

Thesis Defense:
Incremental Validation

of Formal Specifications

Paul Corwin

May 12, 2009

gfisher
Cross-Out

gfisher
Sticky Note
I think I mentioned at some point that a fast burn rate for slides is about one per minute. This means that 133 slides are too many.

I've marked a number of slides for deletion, and made some suggestions for shortening the text. The biggest chunk I suggest removing is almost all of the discussion on chapters 5 and 6.

If you have time, I think it would be a very good idea to do a dry run for timing. You don't necessarily have to stand up in front of Stacey with a tie on. But you should talk through the whole presentation, with a timer running. Remember that since Clark has to leave earlier than normal, you need to keep the length of the talk to no more than 45 minutes.

Committee Members

Committee MemberDr. Clark Turner

Committee MemberDr. David Janzen

Advisor & Committee ChairDr. Gene Fisher

RoleName

gfisher
Text Box
You can leave this slide out.

Incremental Validation
of Formal Specifications

• Presents a tool for the mechanical validation of formal
software specifications

• Novel approach to incremental validation
• Form of “light-weight” model checking
• Part of FMSL: a formal modeling and specification

language
• Small-scale aspects of a specification are validated;

step-wise refinement
• Presents example that’s been used in software

engineering courses for years
• Use of the tool led to discovery of a specification flaw

gfisher
Text Box
You can leave this slide out.

Presentation Outline

• Chapter 1: Introduction
• Chapter 2: Background and Related Work
• Chapter 3: Demonstration of Tool

Capabilities
• Chapter 4: Overall System Design
• Chapter 5: The Functional Interpreter
• Chapter 6: Quantifier Execution
• Chapter 7: Conclusions

gfisher
Cross-Out

Presentation Outline

• Chapter 1: Introduction
• Chapter 2: Background and Related Work
• Chapter 3: Demonstration of Tool

Capabilities
• Chapter 4: Overall System Design
• Chapter 5: The Functional Interpreter
• Chapter 6: Quantifier Execution
• Chapter 7: Conclusions

gfisher
Cross-Out

Chapter 1: Introduction

• Software engineering is error-prone and
expensive

• Early detection of errors is beneficial
• Thesis focuses on early error detection during

formal specification
• Tool-supported technique: FMSL
• Added executability

– Standard functional evaluation
– Boolean expressions containing universal and

existential quantifiers, bounded and unbounded

gfisher
Cross-Out

gfisher
Replacement Text
SE

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Replacement Text
Provides specification

The Problem

• How to validate a formal model-based
specification?

• Need for tools and methods that expose errors,
misunderstood properties, improperly stated
behaviors

• FMSL model behavior defined with Boolean
preconditions and postconditions on operations

• Evaluating quantifier expressions of particular
interest

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Replacement Text
Focus here is making spec executable.

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Inserted Text
s

gfisher
Cross-Out

Thesis Aims

• Provide a means to validate formal
specifications in a straightforward manner

• Demonstrate practicality in an instructional
context

gfisher
Text Box
You can leave this slide out.

FMSL

• Was a predicative specification language

• Had type checker
– Performs syntactic and semantic analysis

– Comparable to compilers of strongly typed
programming languages

• Added executability

• Focused on operation validation

gfisher
Cross-Out

Presentation Outline

• Chapter 1: Introduction
• Chapter 2: Background and Related Work
• Chapter 3: Demonstration of Tool

Capabilities
• Chapter 4: Overall System Design
• Chapter 5: The Functional Interpreter
• Chapter 6: Quantifier Execution
• Chapter 7: Conclusions

Chapter 2: Background and
Related Work

• Formal methods and related topics

• “Lightweight” formal methods

• Relevant specification languages and
model checkers

gfisher
Sticky Note
On this slide and others with only a view bullets, you can increase the line spacing between bulleted topics.

Formal Methods: What Are They?

• Processes that exploit the power of
mathematical notation and proofs

• Express system and software properties
• Help establish whether a specification

satisfies certain properties or meets
certain behavioral constraints

Formal Methods: Downsides

• Played “insignificant” role in software
engineering in last 30 years [Glass]

• Rarely used, high barrier of entry
[Heitmeyer]

• Few people understand what formal
methods are or how to use them [Bowen
et al.]

• High up front cost [Larsen et al.]

gfisher
Cross-Out

gfisher
Replacement Text
FM

Formal Methods: Upsides

• Can be used during requirements development,
specification, design, and implementation

• Practical means of showing absence of
undesired behavior [Kuhn]

• Helps users better understand a system
– Formality prompts engineers to raise questions

[Easterbrook et al.]
– Forces early, serious consideration of design issues

[Jackson et al.]
– Abstraction can mask complexities [Agerholm et al.]

• Cost savings achieved [Larsen et al.]

gfisher
Cross-Out

“Heavyweight” Formal Methods: Model
Checkers and Theorem Provers

• Model Checking
– Formal technique based on state exploration; purpose

is to evaluate particular properties [Chan]
– Often involves search for a counter-example [Kuhn et

al.]

• Theorem Provers
– Assist the user in constructing proofs [Kuhn et al.]
– May require expert users
– Can lead to slower product design cycle [Kurshan]

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Cross-Out

Formal Methods: Can Be Used on
Individual System Parts

• Can be overkill for a system in its entirety
[Bowen]

• Sometimes only system parts would benefit from
formal methods [Agerholm et al.]

• Requires consideration to determine where
formal methods use makes sense [Larsen et al.]

• Formalized parts can be re-used in other
projects [Kuhn et al.]

• Promotes code re-use [Jackson et al.]

gfisher
Cross-Out

gfisher
Replacement Text
FM

gfisher
Cross-Out

gfisher
Replacement Text
some

gfisher
Cross-Out

gfisher
Replacement Text
FM

gfisher
Cross-Out

gfisher
Cross-Out

Lightweight Formal Methods

• Formal technique that falls short of
complete verification

• May not require that the user be trained in
advanced mathematics or sophisticated
proof strategies [Heitmeyer]

• May use formal notations
• Can be more practical and cost effective

than “heavyweight” formal methods
[Jackson]

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Replacement Text
FM

A Lightweight Technique:
Simulation

• Animates a model by examining a small
subspace of possible states [Jackson et
al.]

• May immediately expose mistakes
• Provides ability to test functional

requirements of interest early

gfisher
Cross-Out

gfisher
Cross-Out

Test-Driven Development and
Simulation

• Calls for programmers to write low-level
functional tests before beginning the
implementation
– Improves productivity [Erdogmus]
– Leads to less complex, but highly tested code [Janzen

et al.]

• Evaluating claims early on improves
understanding [Myers]

• Whether generated manually or automatically,
tests used for simulation purposes can be re-
used against the implementation

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Cross-Out

Existing Model Checking Tools and
Formal Specification Languages

• Verisoft
• Symbolic Model Verifier (SMV)
• Java Modeling Language (JML)
• Korat
• Object Constraint Language (OCL)
• Object-oriented Specification Language

(OOSPEC)
• ASLAN
• Aslantest

See thesis
paper for

more details

Empirical Successes
with Formal Methods

• BASE: A Trusted Gateway

• Miami University of Ohio: OOD Course

• NASA: Lightweight Formal Methods study

gfisher
Sticky Note
Stick in the little green note from the previous page.

BASE: A Trusted Gateway

• Had formal methods and non-formal methods
(control) groups develop a trusted gateway

• The formal methods group uncovered a hole in
the requirements; the control team did not

• The formal methods group’s software passed
more tests than the control methods group’s
software

• The formal methods group’s software performed
fourteen times faster than the control group’s
software

gfisher
Text Box
You can leave this slide out.

Miami University of Ohio: OOD
Course

• Had a formal methods group of students and a
control group of students design and implement
a common elevator project

• The formal methods teams followed more
rigorous design processes and had relatively
better designs

• 100% of the formal methods teams’
implementations passed the tests; only 45.5% of
the control group teams’ implementations
passed

gfisher
Text Box
You can leave this slide out.

NASA: Lightweight Formal Methods

• Observed effects of implementing light-weight
formal methods in certain NASA programs

• Easterbrook et al. concluded that the application
of formal methods early on added value

• Helped uncover ambiguities, inconsistencies,
missing assumptions, logic errors, and more

• Observed that the development team was more
receptive to fixing the problems, as they were
discovered early

gfisher
Text Box
You can leave this slide out.

Presentation Outline

• Chapter 1: Introduction
• Chapter 2: Background and Related Work
• Chapter 3: Demonstration of Tool

Capabilities
• Chapter 4: Overall System Design
• Chapter 5: The Functional Interpreter
• Chapter 6: Quantifier Execution
• Chapter 7: Conclusions

gfisher
Cross-Out

Chapter 3: Demonstration of Tool
Capabilities

• Simple illustrative example

• Objects and operations

object PersonList
 components: Person*;
 description: (*
 A PersonList contains zero or more Person records.
 *);
end PersonList;

object Person
 components: firstName:Name and lastName:Name and age:Age;
 description: (*
 A Person has a first name, last name, and age.
 *);
end Person;

object Name = string;
object Age = integer;

operation Add
 inputs: p:Person, pl:PersonList;
 outputs: pl':PersonList;
 precondition: not (p in pl);
 postcondition: p in pl';
 description: (*
 Add a person to a list, if that person is not already in the
 list.
 *);
end Add;

gfisher
Sticky Note
I think you should break this up into three separate slides, with bigger font. Since this is the first code example, it will be better to present it piece by piece.

How Does One Validate
That It Is Correct?

• Static correctness validated by FMSL type
checker
– Syntactic and semantic analysis

• Focus of this thesis is determining the
dynamic correctness

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Cross-Out

Person Definitions with Add

value p:Person = {"Arnold", "Schwarzenegger", 61};
value pl:PersonList = [];
value pl':PersonList = [p];

> Add(p, pl); -- invoke Add operation

gfisher
Text Box
You can leave this slide out.

• What value does the invocation of Add(p, p1)
produce?

• nil -- the empty value for any type of object
• Same value produced for any inputs, since Add

is defined only with a precondition and
postcondition

Person Definitions with Add

value p:Person = {"Arnold", "Schwarzenegger", 61};
value pl:PersonList = [];
value pl':PersonList = [p];

> Add(p, pl); -- invoke Add operation

gfisher
Sticky Note
I think a bigger font would help here.

gfisher
Cross-Out

gfisher
Replacement Text
Invoking Add Operation Directly

gfisher
Cross-Out

gfisher
Inserted Text
Answer:

gfisher
Cross-Out

gfisher
Cross-Out

Evaluate Add’s Precondition and
Postcondition

operation Add
 inputs: p:Person, pl:PersonList;
 outputs: pl':PersonList;
 precondition: not (p in pl);
 postcondition: p in pl';
 description: (*
 Add a person to a list, if that person is not already in
 the list.
 *);
end Add;

Evaluate Add’s Precondition and
Postcondition

value p:Person = {"Arnold", "Schwarzenegger", 61};
value pl:PersonList = [];
value pl':PersonList = [p];

> p in pl; -- should be false
> not (p in pl); -- should be true
> not (p in pl'); -- should be false

> p in pl’; -- should be true

 precondition: not (p in pl);
 postcondition: p in pl';

Validation Invocation

• Given inputs p and p1, expected output
p1', what are the values of the Add
precondition and postcondition?

> Add(p, p1) ?-> p1’;

gfisher
Sticky Note
Here and in the rest of the slides, I think it would be useful to increase the font size of the typewriter font examples.

Validation Invocation

• Given inputs p and p1, expected output
p1', what are the values of the Add
precondition and postcondition?

> Add(p, p1) ?-> p1’;

{ true, true }

Validation Invocation:
Counter Example

> Add(p, p1) ?-> p1;

Validation Invocation:
Counter Example

> Add(p, p1) ?-> p1;

{ true, false }

Expression Evaluation in FMSL

• Entails invoking an operator or operation
and returning the calculated result

• Collection of built-in Boolean, arithmetic,
tuple, and list expressions

gfisher
Sticky Note
In the style of the previous comments, what I think you can do with the rest of the slides is:

 • cut text so that each bulleted item is one line long, if possible

 • increase the font size of the code examples

Boolean Expression Examples
(*
 * Declare short value names for true and false.
 *)
val t:boolean = true;
val f:boolean = false;

(*
 * Boolean operator examples
 *)
> not t; -- evaluates t false
> t and f; -- evaluates t false
> t or f; -- evaluates to true
> t xor f; -- evaluates to true
> t => f; -- evaluates to false
> t <=> f; -- evaluates to true

Arithmetic Expression Example
(*
 * Declare and assign values to x, y
 *)
val x:real = 3.141592654;
val y:real = 2.718281828;

(*
 * Evaluate x divided by y and output the result
 *)
> x / y;

Output:

1.15573

Quantifier Evaluation

• Quantifiers: Boolean-valued expressions
that evaluate a quantified sub-expression
multiple times

• Universal (forall) and existential
(exists) forms of quantification

• Bounded and unbounded quantifiers
supported by FMSL

Universal Quantification

• Has the general form:

forall (x:t) predicate
• Read as “for all values x of type t,

predicate is true”

• Other extended forms:

forall (x:t | p1) p2

forall (x in l) p

Existential Quantification

• Has the general form:

exists (x:t) predicate
• Read as “there exists a value x of type t

such that predicate is true”

• Other extended forms:

exists (x:t | p1) p2

exists (x in l) p

Bounded Quantifier
(*
 * Declare an IntList object type and an IntList value
 *)
obj IntList = integer*;
val list:IntList = [1, 1, 2, 3, 5];

(*
 * Evaluate: all the integer elements within list are positive.
 *)
> "Expected: true";
> forall (i in list) i > 0;

Unbounded Quantifier
object Person
 components: firstName:Name and lastName:Name and age:Age;
 description: (*
 A Person has a first name, last name, and age.
 *);
end Person;

(*
 * Create values p1 and p2, which puts them in the Person value
 * Universe.
 *)
val p1:Person = {"Alan", "Turing", 97};
val p2:Person = {"Arnold", "Schwarzenegger", 61};

> forall (p:Person) p.lastName != nil; -- evaluates to true

User Database
Specification Example

• Pedagogical example for a distributed
calendaring application

• Used for undergrad instruction at Cal Poly
(CSC 308 – Gene Fisher)

object UserDB
 components: UserRecord*;
 operations: AddUser, FindUser, ChangeUser, DeleteUser;
 description: (*
 UserDB is the repository of registered user information.
 *);
end UserDB;

object UserRecord
 components: name:Name and id:Id and email:EmailAddress and
 phone:PhoneNumber;
 description: (*
 A UserRecord is the information stored about a registered user of the
 Calendar Tool. The Name component is the user's real-world name. The
 Id is the unique identifier by which the user is known to the Calendar
 Tool. The EmailAddress is the electronic mail address used by the
 Calendar Tool to contact the user when necessary. The PhoneNumber is
 for information purposes; it is not used by the Calendar Tool for
 contacting the user.
 *);
end User;

object Name = string;
object Id = string;
object EmailAddress = string;
object PhoneNumber = area:Area and num:Number;
object Area = integer;
object Number = integer;

gfisher
Sticky Note
I suggest leaving out the descriptions

operation AddUser
 inputs: udb:UserDB, ur:UserRecord;
 outputs: udb':UserDB;

 precondition:
 (*
 * The id of the given user record must be unique and less
 * than or equal to 8 characters; the email address must be
 * non-empty; the phone area code and number must be 3 and
 * 7 digits, respectively.
 *);

 postcondition:
 (*
 * The given user record is in the output UserDB.
 *);

 description: (* As above *);

end AddUser;

AddUser Operation

gfisher
Cross-Out

gfisher
Replacement Text
. . .

(*
 * Create some testing values.
 *)
val ur1 = {"Corwin", "1", nil, nil};
val ur2 = {"Fisher", "2", nil, nil};
val ur3 = {"Other", "3", nil, nil};
val udb = [ur1, ur2];
val udb_added = udb + ur3;

> AddUser(udb,ur3)?->(udb_added);

Output:

{ true, nil }

operation AddUser
 inputs: udb:UserDB, ur:UserRecord;
 outputs: udb':UserDB;

 precondition: (* Coming soon. *);

 postcondition:
 (*
 * The given user record is in the output UserDB.
 *)
 ur in udb';

end AddUser;

(*
 * Create some testing values.
 *)
val ur1 = {"Corwin", "1", nil, nil};
val ur2 = {"Fisher", "2", nil, nil};
val ur3 = {"Other", "3", nil, nil};
val udb = [ur1, ur2];
val udb_added = udb + ur3;

> AddUser(udb,ur3)?->(udb_added);

Output:

{ true, true }

Fundamental Question

• Are the preconditions and postconditions
strong enough?

• In the AddUser example, the precondition
is non-existent and thus it’s maximally
weak

• To test postcondition strength, we can use
the validation operator to run some
example inputs and outputs against
AddUser

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Inserted Text
s

val ur1 = {"Corwin", "1", nil, nil};
val ur2 = {"Fisher", "2", nil, nil};
val ur3 = {"Other", "3", nil, nil};
val ur4 = {"Extra", "4", nil, nil};
val udb = [ur1, ur2];

(*
 * A database value representing a spurious addition having been
 * made.
 *)
val udb_spurious_addition = udb + ur3 + ur4;

(*
 * A database value representing a spurious deletion having been made.
 *)
val udb_spurious_deletion = udb + ur3 - ur2;

> AddUser(udb,ur3)?->(udb_spurious_addition);

> AddUser(udb,ur3)?->(udb_spurious_deletion);

gfisher
Cross-Out

gfisher
Cross-Out

val ur1 = {"Corwin", "1", nil, nil};
val ur2 = {"Fisher", "2", nil, nil};
val ur3 = {"Other", "3", nil, nil};
val ur4 = {"Extra", "4", nil, nil};
val udb = [ur1, ur2];

(*
 * A database value representing a spurious addition having been
 * made.
 *)
val udb_spurious_addition = udb + ur3 + ur4;

(*
 * A database value representing a spurious deletion having been made.
 *)
val udb_spurious_deletion = udb + ur3 - ur2;

> AddUser(udb,ur3)?->(udb_spurious_addition);

> AddUser(udb,ur3)?->(udb_spurious_deletion);

Output:

{ true, true }

{ true, true }

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Comment on Text
color blue

operation AddUser
 inputs: udb:UserDB, ur:UserRecord;
 outputs: udb':UserDB;

 postcondition:
 (*
 * The given user record is in the output UserDB.
 *)
 (ur in udb')

 and

 (*
 * All the other records in the output db are those from the
 * input db, and only those.
 *)
 forall (ur':UserRecord | ur' != ur)
 if (ur' in udb)
 then (ur' in udb')
 else not (ur' in udb');
end AddUser;

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Sticky Note
You can say these comments when you talk.

operation AddUser
 inputs: udb:UserDB, ur:UserRecord;
 outputs: udb':UserDB;

 postcondition:
 (*
 * The given user record is in the output UserDB.
 *)
 (ur in udb')

 and

 (*
 * All the other records in the output db are those from the
 * input db, and only those.
 *)
 forall (ur':UserRecord | ur' != ur)
 if (ur' in udb)
 then (ur' in udb')
 else not (ur' in udb');
end AddUser;

Output:

{ true, false }

{ true, false }

gfisher
Cross-Out

gfisher
Cross-Out

Constructive Postcondition

• Constructive operations perform an actual
constructive calculation

• Analytic operations evaluate Boolean
expressions about the arguments

gfisher
Sticky Note
If time is getting short, you can leave out these slides on the constructive postcond.

Constructive Postcondition

• Constructive operations perform an actual
constructive calculation

• Analytic operations evaluate Boolean
expressions about the arguments

operation AddUser
 inputs: udb:UserDB, ur:UserRecord;
 outputs: udb':UserDB;

 postcondition:
 (*
 * The given user record is in the output UserDB.
 *)
 udb' = udb + ur;
end AddUser;

FindUserByName Operation

operation FindUserByName
 inputs: udb:UserDB, name:Name;
 outputs: ur':UserRecord*;

 precondition: (* None yet. *);

 postcondition:
 (*
 * A record is in the output list if and only if it is in
 * the input UserDB and the record name equals the Name
 * being searched for
 *);

 description: (*
 Find a user or users by real-world name. If more than one is
 found, output list is sorted by id.
 *);
end FindUserByName;

val ur1:UserRecord = {"Corwin", "1", nil, nil};
val ur2:UserRecord = {"Fisher", "2", nil, nil};
val ur3:UserRecord = {"Other", "3", nil, nil};
val ur4:UserRecord = {"Extra", "4", nil, nil};
val ur5:UserRecord = {"Fisher", "5", nil, nil};

val udb = [ur1, ur2, ur3, ur4, ur5];
val unsorted_result = [ur5, ur2];
val sorted_result = [ur2, ur5];
val too_many_unsorted = [ur2, ur5, ur2, ur2];
val too_many_sorted = [ur2, ur2, ur2, ur5];

> [1 .. 100];

> "What happens if there are unique, unsorted records?";
> FindUserByName(udb,"Fisher")?->unsorted_result;

> "What happens if there are unique, sorted records?";
> FindUserByName(udb,"Fisher")?->sorted_result;

> "What happens if there are non-unique, unsorted records?";
> FindUserByName(udb,"Fisher")?->too_many_unsorted;

> "What happens if there are non-unique, sorted records?";
> FindUserByName(udb,"Fisher")?->too_many_sorted;

gfisher
Sticky Note
I suggest breaking this up into two separate slides.

Validation Operator Invocation
Results: English Comments

"What happens if there are unique, unsorted records?"
{ true, nil }
"What happens if there are unique, sorted records?"
{ true, nil }
"What happens if there are non-unique, unsorted records?"
{ true, nil }
"What happens if there are non-unique, sorted records?"
{ true, nil }

FindUserByName: Basic Logic

operation FindUserByName
 inputs: udb:UserDB, n:Name;
 outputs: url:UserRecord*;

 precondition: (* None yet. *);

 postcondition:
 (*
 * The output list consists of all records of the given name
 * in the input db.
 *)
 (forall (ur: UserRecord)
 (ur in url) iff (ur in udb) and (ur.name = n));

 description: (*
 Find a user or users by real-world name. If more than one is
 found, the output list is sorted by id.
 *);
end FindUserByName;

val ur1:UserRecord = {"Corwin", "1", nil, nil};
val ur2:UserRecord = {"Fisher", "2", nil, nil};
val ur3:UserRecord = {"Other", "3", nil, nil};
val ur4:UserRecord = {"Extra", "4", nil, nil};
val ur5:UserRecord = {"Fisher", "5", nil, nil};

val udb = [ur1, ur2, ur3, ur4, ur5];
val unsorted_result = [ur5, ur2];
val sorted_result = [ur2, ur5];
val too_many_unsorted = [ur2, ur5, ur2, ur2];
val too_many_sorted = [ur2, ur2, ur2, ur5];

> [1 .. 100];

> "What happens if there are unique, unsorted records?";
> FindUserByName(udb,"Fisher")?->unsorted_result;

> "What happens if there are unique, sorted records?";
> FindUserByName(udb,"Fisher")?->sorted_result;

> "What happens if there are non-unique, unsorted records?";
> FindUserByName(udb,"Fisher")?->too_many_unsorted;

> "What happens if there are non-unique, sorted records?";
> FindUserByName(udb,"Fisher")?->too_many_sorted;

Validation Operator Invocation
Results: Basic Logic

"What happens if there are unique, unsorted records?"
{ true, true }
"What happens if there are unique, sorted records?"
{ true, true }
"What happens if there are non-unique, unsorted records?"
{ true, true }
"What happens if there are non-unique, sorted records?"
{ true, true }

operation FindUserByName
 inputs: udb:UserDB, n:Name;
 outputs: url:UserRecord*;

 precondition: (* None yet. *);

 postcondition:
 (*
 * The output list consists of all records of the given name
 * in the input db.
 *)
 (forall (ur: UserRecord)
 (ur in url) iff (ur in udb) and (ur.name = n))

 and
 (*
 * The output list is sorted alphabetically by id
 *)
 (forall (i:integer | (i >= 1) and (i < #url))
 (url[i].id <= url[i+1].id));

 description: (*
 Find a user or users by real-world name. If more than one
 is found, the output list is sorted by id.
 *);
end FindUserByName;

gfisher
Sticky Note
If time is running short, you can leave out the remaining FindUserByName examples.

I highly suspect that his will be the case.

val ur1:UserRecord = {"Corwin", "1", nil, nil};
val ur2:UserRecord = {"Fisher", "2", nil, nil};
val ur3:UserRecord = {"Other", "3", nil, nil};
val ur4:UserRecord = {"Extra", "4", nil, nil};
val ur5:UserRecord = {"Fisher", "5", nil, nil};

val udb = [ur1, ur2, ur3, ur4, ur5];
val unsorted_result = [ur5, ur2];
val sorted_result = [ur2, ur5];
val too_many_unsorted = [ur2, ur5, ur2, ur2];
val too_many_sorted = [ur2, ur2, ur2, ur5];

> [1 .. 100];

> "What happens if there are unique, unsorted records?";
> FindUserByName(udb,"Fisher")?->unsorted_result;

> "What happens if there are unique, sorted records?";
> FindUserByName(udb,"Fisher")?->sorted_result;

> "What happens if there are non-unique, unsorted records?";
> FindUserByName(udb,"Fisher")?->too_many_unsorted;

> "What happens if there are non-unique, sorted records?";
> FindUserByName(udb,"Fisher")?->too_many_sorted;

Validation Operator Invocation
Results: Basic with Sort Constraint

"What happens if there are unique, unsorted records?"
{ true, false }
"What happens if there are unique, sorted records?"
{ true, true }
"What happens if there are non-unique, unsorted records?"
{ true, false }
"What happens if there are non-unique, sorted records?"
{ true, true }

val ur1:UserRecord = {"Corwin", "1", nil, nil};
val ur2:UserRecord = {"Fisher", "2", nil, nil};
val ur3:UserRecord = {"Other", "3", nil, nil};
val ur4:UserRecord = {"Extra", "4", nil, nil};
val ur5:UserRecord = {"Fisher", "5", nil, nil};

val udb = [ur1, ur2, ur3, ur4, ur5];
val unsorted_result = [ur5, ur2];
val sorted_result = [ur2, ur5];
val too_many_unsorted = [ur2, ur5, ur2, ur2];
val too_many_sorted = [ur2, ur2, ur2, ur5];

> [1 .. 100];

> "What happens if there are unique, unsorted records?";
> FindUserByName(udb,"Fisher")?->unsorted_result;

> "What happens if there are unique, sorted records?";
> FindUserByName(udb,"Fisher")?->sorted_result;

> "What happens if there are non-unique, unsorted records?";
> FindUserByName(udb,"Fisher")?->too_many_unsorted;

> "What happens if there are non-unique, sorted records?";
> FindUserByName(udb,"Fisher")?->too_many_sorted;

operation FindUserByName
 inputs: udb:UserDB, n:Name;
 outputs: url:UserRecord*;

 precondition: (* None yet. *);

 postcondition:
 (*
 * The output list consists of all records of the given name
 * in the input db.
 *)
 (forall (ur: UserRecord)
 (ur in url) iff (ur in udb) and (ur.name = n))

 and
 (*
 * The output list is sorted alphabetically by id
 *)
 (forall (i:integer | (i >= 1) and (i < #url))
 (url[i].id < url[i+1].id));

 description: (*
 Find a user or users by real-world name. If more than one is
 found, the output list is sorted by id.
 *);
end FindUserByName;

Validation Operator Invocation
Results: Strengthened Logic

"What happens if there are unique, unsorted records?"
{ true, false }
"What happens if there are unique, sorted records?"
{ true, true }
"What happens if there are non-unique, unsorted records?"
{ true, false }
"What happens if there are non-unique, sorted records?"
{ true, false }

operation FindUserByName
 inputs: udb:UserDB, n:Name;
 outputs: url:UserRecord*;

 precondition: (* None yet. *);

 postcondition:
 (*
 * The output list consists of all records of the given name
 * in the input db.
 *)
 (forall (ur: UserRecord)
 (ur in url) iff (ur in udb) and (ur.name = n))

 and
 (*
 * The output list is sorted alphabetically by id
 *)
 (forall (i:integer | (i >= 1) and (i < #url))
 (url[i].id < url[i+1].id));

 description: (*
 Find a user or users by real-world name. If more than one is
 found, the output list is sorted by id.
 *);
end FindUserByName;

operation FindUserByName
 inputs: udb:UserDB, n:Name;
 outputs: url:UserRecord*;
 postcondition:
 RecordsFound(udb,n,url)
 and
 SortedById(url);
end FindUserByName;

function RecordsFound(udb:UserDB, n:Name, url:UserRecord*) =
 (*
 * The output list consists of all records of the given name in
 * the input db.
 *)
 (forall (ur' in url)
 (ur' in udb)
 and
 (ur'.name = n));

function SortedById(url:UserRecord*) =
 (*
 * The output list is sorted alphabetically by id.
 *)
 (if (#url > 1) then
 (forall (i in [1..(#url - 1)])
 url[i].id < url[i+1].id)
 else true);

Validation Operator Invocation
Results: Auxiliary Functions

"What happens if there are unique, unsorted records?"
{ true, false }
"What happens if there are unique, sorted records?"
{ true, true }
"What happens if there are non-unique, unsorted records?"
{ true, false }
"What happens if there are non-unique, sorted records?"
{ true, false }

Translating User-level
Requirements into Boolean Logic

1. There is no user record in the input
database with the same id as the record
to be added

2. The id of an added user record cannot
be empty and must be no more than 8
characters in length

3. If the area code and phone number are
present, they must be 3 digits and 7
digits respectively

gfisher
Cross-Out

gfisher
Replacement Text
• Expressed as precondition to AddUser.

• Initial logic embodies typical student errors.

operation AddUser
 inputs: udb:UserDB, ur:UserRecord;
 outputs: udb':UserDB;
 precondition:
 (*
 * There is no user record in the input UserDB with the same id
 * as the record to be added.
 *)
 (not (ur in udb))

 and
 (*
 * The id of the given user record is not empty and 8 characters
 * or less.
 *)
 (#(ur.id) <= 8)

 and
 (*
 * If the phone area code and number are present, they must be 3
 * digits and 7 digits respectively.
 *)
 (#(ur.phone.area) = 3) and
 (#(ur.phone.num) = 7);

 postcondition: (* Same as above *);
end AddUser;

gfisher
Cross-Out

gfisher
Replacement Text
. . .

gfisher
Cross-Out

operation AddUser
 inputs: udb:UserDB, ur:UserRecord;
 outputs: udb':UserDB;
 precondition:
 (*
 * There is no user record in the input UserDB with the same id
 * as the record to be added.
 *)
 (not (ur in udb))

 and
 (*
 * The id of the given user record is not empty and 8 characters
 * or less.
 *)
 (#(ur.id) <= 8)

 and
 (*
 * If the phone area code and number are present, they must be 3
 * digits and 7 digits respectively.
 *)
 (#(ur.phone.area) = 3) and
 (#(ur.phone.num) = 7);

 postcondition: (* Same as above *);
end AddUser;

gfisher
Text Box
You can leave this slide out.

val phone:PhoneNumber = {805, 5551212};
val email:EmailAddress = "pcorwin@calpoly.edu";
val ur:UserRecord = {"Corwin", "1", email, phone};
val ur_duplicate_id:UserRecord = {"Fisher", "1", email, phone};
val udb:UserDB = [];
val udb_added:UserDB = [ur];

> AddUser(udb_added, ur_duplicate_id) ?-> (udb_added);

Validation Operator Invocation #1

Requirement Translation Flaw #1

• There is no user record in the input
database with the same id as the record to
be added

Flawed:

(not (ur in udb))

Correct:

(not (exists (ur' in udb) ur'.id = ur.id))

operation AddUser
 inputs: udb:UserDB, ur:UserRecord;
 outputs: udb':UserDB;
 precondition:
 (*
 * There is no user record in the input UserDB with the same id
 * as the record to be added.
 *)
 (not (exists (ur' in udb) ur'.id = ur.id))
 and
 (*
 * The id of the given user record is not empty and 8 characters
 * or less.
 *)
 (#(ur.id) <= 8)

 and
 (*
 * If the phone area code and number are present, they must be 3
 * digits and 7 digits respectively.
 *)
 (#(ur.phone.area) = 3) and
 (#(ur.phone.num) = 7);

 postcondition: (* Same as above *);
end AddUser;

gfisher
Text Box
You can leave this slide out.

Validation Operator Invocation #2

val ur_empty_id:UserRecord = {"Corwin", nil, email, phone};

> AddUser(udb, ur_empty_id) ?-> (udb);

Requirement Translation Flaw #2

• The id of an added user record cannot be
empty and must be no more than 8
characters in length

Flawed:

(#(ur.id) <= 8)

Correct:

(ur.id != nil) and (#(ur.id) <= 8)

operation AddUser
 inputs: udb:UserDB, ur:UserRecord;
 outputs: udb':UserDB;
 precondition:
 (*
 * There is no user record in the input UserDB with the same id
 * as the record to be added.
 *)
 (not (exists (ur' in udb) ur'.id = ur.id))
 and
 (*
 * The id of the given user record is not empty and 8 characters
 * or less.
 *)
 (ur.id != nil) and (#(ur.id) <= 8)
 and
 (*
 * If the phone area code and number are present, they must be 3
 * digits and 7 digits respectively.
 *)
 (#(ur.phone.area) = 3) and
 (#(ur.phone.num) = 7);

 postcondition: (* Same as above *);
end AddUser;

gfisher
Text Box
You can leave this slide out.

Validation Operator Invocation #2

val ur_empty_phone:UserRecord = {"Corwin", "1", email, nil};

> AddUser(udb, ur_empty_phone)?->(udb);

Requirement Translation Flaw #3

• If the area code and phone number are
present, they must be 3 digits and 7
digits respectively

Flawed:

(#(ur.phone.area) = 3) and
(#(ur.phone.num) = 7));

Correct:

(if (ur.phone.area != nil) then (#(ur.phone.area) = 3)) and
(if (ur.phone.num != nil) then (#(ur.phone.num) = 7));

operation AddUser
 inputs: udb:UserDB, ur:UserRecord;
 outputs: udb':UserDB;
 precondition:
 (*
 * There is no user record in the input UserDB with the same id
 * as the record to be added.
 *)
 (not (exists (ur' in udb) ur'.id = ur.id))

 and
 (*
 * The id of the given user record is not empty and 8 characters
 * or less.
 *)
 (ur.id != nil) and (#(ur.id) <= 8)

 and
 (*
 * If the phone area code and number are present, they must be 3
 * digits and 7 digits respectively.
 *)
 (if (ur.phone.area != nil) then (#(ur.phone.area) = 3)) and
 (if (ur.phone.num != nil) then (#(ur.phone.num) = 7));

 postcondition: (* Same as above *);
end AddUser;

gfisher
Text Box
You can leave this slide out.

Presentation Outline

• Chapter 1: Introduction
• Chapter 2: Background and Related Work
• Chapter 3: Demonstration of Tool

Capabilities
• Chapter 4: Overall System Design
• Chapter 5: The Functional Interpreter
• Chapter 6: Quantifier Execution
• Chapter 7: Conclusions

FMSL Pre-Thesis

Lexer Parser
Type

Checker

Source
Code

Parse
Tree

Symbol
Table

Error
Messages

FMSL Post-Thesis

Lexer Parser
Type

Checker

Source
Code

Parse
Tree

Symbol
Table

Interpreter
Execution

output
Type

Check
OK?

Error
Messages

YES

NO

New to FMSL:
The Functional Interpreter

• Expression evaluation

• Function / operation evaluation

• Execution of preconditions and
postconditions

• Quantifier evaluation

• Value universe

• Validation operator

Presentation Outline

• Chapter 1: Introduction
• Chapter 2: Background and Related Work
• Chapter 3: Demonstration of Tool

Capabilities
• Chapter 4: Overall System Design
• Chapter 5: The Functional Interpreter
• Chapter 6: Quantifier Execution
• Chapter 7: Conclusions

gfisher
Sticky Note
Given we're already at slide 89, I don't think there's any time left for a detailed discussion of Chapters 5 and 6.

I think the best thing to do is summarize the VERY HIGH LEVEL points in a slide or two.

Basic Object Types

• boolean

• integer

• real
• string

• nil

Basic Operators: booleans

booleanconditional with elseif b1 then b2 else
b3

where b1, b2, b3 are Boolean
expressions

booleanconditionalif b1 then b2
where b1, b2 are Boolean

expressions

booleantwo-way implication; if and only if<=>

booleanimplication=>

booleanexclusive disjunctionxor

booleandisjunctionor

booleanconjunctionand

booleannegationnot

ReturnsDescriptionOperator

Basic Operators: integers and reals

booleanless than or equal to<=

booleangreater than or equal to>=

booleanless than<

booleangreater than>

booleanInequality!=

booleanEquality=

integer or realreturns -1*the number- (unary)

integer or realreturns 1*the number+ (unary)

integerModulusmod

integer or realDivision/

integer or realmultiplication*

integer or realSubtraction-

integer or realAddition+

ReturnsDescriptionOperator

Basic Operators: strings

stringrange / substring selection[m .. n]

stringsingle character selection[n]

stringconcatenation+

booleanmembership testin

integerstring length#

booleaninequality!=

booleanequality=

ReturnsDescriptionOperator

Internal Representation of Values

ValueStruct

LorR

tag

type

size

val

int IntVal

double RealVal

String* StringVal

etc.

bool BoolVal

...

Division Operator Example

• Determine that the expression involves a binary
operator

• Determine the operator (/)
• Call and return the result of the function that performs

the division, passing in as parameters the
ValueStructs corresponding to the x and y operands

(*
 * Declare and assign values to x, y
 *)
val x:real = 3.141592654;
val y:real = 2.718281828;

(*
 * Evaluate x divided by y and output the result
 *)
> x / y;

ValueStruct doRealDiv(ValueStruct v1, ValueStruct v2, nodep t) {
 /*
 * Propagate null value if either is operand is null.
 */
 if ((v1 == null) or (v2 == null))
 return null;
 /*
 * Handled the overload for real or integer operands.
 */
 switch (v1->tag) {
 case RealTag:
 if (v2->tag == IntTag) {
 if (v2->val.IntVal == 0) {
 free(v2);
 lerror(t, "Divide by zero.\n");
 return null;
 }
 v1->val.RealVal = v1->val.RealVal / v2->val.IntVal;
 }
 else {
 if (v2->val.RealVal == 0) {
 free(v2);
 lerror(t, "Divide by zero.\n");
 }
 v1->val.RealVal = v1->val.RealVal / v2->val.RealVal;
 }
 free(v2);
 return v1;

 case IntTag:
 if (v2->tag == RealTag) {
 if (v2->val.RealVal == 0) {
 free(v2);
 lerror(t, "Divide by zero.\n");
 return null;
 }
 v1->val.RealVal = v1->val.IntVal / v2->val.RealVal;
 v1->tag = RealTag;
 }
 else {
 if (v2->val.IntVal == 0) {
 free(v2);
 lerror(t, "Divide by zero.\n");
 return null;
 }
 v1->val.IntVal = v1->val.IntVal / v2->val.IntVal;
 }
 free(v2);
 return v1;
 }
}

Complex Structures

• Lists
– Homogeneous
– Hold zero or more object values
– Analogous to an array with no predetermined, fixed

size

• Tuples
– Heterogeneous
– Hold fixed number of components of specific object

types
– Analogous to a C struct

Basic Operators: lists

list typerange selection[m .. n]

list typeelement selection[n]

list typedeletion from list-

list typeconcatenation+

integerelement count#

booleanmembershipin

booleaninequality!=

booleanequality=

ReturnsDescriptionOperator

Basic Operators: tuples

any field typefield access.

booleaninequality!=

booleanEquality=

ReturnsDescriptionOperator

ListStruct Definition

ListStruct

ListElem* first

ListElem* last

int size

int ref_count

ListElem* enum_elem

List Range Selection Example

Code listing:
(*
* Declare the IntegerList type
*)
object IntegerList = integer*;

(*
* Declare an intlist value
*)
val intlist:IntegerList = [1,1,2,3,5,3+5];

(*
* Select the subcomponents at indexes 3, 4, and 5.
*)
> intlist[3..5];

Output:
[2, 3, 5]

List Range Selection Example

• Determine that the expression involves a
ternary operator with three operands: list,
lower bound, upper bound

• Determine the operator ([] – list range
selection)

• Call and return the result of the function that
performs the list range selection, passing in as
parameters the ValueStructs corresponding
to the list, lower bound, and upper bound
operands

ValueStruct doArraySliceRef(v1, v2, v3)
 ValueStruct v1;
 ValueStruct v2;
 ValueStruct v3;
{
 ValueStruct result;
 int i;
 /* start building the new list */
 result = MakeVal(RVAL, v1->type);
 if (v1->tag == ListTag) {
 result->val.ListVal = NewList();
 /*
 * loop through from lower .. upper and add the elements
 * to result.
 */
 for (i = v2->val.IntVal; i <= v3->val.IntVal; i++) {
 PutList(result->val.ListVal,
 GetListNth(v1->val.ListVal, i));
 }
 }
 else if (v1->tag == StringTag) {
 result->val.StringVal =
 (String *)SubString(v1->val.StringVal,
 v2->val.IntVal,
 v3->val.IntVal);
 }
 return result;
}

Tuple Field Access Example

• Determine that the expression involves a binary operator with two
operands: the tuple name and the tuple field name

• Determine the operator (. – field access)
• Call and return the result of the function that performs the field

access, passing in as parameters the ValueStructs
corresponding to the tuple and the tuple field name

Code listing:
(*
* Declare p, a person variable
*)
val p:Person = {"Arnold", "Schwarzenegger", 61};

(*
* Access p's last name field
*)
> p.lastName;

Output:
"Schwarzenegger"

ValueStruct RecordRef(desig, field)
 ValueStruct desig; /* L-value for the left operand. */
 nodep field; /* Ident for the right operand. */
{
 ValueStruct valueField,
 tuple,
 newDesig;
 SymtabEntry *f;
 int n;
 TypeStruct type = ResolveIdentType(desig->type, null, false),
 fieldType;

 /*
 * Deal with nil desig, i.e., just return it as is.
 */
 if (isNilValue(desig)) {
 return desig;
 }

 /*
 * coming in, desig->LVal should point to the ValueStruct of the
 * struct
 */
 if (field->header.name == Yident) {
 f = LookupIn(field->components.atom.val.text,
 type->components.type.kind.record.fieldstab);
 fieldType = ResolveIdentType(f->Type, null, false);
 }
 else {
 f = null;
 n = field->components.atom.val.integer;
 fieldType = ResolveIdentType(
 GetNthField(type->components.type.kind.record.fields, n)->
 components.decl.kind.field.type, null, false);
 }

 if (desig->LorR == LVAL) {
 tuple = (ValueStruct)*(desig->val.LVal);
 }
 else {
 tuple = desig;
 }

 /* Note: Lists are 1-indexed */
 valueField = (ValueStruct)GetListNth(tuple->val.StructVal,
 f ? f->Info.Var.Offset + 1 : n);
 /*
 * if we have valueField filled in, use its type... otherwise use the
 * fieldType
 */
 if (!valueField) {
 newDesig = MakeVal(LVAL, fieldType);
 }
 else {
 newDesig = MakeVal(LVAL, valueField->type);
 }
 newDesig->val.LVal = (ValueStruct *) malloc(sizeof(Value **));
 *(newDesig->val.LVal) = valueField;

 return newDesig;
}

Operation Invocation

Code listing:
operation Cube (x:integer) = x * x * x;

> Cube(2);
> Cube(5);

Output:
8
125

Validation Operator Invocation

• Recall that generically, the validation
operator usage is:

• The result is a two-tuple that contains boolean
values
– The first corresponds to precondition evaluation
– The second corresponds to postcondition evaluation

operation_name(input argument list) ?-> (output argument list)

Validation Result Indications

Both precondition and postcondition evaluation passed{ true, true }

Precondition evaluation passed; postcondition evaluation
failed

{ true, false }

precondition evaluation passed; no postcondition specified
or there was an execution failure in the postcondition

{ true, nil }

precondition evaluation failed; postcondition evaluation not
attempted

{ false, nil }

execution failure in the precondition; postcondition
evaluation not attempted

{ nil, nil }

IndicationTuple Returned

Validation Result Significances

Test values for both inputs and outputs agreed with both the
precondition and postcondition

{ true, true }

Test values for inputs were valid, but the output values were
invalid or the postcondition was specified incorrectly

{ true, false }

Test values for inputs were valid, but the postcondition
either wasn’t specified or it may be specified incorrectly
since a run-time / execution error was detected during
postcondition execution

{ true, nil }

Test values for inputs were invalid or the precondition was
specified incorrectly

{ false, nil }

The precondition may be specified incorrectly since a run-
time / execution error was detected during precondition
execution

{ nil, nil }

SignificanceTuple Returned

Presentation Outline

• Chapter 1: Introduction
• Chapter 2: Background and Related Work
• Chapter 3: Demonstration of Tool

Capabilities
• Chapter 4: Overall System Design
• Chapter 5: The Functional Interpreter
• Chapter 6: Quantifier Execution
• Chapter 7: Conclusions

Chapter 6: Quantifier Execution

• FMSL supports quantifiers that are
– Bounded or unbounded
– Of universal (forall) or existential (exists)

forms

Quantifier Syntax

there exists an x of type t such that p1 is true and p2
is true

unboundedexists (x:t | p1) p2

there exists an x of type t such that p is trueunboundedexists (x:t) p

there exists an x in list S such that p is trueboundedexists (x in S) p

for all values x of type t such that p1 is true, p2 is
true

unboundedforall (x:t | p1) p2

for all values x of type t, p is trueunboundedforall (x:t) p

for all values x in list S, p is trueboundedforall (x in S) p

Reads Like …Quantifier
Type

Syntax

Bounded Quantifier

(*
* Declare an IntList object type and an IntList value
*)
obj IntList = integer*;
val list:IntList = [1, 1, 2, 3, 5];

(*
* Evaluate: all the integer elements within list are positive.
*)
> forall (i in list) i > 0; -- evaluates to true

Unbounded Quantifier

obj Person = name:Name and age:Age;
obj Name = string;
obj Age = integer;

> forall (p:Person) p.age >= 21;

Other Methods of Unbounded
Quantifier Execution

• Aslantest
– When it cannot automatically reduce an expression to

true or false, it suspends execution and prompts for
user input

• Jahob
– pickAny: picks an arbitrary value, optionally bounded

by lemmas that the user can input, that is placed into
the unbounded quantifier

• Executable Z
– Treats unbounded quantification as a source of non-

executability, so such statements are treated as
compiler assumptions (and not executable
statements)

Unbounded Quantification in FMSL:
Value Universe

• A discrete pool of values, indexed by type, that supply
meaningful values to unbounded quantifier predicates

• Can contain values of any value type, from simple
atomic types to complex types like lists and tuples

• Grows incrementally as values appear during
specification execution

• With repeatability in mind, values added primarily in
contexts where values cannot be mutated
– Let expressions
– Parameter binding
– List construction

• By default does not contain duplicates

Value Universe Structure

type n
val 1

type n
val ...

type n
val m

Value Universe

type 1

type 2

...

type n

type 1
val 1

type 1
val ...

type 1
val m

Value Universe Add
1.

2.

Person
Val

Val
1

Val
…

Val
m

Value Universe

type 1

Person

...

type n

Val
1

Val
…

Val
m

Quantifier Syntax

there exists an x of type t such that p1 is true and p2
is true

unboundedexists (x:t | p1) p2

there exists an x of type t such that p is trueunboundedexists (x:t) p

there exists an x in list S such that p is trueboundedexists (x in S) p

for all values x of type t such that p1 is true, p2 is
true

unboundedforall (x:t | p1) p2

for all values x of type t, p is trueunboundedforall (x:t) p

for all values x in list S, p is trueboundedforall (x in S) p

Reads Like …Quantifier
Type

Syntax

Unbounded Existential Quantifier

(*
 * Perform lets with p1, p2 to put them in the Universe
 *)
> (let p1:Person = {"Alan", "Turing", 97};);
> (let p2:Person = {"Arnold", "Schwarzenegger", 61};);

> "Expected: false";
> exists (p:Person) p.lastName = nil;

(*
 * Since p3, with a nil last name, has been introduced
 * then we expect true below.
 *)

> (let p3:Person = {"Charles", nil, 218};);
> "Expected: true";
> exists (p:Person) p.lastName = nil;

1.

2.

3.

Value Universe

type 1

Person

...

type n

Val
1

Val
…

Val
m

Value Universe

type 1

Person

...

type n

Val
1

Val
…

Val
m

Val
1

Val
…

Val
m

(Val 1).lastName
= nil

OR OR

(Val ...).lastName
= nil

(Val m).lastName
= nil

Unbounded Existential Quantifier

(*
 * Perform lets with p1, p2 to put them in the Universe
 *)
> (let p1:Person = {"Alan", "Turing", 97};);
> (let p2:Person = {"Arnold", "Schwarzenegger", 61};);

> "Expected: false";
> exists (p:Person) p.lastName = nil;

(*
 * Since p3, with a nil last name, has been introduced
 * then we expect true below.
 *)

> (let p3:Person = {"Charles", nil, 218};);
> "Expected: true";
> exists (p:Person) p.lastName = nil;

Evaluates
to false

Evaluates
to true

Quantifier Syntax

there exists an x of type t such that p1 is true and p2
is true

unboundedexists (x:t | p1) p2

there exists an x of type t such that p is trueunboundedexists (x:t) p

there exists an x in list S such that p is trueboundedexists (x in S) p

for all values x of type t such that p1 is true, p2 is
true

unboundedforall (x:t | p1) p2

for all values x of type t, p is trueunboundedforall (x:t) p

for all values x in list S, p is trueboundedforall (x in S) p

Reads Like …Quantifier
Type

Syntax

Unbounded Universal Quantifier
(with suchthat)

(*
 * Perform lets with p1, p2, p3 to put them in the Universe
 *)
> (let p1:Person = {"Alan", "Turing", 97};);
> (let p2:Person = {"Arnold", "Schwarzenegger", 61};);
> (let p3:Person = {"Charles", nil, 218};);

(*
 * Evaluate: for all Person objects such that p.lastName is
 * not nil, the last name length is at least 6 characters
 *)
> "Expected: true";
> forall (p:Person | p.lastName != nil) #p.lastName >= 6;

Unbounded Universal Quantifier
(with suchthat)

(*
 * Perform lets with p1, p2, p3 to put them in the Universe
 *)
> (let p1:Person = {"Alan", "Turing", 97};);
> (let p2:Person = {"Arnold", "Schwarzenegger", 61};);
> (let p3:Person = {"Charles", nil, 218};);

(*
 * Evaluate: for all Person objects such that p.lastName is
 * not nil, the last name length is at least 6 characters
 *)
> "Expected: true";
> forall (p:Person | p.lastName != nil) #p.lastName >= 6;

Evaluates
to true

Presentation Outline

• Chapter 1: Introduction
• Chapter 2: Background and Related Work
• Chapter 3: Demonstration of Tool

Capabilities
• Chapter 4: Overall System Design
• Chapter 5: The Functional Interpreter
• Chapter 6: Quantifier Execution
• Chapter 7: Conclusions

Summary of Contributions
1. The design and implementation of a functional

interpreter for a formal specification language,
rendering the language executable for the first
time

2. The design and implementation of a novel
technique to execute purely predicative
specifications, using validation operator
invocations

3. Demonstration of how the execution
capabilities can be used to validate formal
specifications

4. A thorough discussion of how the specification
execution capabilities fit into the realm of light-
weight and heavy-weight formal methods

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Cross-Out

Future Work

• UML to FMSL tool

• Test case generator

• GUI front end
• Improve value universe performance

• Garbage collector

• End-user studies

Questions?

The End

 1

Thesis Defense:
Incremental Validation

of Formal Specifications

Paul Corwin

May 12, 2009

 2

Committee Members

Committee MemberDr. Clark Turner

Committee MemberDr. David Janzen

Advisor & Committee ChairDr. Gene Fisher

RoleName

 3

Incremental Validation
of Formal Specifications

• Presents a tool for the mechanical validation of formal
software specifications

• Novel approach to incremental validation
• Form of “light-weight” model checking
• Part of FMSL: a formal modeling and specification

language
• Small-scale aspects of a specification are validated;

step-wise refinement
• Presents example that’s been used in software

engineering courses for years
• Use of the tool led to discovery of a specification flaw

 4

Presentation Outline

• Chapter 1: Introduction
• Chapter 2: Background and Related Work
• Chapter 3: Demonstration of Tool

Capabilities
• Chapter 4: Overall System Design
• Chapter 5: The Functional Interpreter
• Chapter 6: Quantifier Execution
• Chapter 7: Conclusions

 5

Presentation Outline

• Chapter 1: Introduction
• Chapter 2: Background and Related Work
• Chapter 3: Demonstration of Tool

Capabilities
• Chapter 4: Overall System Design
• Chapter 5: The Functional Interpreter
• Chapter 6: Quantifier Execution
• Chapter 7: Conclusions

 6

Chapter 1: Introduction

• Software engineering is error-prone and
expensive

• Early detection of errors is beneficial
• Thesis focuses on early error detection during

formal specification
• Tool-supported technique: FMSL
• Added executability

– Standard functional evaluation
– Boolean expressions containing universal and

existential quantifiers, bounded and unbounded

 7

The Problem

• How to validate a formal model-based
specification?

• Need for tools and methods that expose errors,
misunderstood properties, improperly stated
behaviors

• FMSL model behavior defined with Boolean
preconditions and postconditions on operations

• Evaluating quantifier expressions of particular
interest

 8

Thesis Aims

• Provide a means to validate formal
specifications in a straightforward manner

• Demonstrate practicality in an instructional
context

 9

FMSL

• Was a predicative specification language
• Had type checker

– Performs syntactic and semantic analysis
– Comparable to compilers of strongly typed

programming languages

• Added executability
• Focused on operation validation

 10

Presentation Outline

• Chapter 1: Introduction
• Chapter 2: Background and Related Work
• Chapter 3: Demonstration of Tool

Capabilities
• Chapter 4: Overall System Design
• Chapter 5: The Functional Interpreter
• Chapter 6: Quantifier Execution
• Chapter 7: Conclusions

 11

Chapter 2: Background and
Related Work

• Formal methods and related topics
• “Lightweight” formal methods
• Relevant specification languages and

model checkers

 12

Formal Methods: What Are They?

• Processes that exploit the power of
mathematical notation and proofs

• Express system and software properties
• Help establish whether a specification

satisfies certain properties or meets
certain behavioral constraints

 13

Formal Methods: Downsides

• Played “insignificant” role in software
engineering in last 30 years [Glass]

• Rarely used, high barrier of entry
[Heitmeyer]

• Few people understand what formal
methods are or how to use them [Bowen
et al.]

• High up front cost [Larsen et al.]

 14

Formal Methods: Upsides

• Can be used during requirements development,
specification, design, and implementation

• Practical means of showing absence of
undesired behavior [Kuhn]

• Helps users better understand a system
– Formality prompts engineers to raise questions

[Easterbrook et al.]
– Forces early, serious consideration of design issues

[Jackson et al.]
– Abstraction can mask complexities [Agerholm et al.]

• Cost savings achieved [Larsen et al.]

 15

“Heavyweight” Formal Methods: Model
Checkers and Theorem Provers

• Model Checking
– Formal technique based on state exploration; purpose

is to evaluate particular properties [Chan]

– Often involves search for a counter-example [Kuhn et
al.]

• Theorem Provers
– Assist the user in constructing proofs [Kuhn et al.]
– May require expert users
– Can lead to slower product design cycle [Kurshan]

Model checking challenges -

•Requires specialized expertise

•Can be costly

•State explosion

•So many variables that the model size “explodes” exponentially

•Not enough computing resources to carry out the state exploration
algorithm

 16

Formal Methods: Can Be Used on
Individual System Parts

• Can be overkill for a system in its entirety
[Bowen]

• Sometimes only system parts would benefit from
formal methods [Agerholm et al.]

• Requires consideration to determine where
formal methods use makes sense [Larsen et al.]

• Formalized parts can be re-used in other
projects [Kuhn et al.]

• Promotes code re-use [Jackson et al.]

 17

Lightweight Formal Methods

• Formal technique that falls short of
complete verification

• May not require that the user be trained in
advanced mathematics or sophisticated
proof strategies [Heitmeyer]

• May use formal notations
• Can be more practical and cost effective

than “heavyweight” formal methods
[Jackson]

 18

A Lightweight Technique:
Simulation

• Animates a model by examining a small
subspace of possible states [Jackson et
al.]

• May immediately expose mistakes
• Provides ability to test functional

requirements of interest early

 19

Test-Driven Development and
Simulation

• Calls for programmers to write low-level
functional tests before beginning the
implementation
– Improves productivity [Erdogmus]
– Leads to less complex, but highly tested code [Janzen

et al.]

• Evaluating claims early on improves
understanding [Myers]

• Whether generated manually or automatically,
tests used for simulation purposes can be re-
used against the implementation

 20

Existing Model Checking Tools and
Formal Specification Languages

• Verisoft
• Symbolic Model Verifier (SMV)
• Java Modeling Language (JML)
• Korat
• Object Constraint Language (OCL)
• Object-oriented Specification Language

(OOSPEC)
• ASLAN
• Aslantest

See thesis
paper for

more details

Verisoft: Model checking tool that analyzes a system implementation

SMV: Heavy-weight model checking tool that uses a diagram-based algorithm
to search for counterexamples, with formal semantics

JML: used for specifying java modules

Korat: Automatically generates test cases for JML specifications

OCL: part of UML, Must be accompanied by visual UML diagram

OOSPEC: Used to introduce formal methods to undergrad students,
executable, influenced by languages that utilize set-theoretic notation

ASLAN: Supports system specification through definition of states and state
transitions, users define entry and exit criteria

Aslantest: executes ASLAN specifications and supports symbolic checking as
well as checking through individual test cases

 21

Empirical Successes
with Formal Methods

• BASE: A Trusted Gateway
• Miami University of Ohio: OOD Course
• NASA: Lightweight Formal Methods study

 22

BASE: A Trusted Gateway

• Had formal methods and non-formal methods
(control) groups develop a trusted gateway

• The formal methods group uncovered a hole in
the requirements; the control team did not

• The formal methods group’s software passed
more tests than the control methods group’s
software

• The formal methods group’s software performed
fourteen times faster than the control group’s
software

 23

Miami University of Ohio: OOD
Course

• Had a formal methods group of students and a
control group of students design and implement
a common elevator project

• The formal methods teams followed more
rigorous design processes and had relatively
better designs

• 100% of the formal methods teams’
implementations passed the tests; only 45.5% of
the control group teams’ implementations
passed

 24

NASA: Lightweight Formal Methods

• Observed effects of implementing light-weight
formal methods in certain NASA programs

• Easterbrook et al. concluded that the application
of formal methods early on added value

• Helped uncover ambiguities, inconsistencies,
missing assumptions, logic errors, and more

• Observed that the development team was more
receptive to fixing the problems, as they were
discovered early

The bottom line: formal methods have been shown to improve the software
development process.

 25

Presentation Outline

• Chapter 1: Introduction
• Chapter 2: Background and Related Work
• Chapter 3: Demonstration of Tool

Capabilities
• Chapter 4: Overall System Design
• Chapter 5: The Functional Interpreter
• Chapter 6: Quantifier Execution
• Chapter 7: Conclusions

 26

Chapter 3: Demonstration of Tool
Capabilities

• Simple illustrative example
• Objects and operations

 27

object PersonList
 components: Person*;
 description: (*
 A PersonList contains zero or more Person records.
 *);
end PersonList;

object Person
 components: firstName:Name and lastName:Name and age:Age;
 description: (*
 A Person has a first name, last name, and age.
 *);
end Person;

object Name = string;
object Age = integer;

operation Add
 inputs: p:Person, pl:PersonList;
 outputs: pl':PersonList;
 precondition: not (p in pl);
 postcondition: p in pl';
 description: (*
 Add a person to a list, if that person is not already in the
 list.
 *);
end Add;

1. At the top we have four object definitions: PersonList, Person, Name, Age.

2. Note that the Person and PersonList objects have components.

3. Name and Age use an optional short form of object definition, useful for
scalars.

4. We also have operation Add, which has inputs, outputs, precondition, &
postcondition.

• Operations not defined with an executable body. Instead,
operations are expressed as Boolean predicates that must be true
before and after an operation executes – i.e., preconditions and
postconditions.

• Any identifier can have an apostraphe char as a suffix; purely lexical; most
often used when the input and output object are the same; e.g., p1 and p1
prime.

• The in operator is built-in and tests for list membership

• The description field shows the paren star, which encloses comments

 28

How Does One Validate
That It Is Correct?

• Static correctness validated by FMSL type
checker
– Syntactic and semantic analysis

• Focus of this thesis is determining the
dynamic correctness

 29

Person Definitions with Add

value p:Person = {"Arnold", "Schwarzenegger", 61};
value pl:PersonList = [];
value pl':PersonList = [p];

> Add(p, pl); -- invoke Add operation

1. Value declaration defines a constant value

2. Tuple values are enclosed in curly braces; tuples are defined with anded
components

3. List values are enclosed in square brackets; lists defined with *
components (like PersonList)

4. Point-to-end-of-line comments are defined with two dashes.

5. Expression evaluations are preceded with the prompt or greater than
character. Could be entered in a conversational interpreter, but may
appear in a specification file. It’s important to note that the prompt
character indicates expression vs. specification declaration.

6. Operations are invoked in a standard fashion: operation name followed by
parenthesized list of actual parameters

 30

• What value does the invocation of Add(p, p1)
produce?

• nil -- the empty value for any type of object
• Same value produced for any inputs, since Add

is defined only with a precondition and
postcondition

Person Definitions with Add

value p:Person = {"Arnold", "Schwarzenegger", 61};
value pl:PersonList = [];
value pl':PersonList = [p];

> Add(p, pl); -- invoke Add operation

 31

Evaluate Add’s Precondition and
Postcondition

operation Add
 inputs: p:Person, pl:PersonList;
 outputs: pl':PersonList;
 precondition: not (p in pl);
 postcondition: p in pl';
 description: (*
 Add a person to a list, if that person is not already in
 the list.
 *);
end Add;

 32

Evaluate Add’s Precondition and
Postcondition

value p:Person = {"Arnold", "Schwarzenegger", 61};
value pl:PersonList = [];
value pl':PersonList = [p];

> p in pl; -- should be false
> not (p in pl); -- should be true
> not (p in pl'); -- should be false

> p in pl’; -- should be true

 precondition: not (p in pl);
 postcondition: p in pl';

Evaluating boolean expressions can be helpful, but it would be even handier
to invoke an operation with sample input and output values directly. This kind
of validation invocation can be characterized as follows:

 33

Validation Invocation

• Given inputs p and p1, expected output
p1', what are the values of the Add
precondition and postcondition?

> Add(p, p1) ?-> p1’;

 34

Validation Invocation

• Given inputs p and p1, expected output
p1', what are the values of the Add
precondition and postcondition?

> Add(p, p1) ?-> p1’;

{ true, true }

1. The first part of a validation invocation looks like a regular operation call

2. The question mark arrow is the validation operator

3. The output of true, true is the standard curly brace notation for a boolean
two-tuple.

4. The first tuple field corresponds to a precondition evaluation result

5. The second tuple field corresponds to a postcondition evaluation result

 35

Validation Invocation:
Counter Example

> Add(p, p1) ?-> p1;

Here we have a counter example.

Recall that p1 is a list with no elements, or a nil list. Add’s postcondition
asserted that p must be in the output list. Since p is not in p1 – the list with no
elements – the postcondition evaluates to false.

 36

Validation Invocation:
Counter Example

> Add(p, p1) ?-> p1;

{ true, false }

And so the two-tuple result comes back true, false since the postcondition
evaluates to false for this set of inputs and outputs.

 37

Expression Evaluation in FMSL

• Entails invoking an operator or operation
and returning the calculated result

• Collection of built-in Boolean, arithmetic,
tuple, and list expressions

 38

Boolean Expression Examples
(*
 * Declare short value names for true and false.
 *)
val t:boolean = true;
val f:boolean = false;

(*
 * Boolean operator examples
 *)
> not t; -- evaluates t false
> t and f; -- evaluates t false
> t or f; -- evaluates to true
> t xor f; -- evaluates to true
> t => f; -- evaluates to false
> t <=> f; -- evaluates to true

Note the abbreviated keyword val in place of value. FMSL provides
abbreviated versions of major key words.

 39

Arithmetic Expression Example
(*
 * Declare and assign values to x, y
 *)
val x:real = 3.141592654;
val y:real = 2.718281828;

(*
 * Evaluate x divided by y and output the result
 *)
> x / y;

Output:

1.15573

 40

Quantifier Evaluation

• Quantifiers: Boolean-valued expressions
that evaluate a quantified sub-expression
multiple times

• Universal (forall) and existential
(exists) forms of quantification

• Bounded and unbounded quantifiers
supported by FMSL

A bounded quantifier ranges over a discrete set of values

An unbounded quantifier ranges over all of the values in a type of object. For
example, for types grounded in integer, real, or string the quantifier range is
unbounded.

 41

Universal Quantification

• Has the general form:

forall (x:t) predicate
• Read as “for all values x of type t,

predicate is true”
• Other extended forms:

forall (x:t | p1) p2

forall (x in l) p

For all x of type t, such that p1 is true, p2 is true

For all x in l, p is true

 42

Existential Quantification

• Has the general form:

exists (x:t) predicate
• Read as “there exists a value x of type t

such that predicate is true”
• Other extended forms:

exists (x:t | p1) p2

exists (x in l) p

There exists a value x of type t, such that p1 is true and p2 is true

There exists a value x in l such that p is true

 43

Bounded Quantifier

(*
 * Declare an IntList object type and an IntList value
 *)
obj IntList = integer*;
val list:IntList = [1, 1, 2, 3, 5];

(*
 * Evaluate: all the integer elements within list are positive.
 *)
> "Expected: true";
> forall (i in list) i > 0;

This example creates a list of integers, and uses a bounded universal form of
quantification to evaluate whether all the integer elements are positive. Since
all the integers – 1 1 2 3 5 – are positive, the quantifier expression evaluates
to true.

 44

Unbounded Quantifier
object Person
 components: firstName:Name and lastName:Name and age:Age;
 description: (*
 A Person has a first name, last name, and age.
 *);
end Person;

(*
 * Create values p1 and p2, which puts them in the Person value
 * Universe.
 *)
val p1:Person = {"Alan", "Turing", 97};
val p2:Person = {"Arnold", "Schwarzenegger", 61};

> forall (p:Person) p.lastName != nil; -- evaluates to true

Recall the Person object definition from earlier on.

Declares two Person values

Evaluates unbounded quantifier to test that all the Person objects have non-nil
last names

Since the two existing Person objects have non-nil last names, the result of
the unbounded quantifier expression evaluation is true.

Conceptually, the universe of all values of type Person is unbounded since it
consists of component types integer and string. A means must be established
to execute the quantifier in bounded time. In FMSL, the universe for an
unbounded quantifier consists of all values of the quantified type that have
come into existence during a particular execution session.

I’ll talk about more details later on in the presentation.

 45

User Database
Specification Example

• Pedagogical example for a distributed
calendaring application

• Used for undergrad instruction at Cal Poly
(CSC 308 – Gene Fisher)

 46

object UserDB
 components: UserRecord*;
 operations: AddUser, FindUser, ChangeUser, DeleteUser;
 description: (*
 UserDB is the repository of registered user information.
 *);
end UserDB;

object UserRecord
 components: name:Name and id:Id and email:EmailAddress and
 phone:PhoneNumber;
 description: (*
 A UserRecord is the information stored about a registered user of the
 Calendar Tool. The Name component is the user's real-world name. The
 Id is the unique identifier by which the user is known to the Calendar
 Tool. The EmailAddress is the electronic mail address used by the
 Calendar Tool to contact the user when necessary. The PhoneNumber is
 for information purposes; it is not used by the Calendar Tool for
 contacting the user.
 *);
end User;

object Name = string;
object Id = string;
object EmailAddress = string;
object PhoneNumber = area:Area and num:Number;
object Area = integer;
object Number = integer;

These definitions describe individual components of a user record and a user
record database.

UserDB is a list of UserRecord objects

UserRecord has components name, id, email, and phone

Individual scalar components are defined below.

The following example demonstrates the utility of FMSL’s operation validation
capabilities, as it follows the incremental development of the specification of
the AddUser operation.

First we’ll start with a precondition and postcondition described in plain
English.

 47

operation AddUser
 inputs: udb:UserDB, ur:UserRecord;
 outputs: udb':UserDB;

 precondition:
 (*
 * The id of the given user record must be unique and less
 * than or equal to 8 characters; the email address must be
 * non-empty; the phone area code and number must be 3 and
 * 7 digits, respectively.
 *);

 postcondition:
 (*
 * The given user record is in the output UserDB.
 *);

 description: (* As above *);

end AddUser;

AddUser Operation

- READ THE PRECONDITION AND POSTCONDITION -

Although precondition and postcondition are described with plain English
comments, the AddUser operation already is executable through the validation
operator.

 48

(*
 * Create some testing values.
 *)
val ur1 = {"Corwin", "1", nil, nil};
val ur2 = {"Fisher", "2", nil, nil};
val ur3 = {"Other", "3", nil, nil};
val udb = [ur1, ur2];
val udb_added = udb + ur3;

> AddUser(udb,ur3)?->(udb_added);

Output:

{ true, nil }

The code here creates three sample user record values, an initial user db
value consisting of elements ur1 and ur2, and an expected output user db that
consists of udb with ur3 concatenated to it.

Finally the code invokes the validation operator to test AddUser with these
values. What would be the result of this evaluation?

Recall that both the precondition and postcondition are described in plain
English. In FMSL, by definition, if there is no precondition – that is, if there are
no formally defined entry criteria – the precondition evaluation result is true.
Also by definition, if there is no postcondition then the postcondition evaluation
result is set nil. So, the two-tuple result you can see consists of true, nil.

While executability isn’t especially interesting in this example, more interesting
examples follow.

 49

operation AddUser
 inputs: udb:UserDB, ur:UserRecord;
 outputs: udb':UserDB;

 precondition: (* Coming soon. *);

 postcondition:
 (*
 * The given user record is in the output UserDB.
 *)
 ur in udb';

end AddUser;

The postcondition here describes the essence of an additive collection
operation: that the given user record is in the output user DB

 50

(*
 * Create some testing values.
 *)
val ur1 = {"Corwin", "1", nil, nil};
val ur2 = {"Fisher", "2", nil, nil};
val ur3 = {"Other", "3", nil, nil};
val udb = [ur1, ur2];
val udb_added = udb + ur3;

> AddUser(udb,ur3)?->(udb_added);

Output:

{ true, true }

Here we see the same testing values we used in the previous example. In
this case the postcondition tests whether the given user record is in the output
UserDB, which it is. So, the resulting two-tuple evaluation of this validation
operator invocation is true, true.

 51

Fundamental Question

• Are the preconditions and postconditions
strong enough?

• In the AddUser example, the precondition
is non-existent and thus it’s maximally
weak

• To test postcondition strength, we can use
the validation operator to run some
example inputs and outputs against
AddUser

 52

val ur1 = {"Corwin", "1", nil, nil};
val ur2 = {"Fisher", "2", nil, nil};
val ur3 = {"Other", "3", nil, nil};
val ur4 = {"Extra", "4", nil, nil};
val udb = [ur1, ur2];

(*
 * A database value representing a spurious addition having been
 * made.
 *)
val udb_spurious_addition = udb + ur3 + ur4;

(*
 * A database value representing a spurious deletion having been made.
 *)
val udb_spurious_deletion = udb + ur3 - ur2;

> AddUser(udb,ur3)?->(udb_spurious_addition);

> AddUser(udb,ur3)?->(udb_spurious_deletion);

Here we see two uses of the validation operator.

In the first we test whether the postcondition guards against spurious
additions, since the output userdb contains an extra user record. In the
second we test whether the postcondition guards against spurious deletions,
the output userdb is missing a record that should be there.

Logically, we don’t want AddUser to accept spurious additions or deletions, so
in both cases we expect the validation operator evaluations to be two-tuples of
true, false.

 53

val ur1 = {"Corwin", "1", nil, nil};
val ur2 = {"Fisher", "2", nil, nil};
val ur3 = {"Other", "3", nil, nil};
val ur4 = {"Extra", "4", nil, nil};
val udb = [ur1, ur2];

(*
 * A database value representing a spurious addition having been
 * made.
 *)
val udb_spurious_addition = udb + ur3 + ur4;

(*
 * A database value representing a spurious deletion having been made.
 *)
val udb_spurious_deletion = udb + ur3 - ur2;

> AddUser(udb,ur3)?->(udb_spurious_addition);

> AddUser(udb,ur3)?->(udb_spurious_deletion);

Output:

{ true, true }

{ true, true }

Notice that the two tuples each come back as true, true, which is not what we
wanted. What that tells us is that the postcondition – that the given user
record is in the output userdb – is not strong enough.

To strengthen the postcondition, we want to make sure that all the other
records in the output db are those from the input db, and only those. We can
describe that with the following definition of AddUser.

 54

operation AddUser
 inputs: udb:UserDB, ur:UserRecord;
 outputs: udb':UserDB;

 postcondition:
 (*
 * The given user record is in the output UserDB.
 *)
 (ur in udb')

 and

 (*
 * All the other records in the output db are those from the
 * input db, and only those.
 *)
 forall (ur':UserRecord | ur' != ur)
 if (ur' in udb)
 then (ur' in udb')
 else not (ur' in udb');
end AddUser;

Here we see the additional statements that strengthen the postcondition,
[READ POSTCONDITION BLUE OUT LOUD]

When we re-run the validation operator invocations with this updated AddUser
definition, we see some good results.

 55

operation AddUser
 inputs: udb:UserDB, ur:UserRecord;
 outputs: udb':UserDB;

 postcondition:
 (*
 * The given user record is in the output UserDB.
 *)
 (ur in udb')

 and

 (*
 * All the other records in the output db are those from the
 * input db, and only those.
 *)
 forall (ur':UserRecord | ur' != ur)
 if (ur' in udb)
 then (ur' in udb')
 else not (ur' in udb');
end AddUser;

Output:

{ true, false }

{ true, false }

By good results I mean that the validation operator invocation rejects the
spurious addition and deletion in the output userdb.

 56

Constructive Postcondition

• Constructive operations perform an actual
constructive calculation

• Analytic operations evaluate Boolean
expressions about the arguments

In some cases a precondition or postcondition that utilizes constructive
operations may be clearer than its corresponding analytic operation-based
counterpart

 57

Constructive Postcondition

• Constructive operations perform an actual
constructive calculation

• Analytic operations evaluate Boolean
expressions about the arguments

operation AddUser
 inputs: udb:UserDB, ur:UserRecord;
 outputs: udb':UserDB;

 postcondition:
 (*
 * The given user record is in the output UserDB.
 *)
 udb' = udb + ur;
end AddUser;

The next example follows the iterative development of the specification of the
FindUserByName operation.

 58

FindUserByName Operation

operation FindUserByName
 inputs: udb:UserDB, name:Name;
 outputs: ur':UserRecord*;

 precondition: (* None yet. *);

 postcondition:
 (*
 * A record is in the output list if and only if it is in
 * the input UserDB and the record name equals the Name
 * being searched for
 *);

 description: (*
 Find a user or users by real-world name. If more than one is
 found, output list is sorted by id.
 *);
end FindUserByName;

searches through the user database and returns records with names that
match the given name input argument.

Just like with the AddUser example, we now have an operation that is well-
defined enough to the point where it’s executable.

 59

val ur1:UserRecord = {"Corwin", "1", nil, nil};
val ur2:UserRecord = {"Fisher", "2", nil, nil};
val ur3:UserRecord = {"Other", "3", nil, nil};
val ur4:UserRecord = {"Extra", "4", nil, nil};
val ur5:UserRecord = {"Fisher", "5", nil, nil};

val udb = [ur1, ur2, ur3, ur4, ur5];
val unsorted_result = [ur5, ur2];
val sorted_result = [ur2, ur5];
val too_many_unsorted = [ur2, ur5, ur2, ur2];
val too_many_sorted = [ur2, ur2, ur2, ur5];

> [1 .. 100];

> "What happens if there are unique, unsorted records?";
> FindUserByName(udb,"Fisher")?->unsorted_result;

> "What happens if there are unique, sorted records?";
> FindUserByName(udb,"Fisher")?->sorted_result;

> "What happens if there are non-unique, unsorted records?";
> FindUserByName(udb,"Fisher")?->too_many_unsorted;

> "What happens if there are non-unique, sorted records?";
> FindUserByName(udb,"Fisher")?->too_many_sorted;

Here’s a test file that creates some sample user records and other input and
output values.

I’ll quickly point out that the list construction from 1 to 100 populates the
integer universe, which is a topic I’ll discuss a little later.

Finally you see some validation operator invocations that search udb for
“Fisher.” Note that in each of these tests the output result is different:

6. First we have an unsorted list

7. Second we have a sorted list

8. Third we have an unsorted list where multiple matches appear

9. Lastly we have a sorted list where multiple matches appear

 60

Validation Operator Invocation
Results: English Comments

"What happens if there are unique, unsorted records?"
{ true, nil }
"What happens if there are unique, sorted records?"
{ true, nil }
"What happens if there are non-unique, unsorted records?"
{ true, nil }
"What happens if there are non-unique, sorted records?"
{ true, nil }

As expected, since there is no precondition defined then all the two-tuple
precondition components are true. Likewise, since there is no postcondition
then all the postcondition components are nil.

 61

FindUserByName: Basic Logic

operation FindUserByName
 inputs: udb:UserDB, n:Name;
 outputs: url:UserRecord*;

 precondition: (* None yet. *);

 postcondition:
 (*
 * The output list consists of all records of the given name
 * in the input db.
 *)
 (forall (ur: UserRecord)
 (ur in url) iff (ur in udb) and (ur.name = n));

 description: (*
 Find a user or users by real-world name. If more than one is
 found, the output list is sorted by id.
 *);
end FindUserByName;

For all user records ur, ur is in the output list if and only if it’s in the input user
db and the name matches the given name parameter.

 62

val ur1:UserRecord = {"Corwin", "1", nil, nil};
val ur2:UserRecord = {"Fisher", "2", nil, nil};
val ur3:UserRecord = {"Other", "3", nil, nil};
val ur4:UserRecord = {"Extra", "4", nil, nil};
val ur5:UserRecord = {"Fisher", "5", nil, nil};

val udb = [ur1, ur2, ur3, ur4, ur5];
val unsorted_result = [ur5, ur2];
val sorted_result = [ur2, ur5];
val too_many_unsorted = [ur2, ur5, ur2, ur2];
val too_many_sorted = [ur2, ur2, ur2, ur5];

> [1 .. 100];

> "What happens if there are unique, unsorted records?";
> FindUserByName(udb,"Fisher")?->unsorted_result;

> "What happens if there are unique, sorted records?";
> FindUserByName(udb,"Fisher")?->sorted_result;

> "What happens if there are non-unique, unsorted records?";
> FindUserByName(udb,"Fisher")?->too_many_unsorted;

> "What happens if there are non-unique, sorted records?";
> FindUserByName(udb,"Fisher")?->too_many_sorted;

Here’s the test file again. Notice that in all the tests we’re searching for
records that have the name “Fisher”. Notice also that the test output user
record lists all consist of some combination of the records with name of
“Fisher,” which are ur2 and ur5.

Our postcondition should evaluate to true so long as all the records in the
output list are in the input user db and have a name that matches “Fisher.”
so, we expect all the postconditions to evaluate to true.

 63

Validation Operator Invocation
Results: Basic Logic

"What happens if there are unique, unsorted records?"
{ true, true }
"What happens if there are unique, sorted records?"
{ true, true }
"What happens if there are non-unique, unsorted records?"
{ true, true }
"What happens if there are non-unique, sorted records?"
{ true, true }

As expected, all the validation operator invocation two-tuples are true, true.

 64

operation FindUserByName
 inputs: udb:UserDB, n:Name;
 outputs: url:UserRecord*;

 precondition: (* None yet. *);

 postcondition:
 (*
 * The output list consists of all records of the given name
 * in the input db.
 *)
 (forall (ur: UserRecord)
 (ur in url) iff (ur in udb) and (ur.name = n))

 and
 (*
 * The output list is sorted alphabetically by id
 *)
 (forall (i:integer | (i >= 1) and (i < #url))
 (url[i].id <= url[i+1].id));

 description: (*
 Find a user or users by real-world name. If more than one
 is found, the output list is sorted by id.
 *);
end FindUserByName;

This example specification of FindUserByName is a little more interesting,
since it has a sort constraint in that the output user record list should be sorted
by id.

 65

val ur1:UserRecord = {"Corwin", "1", nil, nil};
val ur2:UserRecord = {"Fisher", "2", nil, nil};
val ur3:UserRecord = {"Other", "3", nil, nil};
val ur4:UserRecord = {"Extra", "4", nil, nil};
val ur5:UserRecord = {"Fisher", "5", nil, nil};

val udb = [ur1, ur2, ur3, ur4, ur5];
val unsorted_result = [ur5, ur2];
val sorted_result = [ur2, ur5];
val too_many_unsorted = [ur2, ur5, ur2, ur2];
val too_many_sorted = [ur2, ur2, ur2, ur5];

> [1 .. 100];

> "What happens if there are unique, unsorted records?";
> FindUserByName(udb,"Fisher")?->unsorted_result;

> "What happens if there are unique, sorted records?";
> FindUserByName(udb,"Fisher")?->sorted_result;

> "What happens if there are non-unique, unsorted records?";
> FindUserByName(udb,"Fisher")?->too_many_unsorted;

> "What happens if there are non-unique, sorted records?";
> FindUserByName(udb,"Fisher")?->too_many_sorted;

Now we expect the postcondition field in the resulting two-tuple to be false in
the unsorted cases; otherwise, it should be true.

 66

Validation Operator Invocation
Results: Basic with Sort Constraint

"What happens if there are unique, unsorted records?"
{ true, false }
"What happens if there are unique, sorted records?"
{ true, true }
"What happens if there are non-unique, unsorted records?"
{ true, false }
"What happens if there are non-unique, sorted records?"
{ true, true }

I want to highlight here the last example, where the postcondition field shows
true. Note that the test user record list here has records sorted properly,
except there are multiple occurrences of ur2.

 67

val ur1:UserRecord = {"Corwin", "1", nil, nil};
val ur2:UserRecord = {"Fisher", "2", nil, nil};
val ur3:UserRecord = {"Other", "3", nil, nil};
val ur4:UserRecord = {"Extra", "4", nil, nil};
val ur5:UserRecord = {"Fisher", "5", nil, nil};

val udb = [ur1, ur2, ur3, ur4, ur5];
val unsorted_result = [ur5, ur2];
val sorted_result = [ur2, ur5];
val too_many_unsorted = [ur2, ur5, ur2, ur2];
val too_many_sorted = [ur2, ur2, ur2, ur5];

> [1 .. 100];

> "What happens if there are unique, unsorted records?";
> FindUserByName(udb,"Fisher")?->unsorted_result;

> "What happens if there are unique, sorted records?";
> FindUserByName(udb,"Fisher")?->sorted_result;

> "What happens if there are non-unique, unsorted records?";
> FindUserByName(udb,"Fisher")?->too_many_unsorted;

> "What happens if there are non-unique, sorted records?";
> FindUserByName(udb,"Fisher")?->too_many_sorted;

It’s this issue of cardinality that previously had not been covered in the CSC
308 example. That is, the example specification of FindUser allowed
multiple occurrences of records, which was unintended behavior. Going
through examples for this thesis revealed that the postcondition was not
strong enough, and it can be strengthened with a simple change (that may
save Gene from some future embarrassment).

 68

operation FindUserByName
 inputs: udb:UserDB, n:Name;
 outputs: url:UserRecord*;

 precondition: (* None yet. *);

 postcondition:
 (*
 * The output list consists of all records of the given name
 * in the input db.
 *)
 (forall (ur: UserRecord)
 (ur in url) iff (ur in udb) and (ur.name = n))

 and
 (*
 * The output list is sorted alphabetically by id
 *)
 (forall (i:integer | (i >= 1) and (i < #url))
 (url[i].id < url[i+1].id));

 description: (*
 Find a user or users by real-world name. If more than one is
 found, the output list is sorted by id.
 *);
end FindUserByName;

The simple change can be seen here where we use the less than operator,
instead of less than or equal, to test sort order. This change forces
uniqueness in the output user record list. When we re-run the tests against
this FindUser operation with a strengthened postcondition, we should only one
postcondition field be true: where the output list is sorted and the elements are
unique.

 69

Validation Operator Invocation
Results: Strengthened Logic

"What happens if there are unique, unsorted records?"
{ true, false }
"What happens if there are unique, sorted records?"
{ true, true }
"What happens if there are non-unique, unsorted records?"
{ true, false }
"What happens if there are non-unique, sorted records?"
{ true, false }

 70

operation FindUserByName
 inputs: udb:UserDB, n:Name;
 outputs: url:UserRecord*;

 precondition: (* None yet. *);

 postcondition:
 (*
 * The output list consists of all records of the given name
 * in the input db.
 *)
 (forall (ur: UserRecord)
 (ur in url) iff (ur in udb) and (ur.name = n))

 and
 (*
 * The output list is sorted alphabetically by id
 *)
 (forall (i:integer | (i >= 1) and (i < #url))
 (url[i].id < url[i+1].id));

 description: (*
 Find a user or users by real-world name. If more than one is
 found, the output list is sorted by id.
 *);
end FindUserByName;

While we discovered this specification to be strong enough, some might argue
that it’s difficult to read. To improve readability, FMSL allows the user to
create auxiliary functions that can be used in preconditions and
postconditions.

 71

operation FindUserByName
 inputs: udb:UserDB, n:Name;
 outputs: url:UserRecord*;
 postcondition:
 RecordsFound(udb,n,url)
 and
 SortedById(url);
end FindUserByName;

function RecordsFound(udb:UserDB, n:Name, url:UserRecord*) =
 (*
 * The output list consists of all records of the given name in
 * the input db.
 *)
 (forall (ur' in url)
 (ur' in udb)
 and
 (ur'.name = n));

function SortedById(url:UserRecord*) =
 (*
 * The output list is sorted alphabetically by id.
 *)
 (if (#url > 1) then
 (forall (i in [1..(#url - 1)])
 url[i].id < url[i+1].id)
 else true);

 72

Validation Operator Invocation
Results: Auxiliary Functions

"What happens if there are unique, unsorted records?"
{ true, false }
"What happens if there are unique, sorted records?"
{ true, true }
"What happens if there are non-unique, unsorted records?"
{ true, false }
"What happens if there are non-unique, sorted records?"
{ true, false }

As we’d hoped, this perhaps easier-to-read specification was equivalent to the
FindUser with strengthened postcondition.

 73

Translating User-level
Requirements into Boolean Logic

1. There is no user record in the input
database with the same id as the record
to be added

2. The id of an added user record cannot
be empty and must be no more than 8
characters in length

3. If the area code and phone number are
present, they must be 3 digits and 7
digits respectively

An important part of refining a specification is translating user-level
requirements, stated in English prose, into Boolean logic. Exploratory
expression evaluation, including validation invocations, can be useful in this
translation process.

These are typical user-level requirements for an operation like adding a record
to a database, i.e., the AddUser operation described in the previous section of
the thesis.

 74

operation AddUser
 inputs: udb:UserDB, ur:UserRecord;
 outputs: udb':UserDB;
 precondition:
 (*
 * There is no user record in the input UserDB with the same id
 * as the record to be added.
 *)
 (not (ur in udb))

 and
 (*
 * The id of the given user record is not empty and 8 characters
 * or less.
 *)
 (#(ur.id) <= 8)

 and
 (*
 * If the phone area code and number are present, they must be 3
 * digits and 7 digits respectively.
 *)
 (#(ur.phone.area) = 3) and
 (#(ur.phone.num) = 7);

 postcondition: (* Same as above *);
end AddUser;

This sample characterizes the kind of logic oversights that have been
observed regularly in students’ initial efforts to translate user-level
requirements from English prose into formal logic. The following slides
highlight how FMSL’s validation operator invocations can help reveal the logic
errors.

 75

operation AddUser
 inputs: udb:UserDB, ur:UserRecord;
 outputs: udb':UserDB;
 precondition:
 (*
 * There is no user record in the input UserDB with the same id
 * as the record to be added.
 *)
 (not (ur in udb))

 and
 (*
 * The id of the given user record is not empty and 8 characters
 * or less.
 *)
 (#(ur.id) <= 8)

 and
 (*
 * If the phone area code and number are present, they must be 3
 * digits and 7 digits respectively.
 *)
 (#(ur.phone.area) = 3) and
 (#(ur.phone.num) = 7);

 postcondition: (* Same as above *);
end AddUser;

We’ll first examine the top-most piece of logic with the test file on the next
slide.

 76

val phone:PhoneNumber = {805, 5551212};
val email:EmailAddress = "pcorwin@calpoly.edu";
val ur:UserRecord = {"Corwin", "1", email, phone};
val ur_duplicate_id:UserRecord = {"Fisher", "1", email, phone};
val udb:UserDB = [];
val udb_added:UserDB = [ur];

> AddUser(udb_added, ur_duplicate_id) ?-> (udb_added);

Validation Operator Invocation #1

Here you can see the creation of two user record values that share all
components in common except for the name field. The correct output of this
validation is { false, nil }, since the requirement called for a unique ID and here
the two user records have the same id of “1”. By running this example
through we can see that the existing precondition is not strong enough.

 77

Requirement Translation Flaw #1

• There is no user record in the input
database with the same id as the record to
be added

Flawed:

(not (ur in udb))

Correct:

(not (exists (ur' in udb) ur'.id = ur.id))

Here we can see the flawed logic vs. the correct logic, the latter of which
properly formalizes the requirement.

 78

operation AddUser
 inputs: udb:UserDB, ur:UserRecord;
 outputs: udb':UserDB;
 precondition:
 (*
 * There is no user record in the input UserDB with the same id
 * as the record to be added.
 *)
 (not (exists (ur' in udb) ur'.id = ur.id))
 and
 (*
 * The id of the given user record is not empty and 8 characters
 * or less.
 *)
 (#(ur.id) <= 8)

 and
 (*
 * If the phone area code and number are present, they must be 3
 * digits and 7 digits respectively.
 *)
 (#(ur.phone.area) = 3) and
 (#(ur.phone.num) = 7);

 postcondition: (* Same as above *);
end AddUser;

So we’ve fixed the first piece of logic; now we’ll examine the second piece of
logic.

 79

Validation Operator Invocation #2

val ur_empty_id:UserRecord = {"Corwin", nil, email, phone};

> AddUser(udb, ur_empty_id) ?-> (udb);

The result of this evaluation also should be { false, nil }, since we’re passing in
an empty ID.

 80

Requirement Translation Flaw #2

• The id of an added user record cannot be
empty and must be no more than 8
characters in length

Flawed:

(#(ur.id) <= 8)

Correct:

(ur.id != nil) and (#(ur.id) <= 8)

Per FMSL’s specific semantics, the length of nil evaluates to 0, which is less
than or equal to 8, and so the case would pass through. The correct version
of the logic explicitly states that the id field is not empty and its length is less
than or equal to 8.

 81

operation AddUser
 inputs: udb:UserDB, ur:UserRecord;
 outputs: udb':UserDB;
 precondition:
 (*
 * There is no user record in the input UserDB with the same id
 * as the record to be added.
 *)
 (not (exists (ur' in udb) ur'.id = ur.id))
 and
 (*
 * The id of the given user record is not empty and 8 characters
 * or less.
 *)
 (ur.id != nil) and (#(ur.id) <= 8)
 and
 (*
 * If the phone area code and number are present, they must be 3
 * digits and 7 digits respectively.
 *)
 (#(ur.phone.area) = 3) and
 (#(ur.phone.num) = 7);

 postcondition: (* Same as above *);
end AddUser;

Now that we’ve corrected the first two pieces of logic, we’ll examine the last.

 82

Validation Operator Invocation #2

val ur_empty_phone:UserRecord = {"Corwin", "1", email, nil};

> AddUser(udb, ur_empty_phone)?->(udb);

The result of this evaluation should be { true, nil }, since it’s acceptable for the
phone field to be empty.

 83

Requirement Translation Flaw #3

• If the area code and phone number are
present, they must be 3 digits and 7
digits respectively

Flawed:

(#(ur.phone.area) = 3) and
(#(ur.phone.num) = 7));

Correct:

(if (ur.phone.area != nil) then (#(ur.phone.area) = 3)) and
(if (ur.phone.num != nil) then (#(ur.phone.num) = 7));

The previous validation operator invocation incorrectly evaluates to { false,
nil }, since it checks that the area and num fields have lengths equal to 3 and
7, respectively. The correct logic below incorporates a check for nil, which
accommodates the first part of the requirement that states “if the area code
and phone number are present…”

Now, in this corrected logic we’re making an assumption that it’s ok for only
one of area code or phone number to be present. At this point we would go
back to the requirement author or customer to request clarification.

 84

operation AddUser
 inputs: udb:UserDB, ur:UserRecord;
 outputs: udb':UserDB;
 precondition:
 (*
 * There is no user record in the input UserDB with the same id
 * as the record to be added.
 *)
 (not (exists (ur' in udb) ur'.id = ur.id))

 and
 (*
 * The id of the given user record is not empty and 8 characters
 * or less.
 *)
 (ur.id != nil) and (#(ur.id) <= 8)

 and
 (*
 * If the phone area code and number are present, they must be 3
 * digits and 7 digits respectively.
 *)
 (if (ur.phone.area != nil) then (#(ur.phone.area) = 3)) and
 (if (ur.phone.num != nil) then (#(ur.phone.num) = 7));

 postcondition: (* Same as above *);
end AddUser;

So here’s the updated description that we refined by iteratively testing
validation operator invocations.

 85

Presentation Outline

• Chapter 1: Introduction
• Chapter 2: Background and Related Work
• Chapter 3: Demonstration of Tool

Capabilities
• Chapter 4: Overall System Design
• Chapter 5: The Functional Interpreter
• Chapter 6: Quantifier Execution
• Chapter 7: Conclusions

 86

FMSL Pre-Thesis

Lexer Parser
Type

Checker

Source
Code

Parse
Tree

Symbol
Table

Error
Messages

Prior to the work of this thesis, the mechanized checking of an FMSL
specification was limited to static syntax and semantic analysis. As with most
programming language compilers, the output of the static analysis is empty,
unless errors are detected.

 87

FMSL Post-Thesis

Lexer Parser
Type

Checker

Source
Code

Parse
Tree

Symbol
Table

Interpreter
Execution

output
Type

Check
OK?

Error
Messages

YES

NO

The work for this thesis has added support for evaluating expressions through
a functional interpreter, which is a valid path provided there are no type check
errors. The execution output from the interpreter includes expression
evaluation results as well as any run-time errors, such as division by zero.

 88

New to FMSL:
The Functional Interpreter

• Expression evaluation
• Function / operation evaluation
• Execution of preconditions and

postconditions
• Quantifier evaluation
• Value universe
• Validation operator

 89

Presentation Outline

• Chapter 1: Introduction
• Chapter 2: Background and Related Work
• Chapter 3: Demonstration of Tool

Capabilities
• Chapter 4: Overall System Design
• Chapter 5: The Functional Interpreter
• Chapter 6: Quantifier Execution
• Chapter 7: Conclusions

 90

Basic Object Types

• boolean
• integer
• real
• string
• nil

Boolean: true/false

Integer: non-fraction numbers

Real: double-precision decimal numbers

String: sequences of characters

Nil – the empty value for any object

 91

Basic Operators: booleans

booleanconditional with elseif b1 then b2 else
b3

where b1, b2, b3 are Boolean
expressions

booleanconditionalif b1 then b2
where b1, b2 are Boolean

expressions

booleantwo-way implication; if and only if<=>

booleanimplication=>

booleanexclusive disjunctionxor

booleandisjunctionor

booleanconjunctionand

booleannegationnot

ReturnsDescriptionOperator

 92

Basic Operators: integers and reals

booleanless than or equal to<=

booleangreater than or equal to>=

booleanless than<

booleangreater than>

booleanInequality!=

booleanEquality=

integer or realreturns -1*the number- (unary)

integer or realreturns 1*the number+ (unary)

integerModulusmod

integer or realDivision/

integer or realmultiplication*

integer or realSubtraction-

integer or realAddition+

ReturnsDescriptionOperator

 93

Basic Operators: strings

stringrange / substring selection[m .. n]

stringsingle character selection[n]

stringconcatenation+

booleanmembership testin

integerstring length#

booleaninequality!=

booleanequality=

ReturnsDescriptionOperator

 94

Internal Representation of Values

ValueStruct

LorR

tag

type

size

val

int IntVal

double RealVal

String* StringVal

etc.

bool BoolVal

...

ValueStruct is a C structure that stores information about an object value.

LorR indicates whether the underlying value is an L or R value (location vs. a
value)

Tag indicates the general type of the value

Type is the full type structure, whose utility is most obvious in complex object
types

Size is the type size which can be a number of elements or bytes of storage

Val is the actual byte representation in memory, and is a union as seen here

 95

Division Operator Example

• Determine that the expression involves a binary
operator

• Determine the operator (/)
• Call and return the result of the function that performs

the division, passing in as parameters the
ValueStructs corresponding to the x and y operands

(*
 * Declare and assign values to x, y
 *)
val x:real = 3.141592654;
val y:real = 2.718281828;

(*
 * Evaluate x divided by y and output the result
 *)
> x / y;

 96

ValueStruct doRealDiv(ValueStruct v1, ValueStruct v2, nodep t) {
 /*
 * Propagate null value if either is operand is null.
 */
 if ((v1 == null) or (v2 == null))
 return null;
 /*
 * Handled the overload for real or integer operands.
 */
 switch (v1->tag) {
 case RealTag:
 if (v2->tag == IntTag) {
 if (v2->val.IntVal == 0) {
 free(v2);
 lerror(t, "Divide by zero.\n");
 return null;
 }
 v1->val.RealVal = v1->val.RealVal / v2->val.IntVal;
 }
 else {
 if (v2->val.RealVal == 0) {
 free(v2);
 lerror(t, "Divide by zero.\n");
 }
 v1->val.RealVal = v1->val.RealVal / v2->val.RealVal;
 }
 free(v2);
 return v1;

Returns a valuestruct, has valuestruct paramaters where v1 and v2
correspond to x and y. I’ll get to nodep t parameter in a sec.

Depending on the tag indicators of each v1 and v2, either of which could be
real or integer, we perform the division. Here you can see the check for a run-
time error, division by zero, which utilizes the t parameter to help indicate the
location of the run-time error.

Note that we don’t have to check for non-numeric operands because the type
checker already has performed that check. i.e., in order to get this far the
static type checking pass must have been successful.

 97

 case IntTag:
 if (v2->tag == RealTag) {
 if (v2->val.RealVal == 0) {
 free(v2);
 lerror(t, "Divide by zero.\n");
 return null;
 }
 v1->val.RealVal = v1->val.IntVal / v2->val.RealVal;
 v1->tag = RealTag;
 }
 else {
 if (v2->val.IntVal == 0) {
 free(v2);
 lerror(t, "Divide by zero.\n");
 return null;
 }
 v1->val.IntVal = v1->val.IntVal / v2->val.IntVal;
 }
 free(v2);
 return v1;
 }
}

 98

Complex Structures

• Lists
– Homogeneous

– Hold zero or more object values

– Analogous to an array with no predetermined, fixed
size

• Tuples
– Heterogeneous
– Hold fixed number of components of specific object

types
– Analogous to a C struct

 99

Basic Operators: lists

list typerange selection[m .. n]

list typeelement selection[n]

list typedeletion from list-

list typeconcatenation+

integerelement count#

booleanmembershipin

booleaninequality!=

booleanequality=

ReturnsDescriptionOperator

 100

Basic Operators: tuples

any field typefield access.

booleaninequality!=

booleanEquality=

ReturnsDescriptionOperator

 101

ListStruct Definition

ListStruct

ListElem* first

ListElem* last

int size

int ref_count

ListElem* enum_elem

Internal representation of a list, which can be pointed to by the val component
of a ValueStruct.

Linked list

For convenience has pointers to first and last

Size

Ref_count for potential memory management clues

Enum_elem for to make for easier traversal

 102

List Range Selection Example

Code listing:
(*
* Declare the IntegerList type
*)
object IntegerList = integer*;

(*
* Declare an intlist value
*)
val intlist:IntegerList = [1,1,2,3,5,3+5];

(*
* Select the subcomponents at indexes 3, 4, and 5.
*)
> intlist[3..5];

Output:
[2, 3, 5]

 103

List Range Selection Example

• Determine that the expression involves a
ternary operator with three operands: list,
lower bound, upper bound

• Determine the operator ([] – list range
selection)

• Call and return the result of the function that
performs the list range selection, passing in as
parameters the ValueStructs corresponding
to the list, lower bound, and upper bound
operands

 104

ValueStruct doArraySliceRef(v1, v2, v3)
 ValueStruct v1;
 ValueStruct v2;
 ValueStruct v3;
{
 ValueStruct result;
 int i;
 /* start building the new list */
 result = MakeVal(RVAL, v1->type);
 if (v1->tag == ListTag) {
 result->val.ListVal = NewList();
 /*
 * loop through from lower .. upper and add the elements
 * to result.
 */
 for (i = v2->val.IntVal; i <= v3->val.IntVal; i++) {
 PutList(result->val.ListVal,
 GetListNth(v1->val.ListVal, i));
 }
 }
 else if (v1->tag == StringTag) {
 result->val.StringVal =
 (String *)SubString(v1->val.StringVal,
 v2->val.IntVal,
 v3->val.IntVal);
 }
 return result;
}

 105

Tuple Field Access Example

• Determine that the expression involves a binary operator with two
operands: the tuple name and the tuple field name

• Determine the operator (. – field access)
• Call and return the result of the function that performs the field

access, passing in as parameters the ValueStructs
corresponding to the tuple and the tuple field name

Code listing:
(*
* Declare p, a person variable
*)
val p:Person = {"Arnold", "Schwarzenegger", 61};

(*
* Access p's last name field
*)
> p.lastName;

Output:
"Schwarzenegger"

Internally, tuples are stored in a manner very similar to the way lists are
stored.

 106

ValueStruct RecordRef(desig, field)
 ValueStruct desig; /* L-value for the left operand. */
 nodep field; /* Ident for the right operand. */
{
 ValueStruct valueField,
 tuple,
 newDesig;
 SymtabEntry *f;
 int n;
 TypeStruct type = ResolveIdentType(desig->type, null, false),
 fieldType;

 /*
 * Deal with nil desig, i.e., just return it as is.
 */
 if (isNilValue(desig)) {
 return desig;
 }

 107

 /*
 * coming in, desig->LVal should point to the ValueStruct of the
 * struct
 */
 if (field->header.name == Yident) {
 f = LookupIn(field->components.atom.val.text,
 type->components.type.kind.record.fieldstab);
 fieldType = ResolveIdentType(f->Type, null, false);
 }
 else {
 f = null;
 n = field->components.atom.val.integer;
 fieldType = ResolveIdentType(
 GetNthField(type->components.type.kind.record.fields, n)->
 components.decl.kind.field.type, null, false);
 }

 108

 if (desig->LorR == LVAL) {
 tuple = (ValueStruct)*(desig->val.LVal);
 }
 else {
 tuple = desig;
 }

 /* Note: Lists are 1-indexed */
 valueField = (ValueStruct)GetListNth(tuple->val.StructVal,
 f ? f->Info.Var.Offset + 1 : n);
 /*
 * if we have valueField filled in, use its type... otherwise use the
 * fieldType
 */
 if (!valueField) {
 newDesig = MakeVal(LVAL, fieldType);
 }
 else {
 newDesig = MakeVal(LVAL, valueField->type);
 }
 newDesig->val.LVal = (ValueStruct *) malloc(sizeof(Value **));
 *(newDesig->val.LVal) = valueField;

 return newDesig;
}

 109

Operation Invocation

Code listing:
operation Cube (x:integer) = x * x * x;

> Cube(2);
> Cube(5);

Output:
8
125

FMSL supports the definition of computation operations. These have the
standard semantics of procedural abstractions definable in almost all
programming languages. Parameter passing is strictly call-by-value, and the
operation result is equal to the result . When operations have no mutating set
expressions, they are side-effect free.

To perform operation invocations, FMSL first pushes an activation record onto
the stack. Then each input parameter is evaluated and the results are bound
to the proper memory locations according to the formal parameter names.
Then the local symbol table is pushed to the top of the symbol table stack and
the operation body is executed. The result gets saved off before popping the
activation record, and the result is returned.

See here an example cube operation, that returns the result of cubing the
input integer parameter.

 110

Validation Operator Invocation

• Recall that generically, the validation
operator usage is:

• The result is a two-tuple that contains boolean
values
– The first corresponds to precondition evaluation

– The second corresponds to postcondition evaluation

operation_name(input argument list) ?-> (output argument list)

The implementation of the validation operator is similar to the implementation
of an operation evaluation, in that the input and output actual parameters are
put in the local symbol table and statements using those variables are
executed. Whereas with operations the operation body gets executed, with
the validation operator the precondition and postcondition bodies are
executed.

The results of those executions are… [READ BULLET 2]

 111

Validation Result Indications

Both precondition and postcondition evaluation passed{ true, true }

Precondition evaluation passed; postcondition evaluation
failed

{ true, false }

precondition evaluation passed; no postcondition specified
or there was an execution failure in the postcondition

{ true, nil }

precondition evaluation failed; postcondition evaluation not
attempted

{ false, nil }

execution failure in the precondition; postcondition
evaluation not attempted

{ nil, nil }

IndicationTuple Returned

The execution failure referred to in the indication column results from an
expression returning a nil value. Genuine failures include division by zero,
index out of bounds, or access to uninitialized tuple fields.

 112

Validation Result Significances

Test values for both inputs and outputs agreed with both the
precondition and postcondition

{ true, true }

Test values for inputs were valid, but the output values were
invalid or the postcondition was specified incorrectly

{ true, false }

Test values for inputs were valid, but the postcondition
either wasn’t specified or it may be specified incorrectly
since a run-time / execution error was detected during
postcondition execution

{ true, nil }

Test values for inputs were invalid or the precondition was
specified incorrectly

{ false, nil }

The precondition may be specified incorrectly since a run-
time / execution error was detected during precondition
execution

{ nil, nil }

SignificanceTuple Returned

Perhaps more meaningful than the previous slide of indications are these
significances, since they give us inferences about input values, output values,
and the precondition and postcondition logic.

While some symbolic model checking tools initialize input fields only to values
that adhere to the precondition, with FMSL’s validation operator the user also
can get additional, helpful assurance that there is an absence of unintended
behavior. i.e., the user will want to list inputs, outputs, and expected result to
get the most helpful feedback about potential specification or test data errors.

Last of ch 5 – next slide is ch 6

 113

Presentation Outline

• Chapter 1: Introduction
• Chapter 2: Background and Related Work
• Chapter 3: Demonstration of Tool

Capabilities
• Chapter 4: Overall System Design
• Chapter 5: The Functional Interpreter
• Chapter 6: Quantifier Execution
• Chapter 7: Conclusions

 114

Chapter 6: Quantifier Execution

• FMSL supports quantifiers that are
– Bounded or unbounded
– Of universal (forall) or existential (exists)

forms

Bounded quantifiers iterate over a discrete range, while unbounded quantifiers
iterate over values within a universe that is unbounded or conceptually
infinitely large. For example, an unbounded quantifier might iterate over the
set of all integers.

 115

Quantifier Syntax

there exists an x of type t such that p1 is true and p2
is true

unboundedexists (x:t | p1) p2

there exists an x of type t such that p is trueunboundedexists (x:t) p

there exists an x in list S such that p is trueboundedexists (x in S) p

for all values x of type t such that p1 is true, p2 is
true

unboundedforall (x:t | p1) p2

for all values x of type t, p is trueunboundedforall (x:t) p

for all values x in list S, p is trueboundedforall (x in S) p

Reads Like …Quantifier
Type

Syntax

 116

Bounded Quantifier

(*
* Declare an IntList object type and an IntList value
*)
obj IntList = integer*;
val list:IntList = [1, 1, 2, 3, 5];

(*
* Evaluate: all the integer elements within list are positive.
*)
> forall (i in list) i > 0; -- evaluates to true

Implementing this form of quantifier was relatively straightforward compared to
unbounded quantifiers.

 117

Unbounded Quantifier

obj Person = name:Name and age:Age;
obj Name = string;
obj Age = integer;

> forall (p:Person) p.age >= 21;

Here’s an example of an unbounded quantifier. Unlike the bounded case, it is
not immediately clear how the interpreter should evaluate this form of
quantifier that concerns this simplified Person object.

For this thesis, FMSL evaluates unbounded quantifiers by iterating through an
incrementally built universe of values and evaluating the predicate for each
value.

 118

Other Methods of Unbounded
Quantifier Execution

• Aslantest
– When it cannot automatically reduce an expression to

true or false, it suspends execution and prompts for
user input

• Jahob
– pickAny: picks an arbitrary value, optionally bounded

by lemmas that the user can input, that is placed into
the unbounded quantifier

• Executable Z
– Treats unbounded quantification as a source of non-

executability, so such statements are treated as
compiler assumptions (and not executable
statements)

 119

Unbounded Quantification in FMSL:
Value Universe

• A discrete pool of values, indexed by type, that supply
meaningful values to unbounded quantifier predicates

• Can contain values of any value type, from simple
atomic types to complex types like lists and tuples

• Grows incrementally as values appear during
specification execution

• With repeatability in mind, values added primarily in
contexts where values cannot be mutated
– Let expressions
– Parameter binding
– List construction

• By default does not contain duplicates

Mutation is still possible, and so the universe values can be changed in some
cases, the FMSL user should understand that performing mutations can
cause undesirable side effects that ripple throughout the universe and normal
execution (and non-repeatability). This is consistent with the notion that value
mutations are generally considered harmful in a functional environment.

On the topic of duplicates: this adds up-front processing time when calculating
whether to add a value to the universe, but it saves memory and reduces
processing time during evaluation of unbounded quantifiers.

 120

Value Universe Structure

type n
val 1

type n
val ...

type n
val m

Value Universe

type 1

type 2

...

type n

type 1
val 1

type 1
val ...

type 1
val m

Implemented internally as a block of memory where each memory slot is a
pointer to a homogeneous list of values for a particular type.

 121

Value Universe Add
1.

2.

Person
Val

Val
1

Val
…

Val
m

Value Universe

type 1

Person

...

type n

Val
1

Val
…

Val
m

1. Look up the Person memory slot by hashing the Person type name to an
index location

2. If such a slot doesn’t exist, assign one and create a value list

3. If it does exist, traverse through the Person value list to see whether the
value already exists

4. If the value of interest exists, do nothing. If it does not exist, add it to the
end of the value list.

 122

Quantifier Syntax

there exists an x of type t such that p1 is true and p2
is true

unboundedexists (x:t | p1) p2

there exists an x of type t such that p is trueunboundedexists (x:t) p

there exists an x in list S such that p is trueboundedexists (x in S) p

for all values x of type t such that p1 is true, p2 is
true

unboundedforall (x:t | p1) p2

for all values x of type t, p is trueunboundedforall (x:t) p

for all values x in list S, p is trueboundedforall (x in S) p

Reads Like …Quantifier
Type

Syntax

We’re going to walk through an example that takes this form of unbounded
existential quantifier

 123

Unbounded Existential Quantifier

(*
 * Perform lets with p1, p2 to put them in the Universe
 *)
> (let p1:Person = {"Alan", "Turing", 97};);
> (let p2:Person = {"Arnold", "Schwarzenegger", 61};);

> "Expected: false";
> exists (p:Person) p.lastName = nil;

(*
 * Since p3, with a nil last name, has been introduced
 * then we expect true below.
 *)

> (let p3:Person = {"Charles", nil, 218};);
> "Expected: true";
> exists (p:Person) p.lastName = nil;

These existential quantifiers evaluate that there exists an object p of type
person such that p’s last name field is nil.

Notice that upon executing the first unbounded existential quantifier, all the
person values introduced into the universe have non-nil last names. The
same can’t be said upon executing the second quantifier.

 124

1.

2.

3.

Value Universe

type 1

Person

...

type n

Val
1

Val
…

Val
m

Value Universe

type 1

Person

...

type n

Val
1

Val
…

Val
m

Val
1

Val
…

Val
m

(Val 1).lastName
= nil

OR OR

(Val ...).lastName
= nil

(Val m).lastName
= nil

Somewhat generically, here’s how the unbounded quantifier, exists
(p:Person) p.lastName = nil, gets evaluated:

3. The interpreter first identifies that p is of object type Person

4. It then Hashes the Person type name to locate the slot in the value
universe where person values should be found

5. After discovering that there are Person values in the universe, the
interpreter iterates through each Person value, temporarily assigning the
current Person value to p in the local symbol table.

6. At each stop along the way, the interpreter evaluates the predicate,
p.lastName = nil, and ORs the results together to arrive at the final
evaluation result

A forall evaluation happens in a very similar fashion, except that the predicate
evaluation results are ANDd together instead of ORd to arrive at the final
result.

 125

Unbounded Existential Quantifier

(*
 * Perform lets with p1, p2 to put them in the Universe
 *)
> (let p1:Person = {"Alan", "Turing", 97};);
> (let p2:Person = {"Arnold", "Schwarzenegger", 61};);

> "Expected: false";
> exists (p:Person) p.lastName = nil;

(*
 * Since p3, with a nil last name, has been introduced
 * then we expect true below.
 *)

> (let p3:Person = {"Charles", nil, 218};);
> "Expected: true";
> exists (p:Person) p.lastName = nil;

Evaluates
to false

Evaluates
to true

Knowing the implementation of the value universe, what we expected in each
case was what we saw. First false, second true.

 126

Quantifier Syntax

there exists an x of type t such that p1 is true and p2
is true

unboundedexists (x:t | p1) p2

there exists an x of type t such that p is trueunboundedexists (x:t) p

there exists an x in list S such that p is trueboundedexists (x in S) p

for all values x of type t such that p1 is true, p2 is
true

unboundedforall (x:t | p1) p2

for all values x of type t, p is trueunboundedforall (x:t) p

for all values x in list S, p is trueboundedforall (x in S) p

Reads Like …Quantifier
Type

Syntax

 127

Unbounded Universal Quantifier
(with suchthat)

(*
 * Perform lets with p1, p2, p3 to put them in the Universe
 *)
> (let p1:Person = {"Alan", "Turing", 97};);
> (let p2:Person = {"Arnold", "Schwarzenegger", 61};);
> (let p3:Person = {"Charles", nil, 218};);

(*
 * Evaluate: for all Person objects such that p.lastName is
 * not nil, the last name length is at least 6 characters
 *)
> "Expected: true";
> forall (p:Person | p.lastName != nil) #p.lastName >= 6;

This unbounded universal quantifier evaluates that all Person objects that
have a last name defined have a last name length of at least 6 characters.
Or, in other words, forall objects p of type person, such that p’s last name field
is not nil, the length of the last name is at least 6 characters.

Like in the above existential quantifier example, the interpreter iterates over
person values in the value universe, or p1, p2, and p3. The last names of p1
and p2 both are at least 6 characters, and although p3’s last name not at least
6 characters, that’s OK since we have our suchthat clause which precludes
that character length evaluation.

 128

Unbounded Universal Quantifier
(with suchthat)

(*
 * Perform lets with p1, p2, p3 to put them in the Universe
 *)
> (let p1:Person = {"Alan", "Turing", 97};);
> (let p2:Person = {"Arnold", "Schwarzenegger", 61};);
> (let p3:Person = {"Charles", nil, 218};);

(*
 * Evaluate: for all Person objects such that p.lastName is
 * not nil, the last name length is at least 6 characters
 *)
> "Expected: true";
> forall (p:Person | p.lastName != nil) #p.lastName >= 6;

Evaluates
to true

 129

Presentation Outline

• Chapter 1: Introduction
• Chapter 2: Background and Related Work
• Chapter 3: Demonstration of Tool

Capabilities
• Chapter 4: Overall System Design
• Chapter 5: The Functional Interpreter
• Chapter 6: Quantifier Execution
• Chapter 7: Conclusions

 130

Summary of Contributions
1. The design and implementation of a functional

interpreter for a formal specification language,
rendering the language executable for the first
time

2. The design and implementation of a novel
technique to execute purely predicative
specifications, using validation operator
invocations

3. Demonstration of how the execution
capabilities can be used to validate formal
specifications

4. A thorough discussion of how the specification
execution capabilities fit into the realm of light-
weight and heavy-weight formal methods

 131

Future Work

• UML to FMSL tool
• Test case generator
• GUI front end
• Improve value universe performance
• Garbage collector
• End-user studies

As UML is the standard for modeling software applications, a UML front-end for creating FMSL
models could speed up the FMSL formal description process.

Currently FMSL validation operator test cases must be generated by hand, but combining
automated test case generation with FMSL’s specification execution capabilities could make
FMSL an even more useful tool for validating specifications.

A GUI front end that helps the user to manage a specification’s test suite could help speed up
and streamline the test case generation and evaluation process.

As the values in the universe are maintained in a simple linked list structure, the
implementation could be modified to use a structure that improves performance when
checking for duplicates during value adds; one such structure could involve a hashing scheme.

As the current FMSL implementation does not manage memory very carefully, an
improvement could be to utilize a third-party C-based garbage collector.

To assess the efficacy of the incremental validation tool, groups of tool users should be
studied. For example, one section could use the validation tool while another would not, and
student specifications could be assessed quantitatively and qualitatively to determine their
accuracy, completeness, consistency, and soundness.

 132

Questions?

• Click to add an outline

 133

The End

	Thesis Defense: Incremental Validation of Formal Specifications
	Committee Members
	Incremental Validation of Formal Specifications
	Presentation Outline
	Slide 5
	Chapter 1: Introduction
	The Problem
	Thesis Aims
	FMSL
	Slide 10
	Chapter 2: Background and Related Work
	Formal Methods: What Are They?
	Formal Methods: Downsides
	Formal Methods: Upsides
	“Heavyweight” Formal Methods: Model Checkers and Theorem Provers
	Formal Methods: Can Be Used on Individual System Parts
	Lightweight Formal Methods
	A Lightweight Technique: Simulation
	Test-Driven Development and Simulation
	Existing Model Checking Tools and Formal Specification Languages
	Empirical Successes with Formal Methods
	BASE: A Trusted Gateway
	Miami University of Ohio: OOD Course
	NASA: Lightweight Formal Methods
	Slide 25
	Chapter 3: Demonstration of Tool Capabilities
	Slide 27
	How Does One Validate That It Is Correct?
	Person Definitions with Add
	Slide 30
	Evaluate Add’s Precondition and Postcondition
	Slide 32
	Validation Invocation
	Slide 34
	Validation Invocation: Counter Example
	Slide 36
	Expression Evaluation in FMSL
	Boolean Expression Examples
	Arithmetic Expression Example
	Quantifier Evaluation
	Universal Quantification
	Existential Quantification
	Bounded Quantifier
	Unbounded Quantifier
	User Database Specification Example
	Slide 46
	AddUser Operation
	Slide 48
	Slide 49
	Slide 50
	Fundamental Question
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Constructive Postcondition
	Slide 57
	FindUserByName Operation
	Slide 59
	Validation Operator Invocation Results: English Comments
	FindUserByName: Basic Logic
	Slide 62
	Validation Operator Invocation Results: Basic Logic
	Slide 64
	Slide 65
	Validation Operator Invocation Results: Basic with Sort Constraint
	Slide 67
	Slide 68
	Validation Operator Invocation Results: Strengthened Logic
	Slide 70
	Slide 71
	Validation Operator Invocation Results: Auxiliary Functions
	Translating User-level Requirements into Boolean Logic
	Slide 74
	Slide 75
	Validation Operator Invocation #1
	Requirement Translation Flaw #1
	Slide 78
	Validation Operator Invocation #2
	Requirement Translation Flaw #2
	Slide 81
	Slide 82
	Requirement Translation Flaw #3
	Slide 84
	Slide 85
	FMSL Pre-Thesis
	FMSL Post-Thesis
	New to FMSL: The Functional Interpreter
	Slide 89
	Basic Object Types
	Basic Operators: booleans
	Basic Operators: integers and reals
	Basic Operators: strings
	Internal Representation of Values
	Division Operator Example
	Slide 96
	Slide 97
	Complex Structures
	Basic Operators: lists
	Basic Operators: tuples
	ListStruct Definition
	List Range Selection Example
	Slide 103
	Slide 104
	Tuple Field Access Example
	Slide 106
	Slide 107
	Slide 108
	Operation Invocation
	Validation Operator Invocation
	Validation Result Indications
	Validation Result Significances
	Slide 113
	Chapter 6: Quantifier Execution
	Quantifier Syntax
	Slide 116
	Slide 117
	Other Methods of Unbounded Quantifier Execution
	Unbounded Quantification in FMSL: Value Universe
	Value Universe Structure
	Value Universe Add
	Slide 122
	Unbounded Existential Quantifier
	Slide 124
	Slide 125
	Slide 126
	Unbounded Universal Quantifier (with suchthat)
	Slide 128
	Slide 129
	Summary of Contributions
	Future Work
	Questions?
	The End

