
Page 1

Notes on Implementing List Ops in the Interpreter
26 January 2009

I believe the best way to represent lists in the interpreter is as C Lists of Values. ByC List, I mean the list structure
defined in the revised list.h and list.c.

Using Lists of Values will allow all lists to be handled uniformly, as far as list operations go.It may be useful to
define a ValueList specialization of List, with ListElemData typedef’d as Value, and appropriate specializations of
the List functions.

A l ist Value struct has the following data fields:

LoR = RVAL or LVAl, depending on context
tag = ListTag
type = pointer to full list TypeStruct
size = TypeSize(List*), i.e., always the size of just a pointer
val.ListVal = pointer to C List structure

This is a Lisp-style (Java-style) implementation of lists, as pointers to dynamically-allocated data. So, in any inter-
preter memory pool, a list value is allocated with only a pointer’s worth of storage. This means there are no array-
like list values, with inline storage and offsets for the elements.

Based on this list representation, here are some notes about implementing list operations:

Operator Description Implementation Notes

[e
1
,...,e

n
] construction (elementwise) Start by building a new List Value struct. Then build the list

value with NewList, followed by a loop of
PutList(interExpr(e

i
)) for each element expression. Returnthe

new Value.

[e
1
.. e

n
] construction (inclusive range) Like elementwise construction, but for the range e

1
-e

n
. The

type checker ensures that the type of e
1

and e
n

are integer.

L[n] selection (nth, from 1) Use GetNthList to fetch the Value at the nth position in the
list, and return that Value.

L[m..n] selection (mth - nth) Like range construction, but using a loop with GetNthList to
get the elements at list positions m through n. Return the new
list.

Page 2

+ concatenation Use the C function ListConcat. That function takes two lists,
but FMSL list contat (with ’+’) is overloaded to allow three
cases:

(1) both args are lists (the way ListConcat is implemented)
(2) first arg is an element, second arg is list
(3) vice versa of case 2

For cases 2 and 3, the type checker ensures that the element
arg is the correct type, i.e., it’s of the base type of the list.In
the interp, you’ll need to wrap the element arg into a list, by
creating a new List Value. Thenyou can call the ListConcat
function.

As explained in the documentation of list.h, ListConcat is the
non-mutating version of list construction.It’s OK to use the
mutating PutList in the initial list construction, but the non-
mutating ListConcat needs to be used for the FMSL list con-
cat, in order for it to have non-mutating semantics.

- deletion Use the C functions InListWithFunction, SubList, ConcatList.
We can’t use the DelListNth function, because FMSL list dele-
tion is non-mutating.For example, if l is an FMSL list of inte-
ger =[1,2,3,4], then the expression

l - 3

returns[1,2,4]. Like list concat, it’s a non-mutating func-
tion, meaning the value of l is not affected by the delete.

The args for FMSL deletion are not overloaded like list concat.
The first arg to delete must be a list and the second arg must be
an element of the list’s basetype. Thetype checker ensures
this. Therearen’t three overloads like there are for list concat.

So the implementation of the delete op starts by searching the
list using InListWithFunction. Ifthat returns a non-zero value,
then a non-mutating version of DelListNth is performed.The
code looks like this, for the list value l and delete position n:

ConcatLists(SubList(l, 1, n-1), SubList(l, n+1, ListLen(l)));

DelNthList is not itself called, but replaced with this chunk of
code. It’s the standard delete idiom for a functional language.
Instead of mutating l by removing the nth element, a new list
is created by concatenating the first n-1 elements of l, with the
n+1st through the last element of l.

I noted above that the implementation of list delete should use
InListWithFunction, not just InList. The discussion immedi-
ately below abut the FMSL in operator clarifies this. I.e., it
explains the function to use with InListWithFunction.

Page 3

in membership Use the list function InListWithFunction. Thedeal is that all
equality checks in FMSL must be deep. In Lisp terms, equali-
ty in FMSL is implemented asequal, not eq (if you happen
to recall that distinction).

As explained in the list.h documentation, there are two c func-
tions that implement membership -- InList and InListWith-
Function. Whenyou used InListWithFunction, you supply a
function that performs the deep equality test for two list ele-
ments. Inthe case of a Value struct as the list element type,
the equals function uses the Valtag to determine how to com-
pare the values. For the atomic types, it can use ==. I.e., the
IntVal, RealVal, BoolVal can be compared with ==.String
compare is used for StringVals. Theequals function for lists
works recursively, with == for atomic list elements and recur-
sive descent into sublists.The testing example in int-list-test
has the basic idea, in the example EqualsFunc.

length Use the ListLen function.

