns:xsd="http :// www.w3.org /2001/

XMLSchema"
3 targetNamespace ="http :// www.csr.uky.edu/wtw/schema

"
4 elementFormDefault =" qualified"
5 xmlns:spo="http :// www.csr.uky.edu/wtw/schema">
6 <!-- xmlns:xsi="http :// www.w3.org /1999/ XMLSchema -

instance" -->
7
8
9 <xsd:annotation ><xsd:documentation >

10 This is the definition for SPO.
11 </xsd:documentation ></xsd:annotation >
12 <!--
13 xmlns:xsd="http :// www.w3.org /2000/10/ XMLSchema"
14 <xsd:simpleType name=" nameType">
15 <xsd:restriction base = "xsd:string">
16 </xsd:restriction >
17 <xsd:attribute name="ID" type="xsd:ID" use="

optional "/>
18 </xsd:simpleType >
19 -->
20
21 <xsd:complexType name=" nameType">
22 <xsd:simpleContent >
23 <xsd:extension base="xsd:string">
24 <!-- <xsd:attribute name="ID" type="xsd:

NCName" use=" optional"/> -->
25 </xsd:extension >
26 </xsd:simpleContent >

C SPO SCHEMA DOCUMENT 127

27 </xsd:complexType >
28
29 <xsd:simpleType name=" valType">
30 <xsd:restriction base = "xsd:string">
31 <!--
32 <xsd:pattern value ="[A-Z|0 -9]+"/ >
33 -->
34 </xsd:restriction >
35 </xsd:simpleType >
36
37 <xsd:complexType name=" elemType">
38 <xsd:sequence >
39 <xsd:element name="name" minOccurs ="1" maxOccurs

="1" type="spo:nameType"/>
40 <xsd:element name="val" minOccurs ="1" maxOccurs

=" unbounded" type="spo:valType"/>
41 </xsd:sequence >
42 <xsd:attribute name=" IDREF" type="xsd:NCName" use

=" optional"/>
43 </xsd:complexType >
44
45 <xsd:complexType name=" contextType">
46 <xsd:sequence >
47 <xsd:element name="elem" minOccurs ="0" maxOccurs

=" unbounded" type="spo:elemType"/>
48 </xsd:sequence >
49 </xsd:complexType >
50
51 <xsd:complexType name=" variableType">
52 <xsd:sequence >
53 <xsd:element name="name" minOccurs ="1" maxOccurs

=" unbounded" type="spo:nameType"/>
54 </xsd:sequence >
55 </xsd:complexType >
56
57 <xsd:simpleType name=" probabilityType">
58 <xsd:restriction base="xsd:float">
59 <xsd:minInclusive value ="0.0000000"/ >

C SPO SCHEMA DOCUMENT 128

60 <xsd:maxInclusive value ="1.0000000"/ >
61 </xsd:restriction >
62 </xsd:simpleType >
63
64 <xsd:complexType name=" rowType">
65 <xsd:sequence >
66 <xsd:element name="val" minOccurs ="1" maxOccurs

=" unbounded" type="spo:valType"/>
67 <xsd:element name="P" type="spo:probabilityType

"/>
68 </xsd:sequence >
69 </xsd:complexType >
70
71 <xsd:complexType name=" tableType">
72 <xsd:sequence >
73 <xsd:element name =" variable" type="spo:

variableType "/>
74 <xsd:element name="row" minOccurs ="1"

maxOccurs =" unbounded" type="spo:rowType
"/>

75 </xsd:sequence >
76 </xsd:complexType >
77
78 <xsd:complexType name=" conditionalType">
79 <xsd:sequence >
80 <xsd:element name="elem" minOccurs ="0" maxOccurs

=" unbounded" type="spo:elemType"/>
81 </xsd:sequence >
82 </xsd:complexType >
83
84 <xsd:simpleType name=" pathType">
85 <xsd:restriction base="xsd:string"/>
86 </xsd:simpleType >
87
88 <xsd:complexType name=" spoType">
89 <xsd:sequence >
90 <xsd:element name =" context" type="spo:

contextType "/>

C SPO SCHEMA DOCUMENT 129

91 <xsd:element name =" table" type="spo:tableType
"/>

92 <xsd:element name =" conditional" type="spo:
conditionalType "/>

93 </xsd:sequence >
94 <xsd:attribute name="path" type="spo:pathType"

use=" required"/>
95 </xsd:complexType >
96
97 <xsd:complexType name=" sposType">
98 <xsd:sequence >
99 <xsd:element name="spo" minOccurs ="1" maxOccurs

=" unbounded" type="spo:spoType">
100 <xsd:key name="myId">
101 <xsd:selector xpath ="./ table/variable"/>
102 <xsd:field xpath ="name"/>
103 </xsd:key >
104
105 <xsd:keyref name=" myIdref" refer ="spo:myId">

<!-- Note spo:myId -->
106 <xsd:selector xpath ="./ context/ele"/>
107 <xsd:field xpath =" @IDREF"/>
108 </xsd:keyref >
109 </xsd:element >
110 </xsd:sequence >
111 </xsd:complexType >
112
113 <xsd:element name="spos" type="spo:sposType">
114
115 </xsd:element >
116
117 </xsd:schema >

