
Test Design

Table of Contents
Introduction
 3
Conventions
 3
Equipment
 3
Scripts
 4

Arguments
 4
Environment Variables
 4
Conventions
 4
Definitions
 5

Configuration
 5
Throughput Test
 6

Plan
 6
Procedure
 6

Latency Test
 6
Plan
 6
Procedure
 7

Overhead
 7
Plan
 7
Procedure
 8

Routing-performance Test A
 8
Plan
 9
Procedure
 9

Routing-performance Test B
 10
Plan
 10
Layout
 11
Procedure
 11

Routing-performance Test C
 12
Plan
 12
Layout
 12

Monitor Test
 13
Purpose
 13
Plan
 13
Procedure
 13

2

Introduction
This document defines testing procedures for comparing BATMAN and 80211s in a
wireless MESH network. In the actual field tests, these procedures were not were not
implemented precisely as described here. The specific as-conducted testing
procedures are described in the companion document Execution.pdf.

The testing criteria are latency, throughput, overhead, routing-performance, and
convergence.

• Latency is the time for a ʻsmall packetʼ to travel from one node to another. A
ʻsmall packetʼ is packet that can be sent between adjacent nodes in a single
transmission.

• Throughput is the maximum amount of data that can be sent from one node to
another over a time interval.

• Overhead is the throughput degradation that occurs due to adding more nodes to
the MESH.

• Routing-performance is the time for a MESH to re-route after a node in its current
route fails to transmit.

• Convergence is time for a newly introduced node to be able to be seen by the
MESH.

Conventions
Here are conventions this document follows to enhance readability.

• When referring to a particular node in a test, the node will be referred by the
number on the node on the diagram for the test, and the number will be
underlined. For example, a node might be referred to as 4.

• When executing the procedure of a script, arguments to scripts or utilities that are
placed in brackets (ʻ<ʻ and ʻ>ʼ) are meant to be replaced with the appropriate
value. For example, <network> is meant to be replaced with a value indicating
the network being tested1.

• In order for environment variables set in the scripts to affect the environment of
the shell in which they are executed, the scripts need to be run with the source
command. This command is omitted for simplicity.

1See the Arguments section of Scripts.

Equipment

3

The following table lists the items which will be needed to run the tests. For each item,
the table gives the quantity of the item and the purpose the item will serve.

Item Quantity Purpose
fully-charged, pre-
configured1 laptops

15 To serve as nodes.

laptop with screen
capture program

1 To run Mesh Monitor and serve as node.

numbered wireless
cards

16 The internal wireless cards of most laptops do not
support an 80211s network.

1Refers to the platform configuration requirements which give the required OS and tools that must be
installed on each laptop. Also a recent pull of the git repository must be performed.

Scripts
Arguments

Here are the definitions of the arguments:

• <network> can be one of the following values: batman|olsrd|80211s.
• <run#> is an integer representing the current run number.
• <node#> is an integer between 1 and 16 and corresponds to the number of a

node in the diagram of the test currently being run.
• <number_list> is a whitespace-delimited list of integers.

Environment Variables

The following environment variables are initialized or changed by some of the scripts.

• node1, node2, node3, ... , node16 -- each of these variable holds the
ip address of its corresponding node.1

• me -- holds the node number of the node on which it is accessed.1
• network -- holds one of the following values: “batman”, “olsrd”, “80211s”.2
• test -- holds the name of the current test
• run -- holds the current run number

1Initialized by assign.
2Set by enable.

Conventions

4

• When a script description states that the results will be “written to file”, the path of
this file is given by results/$network/$test/$run. While this script is
running the data that is written to file is also written to standard output.

Definitions

• timesync-server broadcasts a packet every second containing a time and
sets the system clock to the value sent in the packet. This packet is to be
received by timesync-client.

• timesync-client listens for a packet sent by timesync-server and, upon
receipt of this packet, sets the system clock to the value given in the packet.

• assign <node#> sets environment variables node1, node2, node3,..., node16.
The ip addresses assigned is computed from a table that is the same across all
nodes. Sets environment variable me with the value of the given argument.

• enable <network> brings up the given network type on the node and sets the
environment variable network.

• disable brings down $network on the node. If $network is not set, brings
down the wireless interface.

• throughput-server runs the iperf server.
• throughput-client <node#> runs the iperf client to send data to the node

with the given <node#>. This script runs for 5 seconds. The results of the test
are written to file.

• latency <node#> runs ping to send IMCP packets to the node with the given
<node#>. This script runs for 5 seconds. The output of the test are written to file.

• remote-disable <number_list> broadcasts a disable-request packet
containing the numbers in the given list. The disable-request is to be received by
disable-listener.

• disable-listener listens for disable-requests and, upon receipt of such a
packet, checks if $me is in list of numbers in the disable-request. If so, it disables
its network interface.

• udp-sender <node#> sends UDP packets to the node with the given node
number. The UDP packets are to be received by udp-listener.

• udp-listener <test> listens for packets sent by udp-sender. The time at
which each packet is received from udp-sender will be written to file.

Configuration
The tests will be run in an open field free from radio interference. Before any of the tests
are run, the following must be to each node:

1. Power it on..
2. Insert a wireless card.
3. Open a terminal.
4. Execute cd ~/MeshKit/testing

5

5. Execute sudo -i
6. Execute assign <node#> where <node#> is the number on the wireless card.
7. Execute test “$me”!=‘1’ && timesync-client || timesync-server
8. Execute sleep 10
9. Execute disable

Throughput Test
Plan

This test will be run 9 times. The nodes will be positioned in a line according to the
diagram below. The first run will only enable the first two nodes. For each subsequent
run, an additional node will be enabled, adding the next node in the line to the MESH.
For each run, data will be sent from the newly added node to the other end of the line,
and the data rate will be recorded.

Procedure

Before any of the runs, execute test=throughput on N.

The following procedure will be executed for each run.

1. Execute run=<run#> on N.
2. Execute enable <network> on each node.
3. Execute throughput-server& on 1.
4. Execute throughput-server_pid=$! on 1.
5. Execute throughput-client 1 on N.
6. Wait until step 5 finishes.
7. Execute kill $throughput-server_pid on 1.
8. Execute disable on each node.

Latency Test
Plan

1

40 ft 40 ft 40 ft

Ndata

iperf clientiperf server

...2

6

This test will be run 9 times. The nodes will be positioned in a line according to the
diagram below. The first run will only enable the first two nodes. For each subsequent
run, an additional node will be enabled, adding the next node in the line to the MESH.
For each run, data will be sent from the newly added node to the other end of the line
and back, and the latency will be recorded as the round trip time.

Procedure

Before any of the runs, execute test=latency on N.

The following procedure will be executed for each run.

1. Execute run=<run#> on N.
2. Execute enable <network> on each node.
3. Execute latency 1 on N.
4. Wait until step 3 finishes.
5. Execute disable on each node.

Overhead
Plan

This test will be run 5 times. The nodes will be positioned in a grid according to the
diagram below. All nodes except the red ones will be enabled. Data will be sent from 16
to 6 along some route, and the throughput will be noted. Then the red nodes will be
enabled creating more network overhead.

The absolute value of the change in the throughput will be recorded as delta. The
overhead metric will be delta as a percentage of the original throughput and will be
calculated by dividing the delta by original throughput. A low overhead metric is
preferred.

1

20 ft 20 ft 20 ft

NIMCP
packets

ping

...2

7

Procedure

Before any of the runs, execute test=overhead on 16.

The following procedure will be executed for each run.

1. Execute run=<run#> on 16.
2. Execute enable <network> on each black, purple and blue node (6, 7, 8, 10,

12, 14, 15, 16).
3. Execute throughput-server& on 6.
4. Execute throughput-server_pid=$! on 6.
5. Execute throughput-client 6 on the 16.
6. Wait until step 5 finishes.
7. Execute enable <network> on each red node (1, 2, 3, 4, 5, 9, 13).
8. Repeat steps 5 and 6.
9. Execute disable on each node.
10. Execute kill throughput_server_pid on 6.

Routing-performance Test A

1

20 ft

2 3 4

20 ft

20 ft 20 ft

5 6 7 8

9 10 12

13 14 15 16

iperf client

iperf server

20 ft

20 ft data

data

11

8

Plan

This test will be run 5 times. The nodes will be positioned in a grid according to the
diagram below. 16 will rapidly send UDP packets to 1. 1 will record the time at which it
receives each UDP packet. traceroute will be run to ensure that the route does not use
13 or 4. Simultaneously all the black nodes will be disabled. When looking at the times
at which 1 received each UDP packet, there should be a gap at some point. This gap is
the routing-performance time.

Procedure

Before any of the runs, execute test=routing-performanceA on 1.

The following procedure will be executed for each run.

1. Execute run=<run#> on 1.
2. Execute enable <network> on each node.
3. Execute disable-listener& on each node.
4. Execute disable-listener_pid=$! on each node.
5. Execute udp-listener& on 1.
6. Execute udp-listener_pid=$! on 1.

1

20 ft

2 3 4

20 ft

20 ft 20 ft

5 6 7 8

9 10 11 12

13 14 15 16

20 ft

20 ft data

data

9

7. Execute udp-sender 1& on 16.
8. Execute udp-sender_pid=$! on 16.
9. Execute traceroute $node1 on 16. Inspect the output to ensure that the route

does not include 13 or 4.
10. Execute remote-disable 2 3 5 6 7 8 9 10 11 12 13 15 on 16.
11. Wait 5 seconds.
12. Execute kill $disable-listener_pid on each node.
13. Execute kill $disable_listener_pid on each node.
14. Execute kill $udp-sender_pid on 16.
15. Execute kill udp-listener_pid on 1.
16. Execute disable on each 1, 4, 13, and 16.

Routing-performance Test B
Plan

The nodes will be positioned in a grid according to the diagram below. 16 will rapidly
send UDP packets to 1. 1 will record the time at which it receives each UDP packet.
traceroute will be run to see which nodes are on the route. A random node in the route
will be disabled. When looking at the times 1 received each UDP packet, there should
be a gap at some point. This gap is the routing-performance time.

Note: The same nodes cannot be disabled when testing BATMAN against 80211s
because the routes will be different, which may lead to an incorrect comparison if there
are too few runs.

10

Layout

Procedure

Before any of the runs, execute

1. Execute test=routing-performanceB on 1.
2. Execute run=<run#> on 1.
3. Execute enable <network> on each node.
4. Execute disable-listener& on each node.
5. Execute disable-listener_pid=$! on each node.
6. Execute udp-listener& on 1.
7. Execute udp-listener_pid=$! on 1.
8. Execute udp-sender 1& on 16.
9. Execute udp-sender_pid=$! on 16.

The following procedure will be executed 10 times.

10. Execute traceroute $node1 on 16. Randomly select a node nodeX in the
route.

11. Execute remote-disable $nodeX on 16.
12. Wait 6 seconds.

1

20 ft

2 3 4

20 ft

20 ft 20 ft

5 6 7 8

9 10 11 12

13 14 15 16

20 ft

20 ft data

data

11

Afterward, run the following:

13. Execute kill $disable-listener_pid on each node.
14. Execute kill $disable_listener_pid on each node.
15. Execute kill $udp-sender_pid on 16.
16. Execute kill udp-listener_pid on 1.
17. Execute disable on each node.

Routing-performance Test C
Plan

1 will rapidly send UDP packets to 2. 2 will record the time at which it receives each
UDP packet. 2 will be moved to an to a position at where 1 cannot see 2 directly, forcing
1 to re-route through 3. When looking at the times 2 received each UDP packet, there
should be a gap at some point. This gap is the routing-performance time.

Layout

Before

 After

1

3

2

Radio
Impenetrable

Structure

ping node 2

IMCP packets

2

1

32

Radio
Impenetrable

Structure

ping node 2

IMCP packets

12

Monitor Test
Purpose

This test will measure how correctly the Mesh Monitor displays the mesh.

Plan

Data will be sent from 16 to 1. Traceroute will be running continuously; whenever it
finishes, the time will be recorded and it will be restarted. A screen capture program will
be run on 16 and the time recorded. The Mesh Monitor will be run on 16 and will be set
to view the route between 16 and 1. One of the nodes in the route will be disabled and
the time recorded--this step will be performed 10 times with at least 6 seconds between
disabling each node. Later, the recorded data can be viewed to see how responsive the
Mesh Monitor was.

Procedure

Repeat Convergence Test B but with

1. heartbeat.py running on each node
2. Mesh Monitor running on 16

1

20 ft

2 3 4

20 ft

20 ft 20 ft

5 6 7 8

9 10 11 12

13 14 15 16

20 ft

20 ft data

data

13

3. the screen capture program running on 16 and date > results/$network/
$test/capture-time executed as it is started

4. test=monitor
5. traceroute $node1 > results/$network/$test/$run; date; running

repeatedly on 16.

14

