BOTTOM-UP ONTOLOGY CREATION
WITH

A DIRECT INSTANCE INPUT INTERFACE

A Thesis
Presented to
The Academic Faculty

by

Charles Cheng-hsi Wei

In Partial Fulfillment
of the Requirements for the Degree
Master of Computer Science in the
Department of Computer Science

California Polytechnic State University, San Luis Obispo
January, 2009

Approved by:

Dr. Franz Kurfess , Advisor
Department of Computer Science
California Polytechnic State University,
San Luis Obispo

Dr. [Committee Member?2]

Department of Computer Science
California Polytechnic State University,
San Luis Obispo

Dr. [Committee Member3]
Department of Computer Science

California Polytechnic State University,
San Luis Obispo

Date Approved: February 2, 2009

il

ACKNOWLEDGEMENT

First of all, it is not possible to give enough thanks to my wife, Clare, without
whose unfailingly loving, practical and emotional support this work would certainly have
faltered. Indeed it may never have been undertaken at all. I am grateful to her. My
daughter, Jamie has also of course been affected by my study. She has been, sometimes
totally unexpectedly, impressed me with her surprising ideas. They are definitely my
main support both on the study and my work.

My advisor, Dr. Franz Kurfess, is truly a great teacher and helped me a lot. I
learned a lot in the knowledge management area. Without his advice I wouldn’t be able to
finish the thesis. I greatly appreciate his advice and help. Also, I have to thank Dr. K.C.
Lo in Civil and Environmental Engineering Department, CalPoly. His advice and
encouragement helped me to overcome all the difficulties I have encountered.

A special appreciation is for Aunt Y.L. Tsai. She helped not only me but also my
family in the early stage of our life in the United States. Her advice of living in America
has been really helpful.

Many thanks to my parents, who gave me full financial support when I was
studying in CalPoly. Without their support I wouldn’t have been able to finish my
studies. Furthermore, without their encouragement in the very beginning, I would not

have dared to study overseas and achieve my dream.

1ii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iii

LIST OF FIGURES v

SUMMARY 1
CHAPTER

0 Background 2

1 |ntroduction 5

What is an Ontology 5

What is the basic approach to build an Ontology 6

The bottom-up approach with slot filtering process 7

Thesis Goal 1: The improvement of efficiency on information input 8

Thesis Goal 2: Automation of ontology creation 9

2 Approach Overview 10

Approach # 1: building an ontology from the specific to the general 10

Approach # 2: searching the most proper location for a class with the slots 10

3 Program Features 16
Environment requirements 16

Key features 16
Installation 18

4 Interface Operation 21
(1) Instance information 21

1. Class combobox 21

2. Status text box 22

iv

3. Clear button
4. Update Database button
(2) Instance properties
1. Add button
2. Remove button
3. Slot combobox
4. Slot Type list box
5. Slot value input area
(3) Operation rules
1. Create a new class without instance
2. Create a new instance within a new class
3. Add properties to an existing class
4. Add a new instance to an existing class
5 Evaluation
Evaluation 1: Improvement of new interface on ontology creation
Evaluation 2: Performance of bottom-up approach on ontology creation
Example 1: Newspaper Ontology
Example 2: Hybrid Electric Vehicle Ontology
Example 3: REA Enterprise Ontology
6 Conclusion
Benefits and achievement
Future works
APPENDIX A: Source codes
APPENDIX B: Data list

REFERENCES

22

22

22

23

23

24

24

24

25

25

26

26

27

29

31

34

37

39

40

42

66

67

Figure 1.1:
Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 5.1:

Figure 5.2:

LIST OF FIGURES

Instance Input Interface widget

Ontology hierarchy

Class insertion diagram 1 (Insertion Rule #1)
Class insertion diagram 2 (Insertion Rule #1)
Instance Input Interface

Instance input widget installation 1

Instance input widget installation 2

Class information block

Instance properties block

Properties input detail

Input example

Comparison of original and improved steps with new interface

HEV Ontology

vi

Page

12
13
15
17
19
19
21
23
24
25
29

36

SUMMARY

In general an ontology is created by following a top-down, or so called genus-
species approach, where the species are differentiated from the genus and from each other
by means of differentiae [8]. The superconcept is the genus, every subconcept is a
species, and the differentiae correspond to roles. To complete it a user organizes data into
a proper structure, accompanied with the instances in that domain in order to complete
the construction of an ontology. For example, it is a concept learning procedure in a
school. Students first learn the general knowledge and apply them on their exercise and
homework for practice. After they are more familiar with the knowledge, they can use
what they have learned to solve the problems in their daily life. The deductive learning
approach is based on the fundamental knowledge that a student has acquired already.

By contrast, a more intuitive way of learning is the bottom-up approach, which is
based on atomism. That is also a frequently used way for humans to acquire knowledge.
From sensing the world by vision, hearing, and touching, people learn information about
actual objects, i.e., instances, in the world. After an instance has been collected, a
relationship between it and existing knowledge will be created and an ontology will be
formed automatically.

The primary goal of this thesis is to make a better instance input interface on the
ontology development tool ProtEgE to simplify the procedure of ontology construction.
Without setting up the organization of class and properties (slots) first, simply input all
the information of an instance and the program will form an ontology automatically. It

means after an instance has been input, the system will find a proper location inside of

the ontology to store it. The second goal is to show the feasibility of a bottom-up

approach for the building of an ontology.

CHAPTER 0

BACKGROUND

An ontology describes basic concepts in a domain and defines relations among
them [1]. It provides the basic blocks in its structure: classes or concepts, properties or
slots, and restrictions on slots. As a result, an ontology provides a common vocabulary
for researchers who need to share information in a specific domain [1]. The goals to
create an ontology are listed below:

¢ To share common understanding of the structure of information among people

or software agents

* To enable reuse of domain knowledge

¢ To make domain assumptions explicit

e To separate domain knowledge from operational knowledge

¢ To analyze domain knowledge

To create an ontology there are three main approaches. The first approach is
generating an ontology from text-based documents. The second approach to create an
ontology is extracting the concepts and relationships from large quantities of data. The
last approach to make an ontology is model-based, which extracts the concepts and
relationships from specifications, formalizations and computer-generated artifacts [23].

Ontology learning from text aims at generating domain ontologies from a given
collection of textual resources by applying natural language processing and machine
learning techniques [6]. However, it requires significant computational effort on natural

language processing and it is still difficult to working on the knowledge which resides in

different languages. To simplify and narrow the scope of a research, I create an interface
in ProtEgE for instance input instead of retrieving the data from text-based documents in
this thesis.

For data-driven approaches, for example, data mining with an FCA (Formal
Concept Analysis), are tried to retrieve or analyze the relationship between data.
Originally the concepts only exist in human’s mind. When it comes to computer
processing, these concepts must be transformed to formal ones which will be stored in
knowledge bases [19]. It encounters the same problem as the first approach I mentioned
above. As a result I decided not to pursue this approach in this thesis.

To make the questions of automatic ontology creation simpler, I roughly divided
it into two parts. The first portion is retrieving the information from the existing
documents. For the reasons I mentioned above, this is not easy to achieve with the
existing knowledge. However, the second part of building up an ontology in a more
efficient way is a reachable goal with the existing techniques. For the goal of improving
the ontology creation, it brings up two questions of this thesis: how to improve the
efficiency of information input and how to form an ontology automatically.

The solution for the former question in this thesis is creating an instance input
interface which combines the many steps and interfaces of information input into one.
The solution of the later question is the bottom-up creation of ontology. Both
achievements help improve the automation of ontology creation. The details will be

illustrated in the following chapters.

CHAPTER 1

INTRODUCTION

What is an Ontology?

In both computer science and information science, an ontology is a formal explicit
description of concepts in a domain of discourse (classes (sometimes called concepts)),
properties of each concept describing various features and attributes of the concept (slots
(sometimes called roles or properties)), and restrictions on slots (facets (sometimes called
role restrictions)). An ontology together with a set of individual instances of classes
constitutes a knowledge base. [1]

One of the main purposes to use an ontology is to easily share a common
understanding of the structure of information among people or software agents since it
provides a common vocabulary for researchers who need to share information in the
domain. It provides a format which is highly organized and clarified in a category for
easy understanding and implementation.

It can also be used to analyze and reuse domain knowledge. A mature ontology is
a highly organized structure and it is easy to clarify or retrieve the relationship between
classes. The slots in classes are also good for users to find out properties affiliated with
concepts, or the respective instances. As a result it helps to identify the functionality and
characteristic of each class and instance.

Furthermore, a well-built ontology makes domain assumptions explicit and
separates domain knowledge from operational knowledge. This aspect of ontologies is an

advantage for knowledge sharing and reusing for different topics and fields. It makes an

ontology easy to apply to the main idea without redundant information. This

characteristic also offers high flexibility of knowledge usage.

What is the basic approaches to build an ontology?

Knowledge-base construction often begins at the “top,” with higher-level class
definitions, and then proceeds downwards to the process of creating instances of those
classes [4]. This is also the way of learning in school. We apply the theory to practical
examples after we have learned the general knowledge in a particular domain. It follows
the top-down process.

In the contrast, a more intuitive way of learning is the bottom-up approach. Try to
imagine the way a baby learns. With touching, listening, and observing individual
objects, a baby memorizes the items with their names, which are defined by their parents
or instructor, and with their special meaning and properties. Each individual object is an
actual instance to a baby. After gathering enough instances in his/her mind, an individual
organization of information is formed. This is how we learn in the very beginning of our
life.

In this thesis, I tried to use the bottom-up approach to build up or expand an
ontology. Similar to the way a baby learns, the Instance Input interface I developed under
the ProtEgE ontology development environment which allows users to input the instances
with their own specific slots (properties) and the values along with those slots directly. In
other words, it is an input-then-organize (bottom-up) approach instead of the traditional,
organize-then-input (top-down) approach.

In addition, in this research I use the bottom-up approach not only to simulate the

learning process but also to try to increase the automation of ontology creation. In my

view, I divide the ontology creation into two main steps: the first one is instance
recognition and identification, which is used to recognize and define the new information.
The subsequent process is ontology formation, which organizes the new information into
an existing ontology or a new one. The former is beyond the scope of this thesis. I will
merely focus on how to use the bottom-up approach to do the automation of ontology
creation with a simple filtering process based on slots here. The result indicates that it is

simple but powerful.

The bottom-up approach with slot filtering process

Different from the top-down approach, the bottom-up approach works by

B vehicle Protégé 3.2.1 (file:\D: \Documents'protege_plugin_exercise’\ InstanceInputTab\vehicle \wehicle.ppri. | (.pont and |) [| ﬁl
Fle Edt Project Window Tools Help

D eHEH + B B X ma ¢ % <€protégé

e el T T A BRI vetonos v

Instance Information
Class Status

§
[ored El =

S|

Properties

=

Remove brand

madel

Drive type

Remove Mileage(city)

Remove NHTSA passenger

Remove Mieage(highway)

Remove NHTSA side impact front

Remove NHTSA side impact rear

Remove NHTS rollaver

oo efa]efafafaffefafefafajn

Remove is hybric

Figure 1-1

inputting instances under its own class before the structure of classes has been built. The
first step is not organizing all the information in a specific domain but analyzing the
properties of an instance that will be added to an ontology. This is the instance
recognition and identification procedure which is done manually by users in this thesis.

As a result, the slots belonging to an instance should be clarified and the values of each

slot should be identified. The properties are the key features to identify an instance and
make it unique in an ontology.

For example, as shown in Figure 1-1 above, a hybrid car has several properties for
people to identify it. Those properties appear in the format of slots with values in an
instance. Based on the slot filtering process within the interface in this thesis the ‘hybrid’
instance can be locate at a most proper location.

The slot filtering process uses a simple rule: the subclasses of the specific class in
which the new instances reside not only contain all the slots of that class but more. On the
other hand, the specific class not only contains all the slots belonging to its super-classes
but more. With proper slots defined in a class within an ontology, the interface can insert

the class or instance to a proper position automatically.

Thesis Goal 1: The improvement of efficiency on information input

ProtEgE is an integration environment which provides a complete integration
environment for ontology creation and implementation. Its goals are (1) achieving
interoperability with other knowledge-representation systems, and (2) being an easy-to-
use and configurable knowledge-acquisition tool [3]. An expert can create an ontology or
modify the organization with the initial interfaces.

However, developing an ontology is usually an iterative process [1], not to speak
of creating an ontology in ProtEgE. A user needs to define the classes, slots, and
instances in it, categorize them and switch back and forth between several interfaces to
input them. The procedure of building an ontology for a huge amount of data is a difficult
and time consuming task [22].

To improve and simplify the steps, I developed an interface to facilitate instance

input with slots. With this interface users can create an instance directly instead of

creating the classes where it resides and the slots which it possesses in advance. It
provides a flexible way to input instances with all the slot information. The details will be

discussed in Chapter Three.

Thesis Goal 2: Automation of ontology creation

Developing an ontology is usually an iterative process. You start with a rough
first pass at the ontology. You then revise and refine the evolving ontology and fill in the
details [1]. Manually arranging the hierarchy inside of an ontology is very difficult and
also a time consuming issue since it is similar to a task of organizing your files in your
computer. You need to identify them, categorize them, and put them into proper folders.
Especially in situations where an ontology is to be shared among multiple individuals, its
structure also to some degree reflects the “mental model” of its creators. This can lead to
problems such as incorrect knowledge, inconsistencies across the knowledge base,
inappropriate levels of detail, or a general mismatch of the model used by the creators
with the model of the intended user.

In this thesis I use bottom-up approach to complete the creation of an ontology.
Different from the traditional top-down approach I mentioned above, it collects the
information from the most specific instances to form the whole ontology with the most
general category on the top. Also to simplify the process, the hierarchy relationship is not
generated but defined already in ProtEgE. The subclasses contain all the properties which

their parental classes have. The details will be discussed in the following chapter.

CHAPTER 2

APPROACH OVERVIEW

There are two approaches I used to build an ontology automatic in this thesis. The
first is building the ontology from the specific to the general, which is a bottom-up
approach. The other is categorizing the ontology by searching the “best match” location
with the properties of an instance. The interface achieves the thesis goal with the

approaches above.

Approach # 1: building an ontology from the specific to the general

For this approach I created an interface which allows users to input the instances
individually. It completes an ontology creation based on atomism. By contrast to the
Aristotelian genus-species approach, atomism proceeds bottom-up in that it builds objects
out of smaller objects [8], which are instances in ontologies. In an ontology creation the
genus-species uses the top-down process for the differentiation of classes and instances.
This is not the solution I want to apply.

The knowledge model of Protege-2000 is frame-based: frames are the principal
building blocks of a knowledge base. A Protege ontology consists of classes, slots, facets,
and axioms [3]. With the definition described in previous sentence an ontology is formed
into a hierarchy which contains the classes from the most general concept at the top to the
most specific samples at the bottom.

The basic idea of the bottom-up approach is building an ontology from instances
to form a hierarchy of classes from the most specific to the most general, that is,
concepts. Since most of the basic information a human being learns is not from the
concepts in the very beginning but all identical instances around in his/her life, the
bottom-up approach would be the most intuitive way building a concept.

There was a very interesting example I noticed it from the growth of my daughter.

10

When Jamie, my daughter, was three years old, she knew that we had an old Mercury
Sable station wagon which was golden. However, Jamie didn’t know our car belonged to
a category named ‘vehicle’, or an ‘auto’, to say nothing of ‘mid-size’ station wagon. All
the general concepts didn’t mean any thing to her. The ideas of that ‘thing’ in her mind
were:

® [t’s “ours”.

® [t has five doors.

® [t has four wheels.

® [t is golden.

® [t is big.
As aresult, they are the properties of our old golden Mercury Sable. Based on those
properties listed above, whenever Jamie saw the same model cars on the street, she would
say “it’s our big golden car”, or “it’s not our big golden car”. She could not tell what
“our” was since she didn’t know the meaning of “our”. As she learned from the specific
instance, the golden Mercury Sable, she classified the cars into two categories: one is our
big golden car and the other is “not our big golden car”.

Later Jamie learned another car from her uncle. It was a golden Mazda 3. From

that she noticed the brands and she knew our car was Mercury Sable. Therefore her
description of a car had been changed. Instead she said “it is a Toyota”, “it is a Ford”, or

“it is a Honda” when she saw cars.

11

Now she knows the different types, brands and models of cars on the street and
they are the instances of different categories, such as SUV, sedan, minivan, hatchback,
and so on. Furthermore, she understands those different categories are the subclasses of
“autos” which is under a more general concept named “vehicle”.

The example above indicates a relationship between each class and the instances
and the construction procedure of a concept: the fundamental information is gathered
from specific things individually and then connected to form the knowledge.

The bottom-up approach of ontology creation is the same as the above process. It
is based on the information collection by instance identification. In the very beginning
users don’t touch the global view of the whole concept but only some specific instances
or a small portion of the whole ontology. Gradually it will form an integration of a

specific knowledge by expending it with repeating the procedure of instance

Class hierarchy Knowledge building
General concept top A Concept forming
(Qasses)
Sipecific sample Information collection
(Instance) ¥ bottom
Figure 2-1

identification and location.

Another simple example is a puzzle game. From the beginning a player needs to
identify the shape and picture of each piece, then look for the only location where it fits.
The procedure is very similar to our bottom-up approach. Identification of a piece is the

process of recognizing a specific instance. Searching the proper location is identical to

12

the steps of insert an instance along with the class it resides. There is also a close
relationship to the methods used in constraint programming and constraint satisfaction;
due to time constraints, however, this connection was not further explored in this thesis.
Based on the operation of the instance input interface, it meets the requirement
defined in the beginning. The interface provides a proper and simple way to create or

expend an ontology by easily inputting instances.

Approach # 2: searching the most appropriate location for a class with the slots

Once a new instance has been filled with slots and values, it is ready to be added
to an ontology. Therefore, finding a suitable location for it becomes the second topic for
the bottom-up approach of ontology creation. In this thesis,]Jthe following two rules are
applied to find a suitable location:

Rule #1 :

The new instance resides in a class which contains all the slots of its superclass.

Slot 1
Slot 2
Slot 3 Slot 1
. Slot 2
Slot N — :
Slot N
Slot N+ 1
Slot M
Instance A
Slot 1 [
Slot 2 Slot 1
. Slot 2
Slot N :
Slot N+ 1 Slot N
. > < Slot N+ 1
Slot M :
Slot P Slot M
. SlotR
Siot) :
Q \ Slot S

Figyrp 2-2

As well as its subclasses contain all the slots of it. Figure 2-2 shows how the Class A with

Instance A inserts to an existing ontology:

Class B is the direct superclass of Class C and Class D. In Figure 2-2 it indicates
that the relationship: the subclasses contain all the slots which belong to superclass. As a
result, Class C has at least all the slots in Class B and so does Class D. Now a new Class
A along with Instance A, which contains all the slots in Class B, therefore Class A is one
of the subclasses of Class B. On the other hand, Class C and Class D contain all the slots

in Class A, so Class A becomes the direct superclass of Class C and Class D.

In logic expression it looks as below:

{the collection of slots belong to Class A} (1e collection of slots belong to the

subclass of Class A}

and

{the collection of slots belong to Class A} _Dhe collection of slots belong to the

superclass of Class A}

As you may see, this rule is very simple but powerful. According to the samples I
tested in my thesis, it can locate the proper position for the class which the new instance
resides. Inside of the interface the program compares the slots belonging to the new
instance with the slots of classes in the ontology. As soon as it finds the first matched
class, it will put the instance there. Once it can not find a class which contains the exact
same slots, the interface will create a new class based on the rule above. The result shows

it is a satisfied solution.

14

Slot 1
Slot 2
Slot 3

Slot N

Slot 1
Slot 2

Slot N
Slot N+ 1

Slot M

2}‘“;) Slot 1
ot Slot 2
Instance A :

Slot N .

Slot N

Slothe 1 > < Slot N+ 1

Slot M :

Slot P Slot M
) SlotR

SlotQ | Slots

Figure 2-3
Rule #2 :

The second rule is about how to locate the class more accurately. To make the
result more precisely, a good naming rule of slots is necessary. The rule is “naming a slot
as specific as possible”. It defines an instance clearly and indicates the characteristics of
the class which the instance resides.

The searching algorithm I used in the program to find the proper location of
classes and instances is depth-first. As a result it will search on the same level of classes
before deeper dive. Without using more specific name of slots would cause misplaced the
instances. In order to increase the hit rate, which helps less modification after input,
applying the specific names of slots is necessary.

For example, most of the classes have a property named “name”. It indicates how
people call it. In most cases it is good enough for categorizing the classes precisely.
However, it confuses the program sometimes and locates the classes not in the best place

since the slot name “name” is not specific enough to describe which domain it resides.

15

With a more accurate name would help the program find a better location. As a result, a
slot named “sedan name” under the “sedan” class or a “computer monitor name” is more
specific than simply “name”. According to the samples it can achieve a very accuracy of
locating the class within the best place.

Unfortunately, with lacking the semantic comparison ability, my program is not
able to place all the instances input into locations expected. I will discuss this in the

samples of Chapter 5.

16

CHAPTER 3

PROGRAM FEATURES

The Instance Input Interface is a tab widget developed and used on ProtEgE 3.2.1.
It allows a user to input instances and classes in an easier way than the traditional
procedure of Ontology construction. For the detail of its features and requirements will be

described in this chapter.

Environment requirement

The Instance Input Interface is written in Java 1.5.0 and implemented ProtEgE
3.2.1 API. It requires to be operated on ProtEgE 3.2.1 or higher edition installed on the

computer.

Key features

One of the main purposes for this program is to provide users an easier instance
input interface. As a result, the key features of the interface are:

1. Condensed procedure:
With the interface, users can add an instance under a specific class by
inputting proper values of selected slots which belong to that class. Or it can
make a new instance within a new class simultaneously. Furthermore, it is
used to create a new class alone and set its properties up in one operation. It
simplifies the input procedure of an instance and a class, as well as saves the

time of creating an Ontology.

17

2. Intuitive operation:
The interface contains most of the functions for instance input and is arranged

for intuitive operation. A blank interface shows below:

vehicle Protégé 3.2.1 (file:\C:\Program®o20Files \Protege_3.2.1 ' \vehicle.pprj, Protégé Files (.pont a 5)) & ﬂ

Flle Edt Project Window Tools Hely

NEE +« BE R xd €9 <;éprofégé

Classes | ™ sts | = Forms | # instances | & Gueries | nstance Input
Instance Information

Class Status

[i'" | clear | Update database |

| aan |

| B |

tart

Drstert] [€ [7 & @ T 5)@ | TvbE | < Protege. [« vehicle.. Mol || EA 1S smideONEET O 1um0am

Figure 3-1

It is simply to press the “Add” button on the right-upper corner inside of
“Properties” field to add a new slot with a single click. Deleting a slot is as
easy as clicking the “Remove” button on the most left hand side of that rows.
Each row contains the editable slot name list which allows users to select an
existing slot from the database or add a new one. By choosing a slot type
within a combo list a slot can be defined for 7 different types of data in
ProtEgE.

In addition, to input a slot with multiple values is easy within this interface.
Users simply add multiple rows of slots with the same name and different

values, and the interface will set the slot as a “multiple input” property.

18

3.

Automatic categorization

After an instance has been input, the interface will categorize it into the
Ontology with the General-to-Specific rule which I described in Chapter 2.
The program searches the best matched location based on the properties
belonging to the instance.

(1) There is a class with exactly the same properties as the instance: this
instance will be put under that specific class.

(2) The instance contains all the properties of a class: this instance will be
put under a new created class which is under the specific class which
contains fewer properties.

(3) No class matches the instance: the program will create a new class

under “Root” class and put the instance under it.

For more detail operation instruction, it will be described in next chapter.

Installation

There are 2 simple steps to install the Instance Input Interface onto ProtEgE:

1.

Create a folder named “InstanceInputTab” under “ProtEgE,_3.2.1\plugins\”
and copy the Instancelnput.jar into it.

Start ProtEgE with either an existing project or a new project. Click the
“Project” on the tool bar and choose “Configure...” selection under it. Find

the “InstancelnputTab” and check the “Visible” box in front of it.

19

m

G

H

dass:

i

tract &

plate !

Project Window

Tools Help

="

ﬁ‘g Archive Current Version

@ REevert to a Previous “ersion

¢ B

g

r O Clas=e

For Projecy

Class Hier
:THING
> B

e —
Manage Included Projects.. GEE r GUEIES |
Merge Included Projects ‘ .

For Class:
Configure...
Metrics ... Hame
Encodings... e

Role

Abstract ©

Template Slots

:THING

(instance of :STAND

MName

Figure 3-2

r Tak Widgets r Options |/ Property Files r Wizards |

Tabs

¢ Configure null

Visible |

Tab Widget

O0000R &R & E

|

[
O
O
|
O
m|
=]
O
|
O
O
5

ClsesTab

SlotsTab

FarmsTak
InstancesTab
QueriesTab
AlgernonTab
ChangesTab
ClzesAndnstancesTab
DataGenieTab
DebuggerTestTakb
FacetConstraintsTak
InstancelnputTab
InstanceTreeTak
JambalayaTak
JessTab

KAToolTak
KnowledgeTreeTab
OntovizTak
OWLDLIndividualsTak
CWLFarmsTak
PalCaonstraintsTab
PromptTab
ProtegePropertiesTab
ProteaeScrintTak

Jl

| Jox

| | }‘{.Cancel |

Figure 3-3

20

3. Now the Instance Input Interface is ready to use.

21

CHAPTER 4

INTERFACE OPERATION

The new tab widget provides a easier way to input instances. With simply single
step, users are able to input an empty class, an instance within a specific new class, or a
new instance under an existing class with this interface. It will dramatically simplify the
construction of an ontology.

This chapter contains three main portions: instance information, instance
properties, and operation rules. The first two describe the functionality of each button and

input area or selection. The last one focuses on the operation of creating instances.

(1) Instance information

This is the upper area inside of the interface. It shows the selection of Class, the

status of interface, and has two buttons for clearing the input or passing the input result to

ProtEgE.

E vehicle Protégé3.2.1 (file:\D:\Documents\protege _plugin_exerdse’InstancelnputTab'\wehide\vehide. it a ___JEI_LX_J
Ele Edt Broiect VWindow Tools Hel
ODE B +« B8 % g #9 fﬁpmtégé
Closscs | ™ Sioiz | = Forms | # hstences | A Guencs | nstance Irput
(nstance information
Class Status
lnwnd T=I [clear Update datsbaze
Properties.
Add
| memove |brand | sting -
| Remove |medel - string -
| Remove | whoels = |Integer =|
| Remove [engnelpe - string -
| Remove |trunk smelou-) = |Fleat =]
| memove | Hosepower | Float =
| Remove | Drive type = sting =]
| Rmemove | hiengerchy) | Fioat ~|
| Romove ||NHTSA passenger | String ~|
| Remove | Miesgerhigay) | Fioat =
Figure 4-1

1. ‘Class’ combobox

22

This is an combobox which indicates the class holds the new instance. It
provides two functions:
@) List all the slots which belong to the selected class in the
Instance properties area automatically. On the other hand, once
the slots in the Instance properties area are exactly the same as a
specific class, the name of that class will be pop out in the Class
combobox.

(ii) Allow user to input the name of a new Class.

2. ‘Status’ text box
The ‘Status’ text box is not an edible text field. It shows the certain
information during the running time. This is for debug only.

3. ‘Clear’ button
This button is used to discard the information has been input. It clears all the
selection and values in ‘Properties’ area.

4. ‘Update Database’ button
‘Update Database’ button is used to pass the input data to ProtEgE. At the
same time the class and instance list will be synchronized with the ontology
database. As well as the ‘Properties’ will be cleared for next input.
Before updating database with pressing ‘Update Database’ button, the slots
and values will be temporarily stored in the interface and can be modified

without affecting the ontology database.

(2) Instance Properties

23

The lower area of the interface lists all the properties of an instance. All the slots
and values are able to set up here. It combines the definition of slot and instance value

input in one step.

vehicle Protégé 3.2.1 (fil
File Edt Project Wndow Tools Help

OE B + 388 28 «nad ¢ 9 ﬁpmtégé

Documents'protege_plugin_exerdse’\ InstanceInputTabiwehidewehicle.pprj, Protégé Flles [ipont

| 0 Cistses | Msigs | = Foms | # bstances | A Guenes | nstance hput
Instance information

Class Status

|m,lnr|d |-| Clear | LUpaate database
Properties
A

Remove brand || Sting il

Remove model || =tring =

Remove wheess || imeger Ad

Remove engne bae || String =

Remaove trurk sze(cu-f) | |Float 7

Remove Horsepavwer |Float 59

Remove Drfve type =||string =

Remove ilcogs(city) ~ ||Float 5

Remove HHTSA passenger || String i

Remove eszehighaay) | Float x|

Remove NH'ISA&Bi_c:n_pwdfru'l || ting %

Remove MHTSA criver || String >

Remove bransmission || Sting =

Remove haz hefichiack ~||Boglean || True i
| Remove doors || InMeger]

Remove passenger || Integer X

Remove HHTSA side impact rear || string =

Remove MHTSA rofower || String bed

Remove iz hybeid ~||Boglean || True -

Figure 4-2

1. ‘Add’ button
Every click of ‘Add’ button adds an empty row of slot for input. There is no
default value and slot name for a new slot except slot type. The default value

of slot type is ‘Any’.

2. ‘Remove’ button
On the most left hand side of each row, it is a ‘Remove’ button. As its name
shows this button is used to delete the row of slot which it resides. It designs

for the purpose of intuitive usage. With one click a row will be removed

24

from the property input area.

3. ‘Slot name’ combobox
The second edible area from the left in a row is the ‘Slot name’ combobox. It
contains the list of existing slots in the ontology. By selecting the slot name
in the list will change the value of slot type and the value input area
accordingly.

/ slot name / slot type / slot value input area
Femove brand ;":minu =l

Femoye | moeie] | ™| Btring il

[b e |l i -

Figure 4-3

The same as the ‘Class’ combobox in ‘Instance information’ area, users can
input a new slot name in the ‘Slot name’ combobox to create a new slot in

the ontology.

4. ‘Slot type’ list box
Next to the ‘Slot name’ combobox on the right hand side is the ‘Slot type’
list box. It shows the type of a slot and also controls the type of value input
area on the right. There are eight different selections in the list: Any,

Boolean, Class, Float, Integer, Instance, String, and Symbol.

5. ‘Slot value’ input area
On the left of each row is the ‘Slot value’ input area. It is an dynamic input
area and will change to meet the slot type selected in ‘Slot type’ list box. For
the type of Any, Float, Integer and String, an text field shows and allows

users to type the value. Once the slot type is changed to Boolean, this area

25

will switch to a True or False selection list box. In the type of Class,

Instance, or Symbol, it will be a list box which contains all the available

classes, instances, or symbols respectively.

(3) Operation rules

There are five rules for different cases of instance input. Following the rules users

can create an empty class, add properties to a class, insert a instance in a class, create an

instance within a new class, or directly make a new instance with slots contains multiple

values.

vehicle Protégé 3.2,.1

Fle Edi Project \Vindow

De @ 4 B & %

Tools Help

oy J W

(file:\D:\Documentsprotege_plugin_exercise’ InstanceInputTab'wehicle\wehicle.pprj; Protege

=1olx]

ﬁprotégé

' Classes | ™ Siols | = Forms | @ Instences | & Gueries | Instance Input

Class

Instance Information

Status

[autos]

| cear | Uposte database |

Properties

Remove brand | string -
Remove macel ~ | string ~
Remove wheels - |Integer -
Remove engine type | string -
Remove doors - |integer -
Remove Horsepower ~|Float ~
Remave trunk size(cu-ft) - |Float -
Remove Wileage(hichveay) - |Fioat -
Remove HHTSA side impact front | string -
Remove NHTSA driver ~ | string >
Remove Drive type - | string -
Remove Mizage(cty) - | Fioat -
Remove transmission - | string -
Remove NHTSA side impact rear ~ | string ~
Remave passenger - |Integer -
Remove NHTSA rollover - | string -

Distert| | W) @M T 2@ ¥ 8

| FFvo. | @ o | 2ime.| Wpro[<ve.. |EHA LS [ICmeANE ST (I s55m

1. Create a new class with no instance

Figure 4-4

This rule applies to create an empty class alone. It is useful for the

construction of an ontology since not all the classes need instances under it.

To create an empty class, simply add all the slots in the properties area
without input any values. After finishing the slot addition, click the “Update
Database” button in instance information area will add the class to the
ontology.

An example shows in Figure 4-4. A class named ‘autos’ is a sub-category of
‘vehicle’ and also a superior class of ‘sedan’, ‘hybrid’, ‘pickup’, and so on.
Since all the individual instances of autos will be put in the more specific
classes under it, there is no need to set any instance inside of it. As a result,

‘autos’ would be an empty class can be created by applying this rule.

2. Create a new instance within a new class
Similar to the first rule above, the steps to create a new instance within a new
class is the same as to create an empty class. The only difference between
them is the former needs the user to fill in all the values. After filling in all
values and pressing the ‘Update Database’ button, a new class with the

instance under it will be added to the ontology.

3. Add properties to an existing class
Sometimes users need to modify the definition of an existing class by adding
a certain slots. The task can be achieved by using the Instance Input Interface
with the following steps:

@) Users select the class from the ‘Class’ combobox in ‘Instance
information’ area. The slots belong to that specific class will display
in the ‘Properties’ area.

(ii) Click on ‘Add’ button in ‘Properties’ area. In the new row, users
may select a slot which exists in the ontology or input a new slot

name and select a proper slot type. Then fill in the value at the new

27

row.
(iii) Users may notice that the selection in ‘Class’ combobox becomes

blank since the slots in ‘Properties’ has been changed and the
interface will treat them as belonging to a different class. At this
time the users place the same class name back to the ‘Class’
combobox and press ‘Update Database’. The new slots will be added
to that class.

4. Add a new instance to an existing class

To add a new instance to an existing class is the simplest operation by using

this interface. Merely within two steps the creation of an instance can be

done.

@) Select the class from the ‘Class’ combobox in ‘Instance information’
area. The slots belong to that specific class will display in the
‘Properties’ area.

(ii) Fill in the values for each slot and press the ‘Update Database’ button

at the end. The new instance will add under the specific class.

Furthermore, it is easy to add an instance with slots which contain multiple
values. While a user fills in the values for each slot, he/she may click the
‘Add’ button to increase the slot rows. In the new rows the user selects the
slot name which he/she wants to make with multiple values. After filling in
all the values, the user types the same class name and clicks the ‘Update
Database’ button. The new instance with slots contains multiple values will

be added to the ontology.

28

CHAPTER 5

EVALUATION

There are two sections of evaluation: the first section is the improvement of new
interface on ontology creation. The second section is how the bottom-up approach helps

on ontology creation.

Evaluation 1: Improvement of new interface on ontology creation
The original idea of designing the interface was creating a more user-friendly
operation environment for ontology users. It helps to reduce the input steps on ontology

creation. The following figure shows the difference:

Original input interface Instance input interface

Create a new class in the
ses widget

L Create a new class in the
Set up the template slots nstance
in a setup window Input@widget, and
create a new instance
i with setting up the
template slots with
Organize classes in the filling all the values. As
¥Bses widget soon as a instance is
created, the widget will
i find the best-matched

location of the class it

Create a new instance in
the nstances@widget

Figure 5-1 Comparison of original and improved steps with new interface

29

As it shows above, the original procedure of ontology creation is repeating four
steps by switching between three widgets and windows:

® (Creating a new classes in the “Classes” widget

® Set up the template slots in a setup window

® Organize classes in the “Classes” widget

® (Create a new instance in the “Instances” widget

With the new Instance Input Interface, all four steps can be done in one widget. It
not only reduces the annoying clicks and switches between windows, but also helps to
organize classes with the bottom-up approach on ontology creation which I will evaluate
in the following paragraphs. In those real examples of ontology, it did help me to save
time and actions on the input tasks.

The reduction of clicks and switches varies. It depends on the number of template
slots and instances. Since the input task with new interface completes within a widget, the
more templates and instances an user inputs, the more time and actions it saves. The new
interface provides a more convenient and efficient working environment on ontology

creation for general users.

Evaluation 2: Performance of bottom-up approach on ontology creation

Totally I built ten ontologies for testing. In this chapter I will report three typical
examples to show both the strength and weakness on modifying an existing ontology or
creating brand new ontologies respectively. Within a different example it demonstrates
the different grade of success caused by its limitation and the strategy I applied. The
detail will be described and discussed in the case individually.

The evaluation of the approach is based on the “hit rate”. To get the appropriate

hit rate, I use the following equation to evaluate the result for each example:

30

The total of the classes which reside in the proper locations

Hit Rate (%) =
The total of the classes which have been input

The higher “Hit Rate” will indicate the rules I used in the Instance Input Interface is
useful. In other words, the approach I imply in this thesis is good enough to do the front
end process. Otherwise the approach needs to be refined with the rules improvement.

The definition of “the total of the classes which reside in the proper location” is
the number of the classes which either is at the same location as the comparison or at the
location as the author expects. I don’t count the instances since they all follow the classes
which they belongs to. In other words, once the classes reside in the correct place, all the
instances under them will locate at the correct categories. Therefore there is no need to

count the instances to bluffing the Hit Rate.

Example 1: Newspaper

This example shows how to use the Instance Input Interface to insert a new
instance into an existing ontology. It demonstrates the ability of expansion with the
Instance Input Interface in an easier way. An user can input either instances or classes to
expend the ontologies simply in one interface instead of switching back and forth
between the Class Management Widget and Instance Management Widget. In this case I
add the following classes and instances into Newspaper ontology:

Photographer

The slots of a Photographer are:

® Name

® Current_job_title

® Date_hired

31

Cartoonist

Other_information
Phone_number
Salafy

Camera

The slots of a Cartoonist are:

Name
Current_job_title
Date_hired
Other_information
Phone_number
Salafy

Drawing tools

Office Technician

The slots of a Office Technician are:

Name
Current_job_title
Date_hired
Other_information
Phone_number
Salafy

In office / Boolean

Publish Technician

The slots of a Office Technician are:

Name

32

® Current_job_title

® Date_hired

® Other_information

® Phone_number

® Salafy

® In publish department / Boolean
Contractor

The slots of a Contractor are:

® Name

® Other_information

® Phone_number

® Contractor period

® Rate
Intern

The slots of an Intern are:

® Name

® Other_information

® Phone_number

® Intern period

® Rate

There is another general category named “Technician” which contains all
technician sub-categories. I added it in the ontology after I created the publish technician
and office technician to test the insertion function of classes.

Those six classes I used to test the bottom-up approach ontology creation. My

33

idea was to set the “Photographer” and “Cartoonist” under the “Columnist™ class, “Office
Technician” and “Publish Technician” under the “Employee” class, and “Contractor” and
“Intern” under “Person” respectively. However, the Hit rate is 66% before I input the
instances with the identification slots such as “Is Columnist” for “Photographer” and
“Cartoonist”. The reasons for both classes failed are because the classes are sorted and
stored in depth-first inside of ProtEgE and I didn’t change the order of them. When my
program searches the proper location for a new instance, it will compare each class in the
same order and insert the new instance with its class into the first location matched. Since
there is no semantic analysis ability in my program, it is not able to identify the
difference of the classes with same slots. As a result it will put the input instance to the
first location which meets the Rule#1 in Chapter Two.

The simple solution before implying the semantic identification is applying the
Rule#2 to make each class unique. It comes out with the results I expected to organize.
By adding “Is Columnist” to “Photographer” an “Cartoonist”, they are correctly located
under “Columnist” category.

In contrast, “Technician”, “Office Technician”, “Shop Technician”, “Contractor”
and “Intern” reside at correct location since they have some slots make them unique. For
example, “Technician” contains all the slots same as the rest classes under “Employee”
with one extra specific slot named “Is Technician”, which makes the program will search
and put it under the “Employee” and in parallel with “Columnist”, “Editor”, etc.

In this case it shows obviously the abilities and limits of bottom-up approach with
simple comparison rule without semantic identification. However, it also demonstrates
the capability and possibility of improvement on ontology creation. The next case

supports my point of view.

Example 2: HEV

In order to reduce the fuel consumption with the contemporary technologies,

34

HEVs have been invented and are popular in our community at the high gasoline price
point. However, HEV is not the final solution since the improvement of fuel economy is
not great enough. Therefore PHEV is introduced for much better mileage per gallon
within certain of commute range. It is also a step stone for the development of pure
electric vehicles. The HEV ontology shows the contemporary status of both HEV and
PHEV in the United States.

In this case I use the Instance Input Interface to input all the HEV's available on
the consumer market nowadays to form the HEV ontology. It demonstrates the ability of
building an ontology with bottom-up approach and the improvement of input procedures.
There are total 68 instances and 11 classes input and the ‘hit rate’ is 100%. Since I
followed the rule #2 which was described in Chapter 2 when I input the instances, the
ontology is formed in a good structure without moving the location of either classes or
instances. It provides another supporting example to show the possibility and ability of
automatic ontology creation. However, there are some restricts and weakness in my
program which are caused by the approach I use and the lack of ability on data

recognition. It will be discussed in the following example.

HEV
The slots of a HEV are:
® Brand: the brand of autos
® Model: the identical model of autos
® Battery: Mainly the batteries apply on HEV is either NiMH or Lithium.
® Engine: The main stream of engine types are gasoline and diesel ICE.

However, the models in the concurrent market are all equipped with

gasoline.

® Year: the production year of autos

35

Doors: the main entrance available on an auto
Seating: the maximum number of seats in an auto
City mpg: the fuel consumption while driving in city

Highway mpg: the fuel consumption while driving on highway

In order to distinguish the engine type and battery type for categorization, I add

the following two slots to help identification:

® Gasoline powered: it is equipped with gasoline ICE

® NiMH battery powered: it uses NiMH battery pack to store electricity.

As I mentioned before, since the Instance Input Interface doesn’t have the ability

to identify the semantic information of data for categorization, I need to add those

redundant-like slots for assistance. However, the strategy helps a lot on categorize

ontologies in all the examples I built.

PHEV

The slots in a PHEV are:

® Brand: the brand of autos

® Model: the identical model of autos

® Battery: Mainly the batteries apply on PHEV is either NiMH or Lithium.

36

® Charger: the equipment to provide the ability of charging by home electricity

or the high-power fast charging

Eihev Protégé3.2.1 (file:\Y:\Duckwei%20backup\Thesis\Protege%20project\HEV\hev.pprj, Protégé Files (_pont and .pin: : _el x|
File Ecit Project Window Tools Help

OeE +« BB 8 tudg ¢ % {—-"éipmtégé

(' Classes r-SIuts f: Forms | 4 instances | A Queries | Instance Input ‘

\ INSTANCE BROWSER INSTANCE EDITOR

& @ hev For Class: @ gasoline Lihium PHEV rlnstance: & AQGMD#! (instance of gasoling LEhium PHEV, internal name is instance170) Nom X
y wner AN & @ X v | Ban
THING & aomD #1 [Tayota | |naup 1 |
| 2 SYSTEM-CLASS & 20D #2
¥ @ Dattery Pack # AQID #3 = [+ Lithium Battery Powered
NIMH (7 # Burbank City ‘Dena,@
Lithium (=) * Calcars b
« e By Battery - 2
Engine (11) # ElectriCity S : BN
o HEY & Energycs }Energycs ‘ # EnergyCSs Valance 9.0 kW
¥ © gasoline HEV # eTec (ML)
gasoiine NiMH HEY (33 @ Nyserda (New York City)
B
v @ PHEV # Sarta Monica City ‘ i ‘
gasoline Lithium PHEY (11 # swuD
gasoline NivH PHEV
gasoline Lead Acid PHEY
|- & Chinese (Tracitiona) - New Changlie
gasoline Lithium PHEY
1
||

Figure 5.2 HEV Ontology

® Converted by: the company which provides the conversion service or the

technology provider

® Ownership: the funder or the possessor

Since there is no OEM PHEYV launched the auto market yet, all the PHEVs are
converted by different companies with different technologies. The ontology briefly shows

the status and the organizations which own the converted fleets.

Example 3: REA Enterprise Ontology

REA Enterprise Ontology has been initially created by William E. McCarthy,

37

mainly for modeling of accounting systems. |t proves useful and intuitive for better
understanding of business processes. In this example I will use the interface I write to
recreate the whole REA Enterprise Ontology with all the instances in it and examine how
well my program can build the same ontology as it.

To be honest this is a fail case when I tried to clone it onto ProtEgE with the
Instance Input Interface. The reason I put here is using it as a contract to the previous two
cases. It shows how it fails and gives me the idea to improve in the future work.

The main reason my program failed to correctly organize the classes in REA
ontology is that many classes contain the same slots. As a result there is not enough
information to categorize the classes for the Instance Input Interface I make. At most it is
only able to put the classes under the same superclasses with fewer slots. With the same
slots the classes would be put in parallel.

For example, Agreement class under ExchangeElement has the same slots as
Contract class, which is under Agreement class in the original REA ontology.
Unfortunately by using my interface to input the data, Contract class would be put under
ExchangeElement instead of Agreement since the program locates it with the slots
belonging to.

There are two solutions for this problem. The first solution is applying the Rule#2
in Chapter Two to insert at least one specific slot for identification. It will provide the
necessary information for recognition and help the program to locate the correct position
for the classes. For instance, after I added a slot named “Is_Agreement” with Boolean
type to Contract class and it resided at the correct location right under Agreement.

The second solution is adding the semantic recognition ability to raise the correct
rate of classification. Since most of the identification ability in an ontology is based on
the information in text, the semantic recognition will provide more information which is
the benefit for data classification used on ontology creation. However, it is too

complicate and beyond the scope of this thesis.

38

As you may see in the cases I provide in this chapter, the bottom-up approach
with the classification approach by slots is useful to help the users on the automation of
ontology creation. It not only provides a way to simplify the ontology creation but also
prove the idea of bottom-up approach for building an ontology is possible even though it
is still amateur at this stage. However, with more study I believe it would be able to

improve the work of creating ontologies greatly.

39

CHAPTER 6

CONCLUSION

From the examples in previous chapter, the new interface provides a more
intuitive operation as well as shows the practicability of bottom-up approach for an
ontology creation. It simplifies the process of ontology creation. In addition, it also helps
users to locate the class which the new instance resides automatically. Both form the

semi-automatic ontology creation procedure.

Benefits and achievement

The benefit of using the interface developed in this thesis is simplifying the
procedure of instance input. Typically an ontology is built by top-down approach. It takes
the following procedure:

1. To analyze information for a specific domain

2. To organize the hierarchy of classes

3. To setup the slots of each class

4. To input instances under each class

In contrast to the procedures mentioned above, the interface allows user to do the
same job with the following steps:

1. To analyze information of each unique instance in a domain

2. To input the slots of an instance and value for each slot

Simply with two steps the interface helps user to do the classification work and
form a prototype of ontology. It reduces some tedious job and provides a skeleton of
ontology for easy modification.

As I mentioned in the very beginning, testing the ontology creation with bottom-

up approach is the main idea throughout this thesis. The results confirm that it is possible

40

to build an ontology from bottom to top. It also shows the possibility to generate an
ontology automatically with more precision categorization on the properties and values of
instances.

The major achievement of this thesis is that the interface does the categorization
of instances automatically. It takes the instances which users input, identifies them with
their slots, and puts them into the best match locations in an ontology. The examples
shown in previous chapter demonstrate that the results are satisfied with well-defined
slots.

The study process of this thesis also answers some of my questions from the
observation on how the fundamental knowledge forms in a kid, such as my daughter.
Similar to the process of generating an ontology with bottom-up approach, the
fundamental knowledge is constructed from individual instances which kids encounter
everyday. From them with their own categorizing rules they build their own ontologies in
their way. They are free of restricts. The learning process in school system helps to
organize them and improve them. Unfortunately, it also limits the freedom of thinking.
Nevertheless, this is a topic beyond the scope of this thesis. I won’t address this too much

here.

Future works

However, it is the first step to achieve the automation of ontology creation. In this
thesis the interface simply use slots in a class as the key information to form a class
organization. It is powerful but not enough for a more accurate classification. For the
further improvement, there are some future works to make the automation more practical:

1. To do the classification of classes and instances with not only slots but also

value of each slot.
In order to get more precision classification, it is not enough by merely using

the slots. Value in each slot is very important for categorizing it. The slots

41

can be used to form a rough class hierarchy and the value in each slot would
help to adjust the result. However, it requires to imply some semantic
analysis and information retrieval procedure which beyond the study here.

2. To make the interface contains more function.

The interface in the thesis develops for the following targets:
(1) Clear interface

(2) Intuitive operation

(3) Versatile function

(4) Automatic classification process

As aresult, to be a perfect user-friendly operation interface, there are still some

improvement needs to be done for the future work:

1. The semantic ability for the identification of name and value of slots
This is a very important factor to dramatically improve the accuracy of correct
organizing the ontology since the ability of semantic identification is able to help the
program to recognize the information input and find the right location in an ontology
for those instances.

2. More control items for detail configuration of each slot and its value

3. To imply some external ontology for performing the classification of classes and
instances.

To use the bottom-up approach with slot information to form an ontology directly
from the input instances is the first step of automation of ontology creation. In this thesis
I demonstrate the possibility and strength and how it works. Although it is not a very
mature application which is able to be implied onto the related field, the idea shows its
potential and the availability to help solving the problems on the automatic creation of

ontology.

42

APPENDIX A

SOURCE CODE

package InstancelnputTab; // Protege 3.1

import java.awt.*;

import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;
import java.util.*;

import java.lang.reflect.*;

import edu.stanford.smi.protege.model.*;
import edu.stanford.smi.protege.widget.*;
import edu.stanford.smi.protege.util.*;
import edu.stanford.smi.protege.resource.*;

// an example tab

public class InstancelnputTab extends AbstractTabWidget {

public static final int HEIGHT DEFAULT = 25;

public static final long serial VersionUID = 24362462L;

Collection _clses;
Collection _slots;
Collection _instes;

private JPanel PropertyPane;
private JPanel slotInputPane;
private JScrollPane scrollSlotInputPane;

private JComboBox className;
private JTextField status;
private JButton Clear;
private JButton Sync;
private JButton Update;
private String str;

private JButton addSlot;

private JSplitPane mainSplitter;

43

private Dimension slotBoxSize;
private Dimension buttonSize;
private Dimension slotNameSize;
private Dimension slotTypeSize;

Box emptyBox;

private int currentID;

private int slotNo;
private int instanceNo;
private int instMaxCount;

private int HEIGHT;
private int WIDTH,;

private String debugStr;

Vector<Cls> classList;
Vector<String> clsNameList;

Vector<Slot> slotList;
Vector<String> slotNameList;
Vector<Instance> instanceList;

Vector<String> instNameList;
Vector<String> clsSelection;

Vector<String> slotTypeChoices;
Vector<String> booleanChoices;

KnowledgeBase KB;

// startup code
public void initialize() {
// initialize the tab text
slotNo = 1;
currentID = 0;
HEIGHT = 0;
WIDTH = 1248;
setLabel("Instance Input");

debugStr ="";
slotBoxSize = new Dimension(WIDTH, HEIGHT _DEFAULT);
buttonSize = new Dimension(100, HEIGHT _DEFAULT);

slotNameSize = new Dimension(300, HEIGHT_DEFAULT);
slotTypeSize = new Dimension(100, HEIGHT_DEFAULT);

44

KB = getKnowledgeBase();

instMaxCount = 0;
instanceNo = KB.getInstanceCount(KB.getRootCls());

classList = new Vector<Cls>();
clsNameList = new Vector<String>();
slotList = new Vector<Slot>();
slotNameList = new Vector<String>();
instanceList = new Vector<Instance>();
instNameList = new Vector<String>();
clsSelection = new Vector<String>();

slotTypeChoices = new Vector<String>();
booleanChoices = new Vector<String>();

slotTypeChoices.addElement("Any");
slotTypeChoices.addElement("Boolean");
slotTypeChoices.addElement("Class");
slotTypeChoices.addElement("Float");
slotTypeChoices.addElement("Instance");
slotTypeChoices.addElement("Integer");
slotTypeChoices.addElement("String");
slotTypeChoices.addElement("Symbol");

booleanChoices.addElement("True");
booleanChoices.addElement("False");

readData();

add(createMainSplitter());

}
private void readData() { // read data from knowledge database

_clses = Collections. EMPTY_LIST; // it was "new ArrayList()"
_slots = Collections. EMPTY_LIST;
_instes = Collections.EMPTY_LIST;

try {

_clses = KB.getClses();
classList.clear();
clsNameList.clear();
clsNameList.addElement("");
for (Iterator clslterator = _clses.iterator(); clslterator.hasNext();) {

45

Cls cls = (Cls) clsIterator.next();

if(cls.getName().charAt(0) != "' && !cls.isAbstract()) {
classList.addElement(cls);
clsNameList.addElement(cls.getName());

}

_slots = KB.getSlots();
slotList.clear();
slotNameList.clear();
slotNameList.addElement("");
for (Iterator slotlterator = _slots.iterator(); slotlterator.hasNext();) {
Slot slot = (Slot) slotIterator.next();
if(slot.getName().charAt(0) !="") {
slotList.addElement(slot);
slotNameList.addElement(slot.getName());

_instes = KB.getInstances();
instanceList.clear();
instNameList.clear();
instNameList.addElement("");
for (Iterator instlterator = _instes.iterator(); instlterator.hasNext();) {
Instance inst = (Instance) instlterator.next();
if(inst.getDirectType().getName().charAt(0) !="") {
instanceList.addElement(inst);
instNameList.addElement(inst.getBrowserText());
String internalNoStr = inst.getName().substring(8);
debugStr = debugStr + " " + inst.getName() +

internalNoStr;
status.setText(debugStr);
int internalNo = Integer.valueOf(internalNoStr);
if (instMaxCount < internalNo) {
instMaxCount = internalNo;
}
}
}
instMaxCount++;

} catch (Exception db) {
System.out.println("database reading error");

}
}

private JComponent createMainSplitter() {

46

mainSplitter = new JSplitPane(JSplitPane. VERTICAL_SPLIT);
mainSplitter.setDividerLocation(75);// original: 50
mainSplitter.setTopComponent(createInstancelnfoPane());
mainSplitter.setBottomComponent(createPropertyPane());
return mainSplitter;

}

private JComponent createlnstancelnfoPane() {
JPanel Instancelnfo = new JPanel();
Instancelnfo.setLayout(new BorderLayout());

Instancelnfo.add(createControlPanel(), BorderLayout. CENTER);

Instancelnfo.setBorder(BorderFactory.createTitledBorder("Instance Information"));
return Instancelnfo;

}

private JComponent createControlPanel() {
JLabel classNameLabel = new JLabel("Class");
classNameLabel.setPreferredSize(new Dimension(300,
HEIGHT_DEFAULT)); / was 150
classNameLabel.setMaximumSize(new Dimension(300,
HEIGHT_DEFAULT)); / was 150
JLabel instanceNameLabel = new JLabel("Instance Name");
JLabel statusLabel = new JLabel("Status");
statusLabel.setPreferredSize(new Dimension(150,
HEIGHT_DEFAULT));
statusLabel.setMaximumSize(new Dimension(150,
HEIGHT_DEFAULT));

Box boxLabel = Box.createHorizontalBox();
boxLabel.add(classNameLabel);
boxLabel.add(statusLabel);
boxLabel.add(Box.createHorizontal Glue());

className = new JComboBox(clsNameList);

className.setPreferredSize(new Dimension(300, HEIGHT_DEFAULT));
/Iwas 150

className.setEditable(true);

status = new JTextField();
status.setText("");
status.setPreferredSize(new Dimension(80, HEIGHT _DEFAULT));
status.setEditable(true);

Clear = new JButton("Clear");

47

Update = new JButton("Update database");

Box box1 = Box.createHorizontal Box();
box1.add(className);

box1.add(status);

box1.add(Clear);

box1.add(Update);

box1.add(Box.createHorizontalGlue());

Box outerBox = Box.createVerticalBox();
outerBox.add(boxLabel);
outerBox.add(box1);

JPanel controlPanel = new JPanel();
controlPanel.setLayout(new GridLayout(1, 6, 3, 3));
controlPanel.add(outerBox);

className.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
JComboBox source = (JComboBox) e.getSource();
}
D;

className.addItemListener(new ItemListener() {
public void itemStateChanged(ItemEvent ie) {
}

D;

className.addPopupMenuListener(new PopupMenuListener() {
public void popupMenuWillBecomeVisible(PopupMenuEvent
pme) {
}
public void popupMenuWillBecomelnvisible(PopupMenuEvent
pme) {
JComboBox source = (JComboBox) pme.getSource();
String currentItem = (String) source.getSelectedItem();
if(currentItem.length() > 0) {
clearInput();
readData();

Cls cls = getClsFromSelection(currentltem);
Collection ownSlots = cls.getTemplateSlots();
Iterator slotlterator = ownSlots.iterator();

while (slotlterator.hasNext()) {
Slot tmpSlot = (Slot) slotlterator.next();

48

String slotValueTypeStr =
tmpSlot.getValueType().toString();
slotInputPane.add(createSlot(tmpSlot,

slotValueTypeStr));
}
slotInputPane.add(createEmptyBox());
slotInputPane.revalidate();
}

}

public void popupMenuCanceled(PopupMenuEvent pme) {

}

D;

Clear.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
clearInput();
readData();
className.setSelectedIndex(0);

slotInputPane.add(createSlot());
slotInputPane.add(createEmptyBox());
slotInputPane.revalidate();

b;

Update.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
updateDatabase();
clearInput();
readData();
className.setSelectedIndex(1);
className.setSelectedIndex(0);

slotInputPane.add(createSlot());
slotInputPane.add(createEmptyBox());
slotInputPane.revalidate();

b;

status.addCaretListener(new CaretListener() {
public void caretUpdate(CaretEvent e) {
}

D;

return controlPanel;

49

private void updateDatabase() {
/lupdate slots
ArrayList<Slot> newSlots;
ArrayList<Object> newValues;
Instance newInstance;
Box SB;
boolean existSlot = false;

new Slots = new ArrayList<Slot>();
new Values = new ArrayList<Object>();
int i;
for(i = 0; i < slotInputPane.getComponentCount() - 1; i++) {
// Since the last component is "empty box" ==>
getComponentCount() needs to substract 1
SB = (Box) slotInputPane.getComponent(i);// slotBox
JComboBox slotJB = (JComboBox) SB.getComponent(1); // slot
name JComboBox
JComboBox typeJB = (JComboBox) SB.getComponent(2); //
value type JComboBox of slot
JComponent slotValueJC = (JComponent) SB.getComponent(3); //
value JComponent of slot
String slotNameStr = (String) slotJB.getSelectedItem();
String typeValueStr = (String) typeJB.getSelectedItem();
Object newValue;

if(slotNameStr.length() > 0) { // means it is a new slot
existSlot = false;
Iterator slotlterator = _slots.iterator();
while (slotIterator.hasNext()) {
Slot existingSlot = (Slot) slotlterator.next();

if((existingSlot.getName()).contentEquals(slotNameStr)) {
new Slots.add(existingSlot);
existSlot = true;
if(typeValueStr.contentEquals("Any")) {
new Value = ((JTextField)
slotValueJC).getText();
} else
if(typeValueStr.contentEquals("Boolean")) {
int selection = ((JComboBox)
slotValueJC).getSelectedIndex();
new Value = selection == 0 ? true :
false;
} else

50

if(typeValueStr.contentEquals("Class")) {
int selection = ((JComboBox)
slotValueJC).getSelectedIndex();
new Value = classList.get(selection);
} else
if(typeValueStr.contentEquals("Float")) {
new Value = ((JTextField)
slotValueJC).getText();
} else
if(typeValueStr.contentEquals("Instance")) {
new Value = (String) ((JComboBox)
slotValueJC).getSelectedItem();
} else
if(typeValueStr.contentEquals("Integer")) {
new Value = ((JTextField)
slotValueJC).getText();
} else
if(typeValueStr.contentEquals("String")) {
new Value = ((JTextField)
slotValueJC).getText();
} else { // Symbol
new Value = (String) ((JComboBox)
slotValueJC).getSelectedItem();
}
new Values.add(new Value);
break;
}
}
if('existSlot) {
Slot newSlot = KB.createSlot(slotNameStr);
if(typeValueStr.contentEquals("Any")) {

new Slot.setValueType(edu.stanford.smi.protege.model.ValueType.ANY);
new Value = ((JTextField)
slotValueJC).getText();
} else if(typeValueStr.contentEquals("Boolean")) {

new Slot.setValueType(edu.stanford.smi.protege.model.ValueType. BOOLEAN);
int selection = ((JComboBox)
slotValueJC).getSelectedIndex();
new Value = selection == 0 ? true : false;
} else if(typeValueStr.contentEquals("Class")) {

new Slot.setValueType(edu.stanford.smi.protege.model.ValueType.CLS);

int selection = ((JComboBox)
slotValueJC).getSelectedIndex();

51

new Value = classList.get(selection);
} else if(typeValueStr.contentEquals("Float")) {

new Slot.setValueType(edu.stanford.smi.protege.model.ValueType.FLOAT);
new Value = ((JTextField)
slotValueJC).getText();
} else if(typeValueStr.contentEquals("Instance")) {

new Slot.setValueType(edu.stanford.smi.protege.model.ValueType.INSTANCE);
new Value = (String) ((JComboBox)
slotValueJC).getSelectedItem();
} else if(typeValueStr.contentEquals("Integer")) {

new Slot.setValueType(edu.stanford.smi.protege.model.ValueType.INTEGER);
new Value = ((JTextField)
slotValueJC).getText();
} else if(typeValueStr.contentEquals("String")) {

new Slot.setValueType(edu.stanford.smi.protege.model.ValueType.STRING);
new Value = ((JTextField)
slotValueJC).getText();
} else { // Symbol

new Slot.setValueType(edu.stanford.smi.protege.model.ValueType.SYMBOL);
new Value = ((JTextField)
slotValueJC).getText();
}
new Slots.add(newSlot);
new Values.add(new Value);
readData();

}

}
}// end of for(checking slots)

if(newSlots.size() != 0) {
/I Check if cls exists
Cls rootCls = KB.getRootCls();
Cls selectedCls;
boolean foundSuperCls = false;
Object classNameCurrentItem = className.getSelectedItem();
//String location = "run = ";
if (!clsNameList.contains(classNameCurrentltem) || ((String)
classNameCurrentItem).contentEquals(")) {
// means it's a new class
Collection<Cls> parentClses = new ArrayList<Cls>();

52

int maxMatch = 0;
parentClses.add(rootCls);
Collection<Cls> chkClses = new ArrayList<Cls>(); // get
all the subclasses belong to root except the system classes
Collection rootSubClses = rootCls.getSubclasses();
Iterator rootSubClseslIterator = rootSubClses.iterator();
while(rootSubClseslterator.hasNext()) {
Cls addRootSubCls = (Cls)
rootSubClseslterator.next();
if(addRootSubCls.getName().charAt(0) !=""){
chkClses.add(addRootSubCls);
}
}

Iterator clslterator = chkClses.iterator();
while(clsIterator.hasNext()) { // find the best location of
this new class
Cls testCls = (Cls) clslterator.next();
Collection<Slot> ownSlots =
testCls.getTemplateSlots(); // the slots belong to the testCls
if (ownSlots.containsAll(newSlots)) {
if (newSlots.containsAll(ownSlots)) { // the
testCls has the same slots as the new Cls
Collection addSuperClses =
testCls.getDirectSuperclasses();
Iterator addSuperClslterator =
addSuperClses.iterator();
if(addSuperClses.size() > 1) {
parentClses.clear();

}
while(addSuperClslterator.hasNext()) {
Cls addSuperCls = (Cls)
addSuperClslterator.next();
if(addSuperCls.getName().charAt(0) !="") {
parentClses.add((Cls)
addSuperClslterator.next());
foundSuperCls = true;
//break;
}
}

}
} else if (newSlots.containsAll(ownSlots)){
if(maxMatch < ownSlots.size()) {
parentClses.clear();
parentClses.add(testCls);

53

maxMatch = ownSlots.size();

}

}

if (foundSuperCls) break;
}
status.setText(debugStr);
//create new class
String clsNoStr = (String) className.getSelectedItem();
if(clsNoStr.contentEquals("")) {

clsNoStr = "Cls" +

Integer.toString(KB.getClsCount()+ 1);

newCls.getTemplateSlots();

newCls.getTemplateSlots();

}

// need to assign the Root as the new class' parent class
Collection<Cls> rootClsAsParent = new ArrayList<Cls>();
rootClsAsParent.add(rootCls);

Cls newCls = KB.createCls(clsNoStr, rootClsAsParent);

Collection<Slot> existingSlots =

Iterator newSlotsIterator = newSlots.iterator();
while(newSlotsIterator.hasNext()) {
Slot newSlot = (Slot) newSlotslterator.next();
if('existingSlots.contains(newSlot)) {
newCls.addDirectTemplateSlot(newSlot);
}
}

//attach the subclasses from the old superclass to new class
newCls.removeDirectSuperclass(rootCls);

Iterator parentClseslterator = parentClses.iterator();
Collection<Slot> newClsSlots =

while(parentClsesIterator.hasNext()) {
Cls testSuperCls = (Cls) parentClseslterator.next();
newCls.addDirectSuperclass(testSuperCls);
Collection subClses =

testSuperCls.getDirectSubclasses();

subClseslterator.next();

Iterator subClseslterator = subClses.iterator();
while(subClsesIterator.hasNext()) {
Cls testSubCls = (Cls)

Collection<Slot> testSubClsSlots =

testSubCls.getTemplateSlots();

String newClsName = newCls.getName();
if(!

newClsName.contentEquals(testSubCls.getName())) {

54

if(testSubClsSlots.containsAll(newClsSlots) && !
newClsSlots.containsAll(testSubClsSlots)) {

testSubCls.removeDirectSuperclass(testSuperCls);

testSubCls.addDirectSuperclass(newCls);

}
}
}
selectedCls = newCls;
} else {
selectedCls = getClsFromSelection((String)
classNameCurrentItem);
Collection<Slot> existingSlots =
selectedCls.getTemplateSlots();
Iterator newSlotsIterator = newSlots.iterator();
while(newSlotsIterator.hasNext()) {
Slot newSlot = (Slot) newSlotslterator.next();
if('existingSlots.contains(newSlot)) {

selectedCls.addDirectTemplateSlot(new Slot);

}
}

/I add new instance
String emptyInputTestStr = "";
String instNoStr = selectedCls.getName() +
Integer.toString(KB.getInstanceCount(selectedCls)+1);
instMaxCount++;
newInstance = KB.createInstance(instNoStr, selectedCls);
[terator newSlotslterator = newSlots.iterator();
Iterator new Valueslterator = new Values.iterator();
while(newSlotsIterator.hasNext()) {
Object tempValue = new Valueslterator.next();
Slot nextSlotlterator = (Slot) newSlotslterator.next();

if(newSlots.indexOf(nextSlotIterator) !=
new Slots.lastindexOf(nextSlotlterator)) {

nextSlotlterator.setAllowsMultipleValues(true);
}

String slotValueTypeStr =
nextSlotlterator.getValueType().toString();

55

if(slotValueTypeStr.contentEquals("Any")) {
newInstance.addOwnSlotV alue(nextSlotIterator,
tempValue.toString());
emptyInputTestStr = emptyInputTestStr +
tempValue.toString();
} else if (slotValueTypeStr.contentEquals("Boolean")) {
if((Boolean) tempValue) {

newInstance.setOwnSlotValue(nextSlotlterator, true);
} else {

newInstance.setOwnSlotValue(nextSlotlterator, false);
}
} else if (slotValueTypeStr.contentEquals("Class™)) {
newInstance.addOwnSlotV alue(nextSlotIterator,
(Cls) tempValue);
emptyInputTestStr = emptyInputTestStr +
tempValue.toString();
} else if (slotValueTypeStr.contentEquals("Float")) {
if(tempValue.toString().length() != 0) {

newInstance.addOwnSlotV alue(nextSlotIterator,
Float.valueOf(tempValue.toString()));
emptyInputTestStr = emptyInputTestStr +
tempValue.toString();
}
} else if (slotValueTypeStr.contentEquals("Instance™)) {
Collection allowedClses =
nextSlotlterator.getAllowedClses();
Instance result;
if(allowedClses.size() == 0) {
result =
getInstanceFromSelection((String)tempValue, nextSlotlterator, false);
if(result.getName().charAt(0) !="") {
Collection<Cls> allowedCls = new
ArrayList<Cls>();

allowedCls.add(result.getDirectType());

nextSlotlterator.setAllowedClses(allowedCls);
}
} else {
result =
getInstanceFromSelection((String)tempValue, nextSlotIterator, true);

}
if(((String)

56

tempValue).contentEquals(result.getBrowserText())) {
emptyInputTestStr = emptyInputTestStr +
tempValue;

new Instance.addOwnSlotV alue(nextSlotlterator, result);
}
} else if (slotValueTypeStr.contentEquals("Integer")) {
if(tempValue.toString().length() != 0) {

newInstance.addOwnSlotV alue(nextSlotIterator,
Integer.valueOf(tempValue.toString()));
emptyInputTestStr = emptyInputTestStr +
tempValue.toString();
}
} else if (slotValueTypeStr.contentEquals("String™)) {
newInstance.addOwnSlotV alue(nextSlotIterator,
tempValue.toString());
emptyInputTestStr = emptyInputTestStr +
tempValue.toString();
} else {
newInstance.addOwnSlotV alue(nextSlotIterator,
tempValue.toString());
emptyInputTestStr = emptyInputTestStr +
tempValue.toString();

}

if (emptyInputTestStr.length() == 0) {
KB.deleteInstance(new Instance);
}
}//end of if(newSlots.size() != 0)
}

private void clearInput() {
currentID = 0;
int i = slotInputPane.getComponentCount();
for (intj =1;j <=1i; j++) {
slotInputPane.remove(slotInputPane.getComponent(0));
}
}

private JComponent createPropertyPane() {
PropertyPane = new JPanel();
PropertyPane.setLayout(new BorderLayout(10,10)); //gap = 10

JPanel addButtonPane = new JPanel();

57

addButtonPane.setLayout(new BorderLayout());
addSlot = new JButton("Add");
addButtonPane.add(addSlot, BorderLayout.EAST);

scrollSlotInputPane = new JScrollPane(createSlotInputPane());

scrollSlotInputPane.setVerticalScrollBarPolicy(ScrollPaneConstants. VERTICAL_SCRO
LLBAR_AS_NEEDED);

scrollSlotInputPane.setHorizontalScrollBarPolicy(ScrollPaneConstants. HORIZONTAL,_
SCROLLBAR_NEVER);

PropertyPane.add(addButtonPane, BorderLayout. NORTH);
PropertyPane.add(scrollSlotInputPane, BorderLayout. CENTER);
PropertyPane.setBorder(BorderFactory.createTitledBorder("Properties"));

addSlot.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
slotInputPane.remove(emptyBox);
slotInputPane.add(createSlot());
slotInputPane.add(createEmptyBox());
slotInputPane.revalidate();
}
D;

return PropertyPane;

private String clsMeetsSlots() {
String result = "none";
Collection<Slot> newSlots;
Box SB;

new Slots = new ArrayList<Slot>();
int i;
for(i = 0; i < slotInputPane.getComponentCount() - 1; i++) {
// Since the last component is "empty box" ==>
getComponentCount() needs to substract 1
SB = (Box) slotInputPane.getComponent(i);// slotBox
JComboBox slotJB = (JComboBox) SB.getComponent(1); // slot
name JComboBox
String slotNameStr = slotJB.getSelectedItem().toString();

if(!slotNameStr.contentEquals("")) { // means it is not an empty

slot

58

Iterator slotlterator = _slots.iterator();
while (slotIterator.hasNext()) {
Slot existingSlot = (Slot) slotlterator.next();

if((existingSlot.getName()).contentEquals(slotNameStr)) {
new Slots.add(existingSlot);
break;

}

}
}// end of for(checking slots)

if(newSlots.size() == slotInputPane.getComponentCount() - 1) {
Iterator clslterator = _clses.iterator();
while (clsIterator.hasNext()) {
Cls testCls = (Cls) clslterator.next();
Collection<Slot> ownSlots = testCls.getTemplateSlots();
if (ownSlots.containsAll(newSlots) &&
new Slots.containsAll(ownSlots) && !testCls.isAbstract()) {
result = testCls.getName();
break;

}
}

return result;

}

private JComponent createSlot() {

Box newSlotBox = Box.createHorizontalBox();
new SlotBox.setMaximumSize(slotBoxSize);
currentID++;
new SlotBox.setName("slotBox " + currentID);

new SlotBox.add(createRemoveButton());
new SlotBox.add(createSlotNamelnput());
new SlotBox.add(createSlotTypelnput());
new SlotBox.add(createSlotValueOthers());

return new SlotBox;

}

private JComponent createSlot(Slot slot, String slotValueType) {
Box newSlotBox = Box.createHorizontalBox();
new SlotBox.setMaximumSize(slotBoxSize);
currentID++;
new SlotBox.setName("slotBox " + currentID);

59

JComboBox tempSlotName = (JComboBox) createSlotNamelnput();
JComboBox tempSlotType = (JComboBox) createSlotTypelnput();
new SlotBox.add(createRemoveButton());

new SlotBox.add(tempSlotName);

new SlotBox.add(tempSlotType);

new SlotBox.add(createSlotValueOthers());

tempSlotName.setSelectedIndex(slotNameList.indexOf(slot.getName()));

tempSlotType.setSelectedIndex(slotTypeChoices.indexOf(slotValueType));
return new SlotBox;

}

private JComponent createSlotInputPane() {
slotInputPane = new JPanel();
slotInputPane.setLayout(new BoxLayout(slotInputPane, BoxLayout.Y_AXIS));

slotInputPane.add(createSlot());
slotInputPane.add(createEmptyBox());
slotInputPane.revalidate();

return slotInputPane;

}

private JComponent createRemoveButton() {
JButton remove = new JButton("Remove");
remove.setName("remove " + currentID);
remove.setMaximumSize(buttonSize);
remove.setPreferredSize(buttonSize);
remove.setMinimumSize(buttonSize);
remove.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
slotInputPane.remove(((JComponent) e.getSource()).getParent());

String testResult = clsMeetsSlots();
if(testResult.contentEquals("none™)) {
className.setSelectedIndex(0);

} else {
className.setSelectedIndex(clsNameList.indexOf(testResult));
}
slotInputPane.revalidate();
}
D;

60

return remove;

}

private JComponent createSlotNamelnput() {
JComboBox slotName = new JComboBox(slotNameList);
slotName.setMaximumSize(slotNameSize);
slotName.setPreferredSize(slotNameSize);
slotName.setMinimumSize(slotNameSize);

slotName.setEditable(true);
slotName.setName("slotName" + currentID);

slotName.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
JComboBox source = (JComboBox) e.getSource();
String currentItem = (String) source.getSelectedItem();
if(e.getActionCommand().equals("comboBoxEdited")) {
if((currentItem.length() != 0)) {
if(!slotNameList.contains(currentitem)) {
source.addItem(currentItem);

}

}
String testResult = clsMeetsSlots();

if(testResult.contentEquals("none™)) {
className.setSelectedIndex(0);

} else {

className.setSelectedIndex(clsNameList.indexOf(testResult));
}
}

};

slotName.addItemListener(new ItemListener() {
public void itemStateChanged(ItemEvent ie) {
JComboBox source = (JComboBox) ie.getSource();
String currentItem = (String) source.getSelectedItem();
if(currentItem.length()!= 0) {
inti=0;
while(i < slotList.size() && !
currentItem.equals((slotList.get(i)).getName())) {

it++;
}
if(i < slotList.size()) {
String slotValueType =

((slotList.get(i)).getValueType()).toString();

61

if(slotValueType.equals("Cls"))
slotValueType = "Class";
i=
slotTypeChoices.indexOf(slotValueType);
JComponent sourceParent = (JComponent)
source.getParent();
((JComboBox)
sourceParent.getComponent(2)).setSelectedIndex(i); // setting the slot type
} else {
JComponent sourceParent = (JComponent)
source.getParent();
((JComboBox)
sourceParent.getComponent(2)).setSelectedIndex(0); // setting the slot type
}
}

};

slotName.addPopupMenuListener(new PopupMenuListener() {
public void popupMenuWillBecomeVisible(PopupMenuEvent
pme) {
JComboBox source = (JComboBox) pme.getSource();
String currentItem = (String) source.getSelectedItem();
source.addItem(currentItem);
//have to do these 2 lines since
source.removeltemAt(source.getltemCount() - 1);
// the comboboxes won't refresh by themselves

source.setSelectedIndex(slotNameList.indexOf(currentItem));
JComponent sourceParent = (JComponent)
source.getParent();
((JComboBox)
sourceParent.getComponent(2)).setSelectedIndex(0); // setting the slot type
}
public void popupMenuWillBecomelnvisible(PopupMenuEvent
pme) {
String testResult = clsMeetsSlots();
if(testResult.contentEquals("none™)) {
className.setSelectedIndex(0);
} else {

className.setSelectedIndex(clsNameList.indexOf(testResult));

}

}
public void popupMenuCanceled(PopupMenuEvent pme) {

}

62

};

return slotName;

}

private JComponent createSlotTypelnput() {
JComboBox slotType = new JComboBox(slotTypeChoices);
slotType.setMaximumSize(slotTypeSize);
slotType.setPreferredSize(slotTypeSize);
slotType.setMinimumSize(slotTypeSize);
slotType.addItemListener(new ItemListener() {
public void itemStateChanged(ItemEvent e) {
Box sourceParent = (Box) ((JComponent)
e.getSource()).getParent();
String item = (String) e.getltem();
Component changeltem = sourceParent.getComponent(3);
Component slotComboList =
sourceParent.getComponent(1);
String slotSelection = (String) ((JComboBox)
slotComboList).getSelectedItem();
Slot currentSlot = getSlotFromSelection(slotSelection);

if(item.contentEquals("Boolean™)) {
sourceParent.remove(changeltem);
sourceParent.add(createSlotValueBoolean());
} else if(item.contentEquals("Class")) {
sourceParent.remove(changeltem);
sourceParent.add(createSlotValueClass());
} else if(item.contentEquals("Instance")) {
sourceParent.remove(changeltem);
Vector<String> instSelection = new
Vector<String>();
instSelection.addElement("");
if(currentSlot.getAllowedClses().size() != 0) {
[terator clslterator =
currentSlot.getAllowedClses().iterator();
while(clsIterator.hasNext()) {
Cls allowedCls = (Cls)
clsIterator.next();
Iterator instlterator =
allowedCls.getInstances().iterator();
while(instIterator.hasNext()) {
instSelection.add(((Instance)
instlterator.next()).getBrowserText());

63

sourceParent.add(createSlotValuelnstance(instSelection));
} else {
Iterator instlterator = instanceList.iterator();
while(instIterator.hasNext()) {
Instance templInst = (Instance)
instlterator.next();

instSelection.add(tempInst.getBrowserText());

}

sourceParent.add(createSlotValuelnstance(instSelection));
}
} else if(item.contentEquals("Symbol™)) {
sourceParent.remove(changeltem);
Vector<String> symbolSelection = new
Vector<String>();
Iterator symbollterator =
currentSlot.getAllowedValues().iterator();
while(symbollterator.hasNext()) {
symbolSelection.add((String)
symbollterator.next());

}

sourceParent.add(createSlotValueSymbol(symbolSelection));

} else {
sourceParent.remove(changeltem);
sourceParent.add(createSlotValueOthers());

}

slotInputPane.revalidate();

}
D;

return slotType;

private Cls getClsFromSelection(String clsSelection) {
Iterator clslterator = _clses.iterator();
Cls gotCls = (Cls) clslterator.next();
while (clsIterator.hasNext()) {
if(clsSelection.contentEquals(gotCls.getName())) {
break;
} else {
gotCls = (Cls) clslterator.next();

}

64

return gotCls;

}

private Instance getInstanceFromSelection(String instSelection, Slot ownedSlot,
boolean hasAllowedClses) {
Iterator instlterator = _instes.iterator();
Instance gotlnst = (Instance) instlterator.next();
if(hasAllowedClses) {
Collection ownedClses = ownedSlot.getAllowedClses();
while (instlterator.hasNext()) {
if(instSelection.contentEquals(gotInst.getBrowserText())
&& ownedClses.contains(gotlnst.getDirectType())) {
break;
} else {
gotlnst = (Instance) instlterator.next();
}
}
} else {
while (instlterator.hasNext()) {
if(instSelection.contentEquals(gotInst.getBrowserText())) {
break;
} else {
gotlnst = (Instance) instlterator.next();

}
}

return gotlnst;

}

private Slot getSlotFromSelection(String slotSelection) {
Iterator slotlterator = _slots.iterator();
Slot gotSlot = (Slot) slotIterator.next();
while (slotIterator.hasNext()) {
if(slotSelection.contentEquals(gotSlot.getName())) {
break;
} else {
gotSlot = (Slot) slotlterator.next();
}
}
return gotSlot;

}

private JComponent createSlotValueOthers() {
JTextField slotValueOthers = new JTextField();
slotValueOthers.addMouseListener(new MouselnputAdapter() {

65

}

public void mouseClicked(MouseEvent me) {
}
D;

return slotValueOthers;

}

private JComponent createSlotValueBoolean() {
JComboBox slotValueBoolean = new JComboBox(booleanChoices);
slotValueBoolean.setEditable(false);

return slotValueBoolean;

}

private JComponent createSlotValueClass() {
JComboBox slotValueClass = new JComboBox(clsNameList);
slotValueClass.setEditable(false);

return slotValueClass;

}

private JComponent createSlotValuelnstance(Vector<String> instSelection) {
JComboBox slotValuelnstance = new JComboBox(instSelection);
slotValuelnstance.setEditable(false);

return slotValuelnstance;

}

private JComponent createSlotValueSymbol(Vector<String> symbolSelection) {
JComboBox slotValueSymbol = new JComboBox(symbolSelection);
slotValueSymbol.setEditable(true);

return slotValueSymbol;
}
private Box createEmptyBox() {
emptyBox = Box.createHorizontalBox();
emptyBox.add(Box.createHorizontalGlue());
emptyBox.add(Box.createHorizontalStrut(250));
return emptyBox;

}

// this method is useful for debugging
public static void main(String[] args) {
edu.stanford.smi.protege.Application.main(args);

}

66

APPENDIX B

DATA LIST

67

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

REFERENCES

Sachs, Eliza. “Getting Started with ProtEgE-Frames”, 2006.
protege.stanford.edu/doc/tutorial/get_started/get-started.pdf

Ying Ding, Schubert Foo, “Ontology Research and Development Part 1 — A Review
of Ontology Generation”, 2002.

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=F53A2BD31E7446D4358
E1C61CACD6BFD?d0i=10.1.1.86.4634&rep=rep1&type=pdf

Natalya Fridman Noy, Ray W. Fergerson, Mark A. Musen, “The knowledge model
of ProtEgE-2000 combining interoperability and flexibility”, 2000.
www.pms.ifi.lmu.de/mitarbeiter/ohlbach/Ontology/Protege/SMI-2000-0830.pdf

John H. Gennari, Mark A. Musen, Ray W. Fergerson, William E. Grosso, Monica,
Crubezy, Henrik Eriksson, Natalya F. Noy, Samson W. Tu, “The Evolution of
ProtEgE: An Environment for Knowledge-Based Systems Development”, 2000.
citeseer.ist.psu.edu/545954.html

Gerd Stumme, Alexander Maedche, “FCA-Marge: Bottom-Up Merging of
Ontologies”, 2001.
www.dit.unitn.it/~accord/RelatedW ork/Matching/FCAO01.pdf

Peter Haase, Johanna Vélker, “Ontology Learning and Reasoning — Dealing with
Uncertainty and Inconsistency”, 2005.
www.aifb.uni-karlsruhe.de/WBS/jvo/publications/Uncertainty_2005.pdf

Harith Alani, Sanghee Kim, David E. Millard, Mark J. Weal, Wendy Hall, Paul H.
Lewis, Nigel R. Shadbolt, “Automatic Ontology-based Knowledge Extraction from
Web Documents ”, 2003.

eprints.aktors.org/105/01/IEEE- Artequakt.pdf

Paul E. Vet, Nicolaas J. Mars, “Bottom-up construction of ontologies: the case of an
ontology of pure substances”, 1995.

portal.acm.org/citation.cfm?
1id=627317.627926&coll=GUIDE&dI=GUIDE&CFID=9740613&CFTOKEN=3234
0529

68

[9] Natalya F. Noy, Deborah L. McGuinness, “Ontology Development 101, A Guide to
Creating Your First Ontology™, 2000.
protege.stanford.edu/publications/ontology_development/ontology101.pdf

[10] Peter Burmeister, “Formal Concept Analysis with ConIlmp: Introduction to the Basic
Features”, 2003.
www.mathematik.tu-darmstadt.de/~burmeister/ConImpIntro.pdf

[11] Natalya Fridman Noy, Mark A. Musen, ‘Algorithm and Tool for Automated
Ontology Merging and Alignment”, 2005.
dit.unitn.it/~p2p/RelatedW ork/Matching/SMI-2000-0831.pdf

[12] Alexander Maedche, Steffen Staab, “Ontology Learning for the Semantic Web”,
2001.
www aifb.uni-karlsruhe.de/WBS/sst/Research/Publications/ieee_semweb.pdf

[13] Mary Elaine Califf, Raymond J. Mooney, “Relational learning of pattern-match rules
for information extraction”, 1999.
www.aclweb.org/anthology-new/W/W97/W97-1002.pdf

[14] York Sure, Juergen Angele, and Steffen Staab, “OntoEdit: Multifaceted Interfencing
for Ontology Engineering”, 2003.

[15] Pat Hayes, Raul Saavedra, Thomas Reichherzer, “A Collaborative Development
Environment for Ontologies (CODE)”, 2005.
www.cs.indiana.edu/~treichhe/code.pdf

[16] Asuncion Gomez-Perez, “Knowledge Sharing and Reuse: Ontolgies and
Applications”, 1999.
icc.mpei.ru/documents/00000831.pdf

[17] Karl Erich Wolff, “A first course in Formal Concept Analysis”, 1993.
www.fbmn.fh-
darmstadt.de/~wolff/Publikationen/A_First_Course_in_Formal_Concept_Analysi
s.pdf

[18] Frank Buchli, “A Short FCA Primer”, 2003.

[19] G Tao, “Using Formal Concept Analysis (FCA) for Ontology Structuring and

69

Building”, 1992.
www.springerlink.com/index/926053735j142745.pdf

[20] Asuncion Gomez-Perez, V. Richard Benjamins, “Applications of Ontologies and
Problem-Solving Methods™, 1999.
www.aaai.org/ojs/index.php/aimagazine/article/viewFile/1445/1344

[21] Bastian Wormuth, Peter Becker, “Introduction to Formal Concept Analysis”, 2004.
www.wormuth.info/ICFCA04/Introduction_to_FCA_ICFCA2004.pdf

[22] Philipp Cimiano, Johanna Volker, “A Framework for Ontology Learning and Data-
driven Change Discovery”, 2005.
citeseer.ist.psu.edu/731219.html

70

