
Page 1

Specification Change Orders

for the Prototyping Tool

Refinement of Scripting API (26sep05)

The file ../requirements/idraw-interface.h is a C/C++ scripting API for the drawing commands. It was

done for the idraw predecessor of jdraw, but it looks pretty decent. So, this .h file can be used as the basis

of a refined API for the Jdraw/ProtoJ scripting methods.

Script Editor Revisions (gfisher, 2mar04)

Add ‘Save Tab’, ‘Save All’, and Delete Tab’ buttons to the script editor and change the behav-

ior of the editor accordingly. This means that an explicit user button press is required to save and delete

scripts, instead of the more implicit way it’s defined in the "Refining Scripting" section below.

Misc Behaviors (10jul03)

Movement of any drawing or component off canvas is not possible, i.e., the movement stops at the bound-

ary of the canvas. This is precisely the behavior of the original idraw.

Remove color chooser icon from both toolbars.

In general, commands use the "no effect" methodology instead of the "disabled interface" methodology

when the precondition of a command is not satisfied. E.g., for the align commands, the menu items are

never disabled (i.e., never greyed out), but simply have no effect when two or more items are not selected

on the screen. See the Disabling and Enabling Interface Elements in the rolodex tool requirements for

further discussion.

The following are clarifications to the behavior of keys in a the menu editor:

a. All printable characters are considered part of the menu or menu item name.

b. All non-printable chars except newline, tab, and delete are disabled.

c. Delete works in the normal way.

d. Newline defines the end of a menu or item.

e. Tab is only enabled at the beginning of a line; further, only N+1 tabs can be entered on a given line,

where N is the number of tabs on the preceding line.

The precise definition for the spacing on the vertical guide lines is four en for current font size of the

menu editor. Giv en this, the current implementation of the menu editor as a JTabel is wrong, since it does

not allow overlapping columns. A suggested implementation is as a JLayeredPane, with a JextArea on

the button layer and transparent-background JPanel with Graphics2D vertical lines as the upper layer.

SetOpaque false on the JPanel, and SetForeground to light grey for the vertical lines.

As has been mentioned elsewhere, but to reiterate, the scripting language needs to be fully refined, in par-

ticular the parameters on all static methods need to be fully reconciled with the corresponding GUI

dialogs. This is Fisher’s major TODO item for the summer (which as of September 25 he did not do,

which means he’ll probably task one of the new SP students to do it).

The Script Editor dialog needs OK and Cancel buttons.

Page 2

New Menubar, Menus, and Toolbars (gfisher, 19mar03)

The following is the new menu structure for the prototyping tool:

File Edit Tools Structure Style View Help

Here is an expansion of the menus:

File:

New

Open ...

Import ...

Revert

Close

Close All

Save

Save As ...

Save All

Generate ...

Print ...

Exit

Edit:

Undo

Redo

Repeat ...

Cut

Copy

Paste

Duplicate

Delete

Select All

Find ...

Spell check ...

Command ...

Preferences ...

Mode ->

Edit

Run

Tools:

Drawing Toolbar

Component Toolbar

Property Editor

Script Editor

Slide Show

Explorer

Page 3

Structure:

Group

Ungroup

Regroup

Flip Horizontal

Flip Vertical

Rotate 90 Clockwise

Rotate 90 CounterCW

Transform ->

Precise Move ...

Precise Stretch ...

Precise Scale ...

Precise Rotate ...

Precise Reshape ...

Arrange ->

Bring to Front

Bring Forward

Send Back

Send to Back

Align ->

Left Sides

Right Sides

Bottoms

Tops

Vertical Centers

Horizontal Centers

Centers

Left to Right

Right to Left

Bottom to Top

Top to Bottom

Align to Grid

Number of Drawings

Number of Components

Style:

Font ...

Text Size ->

Text Style ->

Brush ->

None

<------

------>

<----->

- - - -

- - -

=======

Color ...

Edit ...

Fill ->

None

white

horz lines

vert lines

right diag

left diag

black

Color ...

Edit ...

View:

Zoom In

Zoom Out

Normal Size

Center Page

Home

Gridding On[Off]

Show/Hide Grid Lines

Grad Spacing ...

[Show]Hide Drawing

[Show]Hide Components

[Show]Hide Text

[Show]Hide Selection

Show All

[Un]Highlight Hidden

[Un]Highlight Grouping

[Un]Highlight Boxes

Layers ...

Page ...

Windows ->

Here are updated tool bars:

Components:

Select

Menubar

Button

Text

Slider

List

Table

Box

Pane

Frame

Scroll Bar

More Components:

Drawing:

Select

Move

Stretch

Scale

Rotate

Reshape

Text

Line

MultiLine

Curve

Ellipse

Rectangle

Page 4

The new menus are a combination of the current jdraw menus, the menus in the current prototyper

requirements, plus some additional new commands. Note that some new "..." suffixes have been added

to some of the items that did not have them before. Also some new item separators have been added. I’ll

do a full revision of the menu descriptions in Section 2.1 of the prototyper requirements. In the mean-

time, here’s a summary of the changes reflected in the above new menu structure:

a. The new ‘File’ menu is a combination of jdraw and prototyper, plus new items. All of the prototyper

items are there, with ‘Make Prototype’ changed to ‘Generate ...’. ‘Revert’, ‘Import

...’, and ‘Print ...’ are from jdraw. ‘Close All’ and ‘Save All’ are new. They apply to

all open canvases, whereas ‘Close’ and ‘Save’ apply only to the current canvas.

b. The new ‘Edit’ menu is also a combination of jdraw and prototyper, plus new items. ‘Duplicate’

comes from jdraw, and ‘Find ...’ comes from the prototyper. ‘Spell Check ...’ is new; it

opens a standard spell check dialog that goes through all of the text in all components and drawings.

The commands at the bottom of the current jdraw menu, starting with ‘Flip Horizontal’, have

all been moved to the new ‘Structure’ menu. The new Edit->Command ...’ item opens a

simple BeanShell editor where the user can type in a scripting command. The ‘Preferences

...’ item opens a simple preferences editing window which we can discuss at some later point. I’m

thinking that it can just be a very simple text-style properties editor, perhaps XML-based. The

‘Edit->Mode’ command at the end was moved from the current prototyper ‘Tools’ menu.

c. The ‘Tools’ menu is mostly from the current prototyper, with a few modifications. The ‘Menu

Editor’ is changed to a more general ‘Property Editor’. The way it works is to display a

property editor for the currently selected drawing or component. If the currently selected component

is a menu bar or menu, the property editor is a menu editor. There are other specific property editors

for other components, which will be simpler versions of the property editors in netbeans. I’ll do

details of these soon. The ‘‘Slide Show’ item is new in the ‘Tools’ menu; it opens a dialog that

has the same commands as are as in the current ‘Slide Show’ menu, but laid out in a dialog. We’ll

work out the details soon. The ‘Navigator’ item in the current ‘Tools’ menu is changed to

‘Explorer’ in the new menu. Finally, the ‘Mode’ item in the current prototyper ‘Tools’ menu has

been moved to the new ‘Edit’ menu.

d. The new ‘Structure’ menu comes from the current ‘Structure’ Edit’, and ‘Align’ menus in

jdraw, and the ‘View’, ‘Transform’, and ‘Align’ menus in the prototyper. ‘Group’ and

‘Ungroup’ are from jdraw. They apply only to graphics; the Box component is the equivalent of a

group for components. The ‘Regroup’ command is new; it allows the user to run ‘Ungroup’,

change one or more elements of the group, then put them back together in the original group. Con-

ceptually, ‘Regroup’ undoes the most recent ‘Ungroup’ command, even if there were edits or dele-

tions made in between ‘Regroup’ and ‘Ungroup’. The four ‘Flip’ and ‘Rotate 90’ commands

were formerly in the jdraw ‘Edit’ menu. The ‘Transform’ commands are moved from the jdraw

‘Edit’ menu and the prototyper ‘Transform’ menu. The ‘Arrange’ commands are moved from

the jdraw ‘Structure’ menu and ‘Transform->Arrange’ prototyper menu. The ‘Align’

commands are the same as in the current jdraw and prototyper, but they’re moved from a top-level

menu to a second-level pull-right menu. The ‘Number of Graphics’ command is from jdraw,

and ‘Number of Components’ does the same thing for components in the prototyper.

e. The new ‘Style’ menu has items from the current jdraw ‘Text’, ‘Brush’, and ‘Pattern’ menus,

and the current prototyper ‘Fill’ menu, with some significant reformatting. A ‘Text’ menu was

missing from the prototyper, but should have been there. The first three items in the new ‘Style’

menu are from jdraw ‘Text’, with reformatting. Specifically, the inline font-size and text-style items

in the current jdraw menu have been put into pull-right menus instead. The ‘Style->Brush’ and

Page 5

‘Style->Fill’ are the current jdraw ‘Brush’ and ‘Pattern’ menus. They supersede what’s in

the current prototyper ‘Fill’ menu.

f. The new ‘View’ menu has items from the jdraw ‘Options’ menu and the prototyper ‘View’ menu.

‘Zoom In’ and ‘Zoom Out’ are called ‘Reduce’ and ‘Enlarge’ in the jdraw ‘Options’ menu.

‘Normal Size’ is from jdraw ‘Options’. ‘Center Page’ is new; it puts the current page in the

center of the canvas (see below for more on paging). ‘Home’ is from jdraw; it scrolls the drawing

canvas to the upper left corner, so that the vertical scrollbar (if present) is all the way at the top and the

horizontal scrollbar is all the way to the left. The ‘Hide Drawing’ and ‘Hide Components’

commands are show/hide toggles that do the same thing as the ‘Show/Hide’ buttons in the toolbars;

they’ve been moved off the toolbars into the menus. ‘Hide Text’ is new; it’s a show/hide toggle for

all text graphics, and all text inside components, such as button names and label text. ‘Show

Grouping’ is also new; it puts a light grey rectangle around all groups, including nested groups.

The ‘Layers ...’ and ‘Page ...’ commands are from the jdraw ‘Options’ menu. The ‘Win-

dows ->’ pull right menu has a list of all open canvas windows. (Plus see below for more about

how it’s different in the prototyper versus jdraw).

An important feature of the new menu layout is that the menus for the prototyping tool are a proper super-

set of the jdraw menus. Here are the specific differences between the prototyper versus jdraw menus:

a. There is no ‘File->Generate ...’ command in jdraw (and the menu separator above it is not

there).

b. There is no ‘Edit->Mode’ command in jdraw (and the menu separator above it is not there).

c. There is no ‘Structure->Components’ command in jdraw.

d. There is no ‘View->Hide Components’ command in jdraw.

e. There is no ‘Tools’ menu in jdraw.

f. The first item in the ‘View->Windows’ menu in jdraw is ‘Toolbar’, followed by a separator. This

is a checkbox menu item that has the same use as the ‘Drawing Toolbar’ item in the ‘Tools’

menu of the prototyper. Since jdraw has no ‘Tools’ menu, the show/hide menu item for it goes in

the ‘View->Windows’ menu.

What this means is that the prototyper acts like a "plug in" to jdraw, the way we discussed in our last

meeting.

The new Components toolbar has been reorganized, based largely on a careful analysis of what is pro-

vided in the NetBeans GUI builder. A detailed comparison of this toolbar and what netbeans provides is

in a separate document.

The new Drawing toolbar is an integration of the current jdraw and prototyper toolbars.

Clarification of Drawing and Component Interaction (gfisher, 19mar03)

When any drawing initiates within an internal frame, it is constrained to stay within that internal frame.

This form of constrained drawing works the same as drawing outside the boundary of a jdraw canvas

works now. Namely, when the user drags the mouse outside of the internal frame boundary, the drawing

continues, but it cannot be seen outside of the constrained area. If the user leaves the mouse button down

while dragging outside but then moves back inside, the drawing continues where it left off. An internal

frame should have scroll bars added when a drawn objects goes beyond its boundaries, in the same way

that canvas scrollbars work.

Page 6

When the user performs lassoing, it applies separately to drawing objects and components. Specifically,

the lassoing behavior is based on which arrow tool the user has chosen, the one in the drawing tools or the

one in the component tools. When lassoing graphics, components are ignored, and vice versa. When the

user clicks on a graphic or component, it automatically chooses the arrow tool in the appropriate toolbar.

This means that when the user starts lassoing, either graphics or components will be active.

Some Code Generation Ideas (gfisher, 19mar03)

Here are some basic ideas on how Java code generation can work.

a. When an align command and group command are followed in immediate succession on a set of com-

ponents, this successive pair of commands has a special effect. Namely, it places the components in a

horizontal or vertical box, with the appropriate alignment.

b. All of the drawing objects are collected into a single jpeg image and placed in the background of the

generated GUI. Any boxes created by align/group command pairs are turned into javax.swing.Boxes.

c. The page layout information in the drawing editor is totally ignored during code generation. This page

information is strictly for formatting on a printer.

New name for the Prototyping Tool (gfisher, 19mar03)

How about "ProtoJ" as the name for the prototyping tool?

Drawing and Component Property Editing (gfisher, 3mar03)

Section 2.5.2 of the requirements provides a very brief description of property editing. In that description,

the Property Editor is invoked via the component navigator. In the new command menus, the Property

Editor can also be invoked from the Tools menu. This section of the SCOs provides additional details

about the function of the Property Editor.

There is a separate property editor window for each different type of component, as well as one for all

graphics. To bring up a property editor, the user selects an item on the canvas, and then selects

‘Tools->Property Editor’. In response, the system displays a property editor for the selected

item, of the general form shown in 1. This is a revised version of the property editor shown in Figure 14

in Section 2.5.2 of the original requirements. When the user selects a different item on the canvas and

there is already a property editor displayed for that type of item, then the values in the displayed property

editor change to the values of the newly selected item. When the user selects a type of canvas item for

which no property editor is currently displayed, then the user must select ‘Tools->Property Edi-

tor’ again in order to make an editor for the selected type of item appear.

The property editor shown in Figure 1 is common to all graphics. Most of the same information for a

graphic also appears at the top of the property editor for components, except the ‘Rotation’ field is

replaced with an ‘Enabled’ radio button, and the ‘Grouped’ checkbox is missing. For example, Fig-

ure 2 is the property editor for a button. The default for ‘Enabled’ is on. When it’s off, the component

is greyed out and not enabled in run mode. The property editors for menubar, menu, and menu item are

Figure 1: Revised Property Editor.

Page 7

Figure 2: Button property editor.

special cases that may not have x/y coordinates or size. For the menubar, there is a ‘Position’ com-

bobox, with selections top, bottom, left, right and free. If any but ‘free’ is selected, the ‘Location’

and ‘Size’ fields are disabled. For menu, there is a ‘Position’ combobox with integer selections

from 1 to the number of items in the parent menubar, and a last selection of ‘pop-up’. If any but ‘pop-

up’ is selected, the ‘Location’ and ‘Size’ fields are disabled. For menu item, there is a ‘Position’

combobox with integer selections from 1 to the number of items in the parent menu.

Additional, type-specific properties appear in the bottom part of each component property editor, sepa-

rated with a horizontal rule. The following table defines the properties specific to each type of compo-

nent:

Component Properties Notes

Menubar Menubar tree editor The menu tree editor is

the one shown in Figure 4

in Section 2.2 of the cur-

rent requirements. Since

the menu editor is now

part of a property editor, it

won’t hav e the other but-

tons that are shown in the

current requirements in

Section 2.2. Otherwise, it

will work the way it’s de-

scribed in 2.2. Here is a

picture:

Menu Label, Icon, Menu tree

editor

The tree editor is the same

as that which appears in

the menubar editor for the

selected pulldown menu.

The Label text can be

edited by typing in the

menu editor. The Icon is

is the name of a jpeg or

gif file, that can be

browsed for.

Page 8

Menu item Style, Label, Icon Style is one of Plain Item,

Checkbox Item, Radio

Button Item, or Separator.

The Label text can be

edited by typing in the

menu editor. The Icon is

is the name of a jpeg or

gif file, that can be

browsed for.

Button Style, Label, Icon Style is one of Push But-

ton, Radio Button, or

Check Box. The Label

text can be edited by typ-

ing directly in the button,

or in the property editor.

Te xt Style, Rows, columns, ed-

itable.

Style is one of Single-

Line or Multi-Line.

When Single-Line is se-

lected, Rows is disabled.

For multi-line text, scroll-

bars appear when the

height and width settings

too small to allow all rows

and columns to be visible.

For single-line text, scroll-

bars never appear.

Slider Style Style is one of Horizontal,

Vertical, Progress Bar,

Spinner

List Rows, editable.

Table Rows, columns, editable.

Page 9

Box Orientation, Margins,

New Spacer Size.

Orientation is one of hori-

zontal or vertical. Mar-

gins are top, bottom, left

and right. New spacer

size is the size of the

spacer inserted when a

new component is added

to the box. Margins are

physically rendered as

Spacer components.

When a component is

moved anywhere within a

box, it is snapped into po-

sition next to or between

the two nearest compo-

nents. [Need to work out

details of where new

spacer goes, based on

whether new component

is added to left (top), mid,

or right (bottom) of box.]

The binding of compo-

nents in a box is "loose"

in that all components can

be individually selected

and moved. If component

movement remains within

the box, the moved com-

ponent is resnapped to a

new position within the

box when the move is

done. When a component

is resized within a box, its

neighboring component(s)

and the box itself are re-

sized dynamically along

with component being re-

sized. When the user

moves a box by selecting

its border, all of its com-

ponents move along with

it.

Page 10

Spacer Orientation Orientation is one of hori-

zontal or vertical. Spacers

can appear only within

boxes. Spacers cannot be

individually moved, only

resized, which can be

done graphically or using

a property editor. When a

spacer is set to size zero,

it shows up as a very

small grey spacer icon,

which can be difficult to

grab. Therefore, the easi-

er way to set the size of a

zero-size spacer is to se-

lect it (via lasso) and

bring up its property edi-

tor.

Pane Style Style is one of tabbed,

split, layered, option.

Frame Style Style is one of External or

Internal. When there are

one or more external

frames on a canvas, the

canvas itself is considered

a desktop. When there

are no external frames in a

canvas, the canvas is con-

sidered a frame. External

frames can only be placed

directly on the canvas, not

inside other components.

Internal frames can be

placed anywhere in a sin-

gle-frame canvas, or with-

in other external or inter-

nal frames.

Refining Scripting

To view the script editor for a component, the user selects that component and then selects

‘Tools->Script Editor’. In response, the system displays a script editing dialog of the form

shown in Figure 3. The banner in the script editor window includes the type and name of the selected

component. The ‘Event’ combobox selects the event type to which a script applies. The default is

‘Left Mouse Up’. The ev ent types are these:

Left Mouse Up

Left Mouse Down

Page 11

Figure 3: Refined script editor.

Middle Mouse Up

Middle Mouse Down

Right Mouse Up

Right Mouse Down

Left Double Click

Mouse Enter

Mouse Leave

Key Press

This is the order in which they appear in the pulldown part of the ‘Event’ combobox.

The ‘auxiliary key(s):’ combobox is a checklist of keys that are pressed in conjunction with a

selected mouse event to trigger a script. The available auxiliary keys are these:

Key Abbre viation

Shift Shf

Control Ctl

Alt Alt

There is also a ‘none’ selection at the top of the auxiliary keys list; ‘none’ is the default selection. If the

selected event is ‘Key Press’, then the ‘auxiliary key(s):’ combobox is replaced with a text

field, as described below.

The body of a component script is a segment of executable Java code. The script may access all of the

built-in prototyping classes and methods. Typical accesses are to static scripting methods, such as

"SlideShow.Next" as shown in Figure 3. The scope of a script code segment is that of a method body

within the component instance to which the script is attached. The method itself is anonymous, since no

method header or begin/end curly braces appear in the script editor. Within the script scope, the normal

Java identifier "this" refers to the instance of the scripted component. Further details of scripting

classes and methods are covered in Section ???.

A component has a separate script for each type of event. Tabs along on the bottom of the script editor

provide convenient access to multiple scripts. For example, Figure 4 shows an editor with scripts defined

for ‘Left Mouse Up’ and ‘Mouse Enter’. The relative left-to-right order of the tabs is the same as

the top-to-bottom order in the ‘Event’ combobox.

Each distinct configuration of mouse event and auxiliary key(s) defines a separate event, which is sepa-

rately scriptable. For example, Figure 5 shows the user having defined a script for the event ‘Left

Mouse Up with Shift’, in addition to the script for ‘Left Mouse Up’ with no auxiliary key.

When multiple auxiliary keys are selected, the entry in the ‘auxiliary keys’ combobox is an abbre-

viated string of the form "kkk+..", where "kkk" is a three character abbreviation for an auxiliary key.

Figure 4: Script editor with two scripts defined.

Page 12

Figure 5: Scripts for both ‘Left Mouse Up’ and ‘Left Mouse Up with Shift’.

For example, Figure 6 shows the user selecting both ‘Shift’ and ‘Control’ auxiliary keys. Figure 7

shows the resulting display of the combobox. When only a single auxiliary key is selected, its full (unab-

breviated) name appears in the combobox, as shown in Figure , for example.

The tabs for auxiliary-keyed mouse events are suffixed with a plus sign. If scripts are defined for the

same mouse event with two or more different auxiliary key configurations, the tab labels for all such

scripts are the same. For example, Figure 8 shows the tab configuration when scripts are defined for

‘Left Mouse Up’, ‘Left Mouse Up with Shift’, and ‘Left Mouse Up with Con-

trol’. The user can distinguish which auxiliary key(s) are selected for a particular script by selecting

that script’s tab and looking in the ‘auxiliary keys’ combobox. Multiple tabs for the same mouse

ev ent are sorted left to right in the following relative order:

a. no auxiliary keys

b. +Shf

c. +Ctl

d. +Alt

e. +Shf+Ctl

f. +Shf+Alt

g. +Shf+Ctl+Alt

h. Ctl+Alt

A new script tab is created when the user performs the following actions:

a. selects an item in the ‘Event’ combobox and a configuration of auxiliary keys for which no script

has yet been defined

b. enters the first character of text in the Script text area.

If the user deletes all text from the script text area and changes to another tab, the system removes the tab

with the empty script contents.

To appear.

Figure 6: Selecting both Shift and Control auxiliary keys.

To appear.

Figure 7: Auxiliary key abbreviation for Shift+Control auxiliary keys.

To appear.

Figure 8: Scripts for three different ‘Left Mouse Up’ events.

Page 13

When the user selects a script tab, the selected item in the ‘Event’ combobox changes to the event of the

selected tab, and the auxiliary key configuration, if any, for that script appears in the ‘auxiliary

key(s)’ list. When the user selects an item in the ‘Event’ combobox, the leftmost tab for that event

becomes current, if there is one.

The set of available auxiliary keys may be platform-dependent. For example, the Apple platform provides

an auxiliary ‘Command’ key that is not typically available on other platforms. The ‘Shift’, ‘Con-

trol’, and ‘Alt’ keys are available on all platforms. Implementors must provide access to any other

normally available auxiliary keys on a particular platform, for example the ‘Command’ key (abbreviated

"Cmd") on the Apple platform.

When the selected event type is ‘Key Press’, a ‘Keys’ text field appears in place of the auxiliary keys

combobox, as shown in Figure 9. ... Explain precisely what can be entered in the ‘Keys’ field, in partic-

ular whether more than one keystroke is allowed, if it’s UNICODE, etc.

Any component can have scripts, not just buttons and menu items. If a component has a built-in action

for a particular event, the user has the option to select whether or when the built-in action occurs. For

example, Figure 10 shows the case where the user is defining a script for ‘Left Mouse Down’ on a

text component. Since text components have a built-in action for left mouse down, namely select a text

position, the user must choose whether that built-in action is to occur. When there is a built-in action for a

selected event, the system adds the ‘Built-in Action’ combo box to the right of the ‘Event’ com-

bobox. The selections are

Override

Run script before

Run script after

‘Override’ means the user-defined script completely overrides the built-in action, that is, the built-in

action does not occur. ‘Override’ is the default selection. ‘Run Before’ means the user-defined

script is run first, and then the built-in action is applied. ‘Run After’ means the built-in action is

applied, then the user-defined script is run afterwards. In the ‘Run Before’ case, if the script code

changes the state of the component such that the built-in action is not applicable, the built-in action will

not occur. For example, if the user-defined script deletes the component itself, the built-in action cannot

be applied.

If the ‘Built-in Action’ combobox is present at the same time as the ‘Key Press’ event type is

selected, the ‘Keys’ text box appears between the ‘Event’ and ‘Built-in Action’ comboboxes.

NOTE: We need to fully spell out exactly what constitutes a built-in action and be entirely precise about

the possible type of user-defined action that may cause inapplicability of a built-in action. In particular,

the normal GUI effects performed on a component, such as highlighting a button when it’s pressed, or

turning on a radio button, should probably not be considered overridable actions. Probably the best

guideline to follow here is how things work in swing in terms of which components have built-in listeners

Figure 9: Script editor for key-press event.

Figure 10: Script editor with built-in script field.

Page 14

and what those listeners do. In the case of what user actions cause a built-in action to become inapplica-

ble we can hopefully we handle it with a few general cases, starting with component deletion.

Elimination of the Sensitize Tool

We can achieve the same effect as sensitization using a transparent button, as is done in HyperCard. That

is, to make any drawn shape appear to be sensitized, place a button over it, set both the fill and pen of the

button to ‘None’, and set the button’s label to the empty string. Then write the script for the button as

normal.

Fully transparent components can be selected on the canvas using the normal multi-component selection

function, ‘Edit->Select All’, or from the component explorer.

As a test of implementation feasibility, I confirmed that a Java button can be fully transparent and still

work. The specific Java implementation to make a JButton named "button" fully transparent is the fol-

lowing:

button.setOpaque(false); // User action is setting Fill to None

button.setBorder(null); // User action is setting Brush to None

button.setText(null); // User action is setting label to empty

Accessing Canvas-Wide Methods in Scripts

There is a Canvas class defined with static scripting methods that apply to the currently selected canvas.

The methods are:

GetLastEvent

GetSelection

...

