This is Info file elisp, produced by Makeinfo version 1.68 from the input file elisp.texi. INFO-DIR-SECTION Editors START-INFO-DIR-ENTRY * Elisp: (elisp). The Emacs Lisp Reference Manual. END-INFO-DIR-ENTRY This version is the edition 2.5 of the GNU Emacs Lisp Reference Manual. It corresponds to Emacs Version 20.3 Published by the Free Software Foundation 59 Temple Place, Suite 330 Boston, MA 02111-1307 USA Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Foundation. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided also that the section entitled "GNU General Public License" is included exactly as in the original, and provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that the section entitled "GNU General Public License" may be included in a translation approved by the Free Software Foundation instead of in the original English.  File: elisp, Node: Coding Conventions, Next: Compilation Tips, Up: Tips Emacs Lisp Coding Conventions ============================= Here are conventions that you should follow when writing Emacs Lisp code intended for widespread use: * Since all global variables share the same name space, and all functions share another name space, you should choose a short word to distinguish your program from other Lisp programs. Then take care to begin the names of all global variables, constants, and functions with the chosen prefix. This helps avoid name conflicts. This recommendation applies even to names for traditional Lisp primitives that are not primitives in Emacs Lisp--even to `copy-list'. Believe it or not, there is more than one plausible way to define `copy-list'. Play it safe; append your name prefix to produce a name like `foo-copy-list' or `mylib-copy-list' instead. If you write a function that you think ought to be added to Emacs under a certain name, such as `twiddle-files', don't call it by that name in your program. Call it `mylib-twiddle-files' in your program, and send mail to `bug-gnu-emacs@gnu.org' suggesting we add it to Emacs. If and when we do, we can change the name easily enough. If one prefix is insufficient, your package may use two or three alternative common prefixes, so long as they make sense. Separate the prefix from the rest of the symbol name with a hyphen, `-'. This will be consistent with Emacs itself and with most Emacs Lisp programs. * It is often useful to put a call to `provide' in each separate library program, at least if there is more than one entry point to the program. * If a file requires certain other library programs to be loaded beforehand, then the comments at the beginning of the file should say so. Also, use `require' to make sure they are loaded. * If one file FOO uses a macro defined in another file BAR, FOO should contain this expression before the first use of the macro: (eval-when-compile (require 'BAR)) (And the library BAR should contain `(provide 'BAR)', to make the `require' work.) This will cause BAR to be loaded when you byte-compile FOO. Otherwise, you risk compiling FOO without the necessary macro loaded, and that would produce compiled code that won't work right. *Note Compiling Macros::. Using `eval-when-compile' avoids loading BAR when the compiled version of FOO is *used*. * When defining a major mode, please follow the major mode conventions. *Note Major Mode Conventions::. * When defining a minor mode, please follow the minor mode conventions. *Note Minor Mode Conventions::. * If the purpose of a function is to tell you whether a certain condition is true or false, give the function a name that ends in `p'. If the name is one word, add just `p'; if the name is multiple words, add `-p'. Examples are `framep' and `frame-live-p'. * If a user option variable records a true-or-false condition, give it a name that ends in `-flag'. * Please do not define `C-c LETTER' as a key in your major modes. These sequences are reserved for users; they are the *only* sequences reserved for users, so do not block them. Instead, define sequences consisting of `C-c' followed by a control character, a digit, or certain punctuation characters. These sequences are reserved for major modes. Changing all the Emacs major modes to follow this convention was a lot of work. Abandoning this convention would make that work go to waste, and inconvenience users. * Sequences consisting of `C-c' followed by `{', `}', `<', `>', `:' or `;' are also reserved for major modes. * Sequences consisting of `C-c' followed by any other punctuation character are allocated for minor modes. Using them in a major mode is not absolutely prohibited, but if you do that, the major mode binding may be shadowed from time to time by minor modes. * Function keys through without modifier keys are reserved for users to define. * Do not bind `C-h' following any prefix character (including `C-c'). If you don't bind `C-h', it is automatically available as a help character for listing the subcommands of the prefix character. * Do not bind a key sequence ending in except following another . (That is, it is OK to bind a sequence ending in ` '.) The reason for this rule is that a non-prefix binding for in any context prevents recognition of escape sequences as function keys in that context. * Anything which acts like a temporary mode or state which the user can enter and leave should define ` ' of ` ' as a way to escape. For a state which accepts ordinary Emacs commands, or more generally any kind of state in which followed by a function key or arrow key is potentially meaningful, then you must not define ` ', since that would preclude recognizing an escape sequence after . In these states, you should define ` ' as the way to escape. Otherwise, define ` ' instead. * Applications should not bind mouse events based on button 1 with the shift key held down. These events include `S-mouse-1', `M-S-mouse-1', `C-S-mouse-1', and so on. They are reserved for users. * Special major modes used for read-only text should usually redefine `mouse-2' and to trace some sort of reference in the text. Modes such as Dired, Info, Compilation, and Occur redefine it in this way. * When a package provides a modification of ordinary Emacs behavior, it is good to include a command to enable and disable the feature, Provide a command named `WHATEVER-mode' which turns the feature on or off, and make it autoload (*note Autoload::.). Design the package so that simply loading it has no visible effect--that should not enable the feature. Users will request the feature by invoking the command. * It is a bad idea to define aliases for the Emacs primitives. Use the standard names instead. * Redefining (or advising) an Emacs primitive is discouraged. It may do the right thing for a particular program, but there is no telling what other programs might break as a result. * If a file does replace any of the functions or library programs of standard Emacs, prominent comments at the beginning of the file should say which functions are replaced, and how the behavior of the replacements differs from that of the originals. * Please keep the names of your Emacs Lisp source files to 13 characters or less. This way, if the files are compiled, the compiled files' names will be 14 characters or less, which is short enough to fit on all kinds of Unix systems. * Don't use `next-line' or `previous-line' in programs; nearly always, `forward-line' is more convenient as well as more predictable and robust. *Note Text Lines::. * Don't call functions that set the mark, unless setting the mark is one of the intended features of your program. The mark is a user-level feature, so it is incorrect to change the mark except to supply a value for the user's benefit. *Note The Mark::. In particular, don't use any of these functions: * `beginning-of-buffer', `end-of-buffer' * `replace-string', `replace-regexp' If you just want to move point, or replace a certain string, without any of the other features intended for interactive users, you can replace these functions with one or two lines of simple Lisp code. * Use lists rather than vectors, except when there is a particular reason to use a vector. Lisp has more facilities for manipulating lists than for vectors, and working with lists is usually more convenient. Vectors are advantageous for tables that are substantial in size and are accessed in random order (not searched front to back), provided there is no need to insert or delete elements (only lists allow that). * The recommended way to print a message in the echo area is with the `message' function, not `princ'. *Note The Echo Area::. * When you encounter an error condition, call the function `error' (or `signal'). The function `error' does not return. *Note Signaling Errors::. Do not use `message', `throw', `sleep-for', or `beep' to report errors. * An error message should start with a capital letter but should not end with a period. * Many commands that take a long time to execute display a message that says `Operating...' when they start, and change it to `Operating...done' when they finish. Please keep the style of these messages uniform: *no* space around the ellipsis, and *no* period at the end. * Try to avoid using recursive edits. Instead, do what the Rmail `e' command does: use a new local keymap that contains one command defined to switch back to the old local keymap. Or do what the `edit-options' command does: switch to another buffer and let the user switch back at will. *Note Recursive Editing::. * In some other systems there is a convention of choosing variable names that begin and end with `*'. We don't use that convention in Emacs Lisp, so please don't use it in your programs. (Emacs uses such names only for special-purpose buffers.) The users will find Emacs more coherent if all libraries use the same conventions. * Try to avoid compiler warnings about undefined free variables, by adding `defvar' definitions for these variables. If you bind a variable in one function, and use it or set it in another function, the compiler warns about the latter function unless the variable has a definition. But often these variables have short names, and it is not clean for Lisp packages to define such variable names. Therefore, you should rename the variable to start with the name prefix used for the other functions and variables in your package. * Indent each function with `C-M-q' (`indent-sexp') using the default indentation parameters. * Don't make a habit of putting close-parentheses on lines by themselves; Lisp programmers find this disconcerting. Once in a while, when there is a sequence of many consecutive close-parentheses, it may make sense to split the sequence in one or two significant places. * Please put a copyright notice on the file if you give copies to anyone. Use a message like this one: ;; Copyright (C) YEAR NAME ;; This program is free software; you can redistribute it and/or ;; modify it under the terms of the GNU General Public License as ;; published by the Free Software Foundation; either version 2 of ;; the License, or (at your option) any later version. ;; This program is distributed in the hope that it will be ;; useful, but WITHOUT ANY WARRANTY; without even the implied ;; warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ;; PURPOSE. See the GNU General Public License for more details. ;; You should have received a copy of the GNU General Public ;; License along with this program; if not, write to the Free ;; Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, ;; MA 02111-1307 USA If you have signed papers to assign the copyright to the Foundation, then use `Free Software Foundation, Inc.' as NAME. Otherwise, use your name.  File: elisp, Node: Compilation Tips, Next: Documentation Tips, Prev: Coding Conventions, Up: Tips Tips for Making Compiled Code Fast ================================== Here are ways of improving the execution speed of byte-compiled Lisp programs. * Profile your program with the `profile' library or the `elp' library. See the files `profile.el' and `elp.el' for instructions. * Use iteration rather than recursion whenever possible. Function calls are slow in Emacs Lisp even when a compiled function is calling another compiled function. * Using the primitive list-searching functions `memq', `member', `assq', or `assoc' is even faster than explicit iteration. It can be worth rearranging a data structure so that one of these primitive search functions can be used. * Certain built-in functions are handled specially in byte-compiled code, avoiding the need for an ordinary function call. It is a good idea to use these functions rather than alternatives. To see whether a function is handled specially by the compiler, examine its `byte-compile' property. If the property is non-`nil', then the function is handled specially. For example, the following input will show you that `aref' is compiled specially (*note Array Functions::.): (get 'aref 'byte-compile) => byte-compile-two-args * If calling a small function accounts for a substantial part of your program's running time, make the function inline. This eliminates the function call overhead. Since making a function inline reduces the flexibility of changing the program, don't do it unless it gives a noticeable speedup in something slow enough that users care about the speed. *Note Inline Functions::.  File: elisp, Node: Documentation Tips, Next: Comment Tips, Prev: Compilation Tips, Up: Tips Tips for Documentation Strings ============================== Here are some tips and conventions for the writing of documentation strings. You can check many of these conventions by running the command `M-x checkdoc-minor-mode'. * Every command, function, or variable intended for users to know about should have a documentation string. * An internal variable or subroutine of a Lisp program might as well have a documentation string. In earlier Emacs versions, you could save space by using a comment instead of a documentation string, but that is no longer the case. * The first line of the documentation string should consist of one or two complete sentences that stand on their own as a summary. `M-x apropos' displays just the first line, and if it doesn't stand on its own, the result looks bad. In particular, start the first line with a capital letter and end with a period. The documentation string can have additional lines that expand on the details of how to use the function or variable. The additional lines should be made up of complete sentences also, but they may be filled if that looks good. * For consistency, phrase the verb in the first sentence of a function's documentation string as an infinitive with "to" omitted. For instance, use "Return the cons of A and B." in preference to "Returns the cons of A and B." Usually it looks good to do likewise for the rest of the first paragraph. Subsequent paragraphs usually look better if they have proper subjects. * Write documentation strings in the active voice, not the passive, and in the present tense, not the future. For instance, use "Return a list containing A and B." instead of "A list containing A and B will be returned." * Avoid using the word "cause" (or its equivalents) unnecessarily. Instead of, "Cause Emacs to display text in boldface," write just "Display text in boldface." * Do not start or end a documentation string with whitespace. * Format the documentation string so that it fits in an Emacs window on an 80-column screen. It is a good idea for most lines to be no wider than 60 characters. The first line can be wider if necessary to fit the information that ought to be there. However, rather than simply filling the entire documentation string, you can make it much more readable by choosing line breaks with care. Use blank lines between topics if the documentation string is long. * *Do not* indent subsequent lines of a documentation string so that the text is lined up in the source code with the text of the first line. This looks nice in the source code, but looks bizarre when users view the documentation. Remember that the indentation before the starting double-quote is not part of the string! * When the user tries to use a disabled command, Emacs displays just the first paragraph of its documentation string--everything through the first blank line. If you wish, you can choose which information to include before the first blank line so as to make this display useful. * A variable's documentation string should start with `*' if the variable is one that users would often want to set interactively. If the value is a long list, or a function, or if the variable would be set only in init files, then don't start the documentation string with `*'. *Note Defining Variables::. * The documentation string for a variable that is a yes-or-no flag should start with words such as "Non-nil means...", to make it clear that all non-`nil' values are equivalent and indicate explicitly what `nil' and non-`nil' mean. * When a function's documentation string mentions the value of an argument of the function, use the argument name in capital letters as if it were a name for that value. Thus, the documentation string of the function `/' refers to its second argument as `DIVISOR', because the actual argument name is `divisor'. Also use all caps for meta-syntactic variables, such as when you show the decomposition of a list or vector into subunits, some of which may vary. * When a documentation string refers to a Lisp symbol, write it as it would be printed (which usually means in lower case), with single-quotes around it. For example: `lambda'. There are two exceptions: write t and nil without single-quotes. (In this manual, we use a different convention, with single-quotes for all symbols.) Help mode automatically creates a hyperlink when a documentation string uses a symbol name inside single quotes, if the symbol has either a function or a variable definition. You do not need to do anything special to make use of this feature. However, when a symbol has both a function definition and a variable definition, and you want to refer to just one of them, you can specify which one by writing one of the words `variable', `option', `function', or `command', immediately before the symbol name. (Case makes no difference in recognizing these indicator words.) For example, if you write This function sets the variable `buffer-file-name'. then the hyperlink will refer only to the variable documentation of `buffer-file-name', and not to its function documentation. If a symbol has a function definition and/or a variable definition, but those are irrelevant to the use of the symbol that you are documenting, you can write the word `symbol' before the symbol name to prevent making any hyperlink. For example, If the argument KIND-OF-RESULT is the symbol `list', this function returns a list of all the objects that satisfy the criterion. does not make a hyperlink to the documentation, irrelevant here, of the function `list'. * Don't write key sequences directly in documentation strings. Instead, use the `\\[...]' construct to stand for them. For example, instead of writing `C-f', write the construct `\\[forward-char]'. When Emacs displays the documentation string, it substitutes whatever key is currently bound to `forward-char'. (This is normally `C-f', but it may be some other character if the user has moved key bindings.) *Note Keys in Documentation::. * In documentation strings for a major mode, you will want to refer to the key bindings of that mode's local map, rather than global ones. Therefore, use the construct `\\<...>' once in the documentation string to specify which key map to use. Do this before the first use of `\\[...]'. The text inside the `\\<...>' should be the name of the variable containing the local keymap for the major mode. It is not practical to use `\\[...]' very many times, because display of the documentation string will become slow. So use this to describe the most important commands in your major mode, and then use `\\{...}' to display the rest of the mode's keymap.  File: elisp, Node: Comment Tips, Next: Library Headers, Prev: Documentation Tips, Up: Tips Tips on Writing Comments ======================== We recommend these conventions for where to put comments and how to indent them: `;' Comments that start with a single semicolon, `;', should all be aligned to the same column on the right of the source code. Such comments usually explain how the code on the same line does its job. In Lisp mode and related modes, the `M-;' (`indent-for-comment') command automatically inserts such a `;' in the right place, or aligns such a comment if it is already present. This and following examples are taken from the Emacs sources. (setq base-version-list ; there was a base (assoc (substring fn 0 start-vn) ; version to which file-version-assoc-list)) ; this looks like ; a subversion `;;' Comments that start with two semicolons, `;;', should be aligned to the same level of indentation as the code. Such comments usually describe the purpose of the following lines or the state of the program at that point. For example: (prog1 (setq auto-fill-function ... ... ;; update mode line (force-mode-line-update))) Every function that has no documentation string (presumably one that is used only internally within the package it belongs to), should have instead a two-semicolon comment right before the function, explaining what the function does and how to call it properly. Explain precisely what each argument means and how the function interprets its possible values. `;;;' Comments that start with three semicolons, `;;;', should start at the left margin. Such comments are used outside function definitions to make general statements explaining the design principles of the program. For example: ;;; This Lisp code is run in Emacs ;;; when it is to operate as a server ;;; for other processes. Another use for triple-semicolon comments is for commenting out lines within a function. We use triple-semicolons for this precisely so that they remain at the left margin. (defun foo (a) ;;; This is no longer necessary. ;;; (force-mode-line-update) (message "Finished with %s" a)) `;;;;' Comments that start with four semicolons, `;;;;', should be aligned to the left margin and are used for headings of major sections of a program. For example: ;;;; The kill ring The indentation commands of the Lisp modes in Emacs, such as `M-;' (`indent-for-comment') and (`lisp-indent-line'), automatically indent comments according to these conventions, depending on the number of semicolons. *Note Manipulating Comments: (emacs)Comments.  File: elisp, Node: Library Headers, Prev: Comment Tips, Up: Tips Conventional Headers for Emacs Libraries ======================================== Emacs has conventions for using special comments in Lisp libraries to divide them into sections and give information such as who wrote them. This section explains these conventions. First, an example: ;;; lisp-mnt.el --- minor mode for Emacs Lisp maintainers ;; Copyright (C) 1992 Free Software Foundation, Inc. ;; Author: Eric S. Raymond ;; Maintainer: Eric S. Raymond ;; Created: 14 Jul 1992 ;; Version: 1.2 ;; Keywords: docs ;; This file is part of GNU Emacs. ... ;; Free Software Foundation, Inc., 59 Temple Place - Suite 330, ;; Boston, MA 02111-1307, USA. The very first line should have this format: ;;; FILENAME --- DESCRIPTION The description should be complete in one line. After the copyright notice come several "header comment" lines, each beginning with `;; HEADER-NAME:'. Here is a table of the conventional possibilities for HEADER-NAME: `Author' This line states the name and net address of at least the principal author of the library. If there are multiple authors, you can list them on continuation lines led by `;;' and a tab character, like this: ;; Author: Ashwin Ram ;; Dave Sill ;; Dave Brennan ;; Eric Raymond `Maintainer' This line should contain a single name/address as in the Author line, or an address only, or the string `FSF'. If there is no maintainer line, the person(s) in the Author field are presumed to be the maintainers. The example above is mildly bogus because the maintainer line is redundant. The idea behind the `Author' and `Maintainer' lines is to make possible a Lisp function to "send mail to the maintainer" without having to mine the name out by hand. Be sure to surround the network address with `<...>' if you include the person's full name as well as the network address. `Created' This optional line gives the original creation date of the file. For historical interest only. `Version' If you wish to record version numbers for the individual Lisp program, put them in this line. `Adapted-By' In this header line, place the name of the person who adapted the library for installation (to make it fit the style conventions, for example). `Keywords' This line lists keywords for the `finder-by-keyword' help command. Please use that command to see a list of the meaningful keywords. This field is important; it's how people will find your package when they're looking for things by topic area. To separate the keywords, you can use spaces, commas, or both. Just about every Lisp library ought to have the `Author' and `Keywords' header comment lines. Use the others if they are appropriate. You can also put in header lines with other header names--they have no standard meanings, so they can't do any harm. We use additional stylized comments to subdivide the contents of the library file. Here is a table of them: `;;; Commentary:' This begins introductory comments that explain how the library works. It should come right after the copying permissions, terminated by a `Change Log', `History' or `Code' comment line. This text is used by the Finder package, so it should make sense in that context. `;;; Documentation' This has been used in some files in place of `;;; Commentary:', but `;;; Commentary:' is preferred. `;;; Change Log:' This begins change log information stored in the library file (if you store the change history there). For most of the Lisp files distributed with Emacs, the change history is kept in the file `ChangeLog' and not in the source file at all; these files do not have a `;;; Change Log:' line. `;;; Code:' This begins the actual code of the program. `;;; FILENAME ends here' This is the "footer line"; it appears at the very end of the file. Its purpose is to enable people to detect truncated versions of the file from the lack of a footer line.  File: elisp, Node: GNU Emacs Internals, Next: Standard Errors, Prev: Tips, Up: Top GNU Emacs Internals ******************* This chapter describes how the runnable Emacs executable is dumped with the preloaded Lisp libraries in it, how storage is allocated, and some internal aspects of GNU Emacs that may be of interest to C programmers. * Menu: * Building Emacs:: How to the dumped Emacs is made. * Pure Storage:: A kludge to make preloaded Lisp functions sharable. * Garbage Collection:: Reclaiming space for Lisp objects no longer used. * Memory Usage:: Info about total size of Lisp objects made so far. * Writing Emacs Primitives:: Writing C code for Emacs. * Object Internals:: Data formats of buffers, windows, processes.  File: elisp, Node: Building Emacs, Next: Pure Storage, Up: GNU Emacs Internals Building Emacs ============== This section explains the steps involved in building the Emacs executable. You don't have to know this material to build and install Emacs, since the makefiles do all these things automatically. This information is pertinent to Emacs maintenance. Compilation of the C source files in the `src' directory produces an executable file called `temacs', also called a "bare impure Emacs". It contains the Emacs Lisp interpreter and I/O routines, but not the editing commands. The command `temacs -l loadup' uses `temacs' to create the real runnable Emacs executable. These arguments direct `temacs' to evaluate the Lisp files specified in the file `loadup.el'. These files set up the normal Emacs editing environment, resulting in an Emacs that is still impure but no longer bare. It takes a substantial time to load the standard Lisp files. Luckily, you don't have to do this each time you run Emacs; `temacs' can dump out an executable program called `emacs' that has these files preloaded. `emacs' starts more quickly because it does not need to load the files. This is the Emacs executable that is normally installed. To create `emacs', use the command `temacs -batch -l loadup dump'. The purpose of `-batch' here is to prevent `temacs' from trying to initialize any of its data on the terminal; this ensures that the tables of terminal information are empty in the dumped Emacs. The argument `dump' tells `loadup.el' to dump a new executable named `emacs'. Some operating systems don't support dumping. On those systems, you must start Emacs with the `temacs -l loadup' command each time you use it. This takes a substantial time, but since you need to start Emacs once a day at most--or once a week if you never log out--the extra time is not too severe a problem. You can specify additional files to preload by writing a library named `site-load.el' that loads them. You may need to increase the value of `PURESIZE', in `src/puresize.h', to make room for the additional data. (Try adding increments of 20000 until it is big enough.) However, the advantage of preloading additional files decreases as machines get faster. On modern machines, it is usually not advisable. After `loadup.el' reads `site-load.el', it finds the documentation strings for primitive and preloaded functions (and variables) in the file `etc/DOC' where they are stored, by calling `Snarf-documentation' (*note Accessing Documentation::.). You can specify other Lisp expressions to execute just before dumping by putting them in a library named `site-init.el'. This file is executed after the documentation strings are found. If you want to preload function or variable definitions, there are three ways you can do this and make their documentation strings accessible when you subsequently run Emacs: * Arrange to scan these files when producing the `etc/DOC' file, and load them with `site-load.el'. * Load the files with `site-init.el', then copy the files into the installation directory for Lisp files when you install Emacs. * Specify a non-`nil' value for `byte-compile-dynamic-docstrings' as a local variable in each these files, and load them with either `site-load.el' or `site-init.el'. (This method has the drawback that the documentation strings take up space in Emacs all the time.) It is not advisable to put anything in `site-load.el' or `site-init.el' that would alter any of the features that users expect in an ordinary unmodified Emacs. If you feel you must override normal features for your site, do it with `default.el', so that users can override your changes if they wish. *Note Start-up Summary::. - Function: dump-emacs TO-FILE FROM-FILE This function dumps the current state of Emacs into an executable file TO-FILE. It takes symbols from FROM-FILE (this is normally the executable file `temacs'). If you want to use this function in an Emacs that was already dumped, you must run Emacs with `-batch'.  File: elisp, Node: Pure Storage, Next: Garbage Collection, Prev: Building Emacs, Up: GNU Emacs Internals Pure Storage ============ Emacs Lisp uses two kinds of storage for user-created Lisp objects: "normal storage" and "pure storage". Normal storage is where all the new data created during an Emacs session is kept; see the following section for information on normal storage. Pure storage is used for certain data in the preloaded standard Lisp files--data that should never change during actual use of Emacs. Pure storage is allocated only while `temacs' is loading the standard preloaded Lisp libraries. In the file `emacs', it is marked as read-only (on operating systems that permit this), so that the memory space can be shared by all the Emacs jobs running on the machine at once. Pure storage is not expandable; a fixed amount is allocated when Emacs is compiled, and if that is not sufficient for the preloaded libraries, `temacs' crashes. If that happens, you must increase the compilation parameter `PURESIZE' in the file `src/puresize.h'. This normally won't happen unless you try to preload additional libraries or add features to the standard ones. - Function: purecopy OBJECT This function makes a copy of OBJECT in pure storage and returns it. It copies strings by simply making a new string with the same characters in pure storage. It recursively copies the contents of vectors and cons cells. It does not make copies of other objects such as symbols, but just returns them unchanged. It signals an error if asked to copy markers. This function is a no-op except while Emacs is being built and dumped; it is usually called only in the file `emacs/lisp/loaddefs.el', but a few packages call it just in case you decide to preload them. - Variable: pure-bytes-used The value of this variable is the number of bytes of pure storage allocated so far. Typically, in a dumped Emacs, this number is very close to the total amount of pure storage available--if it were not, we would preallocate less. - Variable: purify-flag This variable determines whether `defun' should make a copy of the function definition in pure storage. If it is non-`nil', then the function definition is copied into pure storage. This flag is `t' while loading all of the basic functions for building Emacs initially (allowing those functions to be sharable and non-collectible). Dumping Emacs as an executable always writes `nil' in this variable, regardless of the value it actually has before and after dumping. You should not change this flag in a running Emacs.  File: elisp, Node: Garbage Collection, Next: Memory Usage, Prev: Pure Storage, Up: GNU Emacs Internals Garbage Collection ================== When a program creates a list or the user defines a new function (such as by loading a library), that data is placed in normal storage. If normal storage runs low, then Emacs asks the operating system to allocate more memory in blocks of 1k bytes. Each block is used for one type of Lisp object, so symbols, cons cells, markers, etc., are segregated in distinct blocks in memory. (Vectors, long strings, buffers and certain other editing types, which are fairly large, are allocated in individual blocks, one per object, while small strings are packed into blocks of 8k bytes.) It is quite common to use some storage for a while, then release it by (for example) killing a buffer or deleting the last pointer to an object. Emacs provides a "garbage collector" to reclaim this abandoned storage. (This name is traditional, but "garbage recycler" might be a more intuitive metaphor for this facility.) The garbage collector operates by finding and marking all Lisp objects that are still accessible to Lisp programs. To begin with, it assumes all the symbols, their values and associated function definitions, and any data presently on the stack, are accessible. Any objects that can be reached indirectly through other accessible objects are also accessible. When marking is finished, all objects still unmarked are garbage. No matter what the Lisp program or the user does, it is impossible to refer to them, since there is no longer a way to reach them. Their space might as well be reused, since no one will miss them. The second ("sweep") phase of the garbage collector arranges to reuse them. The sweep phase puts unused cons cells onto a "free list" for future allocation; likewise for symbols and markers. It compacts the accessible strings so they occupy fewer 8k blocks; then it frees the other 8k blocks. Vectors, buffers, windows, and other large objects are individually allocated and freed using `malloc' and `free'. Common Lisp note: Unlike other Lisps, GNU Emacs Lisp does not call the garbage collector when the free list is empty. Instead, it simply requests the operating system to allocate more storage, and processing continues until `gc-cons-threshold' bytes have been used. This means that you can make sure that the garbage collector will not run during a certain portion of a Lisp program by calling the garbage collector explicitly just before it (provided that portion of the program does not use so much space as to force a second garbage collection). - Command: garbage-collect This command runs a garbage collection, and returns information on the amount of space in use. (Garbage collection can also occur spontaneously if you use more than `gc-cons-threshold' bytes of Lisp data since the previous garbage collection.) `garbage-collect' returns a list containing the following information: ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS) (USED-MISCS . FREE-MISCS) USED-STRING-CHARS USED-VECTOR-SLOTS (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)) Here is an example: (garbage-collect) => ((106886 . 13184) (9769 . 0) (7731 . 4651) 347543 121628 (31 . 94) (1273 . 168)) Here is a table explaining each element: USED-CONSES The number of cons cells in use. FREE-CONSES The number of cons cells for which space has been obtained from the operating system, but that are not currently being used. USED-SYMS The number of symbols in use. FREE-SYMS The number of symbols for which space has been obtained from the operating system, but that are not currently being used. USED-MISCS The number of miscellaneous objects in use. These include markers and overlays, plus certain objects not visible to users. FREE-MISCS The number of miscellaneous objects for which space has been obtained from the operating system, but that are not currently being used. USED-STRING-CHARS The total size of all strings, in characters. USED-VECTOR-SLOTS The total number of elements of existing vectors. USED-FLOATS The number of floats in use. FREE-FLOATS The number of floats for which space has been obtained from the operating system, but that are not currently being used. USED-INTERVALS The number of intervals in use. Intervals are an internal data structure used for representing text properties. FREE-INTERVALS The number of intervals for which space has been obtained from the operating system, but that are not currently being used. - User Option: garbage-collection-messages If this variable is non-`nil', Emacs displays a message at the beginning and end of garbage collection. The default value is `nil', meaning there are no such messages. - User Option: gc-cons-threshold The value of this variable is the number of bytes of storage that must be allocated for Lisp objects after one garbage collection in order to trigger another garbage collection. A cons cell counts as eight bytes, a string as one byte per character plus a few bytes of overhead, and so on; space allocated to the contents of buffers does not count. Note that the subsequent garbage collection does not happen immediately when the threshold is exhausted, but only the next time the Lisp evaluator is called. The initial threshold value is 400,000. If you specify a larger value, garbage collection will happen less often. This reduces the amount of time spent garbage collecting, but increases total memory use. You may want to do this when running a program that creates lots of Lisp data. You can make collections more frequent by specifying a smaller value, down to 10,000. A value less than 10,000 will remain in effect only until the subsequent garbage collection, at which time `garbage-collect' will set the threshold back to 10,000. The value return by `garbage-collect' describes the amount of memory used by Lisp data, broken down by data type. By contrast, the function `memory-limit' provides information on the total amount of memory Emacs is currently using. - Function: memory-limit This function returns the address of the last byte Emacs has allocated, divided by 1024. We divide the value by 1024 to make sure it fits in a Lisp integer. You can use this to get a general idea of how your actions affect the memory usage.  File: elisp, Node: Memory Usage, Next: Writing Emacs Primitives, Prev: Garbage Collection, Up: GNU Emacs Internals Memory Usage ============ These functions and variables give information about the total amount of memory allocation that Emacs has done, broken down by data type. Note the difference between these and the values returned by `(garbage-collect)'; those count objects that currently exist, but these count the number or size of all allocations, including those for objects that have since been freed. - Variable: cons-cells-consed The total number of cons cells that have been allocated so far in this Emacs session. - Variable: floats-consed The total number of floats that have been allocated so far in this Emacs session. - Variable: vector-cells-consed The total number of vector cells that have been allocated so far in this Emacs session. - Variable: symbols-consed The total number of symbols that have been allocated so far in this Emacs session. - Variable: string-chars-consed The total number of string characters that have been allocated so far in this Emacs session. - Variable: misc-objects-consed The total number of miscellaneous objects that have been allocated so far in this Emacs session. These include markers and overlays, plus certain objects not visible to users. - Variable: intervals-consed The total number of intervals that have been allocated so far in this Emacs session.