Page 1

Notes on Updated Memory M odel
2 February 2009

The memory model has been fundamentally changed, from the coiik@ldlodula-2 model, to a uniform model
based on arrays of Value pointers.

In the old model, memory was laid out aw idata values, of differing sizes, aligned on byte boundaftesexam-

ple, consider a memory gment of intger, boolean, and real. The size of this segment was sizeof(integer) +
sizeof(bool) + sizeof(double), which is typically 13 bytes. Identifiers bound to these respatiies were gien

byte offsets of O (for the int), 4 (for the bool), and 5 (for the réBd)access a identifies'value:

a. lookupthe identifier in the current symbol table
b. et it's memory offset from the symbol table entry

c. memcpy the data starting at the offset, copyingp@Size(alue) bytes, where TypeSize = 4, 1, or 8 in this
example.

E.g., the real-valued data in this example are 8 bytes, starting at offset 5.

In this contat, an "identifier" is some name designating a storage location. In the interfireterare three kinds
of storage-designating identifiers --

a. operatiorparameters and local variables
b. twple field names
c. globalvariables.
Details of the memory layout for these three kinds of idents are discussed as we go.

In the nev memory model, all &lues are uniformly represented as pointers to a Value struct, of seleef(y
which typically is 4 bytesIn the preceding memory example, thavreegment size is 3 * sizeof@lue*). Memory
offsets are monotonically-increasing by increments of sizeti@?). l.e.,identifiers are bound to offsets 0 (for the
int), 1 (for the bool), and 2 (for the real).

Also in the ne& memory model, the first tavaccess steps are the same as in the old model, i.e., lookup an ident and
get it's dfset. Butthe third access step does not require a mgitacget the data.Rather the data are accessed by
following a Value pointerinto its \al component. E.g, the real-valued data are accessed ialtReal\alue com-
ponent, of the Value pointed to in the variable at memory offset 2.

To summarize, what the mememory model looks li& is a C aray of Value struct pointers. E.g., instead of & ra
4-byte integer in memoyyheres a inter to a Value that holds the igex This is obviously a lot less fefient,

both in terms of space and access time. But time and space of this nature retityatten’'much, if at all, in the

kind of interpreter we’re dilding. Plusthe uniform structure makes things much easier to deal with in FMSL com-
pared to Modula.Among the issues that the uniform memory simplifies are the declare-after-use semantics of
FMSL, recursie types, and value binding.

Here are a couple pictures that illustrate the old amdnmemory structures The first pictures is taken from 451 Lec-
ture Notes Week 3. ltillustrates the memory layout for the following chunk of Modula-2 code:

nodul e
var R
record
x: real; /* 8 byte real */
i,j,k: integer; /* 4 byte ints */
c,d: char; /* 1 byte chars */
end;
begin
R k := 10;

end

Page 2

tag e———+ » TYPENODE for integer

size TypeSize(IntType)

val.lval ?

staticpool

storage for other
base of —7 1 daticvars

record R\

~

> storage for record R

_J

The next picture is for the revised memory layout, for theveunit FMSL chunk of code:

obj rec =
x:real and
i:integer and j:integer and k:integer and
c:string and d:string;

var R rec;

> Rk := 10;

Page 3

tag 1™ TYPENODE for integer
size TypeSize(Value*)
val.lval *
staticpool

storage for other

base of —2 1+ staticvars

record R \

heap

storage for record R

these are all Value pointers

The last line of FMSL code in factdd, but it's not part of the functional core of the language, and not really the
focus of what we're doing. But since we're working from the old Modula-2 interp, the code for designators will
allow it.

The important point for what you're doing is that théstng doDesi gnat or and related functions shouldovk
with one modification -- change the memdap just a regular C assignment statement. That is, instead of mgmcop
ing, a segment of bytes from memory into a Value, just assign the value pointer to the designated memory location.

Page 4

Three Storage Areas

Corresponding to the three different kinds of designating idents, there are three storage areas that are specifically
affected by the memory model:

a. operatioractiation records
b. tple storage
c. thestatic pool of globally-declared variables
Each of these will no be represented simply as a C array afué*. Thesizes of these areas are, respelsti
a. thenumber of input parameters, output parameters, and local variables for an operation
b. the number of top-lesl components of a tuple
c. thetotal number of globally-declared variables
Some details gerding each of these areas follo

Activation Records

When the type checker checks an operation/function declaration, it creates a symbol table for the sgewaton’
It makes an entry in the symtab for each input parairesteln output parameteand each local 'let’ declarationA
'let’ expression declares a local variable, as well as assigning it a value.

The interpretation of operationviocation can go essentially as it is for Modula-2gegithat the parameter and local
var offsets are pre-computedVith the n&v memory model, you dob’haveto distinguish between the flifent
kinds of parameters that were in Modula, i.e., call-by-and open arraySo, you can get rid of all the code that
deals with those parameter styldsverything is strictly call-by-value, and each parameteedak uniform amount
of storage, namely the storage for a Value* that points to the actual parameter value.

Tuples

A tuple is a block of memory much ékan &tivation record. The type checker creates a symtab for each tuple, and
stores it in the tuple type tree. Specificaltyr a tuple type t, the symtab and its size are stored in

t - >conponents. type. ki nd. record. fiel dstab
and
t - >conponent s. type. ki nd. record. nunfi el ds

Here "record" is the old name for "tuple”, lefteo from Modula-2. | tried changing the nameubit broke a lunch
of stuff, so | figure we can jusvé with the slight misnomer.

In the nev uniform memory layout, each tuple component takesxty the same amount of storage, that is, the size
of a Value*. Anothersignificant diference from the old Modula memory scheme is the memory for nested tuples.
Specifically in the n& model, a nested tuple does not store the sub-components iRlinexample, in a Mod-
ula-2-style memory scheme, the following nested tuple wowld hed inline storage for fevintegers

object NT = cl:integer and c2:integer and t:(

il:integer and i2:integer ant i3:integer);

In the nev scheme, NT has storage for three Value*, which are the t@demponents of the type. The third top-
level component has a Value* that points in turn to a three-component sub-tuple.

You can think of tuples as arrays of Value*, indexable by a field name for each array element. The field-name-to-
array-inde correspondence is the offset stored in the tegahbol table for each tuple component. E.e., for NT

the c1 component is at offset 0, c2 at offset 1, and t at offset 2. fBeé¢isfused directly as an array irde get the

Value for each component.

The Global Static Pool

In the Modula-2 interpreteglobal vars played a more fundamental role thag tieein AMSL. Thereis a global ar
declaration in FMSL, but using it crosses the line from a functional/degkapic to a non-functional/procedural
spec. Neertheless, | think i8 easy enough to implement global varssegithe Modula-2 base interp. In particylar

Page 5

the binding of operation parameters is done by assignment. Also, it will be handy tgdiel vars for testing pur
poses

Syntactically a dobal var declaration looks kkthis:
var x:type [= val ue]

In the current interp.h, the static pool size is declared as 25000. The type checker has a count of the number of
global vars declared in the files it checkst tWwhen the interp runs interacly, new dobals can be declaredo,

25K is an initial size estimate, to alldfor a generous number of global var declheres code in the interp to
increase the size of the pool if more space is needed as an inéesagtion proceeds.

In the old memory model, static storage for all non-poinées was totally pre-allocated in static pobAllocated”
means that the static pool offset ended up being at tyscalhend of all allocated storage. In the case of Modula
arrays and records, all storagasnallocated in-line within the static pool. So, to access an array value or record
field, you just mged an dfset inde& to an gopropriate place in the pool.

In the nev memory model, list and tuple storage will only be initially allocated as a single pointer per list or tuple.
The actual storage for the list or tuple will be allocated when the list or tuple is constructed with the constructor ops:
[...]and {...}.

Tuple Value Construction

The nev memory scheme prominently affects thaywtuple construction is implemented. Consider the viotig
example, that declares and initializes a variable of type NT:

var nt:NT = {1, 2,{10, 20, 30}};
In the interp, there can be a function called Wilg@Constructgrthat allocates Value structs for a tupddue. Inthe
case of this example, the variable nt will onlywéaorage for one Value* pointer in the static podlgain, static
pool "allocation” means that the variable nt has an offset into the pool, andf$keatiht the beginning has a one-
word Value* pointer.
The following happens in the doTupleConstructor function:
arecord (aka, tuple) Value is mallddfor the outer tuple; this value is an array with three Value* elements
the pointer to newly mallod’tuple array is stored in st%atic pool location
aninteger Value is created for the firstd@omponent values -- 1 and 2
thesdwo values are pointed to from the firstaWalue* pointers in ng aray
e. anotheB-element record Value is created for the nested tuple, i.e., a C array with three Value* elements
f. thethird Value* of nt points to the mesub-tuple Value

g. finally, an integer Value is created for the three sub-component values -- 10, 20, 30, @nel ploénted to
from the three elements of the sub-tuple array

2o op

Up at the top of the structure, the Value for nt will contain the complete type for the nested tuple, including the
symtab the the type checkarilds. Gien this, I'm hoping that the function RecordRef can work as-is, since it uses
the tuple symtab to find the offset of a record field, i.e., tuple component. What will come back from RecordRef an
[-value that points to a selected fielgClerically, RecordRef could be renamed TupleReft there are still plenty of

places where "record" appears in namiehink we just need toue with the fact that "record" and "tuple" are syn-
onyms.)

L-Values versus R-Values for Designated Storage

Let’s talk about this in our next phone meeting.

