
INCREMENTAL VALIDATION OF FORMAL SPECIFICATIONS

A Thesis

Presented to

the Faculty of California Polytechnic State University

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Paul Corwin

April/May 2009

AUTHORIZATION FOR REPRODUCTION OF MASTER’S THESIS

I reserve the reproduction rights of this thesis for a period of seven years from the

date of submission. I waive reproduction rights after the time span has expired.

Signature

Date

ii

APPROVAL PAGE

TITLE:

AUTHOR: Paul Corwin

DATE SUBMITTED: April/May 2009

Dr. Gene Fisher
Advisor or Committee Chair Signature

Dr. David Janzen
Committee Member Signature

Dr. Clark Turner
Committee Member Signature

iii

Abstract

Incremental Validation of Formal Specifications

by

Paul Corwin

This thesis presents a tool for the mechanical validation of formal software

specifications. The tool is based on a novel approach to incremental validation. In

this approach, small-scale aspects of a specification are validated, as part of the

stepwise refinement of a formal model.

The incremental validation technique can be considered a form of “light-

weight” model checking. This is in contrast to a “heavy-weight” approach, wherein

an entire large-scale model is validated en masse.

The validation tool is part of a formal modeling and specification language

(FMSL), used in software engineering instruction. A light-weight, incremental

approach to validation is beneficial in this context. Such an approach can be used to

elucidate specification concepts in a step-by-step manner. A heavy-weight approach

to model checking is more difficult to use in this way.

The FMSL model checker has itself been validated by evaluating portions of a

medium-scale specification example. The example has been used in software

engineering courses for a number of years, but has heretofore been validated only by

human inspection. Evidence for the utility of the validation tool is provided by its

performance during the example validation. In particular, use of the tool led to the

discovery of a specification flaw that had gone undiscovered by manual validation

alone.

iv

Acknowledgements

To fill in.

v

Contents

List of Tables ix

List of Figures x

Chapter 1 Introduction..1

1.1 Description of the Problem...2

1.2 Overview of the Solution..3

1.3 Outline of the Thesis...5

Chapter 2 Background and Related Work..6

2.1 Formal Methods..6

2.1.1 Beneficial Uses of Formal Methods..7

2.1.2 Formal Methods for System Parts..9

2.1.3 Cost Effectiveness..9

2.2 Model Checkers and Theorem Provers...10

2.2.1 Model Checking Challenges..11

2.3 Light-weight Formal Methods..13

2.3.1 Light-weight Formal Methods and Test-Driven Development.................14

2.3.2 Light-Weight Formal Methods and UML..16

2.3.3 Cost Effectiveness..16

2.4 Model Checking Tools and Formal Specification Languages..........................17

2.4.1 VeriSoft..17

2.4.2 Symbolic Model Verifier...18

2.4.3 JML and Korat...19

2.4.4 UML and OCL...20

2.4.5 OOSPEC..21

2.4.6 ASLAN and Aslantest..22

2.5 Empirical Successes with Formal Methods..23

vi

2.5.1 BASE: A Trusted Gateway..23

2.5.2 Miami University of Ohio: OOD Course...25

2.5.3 NASA: Lightweight Formal Methods...26

2.6 The Work of this Thesis in the Spectrum of Formal Methods.........................27

Chapter 3 Demonstration of Tool Capabilities...31

3.1 Standard Expression Evaluation...38

3.2 Quantifier Evaluation..40

3.2.1 Bounded Quantifier..42

3.2.2 Unbounded Universal Quantifier: forall..43

3.2.3 Unbounded Existential Quantifier: exists..44

3.2.4 Unbounded Universal Quantifier: forall with such that.............................44

3.3 Operation Validation...45

3.3.1 AddUser: English Precondition and Postcondition in Comments.............47

3.3.2 AddUser: Basic Postcondition Logic ..50

3.3.3 AddUser: Basic Postcondition Logic Challenged......................................51

3.3.4 AddUser: Strengthened Postcondition Logic...53

3.3.5 AddUser: Constructive Postcondition..54

3.3.6 FindUserByName: English Definition in Comments................................56

3.3.7 FindUserByName: Basic Postcondition Logic ...59

3.3.8 FindUserByName: Formal Postcondition Logic with Sort Constraint......60

3.3.9 FindUserByName: Strengthened Postcondition..62

3.3.10 FindUserByName: Postcondition with Auxiliary Functions...................64

3.4 Additional Uses of Validation Invocations and Exploratory Expression

Evaluation..66

Chapter 4 Overall System Design...73

4.1 Execution of Preconditions and Postconditions..74

4.2 Quantifiers..76

4.3 Value Universe for Unbounded Quantifier Evaluation....................................77

4.3.1 Universe Implementation Details..79

Chapter 5 The Functional Interpreter..82

vii

5.1 Basic Object Types and Operator Interpretation..82

5.1.1 Basic Object Type Implementation...82

5.1.2 Operator Descriptions..84

5.1.3 Operator Implementations...86

5.2 Complex Structures...90

5.2.1 List and List Operator Implementation..91

5.2.2 Tuple and Tuple Operator Implementation..96

5.3 Operation Invocation..101

5.4 Operation Validation through the Validation Operator..................................102

Chapter 6 Quantifier Execution..106

6.1 Methods of Quantifier Execution...108

6.2 Unbounded Quantifier Execution in FMSL..109

6.2.1 Example: forall...109

6.2.2 Example: exists..112

6.2.3 Example: var:type such that...115

Chapter 7 Conclusions..117

7.1 Summary of Contributions..117

7.2 Future Work..118

7.2.1 UML to FMSL Tool...118

7.2.2 Test Case Generator...119

7.2.3 GUI Front End...120

7.2.4 Improve Value Universe Performance...122

7.2.5 Garbage Collector..122

Bibliography 123

viii

List of Tables

Table 3.1: Extended forms of forall...41

Table 5.1: Contents of ValueStruct..82

Table 5.2: Operators on booleans..84

Table 5.3: Operators on numbers...84

Table 5.4: Operators on strings..85

Table 5.5: Operators on lists..89

Table 5.6: Operators on tuples...89

Table 5.7: Validation result values..103

Table 5.8: Validation result significance...105

Table 6.1: FMSL quantifier syntax..106

ix

List of Figures

Figure 3.1: Sample FMSL specification..31

Figure 3.2: Person definitions with Add..33

Figure 3.3: Precondition logic expressions..35

Figure 3.4: Postcondition logic expressions..35

Figure 3.5: Evaluating Boolean expressions..39

Figure 3.6: FMSL division operator expression evaluation...39

Figure 3.7: FMSL Person object type definition...41

Figure 3.8: Existential quantification forms..42

Figure 3.9: FMSL bounded quantifier example...43

Figure 3.10: FMSL unbounded forall quantifier example...43

Figure 3.11: FMSL unbounded exists quantifier example...44

Figure 3.12: FMSL unbounded forall / suchthat quantifier example...........................45

Figure 3.13: FMSL UserDB and UserRecord definitions...47

Figure 3.14: AddUser with English precondition and postcondition..........................48

Figure 3.15: AddUser basic tests...49

Figure 3.16: AddUser with basic postcondition logic...50

Figure 3.17: Basic tests for formal postcondition..51

Figure 3.18: Test for postcondition strength..52

Figure 3.19: AddUser with stronger postcondition..53

Figure 3.20: AddUser with constructive postcondition...55

Figure 3.21: Alternate style of validation invocations...56

Figure 3.22: FindUserByName with English precondition and postcondition............57

Figure 3.23: FindUserByName operation validation tests...58

Figure 3.24: FindUserByName initial validation results...59

Figure 3.25: FindUserByName with basic postcondition..59

Figure 3.26: FindUserByName basic validation results..60

Figure 3.27: FMSL FindUserByName with sort constraint...61

x

Figure 3.28: FindUserByName with sort constraint validation results........................62

Figure 3.29: FindUserByName with strengthened postcondition................................63

Figure 3.30: FindUserByName strengthened validation results..................................64

Figure 3.31: FindUserByName with auxiliary functions...65

Figure 3.32: FindUserByName with aux. functions validation results........................66

Figure 3.33: Flawed attempt at AddUser precondition..67

Figure 3.34: Improved AddUser precondition...68

Figure 4.1: FMSL translator initial structure...73

Figure 4.2: FMSL translator structure with interpreter..74

Figure 4.3: Value Universe structure...79

Figure 4.4: Universe Person FMSL code listing..80

Figure 4.5: Value Universe Add Person Value..81

Figure 4.6: FMSL output after lets..81

Figure 5.1: ValueStruct structure with val union...84

Figure 5.2: FMSL division example listing and output...87

Figure 5.3: doRealDiv implementation..88

Figure 5.4: Person object type definition...91

Figure 5.5: ListStruct definition...92

Figure 5.6: FMSL IntegerList initialization...92

Figure 5.7: doListConstructor implementation..94

Figure 5.8: FMSL list selection example...95

Figure 5.9: doArraySliceRef implementation..96

Figure 5.10: Person tuple FMSL code listing..97

Figure 5.11: doTupleConstructor implementation...98

Figure 5.12: RecordRef implementation..101

Figure 5.13: Cube operation FMSL listing..101

Figure 6.1: Example of a bounded quantifier in FMSL...107

Figure 6.2: Example of an unbounded quantifier in FMSL.......................................107

Figure 6.3: FMSL forall example code listing...110

Figure 6.4: Forall example universe access...111

xi

Figure 6.5: FMSL forall example output...112

Figure 6.6: FMSL exists example code listing..112

Figure 6.7: Exists example universe access...114

Figure 6.8: FMSL exists example output...115

Figure 6.9: FMSL forall with suchthat example code listing....................................115

Figure 6.10: FMSL forall with suchthat example output...116

Figure 7.1: GUI overview sketch...121

xii

Chapter 1 Introduction

Software engineering is an error-prone and expensive process. Errors can

originate in any software engineering phase, and there are a variety of ways to

prevent the errors. A well-accepted premise of software engineering is that early

detection of errors is beneficial. That is, detecting an error early in the development

process is likely to limit the impact of the error, compared to detecting the same error

later in the process [17]. In one form or another, early error detection is an aspect of

most modern software engineering processes.

This thesis focuses on enabling early error detection during a formal

specification phase of software development. This thesis presents a tool-supported

technique to validate formal specifications in a straightforward manner that naturally

fits into an incremental software development process.

The incremental validation capabilities are provided as part of a Formal

Modeling and Specification Language (FMSL). FMSL is comparable to other

modern specification languages, such as Z [26] and OCL [63]. The primary

contribution of this thesis is the introduction of executability to an FMSL

specification. This is provided by a functional interpreter, comparable to that

provided by such languages as Lisp [61] and ML [52]. In addition to standard

functional evaluation, the FMSL interpreter can execute Boolean expressions

containing universal and existential quantifiers, including unbounded quantification.

1

gfisher
Cross-Out

gfisher
Replacement Text
e

FMSL is used primarily as a vehicle to teach formal methods to software engineering

students. It is currently used by Professor Gene Fisher in software engineering

courses at California Polytechnic State University, San Luis Obispo (Cal Poly).

Wider distribution of FMSL is planned for the fourth quarter of 2009, via hosting at

sourceforge.net, and a dedicated website.

1.1 Description of the Problem

The specific problem addressed in this thesis is how to validate a formal

model-based specification. Model behavior is defined with Boolean preconditions

and postconditions on model operations. In this context, the problem of validating

the specification becomes a problem of Boolean expression evaluation, as is done

commonly with interpreted programming languages. The problem of evaluating

quantifier expressions is of particular interest in this thesis. This problem is generally

not addressed in programming language interpreters. The more general problem

discussed in this thesis is how formal methods can be used effectively, particularly in

an instructional setting.

Creating a software solution can be a difficult and complex process. There are

many ways that people try to improve the software development process: refine the

requirements gathering process, improve specifications, create more rigorous test

disciplines, select suitable and effective implementation methodologies, etc.

Formal methods and models can be used effectively to describe and analyze a

system prior to concrete implementation. Key here is their pre-implementation use.

2

This can help expose errors, misunderstood properties, and improperly stated

behaviors that otherwise might have been overlooked. Gause and Weinberg warn

[33] humans are not especially good at seeing what we’ve overlooked and formal

methods and models effectively force the issue. The formal model, which serves to

accurately and precisely describe a system, has a utility that is limited by its

correctness. That being the case, some consider “analysis of models [to be] a

particularly rewarding investment, often exposing problems that can cost much more

if not discovered until later” [43]. In this vein, it would seem there is a need for tools

and methods that help detect errors and increase confidence in formal models.

1.2 Overview of the Solution

This thesis’ aims are twofold: (1) to provide a means to validate formal

specifications in a straightforward manner that naturally fits into the software

development process and (2) to demonstrate how this can be applied practically in an

instructional context, win which step-by-step understanding of a specification is an

important goal.

Prior to beginning work on this thesis, FMSL existed as a predicative

specification language with a formal semantics that supported describing a system

comprised of objects and operations. FMSL has a type checker that provides

mechanized static analysis of a model. The type checker performs syntactic and

semantic analysis comparable to that performed by compilers for strongly-typed

programming languages.

3

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Replacement Text
within

FMSL also has a documentation generator. This aids in the manual human

analysis of a model.

The work of this thesis is to add executability to the FMSL analyzer. This

provides the means to execute the operational components of a specification directly.

The form of analysis presented in this thesis is called operation validation.

The foundation of operation validation is a standard functional interpreter for FMSL.

Such an interpreter is comparable to that for interpretable programming languages,

including Lisp [61], ML [52], Python [50], and many others.

There is a fundamental difference between a predicative specification written

in FMSL and a program written in an interpreted programming language. In the

specification, operational behavior is expressed as Boolean predicates that must be

true before and after an operation executes. I.e., these are the preconditions and

postconditions. The operation itself is not defined with an executable body, as in a

programming language. Therefore, what it means to execute a predicate-defined

operation can be characterized as follows:

(1) supply inputs and expected outputs for an operation;

(2) evaluate the operation precondition on the given inputs;

(3) if the precondition is true, then evaluate the operation postcondition on

the given inputs and outputs;

(4) if the postcondition is true, then the specification is valid for the given

set of input/output values.

4

gfisher
Sticky Note
No new paragaph.

gfisher
Comment on Text
put in italics

gfisher
Cross-Out

gfisher
Replacement Text
execution focussed on particularly

gfisher
Sticky Note
No new paragaph.

These steps constitute an operation validation. The solution presented in this

thesis defines and implements the means to perform such validations in FMSL.

1.3 Outline of the Thesis

What follows in Chapter 2 is a description of background and related work,

which covers formal methods, model checking, and related existing modeling and

specification languages. Chapter 3 describes scenarios of system use while Chapter 4

provides an overview of the system design. Chapter 5 discusses the functional

interpreter implementation details and Chapter 6 discusses quantifier execution.

Chapter 7 concludes with a summary of contributions and lists potential future work.

5

Chapter 2 Background and Related Work

This chapter provides a background discussion of formal methods and related

topics. The subject of “light-weight” formal methods is introduced, with a discussion

of how the work of the thesis fits into this category. The related work section

provides a survey of relevant specification languages and model checkers. It

compares and contrasts the related work on model checking to the approach presented

in the thesis.

2.1 Formal Methods

For decades, formal methods have been promoted by researchers as an

important part of a rigorous software engineering process. Glass explains that “a

formal method of software development is a process for developing software that

exploits the power of mathematical notation and mathematical proofs” [34]. Formal

methods can be used to express software properties from high-level to low-level. At

a high level, a formal model can be used to evaluate whether a system specification

satisfies certain properties or meets certain behavioral constraints. At a lower

implementation level, formal methods can be used to “formalize, debug, and prove

the correctness of algorithms and protocols” [38].

6

Despite researchers’ best efforts, critics contend that formal methods have

played a small and insignificant roll in the software engineering process over the last

30 years [34]. In further support of this notion, Heitmeyer points out that “the use of

formal methods in practical software development is rare” [38] while Bowen and

Hinchey explain that “few people understand exactly what formal methods are or how

they are applied” [20].

The critics claim that using formal methods has a high barrier of entry,

especially since many formal methods techniques are “difficult to understand and

apply” [38] and employ notation that requires significant mathematical expertise [48].

Some argue that formal methods approaches are impractical at best, and there is no

compelling reason to incorporate them into their software engineering processes [34].

While that may be true in some cases, formal methods proponents counter-argue that

“formal methods are usually the only practical means of demonstrating absence of

undesired behavior” [46]. Whether practical or impractical, difficult or easy to

understand, if a method helps expose errors, then people likely will consider that

method useful. For example, Kurshan observes: “show a designer a bug in the

design, and she immediately understands the value of your tool, although she may

have little idea how the bug was discovered” [47].

2.1.1 Beneficial Uses of Formal Methods

While general arguments about formal methods continue, there are some

demonstrably beneficial uses for formal methods throughout the software engineering

7

process. Formal methods can be used effectively during requirements development,

specification, design, and implementation phases [5, 6]. Formal methods employ

notations with a well-defined structure, which can be used to present requirements.

As observed by Agerholm and Larsen, presenting requirements in formal notations

can make “reviewing and inspection easier and therefore useful in locating errors”

[8]. Some have found it useful to involve formal methods during the requirements

engineering stages, where the formality prompts the engineers to raise questions and

“improve the overall quality of the existing specifications” [29]. Although there is

more cost associated with formally defining and maintaining a system in multiple

notations, experience has shown that early modeling can prove beneficial [29]. On

the other hand, when formal methods are not used during pre-implementation stages,

design inadequacies only can be exposed once programmers begin building code [42]

– a time when it’s been shown that design errors are relatively more expensive to fix.

In addition to contributing to more firm and complete requirements and a

better system design, formal methods also help people to better understand a system.

Users who employ formal methods at early stages are forced to seriously consider

fundamental design questions, and formal models can succinctly separate concerns

and effectively express system properties [43]. Particularly when dealing with

complex systems, the abstraction capabilities of many formal methods often prove to

be rather helpful. The formal methods can serve to describe a system in an abstract

fashion such that the complexities are masked and so the users acquire a better

understanding of the system [8].

8

2.1.2 Formal Methods for System Parts

Formal methods need not be applied across an entire system. As Bowen and

Hinchey advise, “There are occasions in which formal methods are in a sense

‘overkill’, but in other situations they are very desirable” [20]. Agerholm et al.

conclude that sometimes “only parts of the systems would benefit from a formal

model” [8]. Others have seen positive effects of taking a minimalist approach to

formal methods. Easterbrook et al. observed that they could better handle effects of

changing requirements by modeling only the specific properties of interest [29]. It

may require consideration to determine where formal methods use might be most

advantageous to use [48].

The benefits of code reuse are well accepted. A benefit of using formal

methods is the potential for model reuse. Once system parts have been formalized

into a model then those model parts can be reused [46], for example in later projects.

That formal methods are reusable is a major benefit, but formal methods also promote

code reuse: in particular when the code has an accompanying, succinct description of

guarantees and assumptions then it’s easier to effectively re-use that code [43].

Formal methods and models are appropriate tools to describe those guarantees and

assumptions.

2.1.3 Cost Effectiveness

While model and code reuse can contribute cost savings to a software project,

a common myth surrounding formal methods use is that they’re just too expensive –

9

gfisher
Cross-Out

gfisher
Replacement Text
,

cost- and time-wise – to be viable in industry. Empirical evidence shows that, indeed,

use of formal methods early on in development adds up-front costs; however, often

the effort is recovered later [48]. Also, although using formal methods usually

requires that the users know some formalized notations, to train employees in formal

methods topics does not cost more than typical on-the-job, high-tech training [48].

2.2 Model Checkers and Theorem Provers

Once a formal model is in place, it may be a worthwhile exercise to determine

whether the model is correct. That in mind, much research has gone into developing

model checkers. According to Chan et al. [22], model checking is a “formal

verification technique based on state exploration.” Model checking algorithms

“exhaustively explore the state space to determine whether the system satisfies a

property.” Kuhn et al. add that model checking often involves providing a counter-

example to prove that a property does not hold under certain conditions [46], although

failure to discover a counterexample does not necessarily prove correctness [41].

Confidence in a formal model is important because “an incorrect model can be

worse than no model at all” [43]. Jackson et al. recommend developing a formal

model of a system so long as it can be shown that the model describes the system

[43]. Another approach to building confidence in a model involves use of theorem

provers. Rather than search for counter-examples, theorem provers “assist the user in

constructing proofs, generally to show that the specification has desired properties

such as absence of deadlock or various security properties” [46]. Although theorem

10

proving technology has been around for decades, it has not been accepted broadly.

Some reasons for not being accepted may be that theorem proving tools may require

expert users and an application cycle involving theorem provers is “generally slower

than a normal product design cycle” [47].

 Model checking also can bring to the surface hard-to-find design errors [23],

and it does so in a fashion that Kurshan [47] claims actually accelerates the

development process thus “significantly decreasing the time to market.” For

maximum benefit, Kurshan also recommends that model checking be introduced

early on, i.e., “at the same time that the first behavioral models are written.”

While there are several approaches to model checking, many agree that those

model checkers that enable automatic verification are most desirable [37]. That

makes sense not just for convenience reasons, but also for cost benefits as Beizer [15]

reports that automated testing can reduce the cost of both software development and

maintenance.

2.2.1 Model Checking Challenges

Although there are many benefits that come along with model checking, there

also are some challenges. Model checking tends to require specialized expertise, and

when it’s performed by hand then it can be very time consuming or even error-prone

[13]. Experts are often needed because model languages can be rather difficult to

learn [38]. These specialized experts may be called upon to translate a system into

the model checking tool or language and then to interpret the results [13]. Given that

11

experts may be involved and that this process can be time consuming, model

checking can be costly [22] despite the overall savings it may offer.

Another problem people encounter when trying to work with model checkers

is the state explosion problem. The concept of state explosion is that there can be so

many variables that the model “explodes” in size exponentially to a point that the

computing resources cannot cycle through or perhaps determine the state space in the

given time constraints [22, 53]. Since most models represent some abstraction of the

expected implementation, though, the model state space can be somewhat smaller

than the system’s state space [28]. In fact, Myers et al. point out that when

attempting to model check, the engineers ought to keep abstraction in mind when

modeling a system to help avoid the state explosion problem [53]. To deal with the

state space explosion problem others try to work with a flavor of model checking

called symbolic model checking. Symbolic model checkers visit a set of states at a

time, and the efficiency of this method “relies on succinct representations and

efficient manipulations of … predicates” [22].

All this considered, scalability with model checking remains a challenge [9].

Despite the difficulties that may come with performing model checking, model

checking activities can help people better understand a system and specification [22].

If model checking exposes an error, the users should keep in mind that the error could

indicate a problem with the specification, model, claim, or even developer

understanding [53]. That in mind, it’s better to discover these sorts of errors earlier

rather than later.

12

gfisher
Cross-Out

2.3 Light-weight Formal Methods

Model checking is generally considered to be a "heavy-weight" formal

method. The goal of model checking is to fully verify the correctness of a model,

specified in a fully formal notation.

In contrast to the heavy-weight approach, "light-weight" formal methods

employ techniques that fall short of complete verification. A light-weight method

may use a fully formal notation, but not conduct a complete proof, or not specify fully

all aspects of a system [24, 39]. A total proof of correctness may not possible in all

cases [46].

A light-weight formal method may not even use a fully formal notation. For

example, Easterbrook et al. [29] describe light-weight methods as involving “partial

analysis on partial specifications, without a commitment to developing … complete,

consistent formal specifications.” Such methods do not require that the user be

trained in advanced mathematics or be skilled at developing sophisticated proof

strategies [38].

Simulation is another example of a light-weight formal methods technique

that animates or “electrifies” a model by examining a small subspace of possible

states and transitions [43]. Especially when building a model incrementally,

simulation may immediately expose easy-to-make mistakes [43]. Having this model

available for early simulation also provides the users the convenient ability to test

functional requirements of interest [27]. Not only does the process of simulation

make the model creation experience “more compelling,” but Jackson et al. also find

13

that “a model that has been simulated is much less likely to contain egregious flaws”

[43].

While heavy-duty formal methods do have a use – in especially interesting or

critical software components – Jackson explains that light-weight formal methods can

be more practical [42]. Dwyer et al. [28] concur that in some cases it is just

impractical to use heavy-duty formal methods – e.g., model checking – on large code

bases. These points of view together suggest that people should evaluate where it

makes sense to use formal methods, as researchers explain that to reap significant

benefits checking an entire specification is not necessary [22] and “not everything

should be formalized” [25].

2.3.1 Light-weight Formal Methods and Test-Driven Development

Simulation also lends itself to integration with a project’s test philosophy.

Since simulation involves examining a small subspace of states, that subspace can be

created by executing parts of a specification against a set of test inputs. These

relevant test inputs or test cases can have a longer-lasting benefit since they can be

reused at any later point in development, to test the actual implementation. This early

creation of test cases may fit in well with the philosophy of test-driven development,

which calls for programmers to write low-level functional tests before beginning the

implementation [11, 14, 30]. Erdogmus [30] found that following this “test-first”

philosophy seems to improve productivity. Janzen et al. [44] observed that “test-first

14

programmers are more likely to write software in more and smaller units that are less

complex and more highly tested.”

The better end-product software may be a result of the developers’ increased

understanding of the system. Myers et al. explained that “if you run simple claims

early on and then gradually increase the complexity of your claims to explore

intricacies of the system behavior then you have a basis of understanding both the

model and the system” [53]. This improved understanding can help developers to

more easily spot errors or problems, and it can improve customer-developer

communication [46]. It would seem that early simulation and test-first together are a

synergistic combination, and since testing costs typically make up a significant

portion of overall software labor costs [15] then this synergy should be friendly on the

budget.

The ultimate synergy between formal specification and test-driven

development may come with the wider-scale adoption of automated test generation

tools, such as Korat [21] and the commercial product JTest [3]. With such tools, unit

test cases are generated automatically from specified preconditions and

postconditions. In this way, a specification-driven methodology automatically

becomes a test-driven methodology. If a tool does not generate a sufficient set of

tests, then manual test creation supplements the generated cases. The formal

specification can be used synergistically to guide manual test creation, based on the

many years of research in specification-based testing [57].

15

2.3.2 Light-Weight Formal Methods and UML

The Unified Modeling Language is generally not regarded as formal, since it

lacks a fully formal semantics. However, there has been a significant amount of work

on integrating formal methods into UML. The Object Constraint Language (OCL) is

part of UML itself, and is discussed further in Section 2.4.4 of this thesis. Several

formalized versions of UML have been used in conjunction with the specification of

software security [4]. For general-purpose use, UML-B is an integration of UML and

the B formal specification language [59].

UML-based formal methods are arguably all light-weight. Each uses a subset

of UML as the basis for formalization. In this way, some but not all properties of a

complete UML specification can be treated formally.

2.3.3 Cost Effectiveness

On the topic of costs, the choice to utilize light-weight methods may be both

practical and cost-effective [38]. Jackson agrees that “a small amount of modeling

and analysis during the initial determination of requirements, specifications, or

program design costs only a tiny fraction of the price tag of checking all the code but

provides a large part of the benefit gained from an exhaustive analysis” [42]. This

relatively low-cost investment provides reasonable coverage of test cases against a

model, and yields an increased confidence in the model’s correctness [22]. If more

assurance is needed after utilizing light-weight formal methods, model checking can

be used in selected, particularly critical aspects of the model [28].

16

For all the above reasons, light-weight formal methods may be attractive to

industry. Since light-weight formal methods provide something of an incremental

change to existing software processes – rather than a revolutionary change – they may

be more likely to be seriously considered, particularly in large organizations where it

is difficult to push against process inertia [25, 48].

2.4 Model Checking Tools and Formal Specification

Languages

Many automated model checking tools and formal specification languages

exist. Each has a set of characteristics that make it suited to particular types of use.

In kind, FMSL has its own characteristics and potential uses. What follows is a brief

survey of some existing model checkers and formal specification languages: VeriSoft,

SMV, JML and Korat, UML/OCL, OOSPEC, and Aslantest.

2.4.1 VeriSoft

VeriSoft, developed at Bell Laboratories, is a “general-purpose ‘model

checker’” [23] tool that explores the state spaces of a concurrent system in order to

detect potential problems such as deadlocks (when each system process’ next

operation is blocking) and violations of user-specified assertions [35]. Rather than

analyzing a separate system model, VeriSoft directly analyzes the actual system

implementation. VeriSoft performs system analysis through a scheduler that controls

17

relevant processes on a system by controlling and observing visible operations, which

are operations that facilitate inter-process communication. Through system re-

initialization and the ability to suspend and resume processes, VeriSoft can explore

transitions been system states and report back the sequence of states that led to a

system problem. VeriSoft offers an automatic state space exploration mode and a

manual mode where the user can explore specific paths between system states.

VeriSoft assumes that a system is deterministic, i.e., it performs the same

sequence of execution steps for the same data inputs. The authors of VeriSoft

recognized that the environment in which a system operates can add elements of non-

determinism to the system’s execution, and so they implemented a mechanism that

allows the user to optionally hook a user-defined environment implementation

together with VeriSoft. While optional, this hook mechanism enhances VeriSoft’s

utility since it can enable the user to run VeriSoft through a more realistic collection

of state spaces.

2.4.2 Symbolic Model Verifier

The Symbolic Model Verifier (SMV) tool checks finite state machine

representations of systems that range from synchronous to asynchronous and from

detailed to abstract [51, 53]. This experimental SMV tool accepts as inputs a system

model description and a set of expected properties of the system, expressed in

computational tree logic (CTL). The SMV input language that describes the model

has a formal semantics and includes support for modular descriptions and re-usable

18

components. The data types available to SMV are finite data types (Booleans,

scalars, fixed arrays, and static structured data types). The expected properties are

checked against the model using an ordered binary decision diagram (OBDD). A

diagram-based algorithm is used to determine whether the CTL property

specifications are satisfied in the model. If it discovers that some part of the

specification is false, the SMV model checker attempts to produce and output a

counterexample to prove that the model is not correct. McMillan [51] suggests that

SMV is a tool intended to facilitate experimentation with symbolic model checking

techniques as applicable to hardware verification.

To speed up the model checking process, Myers et al. [53] created a GUI-

based SMV prototype tool that allows the user to input a visual representation of the

model and conveniently enter in properties to check against the model. Their initial

version has limited functionality that translates visual state diagram models into SMV

input language code, but they describe their ideal version as something that allows the

user to model complete, complex systems.

2.4.3 JML and Korat

The Java Modeling Language (JML) [49] is a behavioral interface

specification language that is intended to be used for specifying Java modules by

describing preconditions, postconditions, and intermixed assertions. Leavens et al.

[49] created JML with the additional goals that it be “readily understandable” by Java

developers and that the language be “capable of being given a rigorous, formal

semantics, and must also be amenable to tool support.” Rudimentary uses of JML

19

include placing Boolean precondition (keyword: requires) and postcondition

(keyword: ensures) specifications in comments above Java method declarations

within .java source files, although JML specifications can exist in standalone

specification files as well.

An example tool built on JML is Korat, a “framework for automated testing of

Java programs” [21]. Korat is novel in that it works by first generating the set of all

non-isomorphic inputs, bounded by a given size, that satisfy the Boolean requires

precondition specified in JML. Korat uses the JML tool-set to generate a test oracle

from the Boolean ensures JML postcondition in combination with the generated

inputs. Finally, Korat executes the method on all these generated test inputs and

evaluates the method outputs against the test oracle, and Korat reports any

postcondition violations as counterexamples [10, 21].

2.4.4 UML and OCL

The Unified Modeling Language (UML) [18] is a visual language that

facilitates the description or modeling of software designs and patterns, and it has

become the “de facto standard for modeling software applications” [56]. A UML

model generally consists of one or more diagrams and “provides a more compact

code description than an ordinary programming language does” [58].

Although UML typically is not thought of as an executable language, there are

some subsets of UML that can be rendered executable. These subsets consist of one

or more of the following forms of UML elements: class diagrams, StateChart

20

diagrams, activity diagrams, sequence diagrams, and the Object Constraint Language

(OCL) [58]. Bouquet et al. [19] have isolated such a subset of UML 2.1 and clarified

the semantics of the subset to make it interpretable by model-based testing tools.

When modeling operations in UML, preconditions and postconditions can be

described using pseudocode, OCL, or plain English text [56]. OCL is a language

with syntax and keywords, and although it cannot modify the model it can be used to

describe preconditions, postconditions, and invariants. Within these descriptions

OCL syntax includes support for basic scalar types, conditionals, a let construct for

improved expressiveness, and universal and existential quantifiers.

There are mixed opinions of OCL. Some critics claim that OCL expressions

are “unnecessarily hard” to read or write [41, 62] yet they concede it is more easily

used by non-mathematicians compared to some other modeling languages [41]. Also,

OCL is not a standalone language since it always must be accompanied by a UML

diagram [41, 62]. Still, Kuhn et al. suggest that the combination of UML with OCL is

formal enough that the combination can “provide a rigorous system specification”

and could be used by model checkers [46].

2.4.5 OOSPEC

OOSPEC [55] is an executable “model-based specification language and

development system” intended to be used to introduce formal methods and

specifications to undergraduate students. OOSPEC has an object-oriented form with

concepts of classes, inheritance, instances, and objects and it supports “high level”

21

structures like sets and sequences. In OOSPEC, operations are specified completely

through preconditions and postconditions described in a predicate calculus notation

that allows for sequential, conditional, and iterative evaluation. Paryavi et al. [55]

also provide a graphical user interface environment prototype that allows for

“creation and evaluation of partial and full specifications.”

2.4.6 ASLAN and Aslantest

ASLAN [12] is a formal specification language that takes the state-based

approach to describing systems. ASLAN supports identifiers, lists, sets, types,

conditional statements, quantification, constraints, and invariants. All these together

enable the ASLAN user to specify a system in terms of a collection of states and

definitions of state transitions with specific entry and exit criteria (similar to

preconditions and postconditions).

Aslantest [27] is a symbolic executor tool that animates and tests Aslan formal

specifications to give the user assurance that the model satisfies functional

requirements. Aslantest provides the user with two approaches of animating

specifications: individual test case evaluation and symbolic execution. The individual

test case evaluation allows for testing specific examples that the user considers to be

important, while the second approach – symbolic execution – is a method that enables

the user to establish proofs about the model since the results consist of symbolic

values and constants.

22

The Aslantest tool provides the user an interface to conveniently navigate

through the specification animation process. The tool allows the user to enter in

Aslantest commands interactively, but a sequence of commands also can be read from

a text file. With the tool, the user can:

• execute state transitions one at a time or in sequence

• get debug information about the current state

• save the state or restore a state

• add assertions

2.5 Empirical Successes with Formal Methods

Through research and industry experiments, researchers have tried to gather

information to evaluate whether formal methods really are useful. The following sub-

sections summarize several industry and university experiments, all of which

conclude that formal methods are beneficial.

2.5.1 BASE: A Trusted Gateway

Larsen et al. conducted an experiment at British Aerospace Systems and

Equipment Ltd. (BASE) to determine the cost and quality effects of utilizing formal

methods during development of a system [48]. BASE had a need for a “trusted

gateway,” and so they created two teams of similarly qualified engineers to develop

the system independently. One team followed conventional methods and the other

23

was encouraged to use formal specification wherever the team deemed it appropriate.

Throughout development both of these teams were monitored to observe engineering

methods, communications with the customer, and other development activities.

After reviewing the customer requirements, both teams were given the

opportunity to ask the customer for additional detail. Larsen et al. observed that the

formal methods team not only asked more questions – 60 vs. 40 – but their questions

focused heavily on the data and exceptional conditions, which is a sensible emphasis

when developing a security-critical system. Also, the formal methods team’s

modeling of the system shed light on an exceptional condition that was not initially

called out in the original requirements. The conventional methods team did not catch

the potential occurrence of the exceptional condition, and they later had to develop a

patch to their software.

Once the teams finished initial implementations of their trusted gateway

software, Larsen et al. tested the systems using the identical user interface that was

provided to both teams. The trusted gateway systems were run against their

separately developed test suites and then run against each other’s test suites. The

conventional methods team’s software failed some of the formal methods team’s

tests, which included testing of the exceptional condition mentioned above. The

trusted gateways also were benchmarked for performance and the formal methods

team’s software performed fourteen times faster during normal operation, although it

took longer to initialize (which was an acceptable trade-off given the requirements).

Lastly, the overall effort spent by both teams was roughly equivalent, which ran

24

counter to some criticisms of formal methods that claim formal methods are

prohibitively expensive for use in industry.

2.5.2 Miami University of Ohio: OOD Course

Sobel et al. conducted an experiment to judge the effects of integration of

formal methods techniques into an undergraduate software engineering curriculum

[60]. The experiment sought to evaluate students’ potential for learning formal

methods and to increase their complex problem solving skills. To carry out the

experiment Sobel et al. worked with two separate classes broken into teams of

students for an Object Oriented Design (OOD) course: one control group of 13 teams

that had taken the university’s normal curriculum and one formal methods group of

six teams that had taken two semesters of formal methods courses. The teams’

workflow on a common elevator project was monitored to observe design and

implementation efforts and methods. All teams were asked to provide executable

source code for this project and all teams were encouraged, but not required, to

submit a UML diagram of their system design. The formal methods group was

additionally asked to submit a formal specification – a first order logic description of

preconditions, postconditions, and invariants – of their system.

The experiment showed that the formal methods teams generally followed a

more rigorous design process. For example, none of the thirteen control teams

submitted a UML diagram of their design (in fact, no design artifacts could be found)

whereas three (out of six) of the formal methods teams submitted UML diagrams of

25

their design and four of the formal methods teams submitted a formal specification.

Although some of the formal methods teams used symbols incorrectly (for example,

they interchanged existential and universal quantifiers), their system description

demonstrated a good understanding of the system behavior. In all, the formal

methods teams had relatively better designs.

The formal methods teams’ implementations had a significantly better test

success rate compared to the control group teams’ submissions: 100% correctness vs.

45.5% correctness. Of the 13 control teams, two did not provide any submission at

all. Overall, the formal methods teams’ source code was less complex while the

control teams’ source code was more complex and offered poorer, more tightly

coupled solutions. Sobel et al. were surprised that the various teams across the

control and formal methods groups produced solutions with counts of source lines of

code that were not significantly different, but the benefits of formal methods training

were clear: 100% of the students trained in formal methods techniques produced

correct solutions compared to only 45.5% of the control teams’ students.

2.5.3 NASA: Lightweight Formal Methods

At the National Aeronautics and Space Administration (NASA), many

engineering practices rely on informal processes – such as inspection – and generally

do not employ careful requirements engineering in critical areas [29]. Easterbrook et

al. set out to observe the effects of implementing lightweight formal methods in

several NASA programs to evaluate whether their incorporation into existing

26

engineering practices might yield increased safety or reduced cost. Their approach

involved assigning formal methods experts the task of incorporating formal methods

techniques early on in the requirements phases of three new space systems where

many of the requirements were still volatile. In these three cases they followed a

common approach that involved unambiguously re-stating requirements, identifying

and correcting inconsistencies, testing the requirements, and finally discussing the

results with the requirements’ authors.

Ultimately the authors of [29] did not perform an extensive analysis on the

cost benefits of formal methods in their studies, but they concluded that application of

formal methods early on added value since their use helped detect errors and clarify

requirements. Examples of the many types of requirements problems that formal

methods helped uncover include: ambiguities, inconsistencies, missing assumptions,

missing preconditions, traceability problems, logic errors, missing requirements,

inadequate requirements, and incorrect expression of timing requirements.

Easterbook et al. also observed that the development team was much more receptive

to working through these errors discovered through the use of formal methods, since

these techniques were applied so early on in the process.

2.6 The Work of this Thesis in the Spectrum of Formal

Methods

While some of the aforementioned languages and tools may have similarly

positive impacts on a software project, FMSL’s qualities and characteristics

27

distinguish it from other formal methods languages and tools. The remainder of this

sub-section summarizes some of these differences.

Whereas Verisoft [23] is a model checking tool that analyzes a system

implementation, FMSL is suitable for pre-implementation formal modeling, which

can be beneficial since “verification at early stages is more likely to be tractable”

[22]. Vaziri and Jackson assert that it is “near impossible to get a system right by

fudging late in the day, so early investment in modelling and analysis will be

essential” [62].

The FMSL language itself provides formal methods capabilities in a practical

and balanced fashion. For example, like the SMV input language [51], FMSL has a

formal semantics – a must for modeling languages [43] – and it exhibits a natural

language expressiveness that should be “familiar to the user” [38]. These qualities

could make FMSL appealing to non-software professionals [37] and engineers [48].

Unlike SMV, which is a heavier-weight model checking tool that uses a diagram-

based algorithm to search for counterexamples to prove that a model is not correct,

FMSL provides users with a lighter-weight approach that does employ exhaustive

model checking algorithms.

FMSL specifications do not lend themselves to any specific implementation

programming languages, whereas JML [49] is intended to be used for specifying Java

modules. As a separate GUI front-end to facilitate specification validation could be

an effective companion tool for FMSL (see Section 7.2.3), JML also can be integrated

with other tools. Korat [21], which automatically generates test cases for JML

specifications, is one such tool.

28

gfisher
Cross-Out

gfisher
Replacement Text
A

Unlike some other languages – for example, OCL – FMSL does not fall into

the category of being so implementation-oriented that it’s not “well-suited for

conceptual modeling” [62]. Another difference between OCL and FMSL is that, as

mentioned in a preceding sub-section, OCL must be accompanied by a visual UML

diagram [41, 62]. While visual representations of FMSL specifications may have

some utility, they are not required.

OOSPEC [55] and FMSL share some common qualities: both are used to

introduce formal methods and specifications to undergraduate students, both have an

object-oriented form, and both support operation specification through precondition

and postcondition definition. FMSL’s combination of a functional interpreter and a

means to execute preconditions and postconditions may make FMSL useful and

appealing to software engineering students, who expect an executable specification

language [55]. One major difference between them is their respective styles of

specification expression. Specifically, while FMSL draws heavily from functional

programming languages, OOSPEC draws strongly from languages that utilize set-

theoretic notation – VDM [16] and Z [26].

ASLAN [12] and FMSL support similar similar features like identifiers, lists,

types, and quantification. While ASLAN users specify systems in terms of states and

state transitions, FMSL users specify systems using objects and operations with

constraints. State transition entry and exit criteria constraints in ASLAN are

comparable to operation preconditions and postconditions in FMSL. While both

Aslantest [27], a tool that executes ASLAN specifications, and FMSL support

execution through individual test cases, Aslantest also supports symbolic execution.

29

FMSL and Aslantest also handle quantifier execution differently, and those

differences are discussed in Chapter 6.

With its particular set of qualities and characteristics, FMSL is designed to be

easy to understand. According to Sobel and Clarkson, even those who do not fully

understand a formal modeling language (or formal method) still can gain some

benefit from using it [60]. In addition to the academic benefits, while Jackson

cautions that “as in a building, when the software’s foundation is unsound, the

resulting structure is unstable” [42], using FMSL to describe and validate a model

may increase the likelihood that the model will serve as better foundation for the

software that implements the model. The FMSL modifications for this thesis aim to

transform FMSL into a more effective and useful tool that fits well with light-weight

formal methods techniques, and so its use could be introduced incrementally.

30

Chapter 3 Demonstration of Tool Capabilities

FMSL specifications consist primarily of object and operation definitions. The

following is a simple illustrative example.

object PersonList
 components: Person*;
 description: (*
 A PersonList contains zero or more Person records.
 *);
end PersonList;

object Person
 components: first:Name and last:Name and age:Age;
 description: (*
 A Person has a first name, last name, and age.
 *);
end Person;

object Name = string;
object Age = integer;

operation Add
 inputs: p:Person, pl:PersonList;
 outputs: pl':PersonList;
 precondition: not (p in pl);
 postcondition: p in pl';
 description: (*
 Add a person to a list, if that person is not already in the
list.
 *);
end Add;

Figure 3.1: Sample FMSL specification

This example illustrates the two primary forms of definition in FMSL: objects

and operations. Objects have components, which are defined in terms of other

31

gfisher
Comment on Text
indent this word

objects. Object definitions “bottom out” in one of the built-in primitive types of

integer, real, string, or boolean.

Operations have inputs, outputs, preconditions, and postconditions. The types

of inputs and outputs are the names of defined objects. Preconditions and

postconditions are boolean expressions. Other notational features worthy of

explanation are the following:

• '(*' and '*)' are used to enclose comments

• Name and Age use an optional short form of object definition; it can

be useful for objects of simple scalar types, with no description

• the in operator is built-in; it tests for list membership

• any identifier can have an apostrophe character as a suffix; this is

purely a lexical form, in that a trailing apostrophe is a legal character

in an identifier; it is used most often in operation outputs when the

type of an input and output object are the same; e.g., the Add input list

is named pl and the output list is pl', read “pl prime”

A complete discussion of FMSL syntax and semantics is given in its reference

manual [1]. This thesis will only use a subset of its features, specifically those

features that are germane to the topic of specification validation.

Given a specification such as the example above, a basic question is this:

“How does one validate that it is correct?” Firstly, static correctness can be validated

using the FMSL type checker, which performs syntactic and semantic analysis

32

comparable to that performed by a programming language compiler. A particularly

useful part of static analysis is completeness checking. For example, if the specifier

left out the definitions of the Name and Age objects, the checker would flag the error

in the definition of the Person object that uses Name and Age.

The focus of this thesis is determining the dynamic correctness of a

specification. For an operation, this fundamentally requires some means of

evaluation. In the example at hand, the Add operation could be evaluated in the

following manner:

(*
 * Sample person, an empty person list, and a one-person list
 *)
value p:Person = {"Arnold", "Schwarzenegger", 61};
value pl:PersonList = [];
value pl':PersonList = [p];

> Add(p, pl); -- invoke the Add operation

Figure 3.2: Person definitions with Add

The following aspects of notation warrant brief explanation:

• a value declaration defines a constant value of some type of object

• tuple values are enclosed in curly braces; a tuple is an object defined

with anded components

• list values are enclosed in square brackets; a list is an object defined

with * components

• point-to-end-of-line comments are defined with '--'

33

gfisher
Cross-Out

gfisher
Inserted Text
shown in Figure 3.2

• expression evaluations are preceded with the prompt character '>';

these are typically entered in the top-level of a conversational

interpreter, but may be included within a specification file; the

important point is that the '>' prompting character distinguishes an

expression to be evaluated from a specification declaration, in this and

all subsequent examples.

• an operation is invoked in the way standard to most programming

languages, with the operation name followed by a parenthesized list of

actual parameters

So, the question at hand is “What value does the invocation of Add(p, pl)

produce?” Since the Add operation has no defining expression, the value of invoking

Add(p, pl) is nil, where nil is the empty value for any type of object. Nil is

in fact is result of evaluating Add for any inputs, given that Add is defined only with

a precondition and postcondition.

The precondition and postcondition for Add define a behavior. However,

they do so in a declarative and analytic form, not a constructive form. It is possible to

define FMSL operations constructively, but that is not the point here. What is desired

is a way to validate Add’s precondition and postcondition, given a particular set of

inputs and expected outputs.

34

One way to do this is to extract the precondition and postcondition expression,

and evaluate them individually. For example, given the preceding value declarations,

the precondition expression could be tested with logic expressions such as this:

> p in pl; -- should be false
> not (p in pl); -- should be true
> not (p in pl'); -- should be false

Figure 3.3: Precondition logic expressions

The postcondition expression could be tested like this:

> p in pl'; -- should be true
> not (p in pl'); -- should be false

Figure 3.4: Postcondition logic expressions

These are clearly rudimentary expressions. The point is that the logic of

preconditions and postconditions can be dynamically validated by plugging in various

values and examining the results. The work of this thesis has included the

implementation of this form of expression evaluation in FMSL. This form of

evaluation supports the notion cited earlier from Myers [53]: “if you run simple

claims early, ... then you have a basis for understanding both the model and the

system.”

While isolated evaluation of boolean expressions can be helpful, it would be

even handier to invoke an operation with sample input and output values directly.

35

gfisher
Cross-Out

gfisher
Replacement Text
those shown in Figure 3.3.

gfisher
Cross-Out

gfisher
Replacement Text
as in Figure 3.4.

This kind of validation invocation can be characterized as follows for the Add

precondition:

Given inputs p and pl, what is the value of the Add precondition?

A more complete validating invocation is this:

Given inputs p and pl, expected output pl', what are the values of the Add

precondition and postcondition?

The syntax for such a validation invocation looks like this:

> Add(p, pl) ?-> pl';

The output of this validating invocation is a boolean two-tuple, that looks like

this:

{ true, true }

The notational particulars are these:

• the first part of a validation invocation looks like a regular operation

call, e.g., Add(p, pl)

36

gfisher
Sticky Note
no newline or indent necessary

gfisher
Sticky Note
no newline or indent necessary

gfisher
Inserted Text
concrete

gfisher
Sticky Note
indent not necessary

gfisher
Sticky Note
indent not necessary

gfisher
Sticky Note
indent not necessary

• the '?->' is the validation operator; per the preceding characterization,

it means the following in this example: Given inputs p and pl, is the

Add precondition true, and given pl', is its postcondition true?

• the output value of { true, true } is the standard curly brace

notation for a boolean two-tuple

A validation counter example can be tested, such as

> Add(p, pl) ?-> pl;

which produces the result { true, false }.

The preceding introduction to Chapter 3 has presented a simple motivating

example. The remainder of this chapter will cover the details of specification

evaluation, including in particular the evaluation of conditions with quantifiers. The

coverage will feature the validation of a long-standing pedagogic example, in which

the use of validating evaluations revealed a heretofore undiscovered flaw. This is a

particularly good result, and demonstrates well the utility of dynamic specification

validation.

37

gfisher
Inserted Text
I suggested the following footnote in the original comments. If you can put it in easily, fine. If not, don't worry about it.

The somewhat curious syntax of the validation operator is derived from the FMSL syntax for operation signatures. I.e., the signature of the Add operation is (Person, PersonList) -> PersonList, where the -> notation has been used in other specification languages in the denotation of input/output signatures.

3.1 Standard Expression Evaluation

In FMSL, expression evaluation entails invoking an operator or operation and

returning the calculated result. This is the same behavior as exhibited by interpreted

programming languages, including Lisp [61], ML [52], and Python [50].

FMSL has a strongly-typed, functional semantics, much like that of ML.

There is limited type inference, in the form of value declaration and let variables, that

can be declared without explicit types. More advanced type inference, such as that

available in ML and Haskell [40] is purposely omitted from FMSL. As a modeling

and specification language, it is considered appropriate for the specifier to declare

object and parameter types explicitly, rather than having types inferred by a language

translator.

FMSL supports evaluation of a collection of built-in Boolean, arithmetic,

tuple, and expressions as well as evaluation of user-created operations. For a

complete list of built-in operators, see Tables 5.2 through 5.6.

The example in Figure 3.5 demonstrates evaluation of the Boolean relational

operators: not, and, or, xor, => (implication), and <=> (two-way implication. In

the example, the FMSL code first declares and assigns values to two boolean

variables and then performs a series of Boolean expression evaluations.

38

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Replacement Text
values

(*
 * Declare and assign values to t, f
 *)
val t:boolean = true;
val f:boolean = false;

(*
 * Boolean operator examples
 *)
> not t; -- evaluates to false
> t and f; -- evaluates to false
> t or f; -- evaluates to true
> t xor f; -- evaluates to true
> t => f; -- evaluates to false
> t <=> f; -- evaluates to false

Figure 3.5: Evaluating Boolean expressions

A notational matter in Figure 3.5 is the use of the abbreviated keyword val in

place of value. FMSL provides abbreviated versions of all major keywords, as a

matter of readability.

The example in Figure 3.6 demonstrates evaluation of the arithmetic division

operator. In the example, the FMSL code first declares and assigns values to two

real variables and then performs the division (with result: 1.15573).

(*
 * Declare and assign values to x, y
 *)
val x:real = 3.141592654;
val y:real = 2.718281828;

(*
 * Evaluate x divided by y and output the result
 *)
> x / y;

Figure 3.6: FMSL division operator expression evaluation

39

gfisher
Cross-Out

gfisher
Cross-Out

gfisher
Replacement Text
values

Further examples of expression evaluation appear in this and following

chapters.

3.2 Quantifier Evaluation

Quantifiers are Boolean-valued expressions that evaluate a quantified sub-

expression multiple times. FMSL supports both bounded and unbounded universal

(forall) and existential (exists) forms of quantification. A bounded quantifier

ranges over a discrete set of values. An unbounded quantifier ranges over all of the

values in a type of object. For types grounded in integer, real, or string, the quantifier

range is unbounded.

Formally, an object definition defines a data type. As noted earlier, FMSL has

a strongly typed semantics, meaning that the types of all declared values, variables,

and operation parameters are determined statically, before any expression evaluations

takes place.

FMSL employs a structural type equivalence rule, meaning two data types are

equivalent if they have the same type structure, whether or not they have the same

object name. As described below, a name-based typing scheme is used to define the

value universes, for the purposes of evaluating unbounded quantifiers in bounded

time. This name-based typing is used as an expedience for quantifier evaluation, and

does interfere with the purely structural-equivalence typing performed during the

static type checking of a specification.

40

The following sub-sections describe the evaluation of different forms of

quantifier expressions different forms of quantifiers. In the examples, the Person

object is defined by the FMSL code listing in Figure 3.7, which is the definition that

appeared in the introductory example at the beginning of Chapter 3.

(*
 * Define the Person object type
 *)
object Person is
 components: first:Name and last:Name and age:age;
 description: (*
 A Person has a first name, last name, and age.
 *)
end Person;

Figure 3.7: FMSL Person object type definition

The form of quantification in FMSL is common to that of typed predicate

logic. The general format of universal quantification is the following:

forall (x:t) predicate

This is read “for all values x of type t, predicate is true” where x must appear

somewhere in predicate.

There are also two extended forms of forall, shown in Table 3.1.

41

gfisher
Cross-Out

Extended Form Reading Equivalent To
forall (x:t | p1) p2 For all x of type t, such

that p1 is true, p2 is true.
forall (x:t)
 if p1 then p2

forall (x in l) p For all x in l, p is true. forall (x:basetype(l))
 if x in l then p

Table 3.1: Extended forms of forall

Existential quantification has three comparable forms, seen in Figure 3.8:

exists (x:t) predicate
exists (x:t | predicate1) predicate2

exists (x in l) predicate

Figure 3.8: Existential quantification forms

3.2.1 Bounded Quantifier

The code in Figure 3.9 creates a list of integer values and then evaluates a

bounded quantifier to check whether all the integer elements are positive. Since

all the integer elements are positive, the result is true.

42

gfisher
Comment on Text
italicize

(*
 * Declare an IntList object type and an IntList value
 *)
obj IntList = integer*;
val list:IntList = [1, 1, 2, 3, 5];

(*
 * Test that all the integer elements within list are positive.
 *)
> "Expected: true";
> forall (i in list) i > 0; -- evaluates to true

Figure 3.9: FMSL bounded quantifier example

3.2.2 Unbounded Universal Quantifier: forall

The following code in Figure 3.10 declares two Person values and then

evaluates an unbounded quantifier to test that all the Person objects have non-nil

last names. Since the two existing Person objects have non-nil last names, the

result is true.

(*
 * Create values p1 and p2, which puts them in the Person value
 * Universe.
 *)
val p1:Person = {"Alan", "Turing", 97};
val p2:Person = {"Arnold", "Schwarzenegger", 61};

> forall (p:Person) p.last != nil; -- evaluates to true

Figure 3.10: FMSL unbounded forall quantifier example

The universe of all values of type Person is unbounded, since it consists of

component types integer and string. Clearly, however, a means must be

43

gfisher
Cross-Out

gfisher
Inserted Text
Conceptually,

established to execute the quantifier in bounded time. Simply put, the value universe

for an unbounded quantifier consists of all values of the quantified type that have

come into existence during a particular execution session. In this small example,

there are only two values populating the universe of the Person type. Complete

details of quantifier evaluation are covered in Chapters 4 through 6 of the thesis.

3.2.3 Unbounded Existential Quantifier: exists

The code in Figure 3.11 declares two Person values and then evaluates an

unbounded quantifier to indicate whether there exists a Person object with a nil last

name. Since all the Person objects have defined last names, the exists

expression evaluates to false.

(*
 * Create values p1 and p2, which puts them in the Person value
 * Universe.
 *)
val p1:Person = {"Alan", "Turing", 97};
val p2:Person = {"Arnold", "Schwarzenegger", 61};

> exists (p:Person) p.last = nil; -- evaluates to false

Figure 3.11: FMSL unbounded exists quantifier example

3.2.4 Unbounded Universal Quantifier: forall with such that

The code in Figure 3.12 declares three Person values, but unlike the

previous two examples this sequence of value declarations includes a Person value

44

that has a nil last name. The unbounded quantifier with a such that clause evaluates

whether all Person objects with non-nil last names have last name lengths of at least

six characters long. The result of this expression is true.

(*
 * Create values p1 and p2, which puts them in the Person value
 * Universe.
 *)
val p1:Person = {"Alan", "Turing", 97};
val p2:Person = {"Arnold", "Schwarzenegger", 61};
val p3:Person = {"Charles", nil, 218};

(*
 * Evaluate: for all Person objects such that p.last is not nil,
 * the last name length is at least 6 characters.
 *)
> forall (p:Person | p.last != nil) #p.last >= 6; -- eval to true

Figure 3.12: FMSL unbounded forall / suchthat quantifier example

3.3 Operation Validation

This section describes how a user can utilize the FMSL validation operator

(?->) to incrementally validate a specification by performing a sequence of operation

validations. Recall from the earlier brief description, an invocation of the validation

operator requires an operation name, an input argument list, and an output argument

list. Then general format is the following:

operation_name(input argument list) ?-> (output argument list)

45

gfisher
Cross-Out

FMSL uses input and output arguments as values in the specified operation’s

precondition and postcondition to execute the precondition and postcondition. The

result of the validation operator invocation is a tuple that contains two boolean

values: the first expresses the result of the precondition evaluation and the second

expresses the result of the postcondition evaluation.

The material in the following sub-sections steps through the formalization of

selected components of a simple user database specification. The user database

specification is part of an extended pedagogical example for a distributed calendaring

application [32]. The example is used for undergraduate instruction at Cal Poly

University, San Luis Obispo. The specific course is Introduction to Software

Engineering, CSC 308, as taught by Cal Poly faculty member Gene Fisher.

The following examples come directly from Fisher’s CSC 308 lecture notes,

weeks 7 and 8 [31]. Some of the explanatory text in the thesis is excerpted verbatim

from the notes. For the following examples, the object type definitions in Figure 3.13

apply. These definitions describe individual components of a user record and a user

record database.

46

object UserDB
 components: UserRecord*;
 operations: AddUser, FindUserById, FindUserByName ChangeUser,
 DeleteUser;
 description: (*
 UserDB is the repository of registered user information.
 *);
end UserDB;

object UserRecord
 components: name:Name and id:Id and email:EmailAddress and
 phone:PhoneNumber;
 description: (*
 A UserRecord is the information stored about a registered
 user. The Name component is the user's real-world name. The
 Id is the unique identifier by which the user is known to
 the Calendar Tool. The EmailAddress is the electronic mail
 address. The PhoneNumber is for information purposes.
 *);
end UserRecord;

object Name = string;
object Id = string;
object EmailAddress = string;
object PhoneNumber = area:Area and num:Number;
object Area = integer;
object Number = integer;

Figure 3.13: FMSL UserDB and UserRecord definitions

3.3.1 AddUser: English Precondition and Postcondition in

Comments

In the lecture notes, the formalization process begins by first stating the

precondition and postcondition predicates in English. In Figure 3.14 below, each of

the AddUser inputs and outputs appears with a name and corresponding type. By

convention, if an operation uses the same type as both an input and output, the name

of the output is the same as the input with an apostrophe appended; the apostrophe is

read “prime”. Note that the precondition and postcondition are described in English

and are enclosed in comments.

47

gfisher
Cross-Out

operation AddUser
 inputs: udb:UserDB, ur:UserRecord;
 outputs: udb':UserDB;

 precondition:
 (*
 * The id of the given user record must be unique and less
 * than or equal to 8 characters; the email address must be
 * non-empty; the phone area code and number must be 3 and 7
 * digits, respectively.
 *);

 postcondition:
 (*
 * The given user record is in the output UserDB.
 *);

 description: (* As above *);

end AddUser;

Figure 3.14: AddUser with English precondition and postcondition

Although the AddUser precondition and postcondition descriptions from

Figure 3.14 appear in plain English, that form of the AddUser operation already is

executable through the validation operator. To demonstrate this executability, in

Figure 3.15 we create a set of sample user record inputs, an initial database, and the

expected output result of adding a user record to the initial database. The last line of

the example invokes the validation operator with input and output arguments, and we

expect the precondition and postcondition execution result tuple to be { true,

nil }.

 By definition an operation without a precondition has no entry constraint, and

so the precondition execution result tuple field is true. As there is no postcondition

48

gfisher
Inserted Text
only

gfisher
Cross-Out

gfisher
Replacement Text
this

gfisher
Sticky Note
You can move this paragraph after Figure 3.15.

defined, and since the absence of a postcondition is represented in the result tuple by

nil, we see nil as the postcondition execution result tuple field.

(*
 * Create some testing values.
 *)
val ur1 = {"Corwin", "1", nil, nil}; -- sample user record
val ur2 = {"Fisher", "2", nil, nil}; -- sample user record
val ur3 = {"Other", "3", nil, nil}; -- record to be added
val udb = [ur1, ur2]; -- the initial input db
val udb_added = udb + ur3; -- the expected result

> "Expected results of AddUser(udb,ur3)?->(udb_added) are:";
> "{ true, nil }";
> AddUser(udb,ur3)?->(udb_added);

Figure 3.15: AddUser basic tests

In Figure 3.15, plain strings are used as output messages. As is typical in

interpreted programming languages, top-level execution is performed with a read-

eval-print loop. That is, an expression is read from a prompted input line, the

expression is evaluated, and the result is printed. There is a built-in print function in

FMSL, to provide more in the way of output formatting, but plain strings can be

usedful for simple output messaging.

3.3.2 AddUser: Basic Postcondition Logic

The English comment in the postcondition (“The given user record is

in the output UserDB”) describes the essence of an additive collection operation:

49

the output collection (udb’) must contain the user record to add (ur). To formally

represent this concept, we use the in operator shown in Figure 3.16.

operation AddUser
 inputs: udb:UserDB, ur:UserRecord;
 outputs: udb':UserDB;

 postcondition:
 (*
 * The given user record is in the output UserDB.
 *)
 ur in udb';

end AddUser;

Figure 3.16: AddUser with basic postcondition logic

In Figure 3.17 we create a set of sample user record inputs, an initial database,

and the expected output result of adding a user record (ur3) to the initial database.

The last line of the example invokes the validation operator with input and output

arguments. According to the postcondition, since udb_added contains ur3 we

expect the precondition and postcondition execution result tuple to be { true,

true }.

50

(*
 * Create some testing values. These are the same as the
 * comment-only version.
 *)
val ur1 = {"Corwin", "1", nil, nil};
val ur2 = {"Fisher", "2", nil, nil};
val ur3 = {"Other", "3", nil, nil};
val udb = [ur1, ur2];
val udb_added = udb + ur3;

> "Expected results of AddUser(udb,ur3)?->(udb_added) are: ";
> "{ true, true }:";
> AddUser(udb,ur3)?->(udb_added);

Figure 3.17: Basic tests for formal postcondition

3.3.3 AddUser: Basic Postcondition Logic Challenged

Generally, a fundamental question to ask about preconditions and

postconditions is: are they strong enough? Since there is no precondition in the

AddUser example, that means it is maximally weak. A later example will focus on

strengthening the precondition. In the meantime, we will focus on the postcondition.

To check whether the postcondition is strong enough, we can use the validation

operator to run some example inputs and outputs against AddUser. The example in

Figure 3.18 tests whether the postcondition is strong enough to enforce that there are

no spurious additions or deletions from the user database collection.

51

val ur1 = {"Corwin", "1", nil, nil};
val ur2 = {"Fisher", "2", nil, nil};
val ur3 = {"Other", "3", nil, nil};
val ur4 = {"Extra", "4", nil, nil};
val udb = [ur1, ur2];

(*
 * A database value representing a spurious addition having
 * been made.
 *)
val udb_spurious_addition = udb + ur3 + ur4;

(*
 * A database value representing a spurious deletion having
 * been made.
 *)
val udb_spurious_deletion = udb + ur3 - ur2;

> AddUser(udb,ur3)?->(udb_spurious_addition);

> AddUser(udb,ur3)?->(udb_spurious_deletion);

Figure 3.18: Test for postcondition strength

The first invocation of the validation operator in Figure 3.18 tests whether the

postcondition prevents a spurious addition to the user database, since the output

argument contains an extra user record (ur4). The second validation operator

invocation tests whether the postcondition prevents a spurious deletion from the user

database, as that output argument contains a user database that specifically lacks ur2.

Whereas we would like to see a { true, false } result in both cases, instead

the validation tuple that returns is { true, true } since the lack of precondition

comes back with a true field and the postcondition only tests whether udb’

contains ur3. From that result we can deduce that the AddUser postcondition is not

strong enough.

52

gfisher
Cross-Out

gfisher
Replacement Text
value

3.3.4 AddUser: Strengthened Postcondition Logic

The AddUser postcondition in Figure 3.16 checked the fundamental property

that we want to hold true: the output collection must contain the user record

designated for addition. What it lacked, as evidenced by the results of running the

test in Figure 3.18, was a guarantee that the rest of the database would remain intact.

To build on the previous postcondition, we can add an additional condition to enforce

that all other records in the output database are those – and only those – from the

input database. The postcondition in Figure 3.19 reflects this additional constraint on

the output database.

operation AddUser
 inputs: udb:UserDB, ur:UserRecord;
 outputs: udb':UserDB;

 postcondition:
 (*
 * The given user record is in the output UserDB.
 *)
 (ur in udb')

 and

 (*
 * All the other records in the output db are those from the
 * input db, and only those.
 *)
 forall (ur':UserRecord | ur' != ur)
 if (ur' in udb)
 then (ur' in udb')
 else not (ur' in udb');

end AddUser;

Figure 3.19: AddUser with stronger postcondition

53

When we re-run the test from Figure 3.18 against this updated specification of

AddUser that contains a stronger postcondition, we find that the validation operator

invocation result tuple is { true, false } in both cases. Running sample inputs

and outputs through FMSL’s validation operator helped uncover that the

postcondition initially was too weak, and we used it to verify that the revised

postcondition was strong enough to properly handle the “no spurious additions or

deletions” requirement.

3.3.5 AddUser: Constructive Postcondition

So far the examples presented have utilized only analytic operations in the

postcondition, but when describing preconditions and postconditions we also have at

our disposal constructive operations. Constructive operations perform an actual

constructive calculation, whereas analytic operations evaluate Boolean expressions

about the arguments. In some cases a precondition or postcondition that utilizes

constructive operations may be clearer than its corresponding analytic operation-

based counterpart. For example, in Figure 3.20 see the AddUser specification with

a postcondition that contains a constructive operation (the ‘+’ or concatenation

operator).

54

operation AddUser
 inputs: udb:UserDB, ur:UserRecord;
 outputs: udb':UserDB;

 postcondition:
 (*
 * The given user record is in the output UserDB.
 *)
 udb' = udb + ur;

end AddUser;

Figure 3.20: AddUser with constructive postcondition

Analytic specifications, as in Section 3.3.4, have the benefit of introducing

minimum implementation bias. Constructive specifications can be useful to simplify

specification logic. A complete discussion of the relative merits of analytic versus

constructive specification is beyond the scope of this thesis. Validation invocations

can be used with either style.

While value construction need not be used in a postcondition, it is definitely

required for validations calls. The point of a validation call is to test constructed

values against pre- and postcondition logic.

There are different styles to accomplish this. Which style to use is a matter of

convenience and clarity of presentation. For example, the set-up in Figure 3.21

creates the same testing values as in the preceding examples, but without using list

concatenation or deletion operators. These tests produce the same results, with either

the constructive or analytic AddUser specification.

55

val ur1:UserRecord = {"Corwin", "1", nil, nil};
val ur2:UserRecord = {"Fisher", "2", nil, nil};
val ur3:UserRecord = {"Other", "3", nil, nil};
val ur4:UserRecord = {"Extra", "4", nil, nil};

> "Expected retults are";
> "{ true, true }";
> AddUser([ur1, ur2], ur3) ?-> [ur1, ur2, ur3];

> "Expected results are";
> "{ true, false }";
> AddUser([ur1, ur2], ur3) ?-> [ur1, ur2, ur3, ur4];

> "Expected results of AddUser(udb,ur3)?->(udb_spurious_deletion)
are";
> "{ true, false }";
> AddUser([ur1, ur2], ur3) ?-> [ur1, ur3];

Figure 3.21: Alternate style of validation invocations

3.3.6 FindUserByName: English Definition in Comments

The following sequence of examples steps through the definition of the

FindUserByName operation, which is intended to search through the user database

and return records with names that match the given name input argument. Figure

3.22 has the FindUserByName definition, with the precondition and postcondition

described in English.

56

operation FindUserByName
 inputs: udb:UserDB, name:Name;
 outputs: ur':UserRecord*;

 precondition: (* None yet. *);

 postcondition:
 (*
 * A record is in the output list if and only if it is in
 * the input UserDB and the record name equals the Name
 * being searched for
 *);

 description: (*
 Find a user or users by real-world name. If more than one is
 found, output list is sorted by id.
 *);
end FindUserByName;

Figure 3.22: FindUserByName with English precondition and postcondition

As with the AddUser example, at this point FindUserByName is

sufficiently formally defined so that we can begin running validation operator

invocations against it. The FMSL code below creates several UserRecord values,

a UserDB, and collection of possible outputs. The final statements of the example

invoke the validation operator on FindUserByName to test postcondition strength.

57

(*
 * Create some testing values.
 *)
val ur1:UserRecord = {"Corwin", "1", nil, nil};
val ur2:UserRecord = {"Fisher", "2", nil, nil};
val ur3:UserRecord = {"Other", "3", nil, nil};
val ur4:UserRecord = {"Extra", "4", nil, nil};
val ur5:UserRecord = {"Fisher", "5", nil, nil};

val udb = [ur1, ur2, ur3, ur4, ur5];
val unsorted_result = [ur5, ur2];
val sorted_result = [ur2, ur5];
val too_many_sorted = [ur2, ur2, ur2, ur5];
val too_many_unsorted = [ur2, ur5, ur2, ur2];

(*
 * We want a generously populated universe of integers to be
 * available to FindUser precondition and postcondition
 * constraints, so let's do some populating.
 *)
> [1 .. 100];

> "What happens if there are unique, unsorted records?";
> FindUserByName(udb,"Fisher")?->unsorted_result;

> "What happens if there are unique, sorted records?";
> FindUserByName(udb,"Fisher")?->sorted_result;

> "What happens if there are non-unique, unsorted records?";
> FindUserByName(udb,"Fisher")?->too_many_unsorted;

> "What happens if there are non-unique, sorted records?";
> FindUserByName(udb,"Fisher")?->too_many_sorted;

Figure 3.23: FindUserByName operation validation tests

The comment about populating the integer value universe relates to the

manner in which unbounded quantifiers are evaluated. This topic is covered fully in

Chapter 6 of the thesis.

As in the example from Section 3.3.1, the precondition and postcondition in

Figure 3.23 are not yet formally defined, so we expect the result for all four tests to be

{ true, nil }. Figure 3.24 shows the output where this is the case.

58

"What happens if there are unique, unsorted records?"
{ true, nil }
"What happens if there are unique, sorted records?"
{ true, nil }
"What happens if there are non-unique, unsorted records?"
{ true, nil }
"What happens if there are non-unique, sorted records?"
{ true, nil }

Figure 3.24: FindUserByName initial validation results

3.3.7 FindUserByName: Basic Postcondition Logic

A sensible next step in formalizing the postcondition might be to make sure

that the operation output consists of all records of the given name in the input db.

The formal logic in Figure 3.25 contains a postcondition that satisfies this constraint.

operation FindUserByName
 inputs: udb:UserDB, n:Name;
 outputs: url:UserRecord*;

 precondition: (* None yet. *);

 postcondition:
 (*
 * The output list consists of all records of the given name
 * in the input db.
 *)
 (forall (ur: UserRecord)
 (ur in url) iff (ur in udb) and (ur.name = n));

 description: (*
 Find a user or users by real-world name. If more than one
 is found, the output list is sorted by id.
 *);
end FindUserByName;

Figure 3.25: FindUserByName with basic postcondition

59

gfisher
Cross-Out

gfisher
Replacement Text
is

To test our new definition of FindUserByName, we run the same set of

tests from Figure 3.23 against it. Since in all these examples the output records all

have the given name field, in all cases we expect the result to be { true, true }

(see Figure 3.26).

"What happens if there are unique, unsorted records?"
{ true, true }
"What happens if there are unique, sorted records?"
{ true, true }
"What happens if there are non-unique, unsorted records?"
{ true, true }
"What happens if there are non-unique, sorted records?"
{ true, true }

Figure 3.26: FindUserByName basic validation results

3.3.8 FindUserByName: Formal Postcondition Logic with Sort

Constraint

Although the FindUserByName definition in 3.3.7 ensures that all the

records in the output collection have names that match the given name, the

postcondition does not address the constraint that the matching records should be

sorted alphabetically. Ultimately we would like the FindUserByName

postcondition to reject validation operator invocations where the output collection is

unsorted, which was not the case in Figure 3.26. To address this requirement, the

FindUserByName definition in Figure 3.27 adds a sort constraint to the

postcondition.

60

operation FindUserByName
 inputs: udb:UserDB, n:Name;
 outputs: url:UserRecord*;

 precondition: (* None yet. *);

 postcondition:
 (*
 * The output list consists of all records of the given name
 * in the input db.
 *)
 (forall (ur: UserRecord)
 (ur in url) iff (ur in udb) and (ur.name = n))

 and

 (*
 * The output list is sorted alphabetically by id
 *)
 (forall (i:integer | (i >= 1) and (i < #url))
 (url[i].id <= url[i+1].id));

 description: (*
 Find a user or users by real-world name. If more than one
 is found, the output list is sorted by id.
 *);
end FindUserByName;

Figure 3.27: FMSL FindUserByName with sort constraint

When running the tests in Figure 3.23 against the updated

FindUserByName, the unsorted cases’ postconditions now fail with { true,

false } while the sorted cases’ postconditions pass with { true, true } (see

output in Figure 3.28).

61

"What happens if there are unique, unsorted records?"
{ true, false }
"What happens if there are unique, sorted records?"
{ true, true }
"What happens if there are non-unique, unsorted records?"
{ true, false }
"What happens if there are non-unique, sorted records?"
{ true, true }

Figure 3.28: FindUserByName with sort constraint validation results

3.3.9 FindUserByName: Strengthened Postcondition

As we ask the question “is the postcondition strong enough?” we focus on the

results of the last validation operator invocation from the tests in Figure 3.23.

According to the output in Figure 3.28, the FindUserByName postcondition defined

in 3.3.8 accepts an output collection where the matched record collection contains

duplicates of the same record. Since we would like record uniqueness in the output

collection, those results indicate that the postcondition is not yet strong enough. By

examining the postcondition, we can see that the specification contains an easy-to-

miss logic error: the sort constraint uses the ‘<=’ operator to validate sortedness, and

replacing it with the ‘<’ operator would validated sortedness and uniqueness. See the

listing in Figure 3.29 for an updated FindUserByName definition that utilizes the

‘<’ operator in the sort constraint.

62

operation FindUserByName
 inputs: udb:UserDB, n:Name;
 outputs: url:UserRecord*;

 precondition: (* None yet. *);

 postcondition:
 (*
 * The output list consists of all records of the given name
 * in the input db.
 *)
 (forall (ur: UserRecord)
 (ur in url) iff (ur in udb) and (ur.name = n))

 and

 (*
 * The output list is sorted alphabetically by id
 *)
 (forall (i:integer | (i >= 1) and (i < #url))
 (url[i].id < url[i+1].id));

 description: (*
 Find a user or users by real-world name. If more than one
 is found, the output list is sorted by id.
 *);
end FindUserByName;

Figure 3.29: FindUserByName with strengthened postcondition

As we’ve updated our FindUserByName postcondition, we re-run the

validation tests against it. As we’d hoped, the output in Figure 3.30 shows that the

FindUserByName postcondition now accepts only the output collection that

contains matching, unique, sorted records; it rejects all the others.

63

"What happens if there are unique, unsorted records?"
{ true, false }
"What happens if there are unique, sorted records?"
{ true, true }
"What happens if there are non-unique, unsorted records?"
{ true, false }
"What happens if there are non-unique, sorted records?"
{ true, false }

Figure 3.30: FindUserByName strengthened validation results

3.3.10 FindUserByName: Postcondition with Auxiliary Functions

FMSL allows users to define functions that accept one or more input

parameters and return an output value, which is set to the result of last expression

evaluation in that function. Functions can be invoked from within preconditions and

postconditions, and that abstraction can lead to clearer specifications. For example,

the FindUserByName definition in Figure 3.31 abstracts out the concepts of

RecordsFound and SortedById into their own respective functions that return a

Boolean true or false result.

64

operation FindUserByName
 inputs: udb:UserDB, n:Name;
 outputs: url:UserRecord*;

 postcondition:
 RecordsFound(udb,n,url)
 and
 SortedById(url);

end FindUserByName;

function RecordsFound(udb:UserDB, n:Name, url:UserRecord*) =
 (*
 * The output list consists of all records of the given name in
 * the input db.
 *)
 (forall (ur' in url)
 (ur' in udb)
 and
 (ur'.name = n));

function SortedById(url:UserRecord*) =
 (*
 * The output list is sorted alphabetically by id.
 *)
 (if (#url > 1) then
 (forall (i in [1..(#url - 1)])
 url[i].id < url[i+1].id)
 else true);

Figure 3.31: FindUserByName with auxiliary functions

The FindUserByName definition in Figure 3.31 is functionally equivalent

to the FindUserByName definition in Figure 3.29, although it’s arguably more

readable. Observe in Figure 3.32 that the validation tests yield the same results, so

this postcondition that utilizes auxiliary functions is equally as strong as the

postcondition from the example in Figure 3.29.

65

"What happens if there are unique, unsorted records?"
{ true, false }
"What happens if there are unique, sorted records?"
{ true, true }
"What happens if there are non-unique, unsorted records?"
{ true, false }
"What happens if there are non-unique, sorted records?"
{ true, false }

Figure 3.32: FindUserByName with aux. functions validation results

3.4 Additional Uses of Validation Invocations and

Exploratory Expression Evaluation

An important part of refining a specification is translating user-level

requirements, stated in English prose, into Boolean logic. Exploratory expression

evaluation, including validation invocations, can be useful in this translation process.

The following are typical user-level requirements for an operation like adding

a record to a database, i.e., the AddUser operation described in the previous section

of the thesis:

• There is no user record in the input database with the same id as the

record to be added; this is a no duplicates requirement.

• The id of an added user record cannot be empty and must be 8

characters or less fewer in length; this is an id syntax constraint.

• If the area code and phone number are present, they must be 3 digits

and 7 digits respectively; these are phone number format constraints.

66

Figure 3.33 contains a sample specification of a flawed AddUser

precondition. The intent of the precondition logic is to define these requirements.

This sample characterizes the kind of logic oversights that have been observed

regularly in students’ initial efforts to translate user-level requirements from English

prose into formal logic.

operation AddUser
 inputs: udb:UserDB, ur:UserRecord;
 outputs: udb':UserDB;

 precondition:
 (*
 * There is no user record in the input UserDB with the same
 * id as the record to be added.
 *)
 (not (ur in udb))

 and

 (*
 * The id of the given user record is not empty and 8
 * characters or less.
 *)
 (#(ur.id) <= 8)

 and

 (*
 * If the phone area code and number are present, they must
 * be 3 digits and 7 digits respectively.
 *)
 (#(ur.phone.area) = 3) and
 (#(ur.phone.num) = 7);

 postcondition: (* Same as above *);

end AddUser;

Figure 3.33: Flawed attempt at AddUser precondition

Figure 3.34 has corrected logic, for comparison purposes.

67

operation AddUser
 inputs: udb:UserDB, ur:UserRecord;
 outputs: udb':UserDB;

 precondition:
 (*
 * There is no user record in the input UserDB with the same
 * id as the record to be added.
 *)
 (not (exists (ur' in udb) ur'.id = ur.id))

 and

 (*
 * The id of the given user record is not empty and 8
 * characters or less.
 *)
 (ur.id != nil) and (#(ur.id) <= 8)

 and

 (*
 * If the phone area code and number are present, they must
 * be 3 digits and 7 digits respectively.
 *)
 (if (ur.phone.area != nil) then (#(ur.phone.area) = 3)) and
 (if (ur.phone.num != nil) then (#(ur.phone.num) = 7));

 postcondition: (* Same as above *);

end AddUser;

Figure 3.34: Improved AddUser precondition

As with any form of debugging, there are a variety of ways to test and correct

flaws in logic. Validation invocations provide a useful tool that can help in the

process. In the example at hand, each flaw can be revealed with a single, reasonably

straightforward validation invocation.

68

The first flaw is the translation of the English requirement “There is no user

record in the input UserDB with the same id as the record to be added.” The flawed

versus correct versions of the logic are

(not (ur in udb))

versus

(not (exists (ur' in udb) ur'.id = ur.id))

This flaw can be detected with a validation condition that attempts to add a

user record with the same id, but different name, to the database. E.g.,

val phone:PhoneNumber = {805, 5551212};
val email:EmailAddress = "pcorwin@calpoly.edu";
val ur:UserRecord = {"Corwin", "1", email, phone};
val ur_duplicate_id:UserRecord = {"Fisher", "1", email, phone};
val udb:UserDB = [];
val udb_added:UserDB = [ur];

> AddUser(udb_added, ur_duplicate_id) ?-> (udb_added);

The correct output of this validation is { false, nil }, since the

precondition should fail when trying to add a record with the same id value to a

database containing a record with that id, i.e., “1”. The flawed logic is not strong

enough, since it does not check specifically for the id value of each extant record.

This kind of error is typical with students who may be initially averse to using

69

quantifiers, and will do their best to avoid their use. A validation counter-example

can succinctly illustrate the problem with the flawed logic.

The second flaw is the translation of “The id of the given user record is not

empty and 8 characters or less.” The flawed versus correct versions of the logic are:

(#(ur.id) <= 8)

versus

(ur.id != nil) and (#(ur.id) <= 8)

The problem here is that the length operator returns 0 for a nil string

value. The following validation condition reveals the problem:

val ur_empty_id:UserRecord = {"Corwin", nil, email, phone};

> AddUser(udb, ur_empty_id) ?-> (udb);

The result of this evaluation should be { false, nil }, since the

precondition should fail if the id is nil. Here nil is the translation of “empty” in

the prose statement of the requirement. The flawed logic precondition evaluates to {

true, nil }, since #(ur.id) = 0 when ur.id is nil, and hence 0 <= 8

evaluates to true.

70

To some extent, this problem has to do with the specific semantics of FMSL.

However, all formal specification languages have specific rules, and users of the

languages must understand clearly what the rules are. Using validation invocations

and additional exploratory evaluation can help a user develop such understanding.

Some additional exploration of this example could take the following form:

val empty_integer:integer = nil;
val empty_string:string = nil;
obj StringList = string*;
val empty_list:StringList = nil;

> #empty_integer;
> #empty_string;
> #empty_list;

where all three expressions evaluate to 0. In the case of the integer value, the

length operator is overloaded to evaluate to the number of integer digits. The rules

illustrated here could be read in the FMSL users manual. However, the ability to

explore interactively can be enlightening, as it is in the environments of interpretive

and conversational programming languages.

The third and final flaw in Figure 3.33 is the translation of “If the phone area

code and number are present, they must be 3 digits and 7 digits respectively.” The

flawed and correct versions of the logic are:

71

(#(ur.phone.area) = 3) and
(#(ur.phone.num) = 7));

versus

(if (ur.phone.area != nil) then (#(ur.phone.area) = 3)) and
(if (ur.phone.num != nil) then (#(ur.phone.num) = 7));

The problem is revealed with the following validation invocation:

val ur_empty_phone:UserRecord = {"Corwin", "1", email, nil};

> AddUser(udb, ur_empty_phone)?->(udb);

The correct validation result is { true, nil }, since the requirement

allows the phone number components to be empty. Without the explicit check for

this, the sub-expression ur.phone.area evaluates to nil. As explained in the

previous example, the length operator applied to a nil value uniformly returns 0.

This means that #(ur.phone.area) returns 0, which leads the precondition to

evaluate to false instead of true.

72

Chapter 4 Overall System Design

Prior to the work of this thesis, the mechanized checking of an FMSL

specification was limited to static syntax and semantic analysis. As with most

programming language compilers, the output of the static analysis is empty, unless

errors are detected. Figure 4.1 is a visual representation of the FMSL translator initial

structure.

Lexer Parser
Type

Checker

Source
Code

Parse
Tree

Symbol
Table

Error
Messages

Figure 4.1: FMSL translator initial structure

The work for this thesis has added support for evaluating expressions through

a functional interpreter. This functional interpreter implementation does not perturb

the existing type-checking capabilities of FMSL. Per conventional compiler design

principles, the interpreter implementation relies on the type-checker’s results.

73

With the addition of functional interpretation, the execution output is no

longer limited to type errors, but it also includes – where appropriate – results from

expression evaluations and any run-time errors. Figure 4.2 is a visual representation

of the revised FMSL translator structure and where the functional interpreter fits into

the design. Functional interpreter implementation details are discussed in Chapter 5.

Lexer Parser
Type

Checker

Source
Code

Parse
Tree

Symbol
Table

Interpreter
Execution

output
Type

Check
OK?

Error
Messages

YES

NO

Figure 4.2: FMSL translator structure with interpreter

4.1 Execution of Preconditions and Postconditions

Preconditions and postconditions describe properties of the input and output

values for an operation before and after execution of that operation. To meet the goal

of allowing the user to execute a specification, a key capability is the ability to

execute preconditions and postconditions.

To test the specification, the user creates a set of inputs and outputs for a

given operation. By providing an operation name along with the inputs and outputs,

connected by the validation operator, the user instructs FMSL to run these inputs and

74

outputs against the operation’s formal description. FMSL performs the execution and

returns a meaningful response that consists of a pair of Boolean values that indicate

results from precondition and postcondition evaluation.

It is important to note that precondition and postcondition evaluation can take

place even when the operation is not constructively defined. A constructive function

definition is denoted in FMSL in a manner comparable to functional programming

languages. For example, the following is the constructive definition of an operation

that checks if all the elements of an integer list are positive:

operation ConfirmPositiveConstructive(il:integer*) =
 if #il = 0 then true
 else il[1] > 0 and ConfirmPositiveConstructive(il[2:#il])
end;

This is a standard tail-recursive definition, with the idiom [2:#il] denoting

the 2nd through last elements of a list. I.e., this is the FMSL analog of Lisp's cdr

function.

For comparison, the following is the purely analytic definition of this

function:

operation ConfirmPositiveAnalytic(il:integer*)
 pre: ;
 post: forall (i in il) i > 0;
end;

75

Comparative invocations of these two functions are the following:

(*
 * evaluates to false
 *)
> ConfirmPositiveConstructive([1,2,-3,4]);
(*
 * evaluates to {true,true}
 *
> ConfirmPositiveAnalytic([1,2,-3,4]) ?-> false;

Chapter 5 of the thesis discusses the details of how these two forms of

invocation are implemented. The point of this comparative example has been to

clarify the two forms of invocation for operations defined constructively versus

analytically.

4.2 Quantifiers

In order to facilitate execution and evaluation of sufficiently useful

preconditions and postconditions, FMSL includes support for quantifiers. Quantifiers

are Boolean-valued expressions that evaluate a quantified sub-expression multiple

times. FMSL supports universal and existential quantifiers, both bounded and

unbounded. A bounded quantifier is a quantifier that iterates over a discrete set of

values. An unbounded quantifier, on the other hand, iterates over values within a

universe that is unbounded or, conceptually, infinitely large. Whereas a bounded

quantifier might iterate through all the values within a fixed-size list, an unbounded

quantifier might iterate over the set of all integers.

76

To evaluate a bounded quantifier is straightforward, and likewise the FMSL

implementation approach was relatively clear-cut. Some mystery surrounded how to

approach and implement something useful for unbounded quantifications as, so it

turned out, an infinitely large value space can be rather difficult for computers to

internalize. Although some tools and languages employ other approaches to handle

this evaluation, for this thesis the decision was made to evaluate unbounded

quantifications by treating them like a bounded case where the object values are

supplied to the predicates from an incrementally built universe of values. Chapter 6

covers quantifier implementation details and provides a more in-depth discussion of

approaches to dealing with unbounded quantifiers.

4.3 Value Universe for Unbounded Quantifier Evaluation

The Value Universe is a discrete pool of values, indexed by type, that supply

meaningful values to unbounded quantifier predicates. When the FMSL interpreter

encounters an unbounded quantifier, the interpreter iterates over all values of the type

of interest to evaluate the predicate result. FMSL’s Value Universe grows

incrementally as values appear during specification execution, whether through

purposeful Universe population operations or through normal specification execution.

The Value Universe can contain values of any value type, ranging from simple atomic

types to complex types defined as lists and tuples.

The decisions regarding when the FMSL interpreter should add values to the

Value Universe were influenced by the importance of repeatability, i.e., that tests and

77

executions should be repeatable so that running the same data through the same

operations in the same order should consistently result in the same outputs. That in

mind, the FMSL implementation adds values to the Value Universe primarily in

contexts where the values cannot be mutated: let expressions, parameter binding, and

list construction. Although value mutation is still possible, and so the Universe

values can be changed in some cases, the FMSL user should understand that

performing mutations can cause undesirable side effects that ripple throughout the

universe and in normal execution. The bottom line is that non-functional value

mutation may lead to unrepeatable testing results. This is consistent with the notion

that value mutations are generally considered harmful in a functional environment.

All of the examples presented in Chapter 3 were fully functional, i.e., no value

mutating operators were used. The only mutation-producing operator in FMSL is

named set. Its semantics are comparable to Lisp's setf function, or mutations

through references in ML. Chapter 5 discusses the use of set in FMSL. The rule for

avoiding potentially harmful mutations in FMSL is very simple -- do not apply the set

operator to anything but a plain variable.

By default, FMSL does not allow a value to be added into in the Universe if

the Universe already contains that value (of a specific type). Although this decision

adds up-front processing time when calculating whether to add a value to the

Universe, it saves memory and cuts processing time during evaluation of unbounded

quantifiers. To give the user additional control over whether the FMSL

implementation should check for duplicates upon adding a value to the Universe, the

78

user can enable Universe duplicates by appending the “-universe-

duplicates” command-line parameter when invoking the FMSL translator.

4.3.1 Universe Implementation Details

The Value Universe is implemented as a block of memory where each

memory slot is a pointer to a homogenous list of values for a particular type. Figure

4.3 is a visual representation of the Value Universe structure.

type n
val 1

type n
val ...

type n
val m

Value Universe

type 1

type 2

...

type n

type 1
val 1

type 1
val ...

type 1
val m

Figure 4.3: Value Universe structure

The FMSL code listing in Figure 4.4 declares a Person object type and

contains two “let” expressions.

79

(*
 * Define the Person object type
 *)
object Person is
 components: firstName:string and
 lastName:string and
 age:integer;
end Person;

(*
 * Let p1 and p2 be specific Person values
 *)
> (let p1:Person = {"Alan", "Turing", 97}; true;);
> (let p2:Person = {"Arnold", "Schwarzenegger", 61}; true;);

Figure 4.4: Universe Person FMSL code listing

Upon encountering the “let p2” expression in this context, the FMSL

implementation first looks up the Person memory slot in the Value Universe by

hashing the Person type name to an index location. If there doesn’t already exist

such a slot, it assigns one and creates a value list of that type. Since a Person slot

already exists in the Universe (see Figure 4.5:1) and since we are not allowing

duplicates, the FMSL implementation accesses the list of Person values and verifies

that the value represented by p2 does not already exist in the Universe. Since it

doesn’t already exist in the Universe, the FMSL implementation adds the value

represented by p2 to the end of the Person list (see Figure 4.5:2).

80

gfisher
Cross-Out

gfisher
Replacement Text
 not

1.

2.

Person
Val

Val
1

Val
…

Val
m

Value Universe

type 1

Person

...

type n

Val
1

Val
…

Val
m

Figure 4.5: Value Universe Add Person Value

By executing the code in Figure 4.4 from the command-line with the -dump-

universe parameter we can see a listing of what’s contained in the Value Universe

at the end of specification execution. Figure 4.6 has the FMSL output, which shows

that the Value Universe contains both Person values, after executing the code in

Figure 4.4 with the “-dump-universe” command line option.

true
true
Value Universe contains: <
Person: [{ "Alan", "Turing", 97 }, { "Arnold", "Schwarzenegger", 61
}]
>

Figure 4.6: FMSL output after lets

81

Chapter 5 The Functional Interpreter

The functional interpreter goes beyond type checking and allows for actual

expression evaluation, maintains internal storage for objects of various types,

supports operation invocation, validation operator invocation, and more within a

specification.

5.1 Basic Object Types and Operator Interpretation

FMSL supports the following basic atomic types: boolean, integer,

real, and string. boolean objects hold values of true or false. integer

objects hold non-fraction numbers. real objects hold double-precision decimal

numbers. string objects hold sequences of characters or the empty string. FMSL

has a uniform nil value, which symbolizes the concept of “no value” and can be the

value of any object. FMSL also provides built-in support for a collection of operators

that act on these basic types.

5.1.1 Basic Object Type Implementation

All object values in FMSL are stored internally within a common structure,

called a ValueStruct, which gives the interpreter access to meta-information

82

about the value. A ValueStruct is a C structure that stores all the information,

shown in Table 5.1.

Internal Name Description
LorR whether the underlying value is an L- or R-value
tag the general type of the value
type the full type structure
size the type size, which can be number of elements or number of

bytes
val the value’s actual byte representation in memory

Table 5.1: Contents of ValueStruct

Internally the C code accesses and manipulates the object’s value in memory

by referencing the val field within the ValueStruct. The val field is a C

union that can represent any FMSL value (or a pointer to the FMSL value), as

illustrated in Figure 5.1.

83

ValueStruct

LorR

tag

type

size

val

int IntVal

double RealVal

String* StringVal

etc.

bool BoolVal

...

Figure 5.1: ValueStruct structure with val union

5.1.2 Operator Descriptions

FMSL provides built-in support for a collection of operators on these basic

types. For descriptions of the built-in operators available for boolean, number

(integer and real), and string typed objects see Table 5.2, Table 5.3, and

Table 5.4, respectively.

84

Operator Description Returns
not negation boolean
and conjunction boolean
or disjunction boolean
xor exclusive disjunction boolean
=> implication boolean
<=> two-way implication; if and only if boolean
if b1 then b2

where b1, b2 are
Boolean expressions

conditional boolean

if b1 then b2
else b3

where b1, b2, b3 are
Boolean expressions

conditional with else boolean

Table 5.2: Operators on booleans

Operator Description Returns
+ Addition integer or real
- Subtraction integer or real
* multiplication integer or real
/ Division integer or real
mod Modulus integer
+ (unary) returns 1*the number integer or real
- (unary) returns -1*the number integer or real
= Equality boolean
!= Inequality boolean
> greater than boolean
< less than boolean
>= greater than or equal to boolean
<= less than or equal to boolean

Table 5.3: Operators on numbers

85

Operator Description Returns
= equality boolean
!= inequality boolean
string length integer
in membership test boolean
+ concatenation string
[n] single character selection string
[m .. n] range / substring selection string

Table 5.4: Operators on strings

5.1.3 Operator Implementations

When the interpreter is tasked with evaluating the result of a simple

expression that involves an operator, the interpreter runs through a series of steps to

determine what it’s supposed to do. Those steps involve first determining the

structure of the expression (does the expression have one operand? Two operands?

Three operands? No operands at all? etc.). The interpreter then determines which

specific operator is being called. Once it has established the structure and operator,

the interpreter calls the proper C function with the operand(s).

A straightforward example traces the execution path of the binary division

operator (/). Note that the term binary operator here means that there are two

operands, not that the operands are represented in binary format. In the listing in

Figure 5.2, the last line of FMSL code tells the interpreter to perform division where

the operands are of type real.

86

Code listing:

(*
 * Declare and assign values to x, y
 *)
val x:real = 3.141592654;
val y:real = 2.718281828;

(*
 * Evaluate x divided by y and output the result
 *)
> x / y;

Output:

1.15573

Figure 5.2: FMSL division example listing and output

The interpreter processes the last expression by following these steps:

1. Determine that the expression involves a binary operator

2. Determine the operator (/)

3. Call and return the result of the function that performs the division

(doRealDiv), and pass as parameters the ValueStructs

corresponding to the x and y operands

The C code for evaluating the division appears in Figure 5.3.

87

ValueStruct doRealDiv(ValueStruct v1, ValueStruct v2, nodep t) {

 /*
 * Propagate null value if either is operand is null.
 */
 if ((v1 == null) or (v2 == null))
 return null;

 /*
 * Handled the overload for real or integer operands.
 */
 switch (v1->tag) {
 case RealTag:
 if (v2->tag == IntTag) {
 if (v2->val.IntVal == 0) {
 free(v2);
 lerror(t, "Divide by zero.\n");
 return null;
 }
 v1->val.RealVal = v1->val.RealVal / v2->val.IntVal;
 }
 else {
 if (v2->val.RealVal == 0) {
 free(v2);
 lerror(t, "Divide by zero.\n");
 }
 v1->val.RealVal = v1->val.RealVal / v2->val.RealVal;
 }
 free(v2);
 return v1;
 case IntTag:
 if (v2->tag == RealTag) {
 if (v2->val.RealVal == 0) {
 free(v2);
 lerror(t, "Divide by zero.\n");
 return null;
 }
 v1->val.RealVal = v1->val.IntVal / v2->val.RealVal;
 v1->tag = RealTag;
 }
 else {
 if (v2->val.IntVal == 0) {
 free(v2);
 lerror(t, "Divide by zero.\n");
 return null;
 }
 v1->val.IntVal = v1->val.IntVal / v2->val.IntVal;
 }
 free(v2);
 return v1;
 }
}

Figure 5.3: doRealDiv implementation

88

Tracing through the code, doRealDiv inspects the ValueStruct’s tag

field and establishes that we’re dealing with parameters of type real. It’s important

to make this determination since, as indicated in Table 5.3, the / operator also can be

used on integer operands or mixed real and integer operands.

It is worth noting that the only runtime type checking that is necessary is for

overloaded operators, such as arithmetic. The static type checker ensures that

arithmetic operators are never applied to non-numeric operands. Doing so results in a

type checking error, which precludes any subsequent expression evaluation. From a

type-theoretic standpoint, FMSL is a 100% statically typed language. The use of

types at runtime is an overloading implementation technique. Conceptually, there are

separate versions of each overloaded operator, for each combination of operand types.

There is a third parameter in doRealDiv: nodep t. Within doRealDiv,

t is referenced to help describe the location of a runtime error if one occurs, which in

this function could happen since we might see an attempt to divide by zero. Since

we’re not dividing by zero in this example, the C code performs the division and

assigns the result. Finally, doRealDiv returns v1, the ValueStruct that

contains the result.

The FMSL interpreter evaluates all the expressions that contain FMSL

operators in a fashion similar to the example described above.

89

5.2 Complex Structures

In addition to the basic object types (boolean, integer, real, and

string), FMSL supports structured types with lists and tuples. FMSL lists are

homogenous data structures that hold zero or more object values, analogous to an

array with no predetermined, fixed size. FMSL tuples are heterogeneous data

structures that hold a fixed number of components of specific object types, similar to

a C struct. See Table 5.5 and Table 5.6 for details on list and tuple operators,

respectively.

Operator Description Returns
= equality boolean
!= inequality boolean
in membership boolean
element count integer
+ concatenation list type
- deletion from list list type
[n] element selection list type
[m .. n] range selection list type

Table 5.5: Operators on lists

Operator Description Returns
= Equality boolean
!= inequality boolean
. field access any field type

Table 5.6: Operators on tuples

90

The following FMSL code declares an object type called IntegerList,

which is a list of integers.

object IntegerList = integer*;

The FMSL code in Figure 5.4 declares an object type called Person, which

contains several fields that together help describe a person.

object Person
 components: firstName:string and
 lastName:string and
 age:integer;
end Person;

Figure 5.4: Person object type definition

5.2.1 List and List Operator Implementation

Internally, an FMSL list is implemented as a ValueStruct where the val

union data item is a pointer to a C list structure called ListVal. ListVal is a

ListStruct (see Figure 5.5), which is a C struct that contains a linked list of

generic list elements and other list metadata such as list size.

91

ListStruct

ListElem* first

ListElem* last

int size

int ref_count

ListElem* enum_elem

Figure 5.5: ListStruct definition

The FMSL code snippet in Figure 5.6 below defines an IntegerList

object type and creates an IntegerList instantiation called intlist.

Code listing:

(*
 * Declare the IntegerList type.
 *)
object IntegerList = integer*;

(*
 * Declare an intlist value and assign a collection of integers.
 *)
val intlist:IntegerList = [1,1,2,3,5,3+5];

> intlist;

Output:

[1, 1, 2, 3, 5, 8]

Figure 5.6: FMSL IntegerList initialization

To construct an FMSL list, the FMSL implementation first builds a

ValueStruct to hold a list of values of the specified element type. It then iterates

through and evaluates each item in the expression list of elements, which was

92

assembled by the parser and the type checker. The result of each expression

evaluation is placed at the end of the list, and finally the list constructor function

returns the newly assembled list ValueStruct.

Note the importance of evaluating expressions when creating the internal

representations of the list elements: in the code listing in Figure 5.6, the last element

of the list of integers is 3+5. During list construction, the C implementation

evaluates that expression – i.e., in this case it performs the addition – and stores the

result (8) at the end of the list. See Figure 5.7 for the doListConstructor C

code that performs list construction.

93

ValueStruct doListConstructor(t)
 nodep t;
{
 TypeStruct type /* Type of the array */
 = t->header.attachment.type;
 ValueStruct rtn, /* Return val temp */
 rval; /* Value of each elem expr */
 nodep e; /* Working expr pointer */

 /* if we arrive here and type is undefined, return nil now */
 if (!type)
 {
 rtn = MakeVal(RVAL, NilType);
 return rtn;
 }

 rtn = MakeVal(RVAL, type);
 rtn->val.ListVal = NewList();

 for (e = t->components.expr.left_operand; e;
 e = e->components.exprlist.next) {

 /*
 * Evaluate the value expressions along the way and
 * assign to a memory slot.
 */
 rval = interpExpr(e->components.exprlist.expr);
 PutList(rtn->val.ListVal, (ListElemData*)rval);

 /*
 * Add constructed list elements to the universe of the
 * list’s base type.
 */
 if (isIdentType(basetype)) {
 UniverseAddValue1(
 basetype->components.type.kind.ident.type->
 components.atom.val.text, rval);
 }
 }

 return rtn;
}

Figure 5.7: doListConstructor implementation

An example list operator implementation that’s notable is the range selection

operator. The range selection or list-slice operator returns a list of subcomponents.

94

gfisher
Cross-Out

gfisher
Replacement Text
 is

For example, the last line of the code listing in Figure 5.8 returns a list that consists of

components at indexes 3, 4, and 5 within the list.

Code listing:

(*
 * Declare the IntegerList type
 *)
object IntegerList = integer*;

(*
 * Declare an intlist value
 *)
val intlist:IntegerList = [1,1,2,3,5,3+5];

(*
 * Select the subcomponents at indexes 3, 4, and 5.
 *)
> intlist[3..5];

Output:

 [2, 3, 5]

Figure 5.8: FMSL list selection example

When the interpreter is tasked with evaluating a list selection expression, the

interpreter first establishes that the expression of interest has three operands: the list,

the lower bound of the range selection, and the upper bound of the range selection.

The interpreter then evaluates each of the three operands and passes them as

parameters to the doArraySliceRef function, seen in Figure 5.9. Next, the code

determines that the v1 parameter is an FMSL list1 and so the C code initializes

result as an empty list. By looping from the lower bound value v2 to the upper

bound value v3, one at a time the code accesses the selected subcomponents of v1

1 Recall that according to Table 5.4, the selection operator also applies to string objects and so the
code here must determine whether v1 is a string or a list.

95

and copies (or puts) them into result. Finally doArraySliceRef returns

result, which is the ValueStruct that contains the sub-list.

ValueStruct doArraySliceRef(v1, v2, v3)
 ValueStruct v1;
 ValueStruct v2;
 ValueStruct v3;
{
 ValueStruct result;
 int i;

 /* start building the new list */
 result = MakeVal(RVAL, v1->type);
 if (v1->tag == ListTag) {
 result->val.ListVal = NewList();

 /*
 * loop through from lower .. upper and add the elements
 * to result.
 */
 for (i = v2->val.IntVal; i <= v3->val.IntVal; i++) {
 PutList(result->val.ListVal,
 GetListNth(v1->val.ListVal, i));
 }
 }
 else if (v1->tag == StringTag) {
 result->val.StringVal =
 (String *)SubString(v1->val.StringVal,
 v2->val.IntVal,
 v3->val.IntVal);
 }
 return result;
} /* end function doArraySliceRef */

Figure 5.9: doArraySliceRef implementation

5.2.2 Tuple and Tuple Operator Implementation

Internally, an FMSL tuple is implemented as a ValueStruct where the

val union data item is a pointer to a C list structure called StructVal. Like

ListVal, StructVal also is implemented as a ListStruct (Figure 5.5);

96

however, unlike ListVal, each item in the StructVal list corresponds to a field

within the FMSL tuple. Figure 5.10 has an FMSL code listing that declares a variable

of type Person, initializes that variable through tuple construction and then accesses a

field within the tuple.

Code listing:

(*
 * Declare p, a person variable
 *)
val p:Person = {"Arnold", "Schwarzenegger", 61};

(*
 * Access p's last name field
 *)
> p.lastName;

Output:

"Schwarzenegger"

Figure 5.10: Person tuple FMSL code listing

The strategy for constructing an FMSL tuple in C is similar to the strategy for

constructing lists, although there are some differences. To construct a tuple,

doTupleConstructor (see Figure 5.11) first checks to make sure it has field

values to instantiate and add to the tuple. It then creates the rtn tuple

ValueStruct and initializes it with the correct type. Internally, the field order

within a tuple is relevant and so in order doTupleConstructor loops through

evaluating field expression values and placing each result in rtn’s StructVal

field. Finally, doTupleConstructor returns the rtn tuple ValueStruct.

97

ValueStruct doTupleConstructor(t)
 nodep t;
{
 ValueStruct rtn,
 rval;
 nodep e;
 TypeStruct tupleType;

 /* if this isn't going to work, return nil now */
 if (!t->components.unop.operand)
 {
 rtn = MakeVal(RVAL, NilType);
 return rtn;
 }

 /* get the tuple type and initialize it */
 tupleType =
 t->components.unop.operand->components.exprlist.type;
 rtn = MakeTupleVal(RVAL, tupleType);
 rtn->val.StructVal = NewList();

 /*
 * loop through the tuple fields and add each one
 * as a list element.
 */
 for (e = t->components.unop.operand;
 e;
 e = e->components.exprlist.next) {
 rval = interpExpr(e->components.exprlist.expr);
 PutList(rtn->val.StructVal, (ListElemData*)rval);
 }

 return rtn;
}

Figure 5.11: doTupleConstructor implementation

An example operator on tuple objects is the field access operator (“.”), which

is used as follows: <tuple object>.<field name>. The field access

operator returns the value contained in the tuple within the stated field, much like the

way struct access works in C. The last line of the code listing example in Figure

5.10 demonstrates field access.

98

To evaluate tuple field access, the FMSL interpreter first determines that it’s

processing a binary operator with two operands: the tuple and the field within the

tuple. The interpreter then calculates the memory location of the tuple and calls

RecordRef (see Figure 5.12), passing in the memory location of the tuple and

information about the the field to be accessed. RecordRef first determines the

position of the field within the list of fields for this tuple. In our field access example

from Figure 5.10 we’re accessing a field via a field name (“lastName”), and so

RecordRef accesses the tuple’s symbol table to look up the field’s ordinal position

from the textual field name. RecordRef then gets the ValueStruct stored at

that field position within the tuple ValueStruct’s StructVal. Next,

RecordRef allocates memory for newDesig, a new ValueStruct pointer.

Finally, RecordRef makes newDesig point to the field value of interest and

returns it.

99

gfisher
Cross-Out

gfisher
Inserted Text
 is

ValueStruct RecordRef(desig, field)
 ValueStruct desig; /* L-value for the left operand. */
 nodep field; /* Ident for the right operand. */
{
 ValueStruct valueField,
 tuple,
 newDesig;
 SymtabEntry *f;
 int n;
 TypeStruct type = ResolveIdentType(desig->type, null, false),
 fieldType;

 /*
 * If the field is represented by a field name, look up
 * the field name in the symbol table to get the position
 * within the list.
 *
 * Otherwise we have an anonymous access into a tuple, so
 * we already have the numbered position.
 *
 * In either case we need to get the field type.
 */
 if (field->header.name == Yident) {
 f = LookupIn(field->components.atom.val.text,
 type->components.type.kind.record.fieldstab);
 fieldType = ResolveIdentType(f->Type, null, false);
 }
 else {
 f = null;
 n = field->components.atom.val.integer;
 fieldType = ResolveIdentType(
 GetNthField(type->components.type.kind.record.fields, n)->
 components.decl.kind.field.type,
 null, false);
 }

 /*
 * coming in, desig->LVal should point to the ValueStruct
 * of the struct.
 */
 tuple = (ValueStruct)*(desig->val.LVal);

 /* Note: Our lists are 1-indexed */
 valueField = (ValueStruct)GetListNth(tuple->val.StructVal,
 f ? f->Info.Var.Offset + 1 : n);
 /*
 * if we have valueField filled in, use its type.
 * Otherwise, use the fieldType.
 */
 if (!valueField) {
 newDesig = MakeVal(LVAL, fieldType);
 }
 else {

100

 newDesig = MakeVal(LVAL, valueField->type);
 }

 /*
 * Allocate some storage for the field ValueStruct pointer
 * and put field value there.
 */
 newDesig->val.LVal = (ValueStruct *) malloc(sizeof(Value **));
 *(newDesig->val.LVal) = valueField;

 return newDesig;
}

Figure 5.12: RecordRef implementation

5.3 Operation Invocation

As outlined in Chapter 4, FMSL supports the definition of computation

operations. These have the standard semantics of procedural abstractions definable in

almost all programming languages. Parameter passing is strictly call-by-value.

When operations have no mutating set expressions, they are side-effect free. This is

the case for all of the examples presented in the thesis. Figure 5.13 has an example of

a simple FMSL operation called Cube, which returns the result of cubing the integer

input parameter.

Code listing:

operation Cube (x:integer) = x * x * x;

> Cube(2);
> Cube(5);

Output:

8
125

Figure 5.13: Cube operation FMSL listing

101

The FMSL implementation performs operation invocations by first pushing an

activation record onto the stack. The implementation then evaluates each of the input

parameters and binds the corresponding values to the proper memory locations

according to the formal parameter names. After performing the parameter binding,

the implementation pushes the local symbol table to the top of the symbol table stack

and executes the operation body. The operation result is equal to the result of the last

expression in the operation, which gets saved off before popping the activation record

and returning the symbol table to its original state. Finally, the implementation

returns the ValueStruct operation result.

5.4 Operation Validation through the Validation

Operator

FMSL’s validation operator is designed to support incremental testing of a

specification. Whereas a more classic operation invocation involves passing only

input parameters to an operation, the validation operator accepts an operation name,

input parameters, and output parameters. Generically, the validation operator usage

is:

operation_name(input argument list) ?-> (output argument list)

102

gfisher
Cross-Out

gfisher
Replacement Text
standard

The in arguments are values that map to the operation’s input parameters and

the out arguments map to the operation’s output parameters. The result of a

validation operator invocation is a tuple that contains two boolean values: the first

expresses the result of the precondition evaluation and the second expresses the result

of the postcondition evaluation. See Table 5.7 for a list of potential value

combinations within the returned tuple.

Tuple Returned Indication
{ nil, nil } execution failure in the precondition; postcondition

evaluation not attempted
{ false, nil } precondition evaluation failed; postcondition

evaluation not attempted
{ true, nil } precondition evaluation passed; no postcondition

specified or there was an execution failure in the
postcondition

{ true, false } Precondition evaluation passed; postcondition
evaluation failed

{ true, true } Both precondition and postcondition evaluation
passed

Table 5.7: Validation result values

The "execution failure" referred to in Table 5.7 results from an expression

returning a nil value. Genuine failures include fatal arithmetic errors, such as division

by zero; list index out-of-bounds; or access to uninitialized tuple fields. A complete

discussion of such errors is in the FMSL reference manual [1].

An expression can also produce a nil result on purpose, for example an

operation that returns a nil value to indicate that no meaningful value was

computed. Conceptually, an evaluation result of nil means "undefined". Whether

103

such is the result of a specific error or purposeful computation is based on the context

of the evaluation. In this sense, an evaluation result of nil represents an abstract

representation of undefinedness. This is comparable to the evaluation of null pointer

values in programming languages, where null may be the result of a computational

error, or used to represent a purposeful result.

By executing a sequence of validation operator invocations with varying,

thoughtfully selected values for the input and output arguments, the user can gain

additional confidence in both the test data and the specification or discover errors in

the data or the specification. Examples of such value selections were presented in

Chapter 3. In the event that the validation operator invocation returns a tuple with

both values of true, the test inputs and outputs agreed with both the operation’s

precondition and postcondition. In the event where there were failures along the way,

the user might see other meaningful combinations of boolean values in the result

tuple.

As outlined in Table 5.8, if the first tuple field is false then the test values for

the inputs were invalid or the precondition was specified incorrectly. If the first tuple

field is true and the second tuple field is false, the test input values were valid and the

output values were invalid or the postcondition was specified incorrectly. The first

occurrence of a nil value in the returned tuple could signify that there is a problem

with the specification of the precondition or postcondition.

104

Tuple Returned Significance
{ nil, nil } The precondition may be specified incorrectly since

a run-time / execution error was detected during
precondition execution

{ false, nil } Test values for inputs were invalid or the
precondition was specified incorrectly

{ true, nil } Test values for inputs were valid, but the
postcondition either wasn’t specified or it may be
specified incorrectly since a run-time / execution
error was detected during postcondition execution

{ true, false } Test values for inputs were valid, but the output
values were invalid or the postcondition was
specified incorrectly

{ true, true } Test values for both inputs and outputs agreed with
both the precondition and postcondition

Table 5.8: Validation result significance

When choosing test data for inputs and outputs in a validation operator

invocation, the user may want to create and run some test data inputs and outputs

against an operation such that the result is known to not be { true, true }.

While some symbolic model checking tools initialize input fields only to values that

adhere to the precondition [45], with FMSL’s validation operator the user also can get

additional, helpful assurance that there is an absence of unintended behavior instead

of just “verify[ing] the existence of a particular feature” [46]. Through

comprehensive test data selection and by observing the feedback FMSL provides

after performing a validation operator invocation, the user can utilize FMSL to help

detect specification and test data errors.

105

Chapter 6 Quantifier Execution

FMSL supports both bounded and unbounded universal (forall) and

existential (exists) forms of quantification. Table 6.1 has a summary of the FMSL

bounded and unbounded quantifier syntax.

Syntax Quantifie
r Type

Reads Like …

forall (x in S) p bounded for all values x in list S, p is true
forall (x:t) p unbounded for all values x of type t, p is true
forall (x:t | p1) p2 unbounded for all values x of type t such that p1 is true, p2 is

true
exists (x in S) p bounded there exists an x in list S such that p is true
exists (x:t) p unbounded there exists an x of type t such that p is true
exists (x:t | p1) p2 unbounded there exists an x of type t such that p1 is true and

p2 is true

Table 6.1: FMSL quantifier syntax

A bounded quantifier evaluates over a discrete universe of values, as seen in

Figure 6.1. In the example, the forall ranges over all five elements [1, 1, 2, 3, 5]

that make up IntList list. Since each integer element within list is

greater than zero in the example in Figure 6.1, the bounded universal quantifier

evaluates to true.

106

(*
 * Declare an IntList object type and an IntList value
 *)
obj IntList = integer*;
val list:IntList = [1, 1, 2, 3, 5];

(*
 * Evaluate: all the integer elements within list are positive.
 *)
> forall (i in list) i > 0; -- evaluates to true

Figure 6.1: Example of a bounded quantifier in FMSL

In the example in Figure 6.2, unlike in Figure 6.1, it is not immediately clear

how the interpreter should evaluate the unbounded universal quantifier since the

Person space is a potentially infinitely-large universe.

obj Person = name:Name and age:Age;
obj Name = string;
obj Age = integer;
> forall (p:Person) p.age >= 21;

Figure 6.2: Example of an unbounded quantifier in FMSL

For this thesis, FMSL evaluates unbounded quantifiers by iterating through an

incrementally built universe of values and evaluating the predicate for each value.

Other methods were considered, and Section 6.1 discusses quantifier execution

approaches found in other formal methods tools. Section 6.2 lays out several

quantifier examples and describes their implementations.

107

6.1 Methods of Quantifier Execution

Formal methods tools and methods that support specification execution take

different approaches to handling unbounded quantifiers. For example, Aslantest [27],

Jahob [64], and executable Z [36] all handle unbounded quantifiers in different ways.

The symbolic execution tool for Aslan, Aslantest [27], attempts to

automatically evaluate all Boolean expressions contained within a specification.

When Aslantest encounters a Boolean expression – like an unbounded quantifier –

that it cannot automatically reduce to a simple true or false, it suspends specification

execution and calls upon the user to play the role of the simplifier. The user then

must enter the Boolean value result of the expression that could not be reduced. The

Aslantest tool takes record of the user response and then execution continues.

The Jahob verification system [64] proves correctness properties by

generating condition formulas – that together show that a program respects

preconditions, postconditions, and invariants – and then proving them using theorem

proving techniques. When Jahob encounters an unbounded quantifier, the Jahob user

is encouraged to utilize Jahob’s pickAny construct that makes the variable involved in

the unbounded quantifier predicate appear to be a specification variable with an

arbitrary value. The Jahob user also can state lemmas that involve the variable of

interest, which together with the pickAny construct effectively remove the unbounded

quantifier evaluation and thus simplify the theorem proving task.

Z is a “formal notation which aims to support, besides others, the specification

of early requirements” [36]. In [36] Grieskamp et al. detail their experiments with

108

use cases described in an executable form of Z. When they describe constraints that

involve unbounded universal quantifiers then their execution or computation

diverges, or in other words unbounded universal quantification is a “source of non-

executability” in their setting. To avoid the problem of non-executability, their

solution involves generally treating these constraints as compiler assumptions.

6.2 Unbounded Quantifier Execution in FMSL

What follows is a description of the implementation approaches taken to

evaluate unbounded universal, existential, and universal with suchthat (“|”)

quantifiers.

6.2.1 Example: forall

The code listing in Figure 6.3 demonstrates a forall example.

109

(*
 * Perform lets with p1, p2 to put them in the Universe
 *)
> (let p1:Person = {"Alan", "Turing", 97};);
> (let p2:Person = {"Arnold", "Schwarzenegger", 61};);

> "Expected: true";
> forall (p:Person) p.lastName != nil;

(*
 * Since p3, with a nil last name, has been introduced
 * then we expect false below.
 *)
> (let p3:Person = {"Charles", nil, 218};);
> "Expected: false";
> forall (p:Person) p.lastName != nil;

Figure 6.3: FMSL forall example code listing

To populate the Universe with Person values, the code lists some let

expressions that assign Person values to identifiers (p1 and p2). We expect the

first forall example to evaluate to true since at this point all Person values in

the Universe have defined lastName fields.

To evaluate the forall expression, the FMSL interpreter first identifies that

p is of object type Person. It then hashes the Person type name to locate the slot

in the Value Universe where Person values should be found (see Figure 6.4:1).

After discovering that there exist Person values in the Universe, the FMSL

interpreter accesses that list of Person values (see Figure 6.4:2). The FMSL

interpreter then iterates through each Person value in the list, temporarily assigning

the current Person value to p in the local symbol table. At each stop along the way,

the FMSL interpreter evaluates the predicate (p.lastName != nil) and

110

gfisher
Cross-Out

gfisher
Replacement Text
uses

gfisher
Cross-Out

gfisher
Replacement Text
step

essentially ANDs the results together (see Figure 6.4:3) to arrive at the final

evaluation result.

1.

2.

3.

Value Universe

type 1

Person

...

type n

Val
1

Val
…

Val
m

Value Universe

type 1

Person

...

type n

Val
1

Val
…

Val
m

Val
1

Val
…

Val
m

(Val 1).lastName
!= nil

AND AND

(Val ...).lastName
!= nil

(Val m).lastName
!= nil

Figure 6.4: Forall example universe access

Note that in the example in Figure 6.3, we expect the first forall expression

to evaluate to true and we expect the second forall expression to evaluate to

false. Just prior to executing the second forall in the example, the FMSL

111

interpreter processes the let p3 expression where p3 is assigned a Person value

with the lastName field set to nil. Since the FMSL interpreter picks up that p3

Person value and places it in the Person pool of values in the Value Universe, the

second forall expression should evaluate to false. This expectation turns out to

be correct, as evidenced by the output in Figure 6.5 below.

{ "Alan", "Turing", 97 }
{ "Arnold", "Schwarzenegger", 61 }
"Expected: true"
true
{ "Charles", nil, 218 }
"Expected: false"
false

Figure 6.5: FMSL forall example output

6.2.2 Example: exists

The code listing in Figure 6.6 demonstrates an exists example.

(*
 * Perform lets with p1, p2 to put them in the Universe
 *)
> (let p1:Person = {"Alan", "Turing", 97};);
> (let p2:Person = {"Arnold", "Schwarzenegger", 61};);

> "Expected: false";
> exists (p:Person) p.lastName = nil;

(*
 * Since p3, with a nil last name, has been introduced
 * then we expect true below.
 *)
> (let p3:Person = {"Charles", nil, 218};);
> "Expected: true";
> exists (p:Person) p.lastName = nil;

Figure 6.6: FMSL exists example code listing

112

The example in Figure 6.6 starts out the same as in Figure 6.3 where the

Universe gets populated with some Person values. Where it is different are the

exists quantifiers instead of forall quantifiers.

As when evaluating a forall quantifier, to evaluate the exists expression

the FMSL interpreter first identifies that p is of object type Person. It then hashes

the Person type name to locate the slot in the Value Universe where Person

values should be found (see Figure 6.7:1). After discovering that there exist Person

values in the Universe, the FMSL interpreter accesses that list of Person values (see

Figure 6.7:2). The FMSL interpreter then iterates through each Person value in the

list, temporarily assigning the current Person value to p in the local symbol table.

At each stop along the way, the FMSL interpreter evaluates the predicate

(p.lastName = nil) and ORs the results together (see Figure 6.7:3) to arrive at

the final evaluation result.

113

1.

2.

3.

Value Universe

type 1

Person

...

type n

Val
1

Val
…

Val
m

Value Universe

type 1

Person

...

type n

Val
1

Val
…

Val
m

Val
1

Val
…

Val
m

(Val 1).lastName
= nil

OR OR

(Val ...).lastName
= nil

(Val m).lastName
= nil

Figure 6.7: Exists example universe access

By the point where the first exists expression gets executed, none of the

Person values picked up by the Universe have a nil lastName field. As a result, we

expect the first exists expression to evaluate to false. Just prior to executing the

second exists example, though, the FMSL interpreter processes the let p3

expression where p3 is assigned a Person value with the lastName field set to

nil. Since the FMSL interpreter picks up that p3 Person value and places it in

114

the Person pool of values in the Value Universe, the second forall expression

should evaluate to false. This expectation turns out to be correct, as evidenced by

the output in Figure 6.8.

{ "Alan", "Turing", 97 }
{ "Arnold", "Schwarzenegger", 61 }
"Expected: false"
false
{ "Charles", nil, 218 }
"Expected: true"
true

Figure 6.8: FMSL exists example output

6.2.3 Example: var:type such that

The code listing in Figure 6.9 demonstrates a forall with suchthat

example.

(*
 * Perform lets with p1, p2, p3 to put them in the Universe
 *)
> (let p1:Person = {"Alan", "Turing", 97};);
> (let p2:Person = {"Arnold", "Schwarzenegger", 61};);
> (let p3:Person = {"Charles", nil, 218};);

(*
 * Evaluate: for all Person objects such that p.lastName is
 * not nil, the last name length is at least 6 characters
 *)
> "Expected: true";
> forall (p:Person | p.lastName != nil) #p.lastName >= 6;

Figure 6.9: FMSL forall with suchthat example code listing

115

In Figure 6.9 the FMSL code populates the Value Universe with three unique

Person values, and one of those Person values (p3) has a nil lastName field.

In this example the FMSL interpreter accesses the Value Universe in the same

fashion as in the forall and exists examples. When evaluating the forall

suchthat expression, though, the FMSL interpreter first evaluates the suchthat

predicate (p.lastName != nil) and if it evaluates to true then it evaluates the

second predicate (#p.lastName >= 6). Although there exists in the Universe a

Person value with a nil lastName field, the lastName has at least six

characters in all those Person values with a lastName that is not nil. See

evidence below in Figure 6.10 for evidence.

{ "Alan", "Turing", 97 }
{ "Arnold", "Schwarzenegger", 61 }
{ "Charles", nil, 218 }
"Expected: true"
true

Figure 6.10: FMSL forall with suchthat example output

116

Chapter 7 Conclusions

The focus of this thesis has been a technique and tool to facilitate the

incremental validation of formal software specifications. Demonstrations of the tools

efficacy were presented, as were a detailed review of the tool's design and

implementation.

7.1 Summary of Contributions

The specific contributions of the thesis are these:

1. The design and implementation of a functional interpreter for a formal

specification language, rendering the language executable for the first

time.

2. The design and implementation of a novel technique to execute purely

predicative specifications, using validation invocations.

3. Demonstration of how the execution capabilities can be used to

validate formal specifications, as presented in educational setting.

4. A thorough discussion of how the specification execution capabilities

fit into the realm of light-weight and heavy-weight formal methods.

117

gfisher
Inserted Text
'

gfisher
Cross-Out

gfisher
Replacement Text
functionality

gfisher
Cross-Out

7.2 Future Work

The following section describes potential future work, which could involve

creating a GUI front end to facilitate testing, creating a UML to FMSL conversion

tool, adding a test case generator, improving FMSL’s execution speed, and making

FMSL use memory more efficiently.

7.2.1 UML to FMSL Tool

As UML is the standard for modeling software applications [56], a UML

front-end for creating FMSL models could speed up the FMSL formal description

creation process. Similarly, some people might find it helpful to view some parts of

an FMSL specification in UML.

The general approach of UML-to-FMSL mapping is similar to the approach

taken with other formal specification languages, such as UML-B [59]. Since UML

does not have its own fully formal semantics, constructs of UML are mapped to the

specification language, and those constructs assume the semantics of the language.

This idea is consistent with the overall philosophy of UML, whereby the semantics of

a particular UML diagram can “absorb” the semantics of an underlying language to

which the diagram maps. For example, a UML inheritance diagram for a C++

program can assume the semantics of inheritance in C++. The same diagram used to

depict a Java program has a different semantics of inheritance.

The FMSL reference manual describes a UML-to-FMSL mapping. Given this

mapping, extant UML tools can be employed to render FMSL with UML diagrams.

118

gfisher
Cross-Out

gfisher
Inserted Text
, and performing end-user studies.

For example, the Dia diagram editor [7] provides a plug-in capability, with which a

textual representation of a diagram can be rendered as an editable drawing. An

experimental version of a UML-to-FMSL graphical editor was implemented as a

senior project at Cal Poly University, San Luis Obispo [54]. Since Dia is a Linux-

based tool, its distribution is limited to Linux platforms. Wider distribution could be

supported by using some other open-source UML editing framework, such as that

currently under development for the Eclipse IDE [2].

Although there isn’t a one-to-one correspondence between UML classes and

FMSL object types, there is some overlap in meaning and so such a tool set seems

feasible and useful.

7.2.2 Test Case Generator

As broad test coverage tends to build confidence about an implementation’s

correctness, so would broad test coverage build confidence about a model’s

correctness. Currently, FMSL validation operator test cases must be generated by

hand. There are some benefits to generating test cases by hand, such as that the

person generating the test cases may gain a better understanding of the model and

data. Also, the person generating the test cases can carefully pick meaningful test

cases. This process could be time-consuming and there exist tools, such as Korat [10,

21], that automatically generate test cases. Combining automated test case generation

with FMSL’s specification execution capabilities could make FMSL an even more

useful tool for validating specifications.

119

gfisher
Cross-Out

7.2.3 GUI Front End

The validation operator allows the FMSL user to specify operation inputs and

outputs and then see the result of their evaluation against the preconditions and

postconditions. As mentioned above, currently the user must choose the inputs and

outputs, and enter them for execution in a text-based interpreter environment. A GUI

front end to the specification validation and testing process could speed up and

streamline the test case generation and evaluation process. It could help the user to

manage a specification’s test suite, which would consist of a set of test plans. Each

operation could have its own test plan that consists of a set of inputs, outputs, and

expected results of validation operator invocations.

Figure 7.1 is a sketch of the user interface for a GUI front-end to the

specification validation functionality of the FMSL interpreter.

120

gfisher
Cross-Out

gfisher
Replacement Text
described

Figure 7.1: GUI overview sketch

121

gfisher
Sticky Note
You could shrink this picture down, but its not a big deal.

The interface allows the user to load a specification, and focus on a particular

operation. Each line in the Test Plan table corresponds to a validation invocation of

the operation in view.

7.2.4 Improve Value Universe Performance

Although FMSL evaluation of quantifiers is fast on even a relatively slow

personal computer, some improvements can be made to the Value Universe to

improve execution time when many values of a particular type have been ingested by

the Value Universe. As shown in Figure 4.3, the values for a given type are

maintained in a simple linked list structure. Since by default FMSL checks for value

existence before adding a new value to the Value Universe, this existence search

process can slow down execution. The search process execution time could be

reduced by implementing a companion structure that allows for translation of a

hashed value pointer into an existence determination.

7.2.5 Garbage Collector

The current FMSL implementation does not manage memory very carefully,

so we expect that FMSL executions probably lead to memory leaks. An improvement

to FMSL memory management would be to utilize a third party C-based garbage

collector, so FMSL would perform all memory allocation and de-allocation through

the garbage collector’s interfaces.

122

gfisher
Sticky Note
7.2.6 End-User Studies

To assess the efficacy of the incremental validation tool, groups of tool users should be studied. A particular focus is use of the tool in undergraduate software engineering courses. This will involve the development of a suitable experimental framework, such as that presented by Sobel and Clarkson [60].

For example, student groups could be taken from two sections of the same class, with each section working on the same projects. One section uses the validation tool, the other does not. The student specifications can be assessed quantitatively and qualitatively to determine their accuracy, completeness, consistency, and soundness. The instructor can ensure that certain aspects of the specification are covered in both versions of the projects, so that a specific definition of soundness can be made.

Within this definitional framework, specific types of specification errors can be defined, and the existence of such errors can be determined in both the control and tool-use groups. These data can then be used to determine if the tool-use group performs better than the control group.

gfisher
Inserted Text
This behavior is considered acceptable for the proof-of-concept implementation developed in the thesis.

Bibliography

[1] A Formal Modeling and Specification Language. Department of Computer

Science, California Polytechnic State University, San Luis Obispo, Technical

Report No. CPSLO-CSC-09-01.

[2] Eclipse Model Development Tools. http://www.eclipse.org/modeling/.

[3] Parasoft, Inc. JTest. http://www.parasoft.com/.

[4] Proceedings of the fourth ACM workshop on Formal methods in security,

Fairfax , VA, Nov 3 2006.

[5] Proceedings of the twenty-second IEEE/ACM international conference on

Automated software engineering, Atlanta, Georgia, USA. Nov 05–09, 2007.

[6] Proceedings of the twenty-third IEEE/ACM international conference on

Automated software engineering, L’Aquila, Italy. Sept 15–19, 2008.

[7] The Dia Diagram Creation Program. http://projects.gnome.org/dia.

123

gfisher
Inserted Text
Gene Fisher

gfisher
Inserted Text
Eclipse Foundation,

gfisher
Inserted Text
Association for Computing Machinery,

gfisher
Inserted Text
Association for Computing Machinery,

gfisher
Inserted Text
Association for Computing Machinery,

gfisher
Inserted Text
Dia User Community,

gfisher
Sticky Note
Now that I see these in the bibliography, I noticed they need authors, so I added them. Please put them in the proper alphabetic position in the list.

[8] S. Agerholm and P.G. Larsen. A lightweight approach to formal methods. In

Proceedings of the International Workshop on Current Trends in Applied

Formal Methods, pages 168–183, 1998.

[9] R. Alur, L. de Alfaro, R. Grosu, T.A. Henzinger, M. Kang, C.M. Kirsch, R.

Majumdar, F. Mang, and B.Y. Wang. jMocha: a model checking tool that

exploits design structure. In Proceedings of the 23rd International Conference

on Software Engineering, pages 835–836, 2001.

[10] A. Andoni, D. Daniliuc, S. Khurshid, and D. Marinov. Evaluating the “small

scope hypothesis.” Technical Report MIT-LCS-TR-921, MIT CSAIL, 2003.

[11] D. Astels. Test Driven Development: A Practical Guide. Prentice Hall PTR,

Upper Saddle River, New Jersey, 2003.

[12] B. Auernheimer and R.A. Kemmerer. ASLAN user’s manual. Department of

Computer Science, University of California, Santa Barbara, California,

TRCS84–10, Apr 1992.

[13] K.S. Barber, T. Graser, and J. Holt. Providing early feedback in the

development cycle through automated application of model checking to

software architectures. In Proceedings 16th Annual International Conference

on Automated Software Engineering, pages 341–345, 2001.

[14] K. Beck. Test-Driven Development: by Example. Addison-Wesley, 2003.

124

[15] B. Beizer. Software Testing Techniques, 2nd edition. International Thomson

Computer Press, Boston, MA, 1990.

[16] D. Bjorner and C.B. Jones. Formal Specification and Software Development.

Prentice Hall, Englewood Cliffs, NJ, 1982.

[17] B.W. Boehm. Software Engineering Economics. Prentice Hall, Englewood

Cliffs, New Jersey, 1981.

[18] G. Booch, J. Rumbaugh, and I. Jacobsen. The Unified Modeling Language

Reference Manual. Addison-Wesley, 1998.

[19] F. Bouquet, C. Grandpierre, B. Legeard, F. Peureux, N. Vacelet, and M.

Utting. A subset of precise UML for model-based testing. In Proceedings of

the Third International Workshop on Advances in Model-based Testing, pages

95–104, 2007.

[20] J.P. Bowen and M.G. Hinchey. Seven more myths of formal methods. IEEE

Software, 12(4):4–14, Jul 1995.

[21] C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated testing based on

Java predicates. In Proceedings from the International Symposium on

Software Testing and Analysis, pages 123–133, 2002.

125

[22] W. Chan, R.J. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin, and J.D.

Reese. Model checking large software specifications. IEEE Transactions on

Software Engineering, 24(7):498–520, Jul 1998.

[23] S. Chandra, P. Godefroid, and C. Palm. Software model checking in practice:

an industrial case study. In Proceedings of the 24th International Conference

on Software Engineering, pages 431–441, 2002.

[24] M. Chechik and J. Gannon. Automatic Analysis of Consistency between

Requirements and Designs. IEEE Transactions on Software Engineering,

27(7): 651–672, Jul 2001.

[25] E. Ciapessoni, A. Coen-Porisini, E. Crivelli, D. Mandrioli, P. Mirandola, and

A. Morzenti. From formal models to formally-based methods: an industrial

experience. ACM Transactions on Software Engineering and Methodology

(TOSEM), 8(1):79–113, Jan 1999.

[26] A. Diller. Z: An Introduction to Formal Methods. John Wiley & Sons, New

York, 1990.

[27] J. Douglas and R.A. Kemmerer. Aslantest: a symbolic execution tool for

testing Aslan formal specifications. In Proceedings of the 1994 ACM

SIGSOFT International Symposium on Software Testing and Analysis, pages

15–27, 2004.

126

[28] M.B. Dwyer and J. Hatcliff. Bogor: a flexible framework for creating software

model checkers. In Proceedings Testing: Academic and Industrial Conference

- Practice And Research Techniques, pages 3–22, 2006.

[29] S. Easterbrook, R. Lutz, R. Covington, J. Kelly, Y. Ampo, and D. Hamilton.

Experiences using lightweight formal methods for requirements modeling.

IEEE Transactions on Software Engineering, 24(1):4–14, Jan 1998.

[30] H. Erdogmus. On the effectiveness of test-first approach to programming.

IEEE Transactions on Software Engineering, 31(1):1–12, Jan 2005.

[31] G. Fisher. Introduction to Fully Formal Specification.

http://users.csc.calpoly.edu/~gfisher/classes/308/lectures/7-8.html.

[32] G. Fisher. The Calendar Tool Project,

http://www.csc.calpoly.edu/~gfisher/projects/calendar.

[33] D.C. Gause and G. M. Weinberg. Exploring Requirements: Quality Before

Design. Dorset House Publishing, New York, New York, 1989.

[34] R.L. Glass. The mystery of formal methods disuse. Communications of the

ACM, 47(8):15–17, Aug 2004.

127

gfisher
Inserted Text
CSC 308 Course Lecture Notes Weeks 7 and 8:

[35] P. Godefroid. VeriSoft: a tool for the automatic analysis of concurrent reactive

software. In Proceedings of the 9th Conference on Computer Aided

Verification, Springer-Verlag, pages 476–479, 1997.

[36] W. Grieskamp and M. Lepper. Using use cases in executable Z. In Third

IEEE International Conference on Formal Engineering Methods, pages 111–

120, 2000.

[37] M.P.E. Heimdahl and N.G. Leveson. Completeness and consistency in

hierarchical state-based requirements. IEEE Transactions on Software

Engineering, 22(6):363–377, Jun 1996.

[38] C. Heitmeyer. On the need for practical formal methods. In Proceedings of

the Symposium on Formal Techniques in Real-Time and Real-Time Fault-

Tolerant Systems, pages 18–26, Sep 1998.

[39] P. Höfner and G. Struth. Automated Reasoning in Kleene Algebra. In

Proceedings of the 21st International Conference on Automated Deduction,

vol. 4603, pages 279–294, Springer-Verlag, Berlin, Heidelberg, 2007.

[40] P. Hudak and P. Wadler. Report on the Functional Programming Language

Haskell. Department of Computer Science, Yale University, New Haven,

Technical Report No. YALEU/DCS/RR656, 1988.

128

[41] D. Jackson. Alloy: a lightweight object modelling notation. ACM

Transactions on Software Engineering and Methodology (TOSEM),

11(2):256–290, Apr 2002.

[42] D. Jackson. Dependable software by design. Scientific American Magazine,

pages 68–75, Jun 2006.

[43] D. Jackson and M. Rinard. Software analysis: a roadmap. In Proceedings of

the Conference on The Future of Software Engineering, pages 133–145, 2000.

[44] D. Janzen and H. Saiedian. Does test-driven development really improve

software design quality? IEEE Software, 25(2):77–84, Mar 2008.

[45] S. Khurshid, C.S. Păsăreanu, and W. Visser. Generalized symbolic execution

for model checking and testing. In Proceedings of the Ninth International

Conference on Tools and Algorithms for the Construction and Analysis of

Systems, pages 553–568, 2003.

[46] D.R. Kuhn, R. Chandramouli, and R.W. Butler. Cost effective uses of formal

methods in verification and validation. Foundations ’02 Workshop, US Dept

of Defense, Laurel MD, Oct 22-23, 2002.

[47] R.P. Kurshan. Formal verification in a commercial setting. In Proceedings of

the Design Automation Conference, pages 258–262, 1997.

129

[48] P. Larsen, J. Fitzgerald, and T. Brookes. Lessons learned from applying

formal specification in industry. IEEE Software, May 1996.

[49] G.T. Leavens, A.L. Baker, and C. Ruby. Preliminary Design of JML: A

Behavioral Interface Specification Language for Java. ACM SIGSOFT

Software Engineering Notes, 31(3):1–38, Mar 2006.

[50] M. Lutz. Programming Python. O’Reilly & Associates, Sebastopol, CA,

1996.

[51] K.L. McMillan. The SMV system for SMV version 2.5.4.

http://www.cs.cmu.edu/~modelcheck (last updated: Nov 6, 2000).

[52] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. The MIT

Press, 1990.

[53] K. Myers, K. Dionne, J. Cruz, V. Vijay, S. Dunlap, and D.P. Gluch. The

practical use of model checking in software development. In Proceedings

IEEE SoutheastCon 2002, pages 21–27, 2002.

[54] T. Ober. Graphical Editing of a Formal Specification Language, Department

of Computer Science Senior Project, California Polytechnic State University,

San Luis Obispo, Jun 2006.

130

[55] M.N. Paryavi and W.J. Hankley. OOSPEC: an executable object-oriented

specification language. In Proceedings of the 1995 ACM 23rd Annual

Conference on Computer Science, pages 169–177, 1995.

[56] D. Pilone and N. Pitman. UML 2.0 in a Nutshell. O’Reilly Media, Sebastopol,

CA, 2005.

[57] D. Richardson, O. O'Malley, and C. Tittle. Approaches to specification-based

testing. In Proceedings of the ACM SIGSOFT '89 Third Symposium on

Software Testing, Analysis, and Verification, ACM Press, pages 86–96, Dec

1989.

[58] B. Rumpe. Executable modeling with UML – A Vision or a Nightmare? In

Issues & Trends of Information Technology Management in Contemporary

Associations. Idea Group Publishing, Hershey, London, pages 697–701, 2002.

[59] C. Snook and M. Butler. UML-B: Formal modeling and design aided by

UML. ACM Transactions on Software Engineering and Methodology,

15(1):92–122, Jan 2006.

[60] A.E.K. Sobel and M.R. Clarkson. Formal methods application: an empirical

tale of software development. IEEE Transactions on Software Engineering,

28(3):308–320, Mar 2002.

[61] G.L. Steele. Common Lisp the Language, 2nd Edition. Digital Press, 1990.

131

[62] M. Vaziri and D. Jackson. Some shortcomings of OCL, the object constraint

language of UML. In Proceedings of the Technology of Object-Oriented

Languages and Systems (TOOLS 34'00), IEEE Computer Society, Washington,

D.C., pages 555–562, 2000.

[63] J. Warmer and A. Kleppe. The Object Constraint Language. Addison-

Wesley, 1998.

[64] K. Zee, V. Kuncak, and M.C. Rinard. Full functional verification of linked

data structures. ACM SIGPLAN Notices, 43(6):349–361, Jun 2008.

132

	Chapter 1 Introduction
	1.1 Description of the Problem
	1.2 Overview of the Solution
	1.3 Outline of the Thesis

	Chapter 2 Background and Related Work
	2.1 Formal Methods
	2.1.1 Beneficial Uses of Formal Methods
	2.1.2 Formal Methods for System Parts
	2.1.3 Cost Effectiveness

	2.2 Model Checkers and Theorem Provers
	2.2.1 Model Checking Challenges

	2.3 Light-weight Formal Methods
	2.3.1 Light-weight Formal Methods and Test-Driven Development
	2.3.2 Light-Weight Formal Methods and UML
	2.3.3 Cost Effectiveness

	2.4 Model Checking Tools and Formal Specification Languages
	2.4.1 VeriSoft
	2.4.2 Symbolic Model Verifier
	2.4.3 JML and Korat
	2.4.4 UML and OCL
	2.4.5 OOSPEC
	2.4.6 ASLAN and Aslantest

	2.5 Empirical Successes with Formal Methods
	2.5.1 BASE: A Trusted Gateway
	2.5.2 Miami University of Ohio: OOD Course
	2.5.3 NASA: Lightweight Formal Methods

	2.6 The Work of this Thesis in the Spectrum of Formal Methods

	Chapter 3 Demonstration of Tool Capabilities
	3.1 Standard Expression Evaluation
	3.2 Quantifier Evaluation
	3.2.1 Bounded Quantifier
	3.2.2 Unbounded Universal Quantifier: forall
	3.2.3 Unbounded Existential Quantifier: exists
	3.2.4 Unbounded Universal Quantifier: forall with such that

	3.3 Operation Validation
	3.3.1 AddUser: English Precondition and Postcondition in Comments
	3.3.2 AddUser: Basic Postcondition Logic
	3.3.3 AddUser: Basic Postcondition Logic Challenged
	3.3.4 AddUser: Strengthened Postcondition Logic
	3.3.5 AddUser: Constructive Postcondition
	3.3.6 FindUserByName: English Definition in Comments
	3.3.7 FindUserByName: Basic Postcondition Logic
	3.3.8 FindUserByName: Formal Postcondition Logic with Sort Constraint
	3.3.9 FindUserByName: Strengthened Postcondition
	3.3.10 FindUserByName: Postcondition with Auxiliary Functions

	3.4 Additional Uses of Validation Invocations and Exploratory Expression Evaluation

	Chapter 4 Overall System Design
	4.1 Execution of Preconditions and Postconditions
	4.2 Quantifiers
	4.3 Value Universe for Unbounded Quantifier Evaluation
	4.3.1 Universe Implementation Details

	Chapter 5 The Functional Interpreter
	5.1 Basic Object Types and Operator Interpretation
	5.1.1 Basic Object Type Implementation
	5.1.2 Operator Descriptions
	5.1.3 Operator Implementations

	5.2 Complex Structures
	5.2.1 List and List Operator Implementation
	5.2.2 Tuple and Tuple Operator Implementation

	5.3 Operation Invocation
	5.4 Operation Validation through the Validation Operator

	Chapter 6 Quantifier Execution
	6.1 Methods of Quantifier Execution
	6.2 Unbounded Quantifier Execution in FMSL
	6.2.1 Example: forall
	6.2.2 Example: exists
	6.2.3 Example: var:type such that

	Chapter 7 Conclusions
	7.1 Summary of Contributions
	7.2 Future Work
	7.2.1 UML to FMSL Tool
	7.2.2 Test Case Generator
	7.2.3 GUI Front End
	7.2.4 Improve Value Universe Performance
	7.2.5 Garbage Collector

