
Detailed Design
Introduction
This is a code level description of the major components of the system.

Monitor
Execution

Execution starts in MainWindow::MainWindow(). A timer is initialized in this method 
by calling connect. The timer calls MainWindow::updateList() every timeout() 
seconds. updateList()... 

1. polls the Model by calling comm->get_all_nodes()
2. updates the GUI tables by calling setNodeInAllModel()
3. builds a renderable list of node by calling widget->updateGraph() 
4. and renders the nodes by calling widget->show()

Note: The MKCommModel is constructed in MainWindow::MainWindow().

Behavior Reference

To change Edit file(s)1

Graph appearance (colors, shapes, etc...) node.*
edge.*

Graph physics behavior point.*

Graph Rendering graphwidget.*

GUI options and settings settingsdialoug.*

GUI tables mainwindow.*
1These files are relative to MeshKit/src/gui/Monitor/

Comm Model
The MKCommModel stores its model in the data structure nodes in MKCommModel.h. 
The interface to the Monitor is also defined in MKCommModel.h. When an 



MKCommModel is constructed, it creates the HeartBeatListener thread and an 
MKControl thread. These threads listen for packets sent to the OCU from the MESH. 

When the HeartBeatListener thread receives a packet, it calls 
MKCommModel::update(HeartBeatPacket). This method adds the sender of the 
packet to the model if the model does not contain the sender. Next, it clears the 
senderʼs list of neighbors and adds each neighbor that is listed in the packet.

When the MKControl thread receives a packet, it calls MKCommModel::update
(mongo:BSONObj, MKRequest). This method handles latency requests and route 
request. For a latency request, it finds the the node that was requested to ping the other 
node and sets the latency for the request. For a route request, it finds the node that was 
requested to traceroute the other node and sets the route for the request.

Listener
The listener is composed of two threads: HeartBeatListener and MKControl. 
HeartBeatListener listens for heartbeat packets, and MKControl listens for 
command and control (C&C) packets. When the HeartBeatListener thread receives 
a packet, it calls MKCommModel::update(HeartBeatPacket), and when the 
MKControl thread receives a packet, it calls 
MKCommModel::update(mongo:BSONObj, MKRequest).

Heartbeat
The heartbeat script is very similar to the original one that you (Tim) gave us, so it will 
not be covered in depth here. This script unicasts to the target ip address as defined by 
the global variable OCU_IP.

Command and Control
CCResponse.py starts in main by creating and running a CNCListenerThread thread. 
This thread listens for C&C request packets and, upon receiving one, calls parseCNC.  
ParseCNC verifies that the packet received is indeed a C&C request packet and, if so, 
creates a CNCResponderThread thread to handle the response. This thread 
determines which kind of request was sent (either a “ping” or a “traceroute” request) and 
responds accordingly. (This script unicasts to the target ip address as defined by the 
global variable OCU_IP.)


