
Architecture



Components ! 3

Network! 3

Heartbeat! 3

Command and Control! 3

Listener! 3

Mesh Model! 4

Monitor! 4

Diagrams ! 4

Legend! 4

Overview! 4

Monitor-Node! 5

MESH! 6

Design Decisions ! 6

Bson! 6

Qt Creator! 6



Components
The following are the major components of the system. These do not map directly onto 
the code base in the source directory. The last line for each component says precisely 
where the code for that component resides.

Network

Purpose To route packets and transmit data between nodes.
Runs On Each node of the MESH. 
Description Layer 1 and 2 of networking.
Code Code for the external MANET that is running (i.e., BATMAN or 80211s)

Heartbeat

Purpose To provide the monitor with the status and behavior of the network.
Runs On Each node of the MESH. 
Input Reads network statistics and tables from the node on which it runs.
Output Periodically sends packets to the listener containing the info it read.
Code MeshKit/src/heartbeat-sender/heartbeat.py

Command and Control

Purpose To respond to traceroute and other special requests from the monitor.
Runs On Each node of the MESH. 
Input Listens for packets from the model and from other nodes.
Output Sends packets to the listener and to other nodes.
Code MeshKit/src/heartbeat-sender/CCResponse.py

Listener

Purpose To listen for packets from the mesh.
Runs On The Monitor-Node node.
Input To listen for heartbeat packets and command and control packets.



Output Calls function to pass received information to the monitor.
Code MeshKit/src/mesh-model/HeartBeatListener.*

MeshKit/src/mesh-model/MKControl.*

Mesh Model

Purpose To consolidate the information received by the listener.
Runs On The Monitor-Node node.
Input A function call by listener with a packet from the MESH.
Output Updates the MESH model.
Code MeshKit/src/mesh-model/(all files except those used by the Listener)

Monitor

Purpose To show the behavior of the MESH to the user.
Runs On The Monitor-Node node.
Input Receives data by calling the functions of the model.
Output Behavior of the MESH to the user.
Code MeshKit/src/gui/Monitor/

Diagrams
Legend

Node Process Functional 
Unit

fu
nc

tio
n 

ca
ll

packetMESH

Figure 1: Legend
Overview

Figure 2 distinguishes the Monitor-Node from the rest of the nodes in the MESH. C&C 
(Command and Control) request packets are sent from the Monitor-Node to the MESH 
to request special features to be performed by the C&C program running on the nodes 
of the MESH. Upon receiving a C&C request packet, the C&C program performs the 
requested task and sends a the C&C response packet back to the Monitor



The Monitor-Node is the physical piece of hardware that is running the Monitor 
software. There may be more than one Monitor-Node in a network, but for simplicity we 
only show one in the Figure 2. Furthermore, the Monitor-Node may be a participating 
node in the MESH in that it is sending heartbeat packets, or it may be only observing 
network activity without sending heartbeat packets. Figure 2 shows the Monitor-Node as 
an non-participating network observer.

Monitor-Node MESH

heartbeat

C&C request

C&C response

Figure 2: Overview

Monitor-Node
!
The MESH is omitted from this Figure 3. The Monitor-Node runs the MESH Observer 
Process which contains three functional units: Monitor, Model, and Listener. These units 
communicate with the MESH in the manner described in the Overview section. The 
Monitor calls the functions in the interface provided by the Model to get the behavior of 
the MESH. The Listener calls functions in the interface provided by the Model to give it 
new raw data (heartbeat and C&C packets) with which to update itself. 

Listener

C&C request

Model
heartbeat

C&C response

Monitor

te
lls

 m
od

el
 a

bo
ut

 n
ew

 d
at

a

as
ks

 m
od

el
 fo

r s
ta

te
 o

f M
ES

H

Monitor-Node

The MESH Observer Process

Figure 3: Monitor-Node



MESH

The Monitor-Node is omitted from Figure 4. There may be more nodes in the MESH 
than the two that are shown. 

C&C

Heartbeat

Node

C&C

Heartbeat

Node

C&C 

heartbeatheartbeat

C&C request

C&C response

Figure 4: MESH

Design Decisions
Bson

Bson was chosen in order to make packets compatible between C++ and Python 
encoders and decoders. However, it turned out that the C++ and Python encoders and 
decoders didnʼt read the Bson packets the same way, so Bson didnʼt solve the 
compatibility problem. Since it was too expensive to remove the Bson from the project, 
the work around was to call Python scripts from C++ code.

Bson was chosen over Json because Bson allows access to any data element whereas 
Json requires that each element be iterated over in order. However, this advantage was 
not needed because we ended up iterating over each element in order anyway. 
Additionally, Bson was a poor choice because it has worse performance than Json.

Qt Creator

Qt Creator was chosen because it provides

• a GUI framework, 
• IDE which includes a visual UI builder, 
• and an integrated debugger. 



Although Qt Creatorʼs framework had both C++ and Python versions, C++ was chosen 
because produces faster executables, was more stable, and was better documented 
than the Python version of the framework.


