Page 1

Notes on Quantifiers

These are some notes on the basics of quantifiers antbhmplement them. Sorry if & is Do rudimentary in
places.

Forms of Quantifier Expressions

Quantifiers are boolean-valued expressions tati@e a quantified sub¢pression multiple times. The number of
times the ealuation happens depends on the kind of quantification, which upcoming examples illustrate.

As in normal predicate logic, there areotiorms of quantification -tniversal andexistential. Universal quantifica-
tion is expressed withfaor al | expression, existential witaxi st s.
The basic form of umersal quantification is:

forall (x:t) predicate

This is read "for all &luesx of typet, predicate is true", where theariablex must appear one or more times in the
predicate. For example,

forall (rec:PersonRecord) rec.nane != nil
This expression says that thane field of all Per sonRecor ds is ot nil, assuming an appropriate definition of
Per sonRecord, eg.,

obj PersonRecord = nane: Nane and age: Age and ...

obj Nanme = string;

obj Age = integer;
There are tw extended forms of umersal quantification:

Extended Form Reading Equivalent To

forall (x:t | pl) p2 | Foral xof typet, such that | forall (x:t) if pl then p2
plis true,p2 is true.

forall (x inl) p For al xin |, pis true. forall (x:basetype(l))
if xinl then p

The "Equvaent To" column means that the extended forms are notane powerful than the standard form, just
more comrenient in some cases. The list form is particularlyveorent in postconditions of operations that return
lists, e.g.,

op CreateNonEnptyList()->(1: integer*)
post: forall (itemin 1) item!= nil;
end;

This postcondition says that all of the items in the output list must be non-nil.

The value of a quantifier expression is trualisub-expressionveluations are true. E.g.,
forall (iteminl) item!= nil

is true if and only if eery item in the list is not nil.If one or more items igi | , then thef or al | is false. Inthis
sense, unirsal quantification is the collectaahd of all sub-expression values.

Existential quantification is logically complementary tovergal quantification. That is, existential quantification is
the logicalor of all sub-expressionalues. E.g.the following expression is true if at least one element of thk list
is nil:

exists (iteminl) item= nil

Page 2

While it's rot critical to formalize the relationship betweenwersal and existential quantification,sithelpful to
understand their similarity as operators. The relationship is based on the fdabrthai is repeatedcand, and
exi st s is repeatedr . This leads to an extended form of Delgar's law

x and y <=> npot (not x or not y)
X or y <=> not (not x and not Yy)

for quantifiers
forall (x:t) p <=> not (exists (x:t) not p)
exists (x:t) p <=> not (forall (x:t) not p)

Again, this isnt a big deal, but it helps illustrate that both quantifiers are doing the same thargely they're
applying a boolean operator multiple times to get a single boolean result.

Quantifier Evaluation

One can think of quantifiers as a form of programming loop. The important difference between a quantifier and a
loop is that the quantifier only produces a single booledurev Incontrast, a program loop typically does not pro-

duce a value itselfRather the loop &ecutes a body of statements multiple times, with the statements producing
value(s) stored in persistent variable(s).

Heres a sde-by-side example that illustrates the difference betwefeoral | expression and &or loop. The
idea in both examples is to check that treeng 0 \alue in a list of intgers. Theguantifier version is

forall (i inl) i !'=0
The loop version is

bool result = false;
for (i =0; i <length(l); i++) {

if (I[i] ==0) {
result = fal se;
br eak;

}

In this example, the quantifier expression looks a lot sim@ert this is because the problem is to compute a
boolean value that checks all of the elements of a listhe problem inolves some other computation than a
boolean value, thenfaor al | quantifier cart' be wsed. E.g.there is no quantifier expression that can do the list-
summing computation done by the following loop

int sum= 0;

for (i =0; i <length(l); i++ {
sum+= 1[i];

}

The recurring important point is that quantifievsleate to a single boolearalue. Aquantifier expression cannot
be used to produce values other than boolean. (Aside -- thimgstéger summing are done in a functional lan-
guage using recursion, but ttsadif-topic as far as quantifiers go.)

Implementing Quantifiers

Since quantifiers act léka form of loop, the interpreter implementation will naturally use a lode list form of
guantifiers is the easy case. E.g.,

forall (x in |) expression

loops through each element of the listand evaluatesexpr essi on in each iteration.Prior to each iteration, the
interpreter binds the value of each sucaeskst element to the quantifier variabde

The quantifier defines itsnm scope, with the quantifieaxiablex defined locally in that scope. The type charck
currently allocates a symbol table in tbhkQuant function, but the déet computation probably needs to be
upgraded in order toavk. (It's goportune that you just did the update of the tuple symbol table offset computation.)

Page 3

When the quantifiedxpr essi on is evaluated in the or al | scope, it will do a Lookup on all the variables it the
expression, including the local quantifiesriable. Thismeans thatdoFor al | needs to descend into the quanti-
fier's <ope. Inthis way Lookup will find the local quantifier variable in the normal way.

Interpreting the general form of quantifiers is where the trick comdsoma case lile the very first example,
forall (rec:PersonRecord) rec.nane != nil

the unverse of quantified values is unboundékhis is because the number of possible valudzeosonRecor d
is unbounded, e.g., because the number of strings and integers is unbounded.

The trick we're going to use is toauate an unbounded quantifier with avanse of values that ka keen created
since the bginning of an interpreter sessioA."session" will gentually be interactie, but for nawv it means during
the interpretation of a single file.

What | have in mind for keeping track of values is to keep separate (hash) tables ofadaehype. E.g., whemer
a value of typePer sonRecor d is created, a pointer to that value will be stored inRbesonRecor d value ta-
ble. Thenwhen a quantifierwer Per sonRecor d is evauated, the value unérse will be all values in thPer -

sonRecor d value table.

Theres a bt of thinking that has to go into whemlues of a particular type are created. Think about thexfimitp
example:

var pr: PersonRecord;

pr := {"Jones", 25};

The rav value {" Jones", 25}"is not known to be of type PersonRecordlmTupl eConst ruct or . It only
gets that type when &'bound to thepr variable thats been explicitly declared @er sonRecor d. So, determin-
ing that a ne value of typel has come into existence can go somethirgthis:

a. checlkor naew value creation in thBi nd function
b. do so by boking up the value in the value table for the type of identifier the value is being bound to
c. if the value is not already in the table, put it there

Another context in which a metype \alue is potentially created is as the return of an operation. I’'m not 100% sure,
but I think this case will probably be caught by a value binding of a variable in a post condition. This requires a bit
of thought.

There are probably some tricks that can entile table search more efficient, What comes to mind is the way the
string.{h,c} abstraction works, where yatwo or more literal strings that are lexically equal willvalys be repre-

sented by the same value in the string table. And this means that string equality can be performed with just pointer
equality In a smilar way, any lexically equal tuple literals could be stored in a table such that pointer equality could

be used instead of deep equality.

For starters, you can lea dficieng out of the picture, until the concept works.

How this Fits into the Slightly Grander Scheme of Testing

The way that a tester will "populate” a valuevarse goes something ékhis:

a. If there are some initial "cannedalues, the tester can do a bunch of global expressi@hsagons at the
beginning of a session.

b. As test cases arexecuted, ag test function that returns a value will cause ttdtie to be added to the type-
specific value uwierse.

c. Theevduation of unbounded quantifiers will get stronger as the valwersei expands.

