This is Info file elisp, produced by Makeinfo version 1.68 from the input file elisp.texi. INFO-DIR-SECTION Editors START-INFO-DIR-ENTRY * Elisp: (elisp). The Emacs Lisp Reference Manual. END-INFO-DIR-ENTRY This version is the edition 2.5 of the GNU Emacs Lisp Reference Manual. It corresponds to Emacs Version 20.3 Published by the Free Software Foundation 59 Temple Place, Suite 330 Boston, MA 02111-1307 USA Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Foundation. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided also that the section entitled "GNU General Public License" is included exactly as in the original, and provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that the section entitled "GNU General Public License" may be included in a translation approved by the Free Software Foundation instead of in the original English.  File: elisp, Node: Character Type, Next: Symbol Type, Prev: Floating Point Type, Up: Programming Types Character Type -------------- A "character" in Emacs Lisp is nothing more than an integer. In other words, characters are represented by their character codes. For example, the character `A' is represented as the integer 65. Individual characters are not often used in programs. It is far more common to work with *strings*, which are sequences composed of characters. *Note String Type::. Characters in strings, buffers, and files are currently limited to the range of 0 to 524287--nineteen bits. But not all values in that range are valid character codes. Codes 0 through 127 are ASCII codes; the rest are non-ASCII (*note Non-ASCII Characters::.). Characters that represent keyboard input have a much wider range, to encode modifier keys such as Control, Meta and Shift. Since characters are really integers, the printed representation of a character is a decimal number. This is also a possible read syntax for a character, but writing characters that way in Lisp programs is a very bad idea. You should *always* use the special read syntax formats that Emacs Lisp provides for characters. These syntax formats start with a question mark. The usual read syntax for alphanumeric characters is a question mark followed by the character; thus, `?A' for the character `A', `?B' for the character `B', and `?a' for the character `a'. For example: ?Q => 81 ?q => 113 You can use the same syntax for punctuation characters, but it is often a good idea to add a `\' so that the Emacs commands for editing Lisp code don't get confused. For example, `?\ ' is the way to write the space character. If the character is `\', you *must* use a second `\' to quote it: `?\\'. You can express the characters Control-g, backspace, tab, newline, vertical tab, formfeed, return, and escape as `?\a', `?\b', `?\t', `?\n', `?\v', `?\f', `?\r', `?\e', respectively. Thus, ?\a => 7 ; `C-g' ?\b => 8 ; backspace, , `C-h' ?\t => 9 ; tab, , `C-i' ?\n => 10 ; newline, `C-j' ?\v => 11 ; vertical tab, `C-k' ?\f => 12 ; formfeed character, `C-l' ?\r => 13 ; carriage return, , `C-m' ?\e => 27 ; escape character, , `C-[' ?\\ => 92 ; backslash character, `\' These sequences which start with backslash are also known as "escape sequences", because backslash plays the role of an escape character; this usage has nothing to do with the character . Control characters may be represented using yet another read syntax. This consists of a question mark followed by a backslash, caret, and the corresponding non-control character, in either upper or lower case. For example, both `?\^I' and `?\^i' are valid read syntax for the character `C-i', the character whose value is 9. Instead of the `^', you can use `C-'; thus, `?\C-i' is equivalent to `?\^I' and to `?\^i': ?\^I => 9 ?\C-I => 9 In strings and buffers, the only control characters allowed are those that exist in ASCII; but for keyboard input purposes, you can turn any character into a control character with `C-'. The character codes for these non-ASCII control characters include the 2**26 bit as well as the code for the corresponding non-control character. Ordinary terminals have no way of generating non-ASCII control characters, but you can generate them straightforwardly using X and other window systems. For historical reasons, Emacs treats the character as the control equivalent of `?': ?\^? => 127 ?\C-? => 127 As a result, it is currently not possible to represent the character `Control-?', which is a meaningful input character under X, using `\C-'. It is not easy to change this, as various Lisp files refer to in this way. For representing control characters to be found in files or strings, we recommend the `^' syntax; for control characters in keyboard input, we prefer the `C-' syntax. Which one you use does not affect the meaning of the program, but may guide the understanding of people who read it. A "meta character" is a character typed with the modifier key. The integer that represents such a character has the 2**27 bit set (which on most machines makes it a negative number). We use high bits for this and other modifiers to make possible a wide range of basic character codes. In a string, the 2**7 bit attached to an ASCII character indicates a meta character; thus, the meta characters that can fit in a string have codes in the range from 128 to 255, and are the meta versions of the ordinary ASCII characters. (In Emacs versions 18 and older, this convention was used for characters outside of strings as well.) The read syntax for meta characters uses `\M-'. For example, `?\M-A' stands for `M-A'. You can use `\M-' together with octal character codes (see below), with `\C-', or with any other syntax for a character. Thus, you can write `M-A' as `?\M-A', or as `?\M-\101'. Likewise, you can write `C-M-b' as `?\M-\C-b', `?\C-\M-b', or `?\M-\002'. The case of a graphic character is indicated by its character code; for example, ASCII distinguishes between the characters `a' and `A'. But ASCII has no way to represent whether a control character is upper case or lower case. Emacs uses the 2**25 bit to indicate that the shift key was used in typing a control character. This distinction is possible only when you use X terminals or other special terminals; ordinary terminals do not report the distinction to the computer in any way. The X Window System defines three other modifier bits that can be set in a character: "hyper", "super" and "alt". The syntaxes for these bits are `\H-', `\s-' and `\A-'. (Case is significant in these prefixes.) Thus, `?\H-\M-\A-x' represents `Alt-Hyper-Meta-x'. Numerically, the bit values are 2**22 for alt, 2**23 for super and 2**24 for hyper. Finally, the most general read syntax for a character represents the character code in either octal or hex. To use octal, write a question mark followed by a backslash and the octal character code (up to three octal digits); thus, `?\101' for the character `A', `?\001' for the character `C-a', and `?\002' for the character `C-b'. Although this syntax can represent any ASCII character, it is preferred only when the precise octal value is more important than the ASCII representation. ?\012 => 10 ?\n => 10 ?\C-j => 10 ?\101 => 65 ?A => 65 To use hex, write a question mark followed by a backslash, `x', and the hexadecimal character code. You can use any number of hex digits, so you can represent any character code in this way. Thus, `?\x41' for the character `A', `?\x1' for the character `C-a', and `?\x8e0' for the character `a' with grave accent. A backslash is allowed, and harmless, preceding any character without a special escape meaning; thus, `?\+' is equivalent to `?+'. There is no reason to add a backslash before most characters. However, you should add a backslash before any of the characters `()\|;'`"#.,' to avoid confusing the Emacs commands for editing Lisp code. Also add a backslash before whitespace characters such as space, tab, newline and formfeed. However, it is cleaner to use one of the easily readable escape sequences, such as `\t', instead of an actual whitespace character such as a tab.  File: elisp, Node: Symbol Type, Next: Sequence Type, Prev: Character Type, Up: Programming Types Symbol Type ----------- A "symbol" in GNU Emacs Lisp is an object with a name. The symbol name serves as the printed representation of the symbol. In ordinary use, the name is unique--no two symbols have the same name. A symbol can serve as a variable, as a function name, or to hold a property list. Or it may serve only to be distinct from all other Lisp objects, so that its presence in a data structure may be recognized reliably. In a given context, usually only one of these uses is intended. But you can use one symbol in all of these ways, independently. A symbol name can contain any characters whatever. Most symbol names are written with letters, digits, and the punctuation characters `-+=*/'. Such names require no special punctuation; the characters of the name suffice as long as the name does not look like a number. (If it does, write a `\' at the beginning of the name to force interpretation as a symbol.) The characters `_~!@$%^&:<>{}' are less often used but also require no special punctuation. Any other characters may be included in a symbol's name by escaping them with a backslash. In contrast to its use in strings, however, a backslash in the name of a symbol simply quotes the single character that follows the backslash. For example, in a string, `\t' represents a tab character; in the name of a symbol, however, `\t' merely quotes the letter `t'. To have a symbol with a tab character in its name, you must actually use a tab (preceded with a backslash). But it's rare to do such a thing. Common Lisp note: In Common Lisp, lower case letters are always "folded" to upper case, unless they are explicitly escaped. In Emacs Lisp, upper case and lower case letters are distinct. Here are several examples of symbol names. Note that the `+' in the fifth example is escaped to prevent it from being read as a number. This is not necessary in the sixth example because the rest of the name makes it invalid as a number. foo ; A symbol named `foo'. FOO ; A symbol named `FOO', different from `foo'. char-to-string ; A symbol named `char-to-string'. 1+ ; A symbol named `1+' ; (not `+1', which is an integer). \+1 ; A symbol named `+1' ; (not a very readable name). \(*\ 1\ 2\) ; A symbol named `(* 1 2)' (a worse name). +-*/_~!@$%^&=:<>{} ; A symbol named `+-*/_~!@$%^&=:<>{}'. ; These characters need not be escaped.  File: elisp, Node: Sequence Type, Next: Cons Cell Type, Prev: Symbol Type, Up: Programming Types Sequence Types -------------- A "sequence" is a Lisp object that represents an ordered set of elements. There are two kinds of sequence in Emacs Lisp, lists and arrays. Thus, an object of type list or of type array is also considered a sequence. Arrays are further subdivided into strings, vectors, char-tables and bool-vectors. Vectors can hold elements of any type, but string elements must be characters, and bool-vector elements must be `t' or `nil'. The characters in a string can have text properties like characters in a buffer (*note Text Properties::.); vectors and bool-vectors do not support text properties even when their elements happen to be characters. Char-tables are like vectors except that they are indexed by any valid character code. Lists, strings and the other array types are different, but they have important similarities. For example, all have a length L, and all have elements which can be indexed from zero to L minus one. Several functions, called sequence functions, accept any kind of sequence. For example, the function `elt' can be used to extract an element of a sequence, given its index. *Note Sequences Arrays Vectors::. It is generally impossible to read the same sequence twice, since sequences are always created anew upon reading. If you read the read syntax for a sequence twice, you get two sequences with equal contents. There is one exception: the empty list `()' always stands for the same object, `nil'.  File: elisp, Node: Cons Cell Type, Next: Array Type, Prev: Sequence Type, Up: Programming Types Cons Cell and List Types ------------------------ A "cons cell" is an object that consists of two pointers or slots, called the CAR slot and the CDR slot. Each slot can "point to" or hold to any Lisp object. We also say that the "the CAR of this cons cell is" whatever object its CAR slot currently points to, and likewise for the CDR. A "list" is a series of cons cells, linked together so that the CDR slot of each cons cell holds either the next cons cell or the empty list. *Note Lists::, for functions that work on lists. Because most cons cells are used as part of lists, the phrase "list structure" has come to refer to any structure made out of cons cells. The names CAR and CDR derive from the history of Lisp. The original Lisp implementation ran on an IBM 704 computer which divided words into two parts, called the "address" part and the "decrement"; CAR was an instruction to extract the contents of the address part of a register, and CDR an instruction to extract the contents of the decrement. By contrast, "cons cells" are named for the function `cons' that creates them, which in turn is named for its purpose, the construction of cells. Because cons cells are so central to Lisp, we also have a word for "an object which is not a cons cell". These objects are called "atoms". The read syntax and printed representation for lists are identical, and consist of a left parenthesis, an arbitrary number of elements, and a right parenthesis. Upon reading, each object inside the parentheses becomes an element of the list. That is, a cons cell is made for each element. The CAR slot of the cons cell points to the element, and its CDR slot points to the next cons cell of the list, which holds the next element in the list. The CDR slot of the last cons cell is set to point to `nil'. A list can be illustrated by a diagram in which the cons cells are shown as pairs of boxes, like dominoes. (The Lisp reader cannot read such an illustration; unlike the textual notation, which can be understood by both humans and computers, the box illustrations can be understood only by humans.) This picture represents the three-element list `(rose violet buttercup)': --- --- --- --- --- --- | | |--> | | |--> | | |--> nil --- --- --- --- --- --- | | | | | | --> rose --> violet --> buttercup In this diagram, each box represents a slot that can point to any Lisp object. Each pair of boxes represents a cons cell. Each arrow is a pointer to a Lisp object, either an atom or another cons cell. In this example, the first box, which holds the CAR of the first cons cell, points to or "contains" `rose' (a symbol). The second box, holding the CDR of the first cons cell, points to the next pair of boxes, the second cons cell. The CAR of the second cons cell is `violet', and its CDR is the third cons cell. The CDR of the third (and last) cons cell is `nil'. Here is another diagram of the same list, `(rose violet buttercup)', sketched in a different manner: --------------- ---------------- ------------------- | car | cdr | | car | cdr | | car | cdr | | rose | o-------->| violet | o-------->| buttercup | nil | | | | | | | | | | --------------- ---------------- ------------------- A list with no elements in it is the "empty list"; it is identical to the symbol `nil'. In other words, `nil' is both a symbol and a list. Here are examples of lists written in Lisp syntax: (A 2 "A") ; A list of three elements. () ; A list of no elements (the empty list). nil ; A list of no elements (the empty list). ("A ()") ; A list of one element: the string `"A ()"'. (A ()) ; A list of two elements: `A' and the empty list. (A nil) ; Equivalent to the previous. ((A B C)) ; A list of one element ; (which is a list of three elements). Here is the list `(A ())', or equivalently `(A nil)', depicted with boxes and arrows: --- --- --- --- | | |--> | | |--> nil --- --- --- --- | | | | --> A --> nil * Menu: * Dotted Pair Notation:: An alternative syntax for lists. * Association List Type:: A specially constructed list.  File: elisp, Node: Dotted Pair Notation, Next: Association List Type, Up: Cons Cell Type Dotted Pair Notation .................... "Dotted pair notation" is an alternative syntax for cons cells that represents the CAR and CDR explicitly. In this syntax, `(A . B)' stands for a cons cell whose CAR is the object A, and whose CDR is the object B. Dotted pair notation is therefore more general than list syntax. In the dotted pair notation, the list `(1 2 3)' is written as `(1 . (2 . (3 . nil)))'. For `nil'-terminated lists, you can use either notation, but list notation is usually clearer and more convenient. When printing a list, the dotted pair notation is only used if the CDR of a cons cell is not a list. Here's an example using boxes to illustrate dotted pair notation. This example shows the pair `(rose . violet)': --- --- | | |--> violet --- --- | | --> rose You can combine dotted pair notation with list notation to represent conveniently a chain of cons cells with a non-`nil' final CDR. You write a dot after the last element of the list, followed by the CDR of the final cons cell. For example, `(rose violet . buttercup)' is equivalent to `(rose . (violet . buttercup))'. The object looks like this: --- --- --- --- | | |--> | | |--> buttercup --- --- --- --- | | | | --> rose --> violet The syntax `(rose . violet . buttercup)' is invalid because there is nothing that it could mean. If anything, it would say to put `buttercup' in the CDR of a cons cell whose CDR is already used for `violet'. The list `(rose violet)' is equivalent to `(rose . (violet))', and looks like this: --- --- --- --- | | |--> | | |--> nil --- --- --- --- | | | | --> rose --> violet Similarly, the three-element list `(rose violet buttercup)' is equivalent to `(rose . (violet . (buttercup)))'. It looks like this: --- --- --- --- --- --- | | |--> | | |--> | | |--> nil --- --- --- --- --- --- | | | | | | --> rose --> violet --> buttercup  File: elisp, Node: Association List Type, Prev: Dotted Pair Notation, Up: Cons Cell Type Association List Type ..................... An "association list" or "alist" is a specially-constructed list whose elements are cons cells. In each element, the CAR is considered a "key", and the CDR is considered an "associated value". (In some cases, the associated value is stored in the CAR of the CDR.) Association lists are often used as stacks, since it is easy to add or remove associations at the front of the list. For example, (setq alist-of-colors '((rose . red) (lily . white) (buttercup . yellow))) sets the variable `alist-of-colors' to an alist of three elements. In the first element, `rose' is the key and `red' is the value. *Note Association Lists::, for a further explanation of alists and for functions that work on alists.  File: elisp, Node: Array Type, Next: String Type, Prev: Cons Cell Type, Up: Programming Types Array Type ---------- An "array" is composed of an arbitrary number of slots for pointing to other Lisp objects, arranged in a contiguous block of memory. Accessing any element of an array takes approximately the same amount of time. In contrast, accessing an element of a list requires time proportional to the position of the element in the list. (Elements at the end of a list take longer to access than elements at the beginning of a list.) Emacs defines four types of array: strings, vectors, bool-vectors, and char-tables. A string is an array of characters and a vector is an array of arbitrary objects. A bool-vector can hold only `t' or `nil'. These kinds of array may have any length up to the largest integer. Char-tables are sparse arrays indexed by any valid character code; they can hold arbitrary objects. The first element of an array has index zero, the second element has index 1, and so on. This is called "zero-origin" indexing. For example, an array of four elements has indices 0, 1, 2, and 3. The largest possible index value is one less than the length of the array. Once an array is created, its length is fixed. All Emacs Lisp arrays are one-dimensional. (Most other programming languages support multidimensional arrays, but they are not essential; you can get the same effect with an array of arrays.) Each type of array has its own read syntax; see the following sections for details. The array type is contained in the sequence type and contains the string type, the vector type, the bool-vector type, and the char-table type.  File: elisp, Node: String Type, Next: Vector Type, Prev: Array Type, Up: Programming Types String Type ----------- A "string" is an array of characters. Strings are used for many purposes in Emacs, as can be expected in a text editor; for example, as the names of Lisp symbols, as messages for the user, and to represent text extracted from buffers. Strings in Lisp are constants: evaluation of a string returns the same string. *Note Strings and Characters::, for functions that operate on strings. * Menu: * Syntax for Strings:: * Non-ASCII in Strings:: * Nonprinting Characters:: * Text Props and Strings::  File: elisp, Node: Syntax for Strings, Next: Non-ASCII in Strings, Up: String Type Syntax for Strings .................. The read syntax for strings is a double-quote, an arbitrary number of characters, and another double-quote, `"like this"'. To include a double-quote in a string, precede it with a backslash; thus, `"\""' is a string containing just a single double-quote character. Likewise, you can include a backslash by preceding it with another backslash, like this: `"this \\ is a single embedded backslash"'. The newline character is not special in the read syntax for strings; if you write a new line between the double-quotes, it becomes a character in the string. But an escaped newline--one that is preceded by `\'--does not become part of the string; i.e., the Lisp reader ignores an escaped newline while reading a string. An escaped space `\ ' is likewise ignored. "It is useful to include newlines in documentation strings, but the newline is \ ignored if escaped." => "It is useful to include newlines in documentation strings, but the newline is ignored if escaped."  File: elisp, Node: Non-ASCII in Strings, Next: Nonprinting Characters, Prev: Syntax for Strings, Up: String Type Non-ASCII Characters in Strings ............................... You can include a non-ASCII international character in a string constant by writing it literally. There are two text representations for non-ASCII characters in Emacs strings (and in buffers): unibyte and multibyte. If the string constant is read from a multibyte source, such as a multibyte buffer or string, or a file that would be visited as multibyte, then the character is read as a multibyte character, and that makes the string multibyte. If the string constant is read from a unibyte source, then the character is read as unibyte and that makes the string unibyte. You can also represent a multibyte non-ASCII character with its character code, using a hex escape, `\xNNNNNNN', with as many digits as necessary. (Multibyte non-ASCII character codes are all greater than 256.) Any character which is not a valid hex digit terminates this construct. If the character that would follow is a hex digit, write `\ ' (backslash and space) to terminate the hex escape--for example, `\x8e0\ ' represents one character, `a' with grave accent. `\ ' in a string constant is just like backslash-newline; it does not contribute any character to the string, but it does terminate the preceding hex escape. Using a multibyte hex escape forces the string to multibyte. You can represent a unibyte non-ASCII character with its character code, which must be in the range from 128 (0200 octal) to 255 (0377 octal). This forces a unibyte string. *Note Text Representations::, for more information about the two text representations.  File: elisp, Node: Nonprinting Characters, Next: Text Props and Strings, Prev: Non-ASCII in Strings, Up: String Type Nonprinting Characters in Strings ................................. You can use the same backslash escape-sequences in a string constant as in character literals (but do not use the question mark that begins a character constant). For example, you can write a string containing the nonprinting characters tab and `C-a', with commas and spaces between them, like this: `"\t, \C-a"'. *Note Character Type::, for a description of the read syntax for characters. However, not all of the characters you can write with backslash escape-sequences are valid in strings. The only control characters that a string can hold are the ASCII control characters. Strings do not distinguish case in ASCII control characters. Properly speaking, strings cannot hold meta characters; but when a string is to be used as a key sequence, there is a special convention that provides a way to represent meta versions of ASCII characters in a string. If you use the `\M-' syntax to indicate a meta character in a string constant, this sets the 2**7 bit of the character in the string. If the string is used in `define-key' or `lookup-key', this numeric code is translated into the equivalent meta character. *Note Character Type::. Strings cannot hold characters that have the hyper, super, or alt modifiers.  File: elisp, Node: Text Props and Strings, Prev: Nonprinting Characters, Up: String Type Text Properties in Strings .......................... A string can hold properties for the characters it contains, in addition to the characters themselves. This enables programs that copy text between strings and buffers to copy the text's properties with no special effort. *Note Text Properties::, for an explanation of what text properties mean. Strings with text properties use a special read and print syntax: #("CHARACTERS" PROPERTY-DATA...) where PROPERTY-DATA consists of zero or more elements, in groups of three as follows: BEG END PLIST The elements BEG and END are integers, and together specify a range of indices in the string; PLIST is the property list for that range. For example, #("foo bar" 0 3 (face bold) 3 4 nil 4 7 (face italic)) represents a string whose textual contents are `foo bar', in which the first three characters have a `face' property with value `bold', and the last three have a `face' property with value `italic'. (The fourth character has no text properties, so its property list is `nil'. It is not actually necessary to mention ranges with `nil' as the property list, since any characters not mentioned in any range will default to having no properties.)  File: elisp, Node: Vector Type, Next: Char-Table Type, Prev: String Type, Up: Programming Types Vector Type ----------- A "vector" is a one-dimensional array of elements of any type. It takes a constant amount of time to access any element of a vector. (In a list, the access time of an element is proportional to the distance of the element from the beginning of the list.) The printed representation of a vector consists of a left square bracket, the elements, and a right square bracket. This is also the read syntax. Like numbers and strings, vectors are considered constants for evaluation. [1 "two" (three)] ; A vector of three elements. => [1 "two" (three)] *Note Vectors::, for functions that work with vectors.  File: elisp, Node: Char-Table Type, Next: Bool-Vector Type, Prev: Vector Type, Up: Programming Types Char-Table Type --------------- A "char-table" is a one-dimensional array of elements of any type, indexed by character codes. Char-tables have certain extra features to make them more useful for many jobs that involve assigning information to character codes--for example, a char-table can have a parent to inherit from, a default value, and a small number of extra slots to use for special purposes. A char-table can also specify a single value for a whole character set. The printed representation of a char-table is like a vector except that there is an extra `#^' at the beginning. *Note Char-Tables::, for special functions to operate on char-tables. Uses of char-tables include: * Case tables (*note Case Tables::.). * Character category tables (*note Categories::.). * Display Tables (*note Display Tables::.). * Syntax tables (*note Syntax Tables::.).  File: elisp, Node: Bool-Vector Type, Next: Function Type, Prev: Char-Table Type, Up: Programming Types Bool-Vector Type ---------------- A "bool-vector" is a one-dimensional array of elements that must be `t' or `nil'. The printed representation of a Bool-vector is like a string, except that it begins with `#&' followed by the length. The string constant that follows actually specifies the contents of the bool-vector as a bitmap--each "character" in the string contains 8 bits, which specify the next 8 elements of the bool-vector (1 stands for `t', and 0 for `nil'). The least significant bits of the character correspond to the lowest indices in the bool-vector. If the length is not a multiple of 8, the printed representation shows extra elements, but these extras really make no difference. (make-bool-vector 3 t) => #&3"\007" (make-bool-vector 3 nil) => #&3"\0" ;; These are equal since only the first 3 bits are used. (equal #&3"\377" #&3"\007") => t  File: elisp, Node: Function Type, Next: Macro Type, Prev: Bool-Vector Type, Up: Programming Types Function Type ------------- Just as functions in other programming languages are executable, "Lisp function" objects are pieces of executable code. However, functions in Lisp are primarily Lisp objects, and only secondarily the text which represents them. These Lisp objects are lambda expressions: lists whose first element is the symbol `lambda' (*note Lambda Expressions::.). In most programming languages, it is impossible to have a function without a name. In Lisp, a function has no intrinsic name. A lambda expression is also called an "anonymous function" (*note Anonymous Functions::.). A named function in Lisp is actually a symbol with a valid function in its function cell (*note Defining Functions::.). Most of the time, functions are called when their names are written in Lisp expressions in Lisp programs. However, you can construct or obtain a function object at run time and then call it with the primitive functions `funcall' and `apply'. *Note Calling Functions::.  File: elisp, Node: Macro Type, Next: Primitive Function Type, Prev: Function Type, Up: Programming Types Macro Type ---------- A "Lisp macro" is a user-defined construct that extends the Lisp language. It is represented as an object much like a function, but with different argument-passing semantics. A Lisp macro has the form of a list whose first element is the symbol `macro' and whose CDR is a Lisp function object, including the `lambda' symbol. Lisp macro objects are usually defined with the built-in `defmacro' function, but any list that begins with `macro' is a macro as far as Emacs is concerned. *Note Macros::, for an explanation of how to write a macro. *Warning*: Lisp macros and keyboard macros (*note Keyboard Macros::.) are entirely different things. When we use the word "macro" without qualification, we mean a Lisp macro, not a keyboard macro.  File: elisp, Node: Primitive Function Type, Next: Byte-Code Type, Prev: Macro Type, Up: Programming Types Primitive Function Type ----------------------- A "primitive function" is a function callable from Lisp but written in the C programming language. Primitive functions are also called "subrs" or "built-in functions". (The word "subr" is derived from "subroutine".) Most primitive functions evaluate all their arguments when they are called. A primitive function that does not evaluate all its arguments is called a "special form" (*note Special Forms::.). It does not matter to the caller of a function whether the function is primitive. However, this does matter if you try to redefine a primitive with a function written in Lisp. The reason is that the primitive function may be called directly from C code. Calls to the redefined function from Lisp will use the new definition, but calls from C code may still use the built-in definition. Therefore, *we discourage redefinition of primitive functions*. The term "function" refers to all Emacs functions, whether written in Lisp or C. *Note Function Type::, for information about the functions written in Lisp. Primitive functions have no read syntax and print in hash notation with the name of the subroutine. (symbol-function 'car) ; Access the function cell ; of the symbol. => # (subrp (symbol-function 'car)) ; Is this a primitive function? => t ; Yes.  File: elisp, Node: Byte-Code Type, Next: Autoload Type, Prev: Primitive Function Type, Up: Programming Types Byte-Code Function Type ----------------------- The byte compiler produces "byte-code function objects". Internally, a byte-code function object is much like a vector; however, the evaluator handles this data type specially when it appears as a function to be called. *Note Byte Compilation::, for information about the byte compiler. The printed representation and read syntax for a byte-code function object is like that for a vector, with an additional `#' before the opening `['.  File: elisp, Node: Autoload Type, Prev: Byte-Code Type, Up: Programming Types Autoload Type ------------- An "autoload object" is a list whose first element is the symbol `autoload'. It is stored as the function definition of a symbol as a placeholder for the real definition; it says that the real definition is found in a file of Lisp code that should be loaded when necessary. The autoload object contains the name of the file, plus some other information about the real definition. After the file has been loaded, the symbol should have a new function definition that is not an autoload object. The new definition is then called as if it had been there to begin with. From the user's point of view, the function call works as expected, using the function definition in the loaded file. An autoload object is usually created with the function `autoload', which stores the object in the function cell of a symbol. *Note Autoload::, for more details.  File: elisp, Node: Editing Types, Next: Type Predicates, Prev: Programming Types, Up: Lisp Data Types Editing Types ============= The types in the previous section are used for general programming purposes, and most of them are common to most Lisp dialects. Emacs Lisp provides several additional data types for purposes connected with editing. * Menu: * Buffer Type:: The basic object of editing. * Marker Type:: A position in a buffer. * Window Type:: Buffers are displayed in windows. * Frame Type:: Windows subdivide frames. * Window Configuration Type:: Recording the way a frame is subdivided. * Frame Configuration Type:: Recording the status of all frames. * Process Type:: A process running on the underlying OS. * Stream Type:: Receive or send characters. * Keymap Type:: What function a keystroke invokes. * Overlay Type:: How an overlay is represented.  File: elisp, Node: Buffer Type, Next: Marker Type, Up: Editing Types Buffer Type ----------- A "buffer" is an object that holds text that can be edited (*note Buffers::.). Most buffers hold the contents of a disk file (*note Files::.) so they can be edited, but some are used for other purposes. Most buffers are also meant to be seen by the user, and therefore displayed, at some time, in a window (*note Windows::.). But a buffer need not be displayed in any window. The contents of a buffer are much like a string, but buffers are not used like strings in Emacs Lisp, and the available operations are different. For example, you can insert text efficiently into an existing buffer, whereas "inserting" text into a string requires concatenating substrings, and the result is an entirely new string object. Each buffer has a designated position called "point" (*note Positions::.). At any time, one buffer is the "current buffer". Most editing commands act on the contents of the current buffer in the neighborhood of point. Many of the standard Emacs functions manipulate or test the characters in the current buffer; a whole chapter in this manual is devoted to describing these functions (*note Text::.). Several other data structures are associated with each buffer: * a local syntax table (*note Syntax Tables::.); * a local keymap (*note Keymaps::.); and, * a list of buffer-local variable bindings (*note Buffer-Local Variables::.). * overlays (*note Overlays::.). * text properties for the text in the buffer (*note Text Properties::.). The local keymap and variable list contain entries that individually override global bindings or values. These are used to customize the behavior of programs in different buffers, without actually changing the programs. A buffer may be "indirect", which means it shares the text of another buffer, but presents it differently. *Note Indirect Buffers::. Buffers have no read syntax. They print in hash notation, showing the buffer name. (current-buffer) => #  File: elisp, Node: Marker Type, Next: Window Type, Prev: Buffer Type, Up: Editing Types Marker Type ----------- A "marker" denotes a position in a specific buffer. Markers therefore have two components: one for the buffer, and one for the position. Changes in the buffer's text automatically relocate the position value as necessary to ensure that the marker always points between the same two characters in the buffer. Markers have no read syntax. They print in hash notation, giving the current character position and the name of the buffer. (point-marker) => # *Note Markers::, for information on how to test, create, copy, and move markers.  File: elisp, Node: Window Type, Next: Frame Type, Prev: Marker Type, Up: Editing Types Window Type ----------- A "window" describes the portion of the terminal screen that Emacs uses to display a buffer. Every window has one associated buffer, whose contents appear in the window. By contrast, a given buffer may appear in one window, no window, or several windows. Though many windows may exist simultaneously, at any time one window is designated the "selected window". This is the window where the cursor is (usually) displayed when Emacs is ready for a command. The selected window usually displays the current buffer, but this is not necessarily the case. Windows are grouped on the screen into frames; each window belongs to one and only one frame. *Note Frame Type::. Windows have no read syntax. They print in hash notation, giving the window number and the name of the buffer being displayed. The window numbers exist to identify windows uniquely, since the buffer displayed in any given window can change frequently. (selected-window) => # *Note Windows::, for a description of the functions that work on windows.  File: elisp, Node: Frame Type, Next: Window Configuration Type, Prev: Window Type, Up: Editing Types Frame Type ---------- A "frame" is a rectangle on the screen that contains one or more Emacs windows. A frame initially contains a single main window (plus perhaps a minibuffer window) which you can subdivide vertically or horizontally into smaller windows. Frames have no read syntax. They print in hash notation, giving the frame's title, plus its address in core (useful to identify the frame uniquely). (selected-frame) => # *Note Frames::, for a description of the functions that work on frames.  File: elisp, Node: Window Configuration Type, Next: Frame Configuration Type, Prev: Frame Type, Up: Editing Types Window Configuration Type ------------------------- A "window configuration" stores information about the positions, sizes, and contents of the windows in a frame, so you can recreate the same arrangement of windows later. Window configurations do not have a read syntax; their print syntax looks like `#'. *Note Window Configurations::, for a description of several functions related to window configurations.  File: elisp, Node: Frame Configuration Type, Next: Process Type, Prev: Window Configuration Type, Up: Editing Types Frame Configuration Type ------------------------ A "frame configuration" stores information about the positions, sizes, and contents of the windows in all frames. It is actually a list whose CAR is `frame-configuration' and whose CDR is an alist. Each alist element describes one frame, which appears as the CAR of that element. *Note Frame Configurations::, for a description of several functions related to frame configurations.  File: elisp, Node: Process Type, Next: Stream Type, Prev: Frame Configuration Type, Up: Editing Types Process Type ------------ The word "process" usually means a running program. Emacs itself runs in a process of this sort. However, in Emacs Lisp, a process is a Lisp object that designates a subprocess created by the Emacs process. Programs such as shells, GDB, ftp, and compilers, running in subprocesses of Emacs, extend the capabilities of Emacs. An Emacs subprocess takes textual input from Emacs and returns textual output to Emacs for further manipulation. Emacs can also send signals to the subprocess. Process objects have no read syntax. They print in hash notation, giving the name of the process: (process-list) => (#) *Note Processes::, for information about functions that create, delete, return information about, send input or signals to, and receive output from processes.  File: elisp, Node: Stream Type, Next: Keymap Type, Prev: Process Type, Up: Editing Types Stream Type ----------- A "stream" is an object that can be used as a source or sink for characters--either to supply characters for input or to accept them as output. Many different types can be used this way: markers, buffers, strings, and functions. Most often, input streams (character sources) obtain characters from the keyboard, a buffer, or a file, and output streams (character sinks) send characters to a buffer, such as a `*Help*' buffer, or to the echo area. The object `nil', in addition to its other meanings, may be used as a stream. It stands for the value of the variable `standard-input' or `standard-output'. Also, the object `t' as a stream specifies input using the minibuffer (*note Minibuffers::.) or output in the echo area (*note The Echo Area::.). Streams have no special printed representation or read syntax, and print as whatever primitive type they are. *Note Read and Print::, for a description of functions related to streams, including parsing and printing functions.  File: elisp, Node: Keymap Type, Next: Overlay Type, Prev: Stream Type, Up: Editing Types Keymap Type ----------- A "keymap" maps keys typed by the user to commands. This mapping controls how the user's command input is executed. A keymap is actually a list whose CAR is the symbol `keymap'. *Note Keymaps::, for information about creating keymaps, handling prefix keys, local as well as global keymaps, and changing key bindings.  File: elisp, Node: Overlay Type, Prev: Keymap Type, Up: Editing Types Overlay Type ------------ An "overlay" specifies properties that apply to a part of a buffer. Each overlay applies to a specified range of the buffer, and contains a property list (a list whose elements are alternating property names and values). Overlay properties are used to present parts of the buffer temporarily in a different display style. Overlays have no read syntax, and print in hash notation, giving the buffer name and range of positions. *Note Overlays::, for how to create and use overlays.