3.4 Additional Uses of Validation I nvocations and Exploratory Expression Evaluation

An important part of refining a specification is translating leses requirements, stated in English prose, into
Boolean logic. Exploratory expressiowaiiation, including validation wocations, can be useful in this translation
process.

The following are typical uselevel requirements for an operation dikedding a record to a database, i.e., the
AddUser operation described in the previous section of the thesis:

» There is no user record in the input database with the same id as the record to be added;rnbidus i@aies
requirement.

* The id of an added user record cannot be empty and must be 8 characters welessléngth; this is aid
syntax constraint.

« If the area code and phone number are presegtimhs&t be 3 digits and 7 digits respeely; these argphone
number format constraints.

Figure 3.29 contains a sample specification of a flawed AddUser precondition, The intent of the precondition logic is
to define these requirements. This sample characterizes the kind ofJegiglats that hee been observed ge-
larly in students’ initial efforts to translate usevderequirements from English prose into formal logic.

operation AddUser
i nputs: udb: User DB, ur: UserRecord;
out puts: udb’: User DB;

precondi tion:
(*
* There is no user record in the input UserDB with the sane id as the
* record to be added.

*

(not (ur in udb))

and
(*
* The id of the given user record is not enpty and 8 characters or
* | ess.

*

(#(ur.id) <= 8)
and

(*

* |f the phone area code and nunber are present, they nust be 3 digits
* and 7 digits respectively.

*)

(#(ur.phone.area) = 3) and

(#(ur . phone. num = 7);

postcondition: (* Sane as above *);
end AddUser;

Figure 3.29: Flawed attempt at AddUser precondition.

Figure 3.30 has corrected logic, for comparison purposes.

operation AddUser
i nputs: udb: User DB, ur: UserRecord;
out puts: udb’: User DB

precondi tion:
(*
* There is no user record in the input UserDB with the sane id as the

* record to be added.
*

(not (exists (ur’ in udb) ur’.id = ur.id))

and
(*
* The id of the given user record is not enpty and 8 characters or
* | ess.

*

(ur.id !'=nil) and (#(ur.id) <= 8)
and

(*

* |f the phone area code and nunber are present, they nust be 3 digits
* and 7 digits respectively.

*)

(if (ur.phone.area !=nil) then (#(ur.phone.area) = 3)) and

(if (ur.phone.num!= nil) then (#(ur.phone.nunm) = 7));

postcondition: (* Sane as above *);

end AddUser ;

Figure 3.30: Improved AddUser precondition.

As with ary form of debugging, there are a variety of ways to test and correct flaws inV@adjatation invocations
provide a useful tool that can help in the procdssthe example at hand, eachwflaan be reealed with a single,
reasonably straightforward validatiorvatation.

The first flav is the translation of the English requiremémhere is no user record in the input UserDB with the
sameid asthe record to be added.” The flawed versus correct versions of the logic are

(not (ur in udb))
Versus

(not (exists (ur’ in udb) ur’.id = ur.id))
This flav can be detected with ahdation condition that attempts to add a user record with the same id,feut dif
ent name, to the database. E.g.,

val phone: PhoneNunber = {805, 5551212};

val email: Email Address = "pccorw n@al poly. edu”;
val ur:UserRecord = {"Corwin", "1", email, phone};
val ur_duplicate_id: UserRecord = {"Fisher", "1", enmmil, phone};

val udb: UserDB = [];
val udb_added: UserDB = [ur];

> AddUser (udb_added, ur_duplicate_id) ?-> (udb_added);

The correct output of this validation {§ al se, ni | }, dnce the precondition should fail when trying to add a
record with the same idalue to a database containing a record with that id, i.e., "1". The flawed logic is not strong
enough, since it does not check specifically for the id value of edaht@ecord. This kind of error is typical with
students who may be initiallyverse to using quantifiers, and will do their best voic their use. A validation
counter-example can succinctly illustrate the problem with the flawed logic.

The second fla is the translation of The id of the given user record is not empty and 8 characters or less." The
flawed versus correct versions of the logic are:

(#(ur.id) <= 8)
Versus

(ur.id !'=nil) and (#(ur.id) <= 8)
The problem here is that the length operator returns O for a nil sting.vThefollowing validation condition
reveals the problem:

val ur_enpty_id: UserRecord = {"Corwin", nil, email, phone};

> AddUser (udb, ur_enpty_id) ?-> (udb);

The result of thiswaluation should bg f al se, ni | }, since the precondition should fail if the idig | . Here
ni | is the translation of "empty" in the prose statement of the requirement. Wed fiagic preconditionvaluates
to{true, nil},snce#(ur.id) =0whenur.idisnil,andhenc®d <= 8 evduates to true.

To some etent, this problem has to do with the specific semantics of FM&Iwever, dl formal specification lan-
guages he gecific rules, and users of the languages must understand clearly what the rulésirayealidation
invocations and additional exploratoryauation can help a userviop such understanding.

Some additional exploration of this example coulathke following form:
val enpty_integer:integer = nil;
val enpty_string:string = nil;
obj StringList = string*;
val empty_list:StringList = nil;

> #enpty_i nt eger;

> #enpty_string;

> #enmpty_list;
where all three expressiongaiate to 0. In the case of the integer value, the length operaterigazled to ealu-
ate to the number of integer digit§he rules illustrated here could be read in the FMSL users matdaalever, the
ability to explore interactely can be enlightening, as it is in theveonments of interprete and cowversational
programming languages.

The third and final fla in Figure 3.29 is the translation bff the phone area code and number are present, they

must be 3 digits and 7 digits respectively." The flawed and correct versions of the of the logic are:

(#(ur.phone.area) = 3) and
(#(ur.phone.num = 7));

VEersus

(if (ur.phone.area != nil) then (#(ur.phone.area) = 3)) and
(if (ur.phone.num!= nil) then (#(ur.phone.nunm) = 7));

The problem is neealed with the following validation irocation:
val ur_enpty_phone: UserRecord = {"Corwin", "1", email, nil};

> AddUser (udb, ur_enpty_phone) ?->(udb);

The correct validation result {st rue, ni | }, since the requirement allows the phone number components to be
empty Without the eplicit check for this, the subxpressionur . phone. ar ea evduates toni | . As eplained

in the previous example, the length operator applied w la value uniformly returns 0. This means that
#(ur. phone. ar ea) returns 0, which leads the precondition valeate tof al se instead ot r ue.

