
Page 1

Notes on Quantifiers

These are some notes on the basics of quantifiers and how to implement them. Sorry if it’s is too rudimentary in
places.

Forms of Quantifier Expressions

Quantifiers are boolean-valued expressions that evaluate a quantified sub-expression multiple times. The number of
times the evaluation happens depends on the kind of quantification, which upcoming examples illustrate.

As in normal predicate logic, there are two forms of quantification --universal andexistential. Universal quantifica-
tion is expressed with aforall expression, existential withexists.

The basic form of universal quantification is:

forall (x:t) predicate

This is read "for all valuesx of type t, predicate is true", where the variablex must appear one or more times in the
predicate. For example,

forall (rec:PersonRecord) rec.name != nil

This expression says that thename field of all PersonRecords is not nil, assuming an appropriate definition of
PersonRecord, e.g.,

obj PersonRecord = name:Name and age:Age and ...
obj Name = string;
obj Age = integer;

There are two extended forms of universal quantification:

Extended Form Reading Equivalent To

forall (x:t | p1) p2 forall (x:t) if p1 then p2For all x of type t, such that
p1 is true,p2 is true.

forall (x in l) p For all x in l, p is true. forall (x:basetype(l))

if x in l then p

The "Equivalent To" column means that the extended forms are not any more powerful than the standard form, just
more convenient in some cases. The list form is particularly convenient in postconditions of operations that return
lists, e.g.,

op CreateNonEmptyList()->(l: integer*)
post: forall (item in l) item != nil;

end;

This postcondition says that all of the items in the output list must be non-nil.

The value of a quantifier expression is true ifall sub-expression evaluations are true. E.g.,

forall (item in l) item != nil

is true if and only if every item in the list is not nil.If one or more items isnil, then theforall is false. Inthis
sense, universal quantification is the collectedand of all sub-expression values.

Existential quantification is logically complementary to universal quantification. That is, existential quantification is
the logicalor of all sub-expression values. E.g.,the following expression is true if at least one element of the listl
is nil:

exists (item in l) item = nil



Page 2

While it’s not critical to formalize the relationship between universal and existential quantification, it’s helpful to
understand their similarity as operators. The relationship is based on the fact thatforall is repeatedand, and
exists is repeatedor. This leads to an extended form of DeMorgan’s law

x and y <=> not (not x or not y)
x or y <=> not (not x and not y)

for quantifiers

forall (x:t) p <=> not (exists (x:t) not p)
exists (x:t) p <=> not (forall (x:t) not p)

Again, this isn’t a big deal, but it helps illustrate that both quantifiers are doing the same thing.Namely, they’re
applying a boolean operator multiple times to get a single boolean result.

Quantifier Evaluation

One can think of quantifiers as a form of programming loop. The important difference between a quantifier and a
loop is that the quantifier only produces a single boolean value. Incontrast, a program loop typically does not pro-
duce a value itself.Rather, the loop executes a body of statements multiple times, with the statements producing
value(s) stored in persistent variable(s).

Here’s a side-by-side example that illustrates the difference between aforall expression and afor loop. The
idea in both examples is to check that there’s no 0 value in a list of integers. Thequantifier version is

forall (i in l) i != 0

The loop version is

bool result = false;
for (i = 0; i < length(l); i++) {

if (l[i] == 0) {
result = false;
break;

}
}

In this example, the quantifier expression looks a lot simpler. But this is because the problem is to compute a
boolean value that checks all of the elements of a list.If the problem involves some other computation than a
boolean value, then aforall quantifier can’t be used. E.g.,there is no quantifier expression that can do the list-
summing computation done by the following loop

int sum = 0;
for (i = 0; i < length(l); i++ {

sum += l[i];
}

The recurring important point is that quantifiers evaluate to a single boolean value. Aquantifier expression cannot
be used to produce values other than boolean. (Aside -- things like integer summing are done in a functional lan-
guage using recursion, but that’s off -topic as far as quantifiers go.)

Implementing Quantifiers

Since quantifiers act like a form of loop, the interpreter implementation will naturally use a loop.The list form of
quantifiers is the easy case. E.g.,

forall (x in l) expression

loops through each element of the listl, and evaluatesexpression in each iteration.Prior to each iteration, the
interpreter binds the value of each successive list element to the quantifier variablex.

The quantifier defines its own scope, with the quantifier variablex defined locally in that scope. The type checker
currently allocates a symbol table in thechkQuant function, but the offset computation probably needs to be
upgraded in order to work. (It’s opportune that you just did the update of the tuple symbol table offset computation.)



Page 3

When the quantifiedexpression is evaluated in theforall scope, it will do a Lookup on all the variables it the
expression, including the local quantifier variable. Thismeans thatdoForall needs to descend into the quanti-
fier’s scope. Inthis way, Lookup will find the local quantifier variable in the normal way.

Interpreting the general form of quantifiers is where the trick comes in.For a case like the very first example,

forall (rec:PersonRecord) rec.name != nil

the universe of quantified values is unbounded.This is because the number of possible values ofPersonRecord
is unbounded, e.g., because the number of strings and integers is unbounded.

The trick we’re going to use is to evaluate an unbounded quantifier with a universe of values that have been created
since the beginning of an interpreter session.A "session" will eventually be interactive, but for now it means during
the interpretation of a single file.

What I have in mind for keeping track of values is to keep separate (hash) tables of each value type. E.g., whenever
a value of typePersonRecord is created, a pointer to that value will be stored in thePersonRecord value ta-
ble. Thenwhen a quantifier over PersonRecord is evaluated, the value universe will be all values in thePer-
sonRecord value table.

There’s a bit of thinking that has to go into when values of a particular type are created. Think about the following
example:

var pr: PersonRecord;
pr := {"Jones", 25};

The raw value "{"Jones", 25}" is not known to be of type PersonRecord indoTupleConstructor. It only
gets that type when it’s bound to thepr variable that’s been explicitly declared asPersonRecord. So, determin-
ing that a new value of typeT has come into existence can go something like this:

a. checkfor new value creation in theBind function

b. do so by looking up the value in the value table for the type of identifier the value is being bound to

c. if the value is not already in the table, put it there

Another context in which a new type value is potentially created is as the return of an operation. I’m not 100% sure,
but I think this case will probably be caught by a value binding of a variable in a post condition. This requires a bit
of thought.

There are probably some tricks that can make the table search more efficient, What comes to mind is the way the
string.{h,c} abstraction works, where any two or more literal strings that are lexically equal will always be repre-
sented by the same value in the string table. And this means that string equality can be performed with just pointer
equality. In a similar way, any lexically equal tuple literals could be stored in a table such that pointer equality could
be used instead of deep equality.

For starters, you can leave efficiency out of the picture, until the concept works.

How this Fits into the Slightly Grander Scheme of Testing

The way that a tester will "populate" a value universe goes something like this:

a. If there are some initial "canned" values, the tester can do a bunch of global expressions evaluations at the
beginning of a session.

b. As test cases are executed, any test function that returns a value will cause that value to be added to the type-
specific value universe.

c. Theevaluation of unbounded quantifiers will get stronger as the value universe expands.


