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Abstract

Incremental Validation of Formal Specifications

by

Paul Corwin

This thesis presents a tool for the mechanical validation of formal software 

specifications.  The tool is based on a novel approach to incremental validation.  In 

this  approach,  small-scale  aspects  of  a  specification  are  validated,  as  part  of  the 

stepwise refinement of a formal model.

The  incremental  validation  technique  can  be  considered  a  form of  “light-

weight” model checking.  This is in contrast to a “heavy-weight” approach, wherein 

an entire large-scale model is validated en masse.

The validation tool is part of a formal modeling and specification language 

(FMSL),  used  in  software  engineering  instruction.   A  light-weight,  incremental 

approach to validation is beneficial in this context.  Such an approach can be used to 

elucidate specification concepts in a step-by-step manner.  A heavy-weight approach 

to model checking is more difficult to use in this way.

The FMSL model checker has itself been validated by evaluating portions of a 

medium-scale  specification  example.   The  example  has  been  used  in  software 

engineering courses for a number of years, but has heretofore been validated only by 

human inspection.  Evidence for the utility of the validation tool is provided by its 

performance during the example validation.  In particular, use of the tool led to the 

discovery of a specification flaw that had gone undiscovered by manual validation 

alone.
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Chapter 1  Introduction

Software engineering is  an error-prone and expensive process.   Errors can 

originate  in  any  software  engineering  phase,  and  there  are  a  variety  of  ways  to 

prevent  the errors.  A well-accepted premise of software engineering is that  early 

detection of errors is beneficial.  That is, detecting an error early in the development 

process is likely to limit the impact of the error, compared to detecting the same error 

later in the process [17].  In one form or another, early error detection is an aspect of 

most modern software engineering processes.

This  thesis  focuses  on  enabling  early  error  detection  during  a  formal 

specification phase of software development.  This thesis presents a tool-supported 

technique to validate formal specifications in a straightforward manner that naturally 

fits into an incremental software development process.

The  incremental  validation  capabilities  are  provided  as  part  of  a  Formal 

Modeling  and  Specification  Language  (FMSL).   FMSL  is  comparable  to  other 

modern  specification  languages,  such  as  Z  [26]  and  OCL  [63].   The  primary 

contribution  of  this  thesis  is  the  introduction  of  executability  to  an  FMSL 

specification.   This  is  provided  by  a  functional  interpreter,  comparable  to  that 

provided  by  such  languages  as  Lisp  [61]  and  ML [52].   In  addition  to  standard 

functional  evaluation,  the  FMSL  interpreter  can  execute  Boolean  expressions 

containing universal and existential quantifiers, including unbounded quantification. 
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FMSL is used primarily as a vehicle to teach formal methods to software engineering 

students.   It  is  currently  used  by  Professor  Gene  Fisher  in  software  engineering 

courses  at  California  Polytechnic  State  University,  San  Luis  Obispo  (Cal  Poly). 

Wider distribution of FMSL is planned for the fourth quarter of 2009, via hosting at 

sourceforge.net, and a dedicated website.

1.1  Description of the Problem

The  specific  problem addressed  in  this  thesis  is  how to  validate  a  formal 

model-based specification.   Model behavior is defined with Boolean preconditions 

and postconditions on model operations.  In this context, the problem of validating 

the specification becomes a problem of Boolean expression evaluation,  as is done 

commonly  with  interpreted  programming  languages.  The  problem  of  evaluating 

quantifier expressions is of particular interest in this thesis.  This problem is generally 

not  addressed  in  programming  language  interpreters.   The  more  general  problem 

discussed in this thesis is how formal methods can be used effectively, particularly in 

an instructional setting.

Creating a software solution can be a difficult and complex process.  There are 

many ways that people try to improve the software development process: refine the 

requirements  gathering  process,  improve  specifications,  create  more  rigorous  test 

disciplines, select suitable and effective implementation methodologies, etc.

Formal methods and models can be used effectively to describe and analyze a 

system prior to concrete implementation.  Key here is their pre-implementation use. 

2



This  can  help  expose  errors,  misunderstood  properties,  and  improperly  stated 

behaviors that otherwise might have been overlooked.  Gause and Weinberg warn 

[33] humans are not especially good at seeing what we’ve overlooked and formal 

methods and models effectively force the issue.  The formal model, which serves to 

accurately  and  precisely  describe  a  system,  has  a  utility  that  is  limited  by  its 

correctness.   That  being  the  case,  some  consider  “analysis  of  models  [to  be]  a 

particularly rewarding investment, often exposing problems that can cost much more 

if not discovered until later” [43].  In this vein, it would seem there is a need for tools 

and methods that help detect errors and increase confidence in formal models.

1.2  Overview of the Solution

This  thesis’  aims  are  twofold:  (1)  to  provide  a  means  to  validate  formal 

specifications  in  a  straightforward  manner  that  naturally  fits  into  the  software 

development process and (2) to demonstrate how this can be applied practically in an 

instructional context, win which step-by-step understanding of a specification is an 

important goal.

Prior  to  beginning  work  on  this  thesis,  FMSL  existed  as  a  predicative 

specification language with a formal semantics that supported describing a system 

comprised  of  objects  and  operations.   FMSL  has  a  type  checker  that  provides 

mechanized  static  analysis  of  a  model.   The type  checker  performs  syntactic  and 

semantic  analysis  comparable  to  that  performed  by  compilers  for  strongly-typed 

programming languages.

3
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FMSL also has a documentation generator.  This aids in the manual human 

analysis of a model.

The work of this thesis is to add executability to the FMSL analyzer.  This 

provides the means to execute the operational components of a specification directly.

The form of analysis  presented in this thesis is called operation validation. 

The foundation of operation validation is a standard functional interpreter for FMSL. 

Such an interpreter is comparable to that for interpretable programming languages, 

including Lisp [61], ML [52], Python [50], and many others.

There is a fundamental difference between a predicative specification written 

in FMSL and a program written in an interpreted programming language.   In the 

specification, operational behavior is expressed as Boolean predicates that must be 

true before and after  an operation  executes.   I.e.,  these are  the preconditions  and 

postconditions.  The operation itself is not defined with an executable body, as in a 

programming  language.   Therefore,  what  it  means  to  execute  a  predicate-defined 

operation can be characterized as follows:

(1) supply inputs and expected outputs for an operation;

(2) evaluate the operation precondition on the given inputs;

(3) if the precondition is true, then evaluate the operation postcondition on 

the given inputs and outputs;

(4) if the postcondition is true, then the specification is valid for the given 

set of input/output values.
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These steps constitute an operation validation.  The solution presented in this 

thesis defines and implements the means to perform such validations in FMSL.

1.3  Outline of the Thesis

What follows in Chapter 2 is a description of background and related work, 

which covers formal  methods,  model checking,  and related existing modeling and 

specification languages.  Chapter 3 describes scenarios of system use while Chapter 4 

provides  an  overview  of  the  system  design.   Chapter  5  discusses  the  functional 

interpreter  implementation  details  and  Chapter  6  discusses  quantifier  execution. 

Chapter 7 concludes with a summary of contributions and lists potential future work.
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Chapter 2  Background and Related Work

This chapter provides a background discussion of formal methods and related 

topics.  The subject of “light-weight” formal methods is introduced, with a discussion 

of how the work of the thesis fits into this category.  The related work section 

provides a survey of relevant specification languages and model checkers.  It 

compares and contrasts the related work on model checking to the approach presented 

in the thesis.

2.1  Formal Methods

For  decades,  formal  methods  have  been  promoted  by  researchers  as  an 

important  part  of a rigorous software engineering process.   Glass explains that  “a 

formal  method of software development  is a process for developing software that 

exploits the power of mathematical notation and mathematical proofs” [34].  Formal 

methods can be used to express software properties from high-level to low-level.  At 

a high level, a formal model can be used to evaluate whether a system specification 

satisfies  certain  properties  or  meets  certain  behavioral  constraints.   At  a  lower 

implementation level, formal methods can be used to “formalize, debug, and prove 

the correctness of algorithms and protocols” [38].

6



Despite  researchers’  best  efforts,  critics  contend that  formal  methods  have 

played a small and insignificant roll in the software engineering process over the last 

30 years [34].  In further support of this notion, Heitmeyer points out that “the use of 

formal  methods in practical  software development  is  rare” [38] while  Bowen and 

Hinchey explain that “few people understand exactly what formal methods are or how 

they are applied” [20].

The  critics  claim  that  using  formal  methods  has  a  high  barrier  of  entry, 

especially  since many formal  methods  techniques  are “difficult  to understand and 

apply” [38] and employ notation that requires significant mathematical expertise [48]. 

Some argue that formal methods approaches are impractical at best, and there is no 

compelling reason to incorporate them into their software engineering processes [34]. 

While that may be true in some cases, formal methods proponents counter-argue that 

“formal methods are usually the only practical means of demonstrating absence of 

undesired  behavior”  [46].   Whether  practical  or  impractical,  difficult  or  easy  to 

understand,  if  a method helps  expose errors,  then people likely will  consider that 

method  useful.   For  example,  Kurshan  observes:  “show a  designer  a  bug  in  the 

design, and she immediately understands the value of your tool, although she may 

have little idea how the bug was discovered” [47].

2.1.1  Beneficial Uses of Formal Methods

While  general  arguments  about  formal  methods  continue,  there  are  some 

demonstrably beneficial uses for formal methods throughout the software engineering 

7



process.  Formal methods can be used effectively during requirements development, 

specification,  design,  and implementation  phases [5,  6].   Formal  methods  employ 

notations with a well-defined structure, which can be used to present requirements. 

As observed by Agerholm and Larsen, presenting requirements in formal notations 

can make “reviewing and inspection easier and therefore useful in locating errors” 

[8].  Some have found it useful to involve formal methods during the requirements 

engineering stages, where the formality prompts the engineers to raise questions and 

“improve the overall quality of the existing specifications” [29].  Although there is 

more cost associated with formally defining and maintaining a system in multiple 

notations, experience has shown that early modeling can prove beneficial [29].  On 

the other hand, when formal methods are not used during pre-implementation stages, 

design inadequacies only can be exposed once programmers begin building code [42] 

– a time when it’s been shown that design errors are relatively more expensive to fix.

In  addition  to  contributing  to  more  firm and complete  requirements  and a 

better system design, formal methods also help people to better understand a system. 

Users who employ formal methods at early stages are forced to seriously consider 

fundamental design questions, and formal models can succinctly separate concerns 

and  effectively  express  system  properties  [43].   Particularly  when  dealing  with 

complex systems, the abstraction capabilities of many formal methods often prove to 

be rather helpful.  The formal methods can serve to describe a system in an abstract 

fashion  such  that  the  complexities  are  masked  and  so  the  users  acquire  a  better 

understanding of the system [8].

8



2.1.2  Formal Methods for System Parts

Formal methods need not be applied across an entire system.  As Bowen and 

Hinchey  advise,  “There  are  occasions  in  which  formal  methods  are  in  a  sense 

‘overkill’,  but  in  other  situations  they  are  very  desirable”  [20].   Agerholm et  al. 

conclude  that  sometimes  “only parts  of  the  systems  would  benefit  from a  formal 

model” [8].  Others have seen positive effects  of taking a minimalist  approach to 

formal methods.  Easterbrook et al. observed that they could better handle effects of 

changing requirements by modeling only the specific properties of interest [29].  It 

may require  consideration to determine where formal  methods use might  be most 

advantageous to use [48].

The  benefits  of  code  reuse  are  well  accepted.   A benefit  of  using  formal 

methods is the potential for model reuse.  Once system parts have been formalized 

into a model then those model parts can be reused [46], for example in later projects. 

That formal methods are reusable is a major benefit, but formal methods also promote 

code reuse: in particular when the code has an accompanying, succinct description of 

guarantees  and  assumptions  then  it’s  easier  to  effectively  re-use  that  code  [43]. 

Formal methods and models are appropriate tools to describe those guarantees and 

assumptions.

2.1.3  Cost Effectiveness

While model and code reuse can contribute cost savings to a software project, 

a common myth surrounding formal methods use is that they’re just too expensive – 

9
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cost- and time-wise – to be viable in industry.  Empirical evidence shows that, indeed, 

use of formal methods early on in development adds up-front costs; however, often 

the  effort  is  recovered  later  [48].   Also,  although  using  formal  methods  usually 

requires that the users know some formalized notations, to train employees in formal 

methods topics does not cost more than typical on-the-job, high-tech training [48].

2.2  Model Checkers and Theorem Provers

Once a formal model is in place, it may be a worthwhile exercise to determine 

whether the model is correct.  That in mind, much research has gone into developing 

model  checkers.   According  to  Chan  et  al.  [22],  model  checking  is  a  “formal 

verification  technique  based  on  state  exploration.”   Model  checking  algorithms 

“exhaustively explore  the  state  space  to  determine  whether  the  system satisfies  a 

property.”  Kuhn et al. add that model checking often involves providing a counter-

example to prove that a property does not hold under certain conditions [46], although 

failure to discover a counterexample does not necessarily prove correctness [41].

Confidence in a formal model is important because “an incorrect model can be 

worse than no model at all” [43].  Jackson et al.  recommend developing a formal 

model of a system so long as it can be shown that the model describes the system 

[43].  Another approach to building confidence in a model involves use of theorem 

provers.  Rather than search for counter-examples, theorem provers “assist the user in 

constructing proofs, generally to show that the specification has desired properties 

such as absence of deadlock or various security properties” [46].  Although theorem 
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proving technology has been around for decades, it has not been accepted broadly. 

Some reasons for not being accepted may be that theorem proving tools may require 

expert users and an application cycle involving theorem provers is “generally slower 

than a normal product design cycle” [47].

  Model checking also can bring to the surface hard-to-find design errors [23], 

and  it  does  so  in  a  fashion  that  Kurshan  [47]  claims  actually  accelerates  the 

development  process  thus  “significantly  decreasing  the  time  to  market.”   For 

maximum  benefit,  Kurshan  also  recommends  that  model  checking  be  introduced 

early on, i.e., “at the same time that the first behavioral models are written.”

While there are several approaches to model checking, many agree that those 

model  checkers  that  enable  automatic  verification  are  most  desirable  [37].   That 

makes sense not just for convenience reasons, but also for cost benefits as Beizer [15] 

reports that automated testing can reduce the cost of both software development and 

maintenance.

2.2.1  Model Checking Challenges

Although there are many benefits that come along with model checking, there 

also are some challenges.  Model checking tends to require specialized expertise, and 

when it’s performed by hand then it can be very time consuming or even error-prone 

[13].  Experts are often needed because model languages can be rather difficult to 

learn [38].  These specialized experts may be called upon to translate a system into 

the model checking tool or language and then to interpret the results [13].  Given that 

11



experts  may  be  involved  and  that  this  process  can  be  time  consuming,  model 

checking can be costly [22] despite the overall savings it may offer.

Another problem people encounter when trying to work with model checkers 

is the state explosion problem.  The concept of state explosion is that there can be so 

many variables that the model “explodes” in size exponentially to a point that the 

computing resources cannot cycle through or perhaps determine the state space in the 

given time constraints [22, 53].  Since most models represent some abstraction of the 

expected implementation,  though, the model  state space can be somewhat  smaller 

than  the  system’s  state  space  [28].   In  fact,  Myers  et  al.  point  out  that  when 

attempting to model check, the engineers ought to keep abstraction in mind when 

modeling a system to help avoid the state explosion problem [53].  To deal with the 

state space explosion problem others try to work with a flavor of model checking 

called symbolic model checking.  Symbolic model checkers visit a set of states at a 

time,  and  the  efficiency  of  this  method  “relies  on  succinct  representations  and 

efficient manipulations of … predicates” [22].

All this considered, scalability with model checking remains a challenge [9]. 

Despite  the  difficulties  that  may  come  with  performing  model  checking,  model 

checking activities can help people better understand a system and specification [22]. 

If model checking exposes an error, the users should keep in mind that the error could 

indicate  a  problem  with  the  specification,  model,  claim,  or  even  developer 

understanding [53].  That in mind, it’s better to discover these sorts of errors earlier 

rather than later.
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2.3  Light-weight Formal Methods

Model  checking  is  generally  considered  to  be  a  "heavy-weight"  formal 

method.  The goal of model checking is to fully verify the correctness of a model, 

specified in a fully formal notation.

In  contrast  to  the  heavy-weight  approach,  "light-weight"  formal  methods 

employ techniques that fall short of complete verification.   A light-weight method 

may use a fully formal notation, but not conduct a complete proof, or not specify fully 

all aspects of a system [24, 39].  A total proof of correctness may not possible in all 

cases [46].

A light-weight formal method may not even use a fully formal notation.  For 

example, Easterbrook et al. [29] describe light-weight methods as involving “partial 

analysis on partial specifications, without a commitment to developing … complete, 

consistent  formal  specifications.”   Such  methods  do  not  require  that  the  user  be 

trained  in  advanced  mathematics  or  be  skilled  at  developing  sophisticated  proof 

strategies [38].

Simulation  is  another  example  of a light-weight  formal  methods  technique 

that  animates  or “electrifies”  a model  by examining a small  subspace of possible 

states  and  transitions  [43].   Especially  when  building  a  model  incrementally, 

simulation may immediately expose easy-to-make mistakes [43].  Having this model 

available for early simulation also provides the users the convenient ability to test 

functional  requirements of interest  [27].   Not only does the process of simulation 

make the model creation experience “more compelling,” but Jackson et al. also find 
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that “a model that has been simulated is much less likely to contain egregious flaws” 

[43].

While heavy-duty formal methods do have a use – in especially interesting or 

critical software components – Jackson explains that light-weight formal methods can 

be  more  practical  [42].   Dwyer  et  al.  [28]  concur  that  in  some  cases  it  is  just 

impractical to use heavy-duty formal methods – e.g., model checking – on large code 

bases.  These points of view together suggest that people should evaluate where it 

makes sense to use formal methods, as researchers explain that to reap significant 

benefits checking an entire specification is not necessary [22] and “not everything 

should be formalized” [25].

2.3.1  Light-weight Formal Methods and Test-Driven Development

Simulation  also lends  itself  to  integration  with a  project’s  test  philosophy. 

Since simulation involves examining a small subspace of states, that subspace can be 

created  by  executing  parts  of  a  specification  against  a  set  of  test  inputs.   These 

relevant test inputs or test cases can have a longer-lasting benefit since they can be 

reused at any later point in development, to test the actual implementation.  This early 

creation of test cases may fit in well with the philosophy of test-driven development, 

which calls for programmers to write low-level functional tests before beginning the 

implementation [11, 14, 30].  Erdogmus [30] found that following this “test-first” 

philosophy seems to improve productivity.  Janzen et al. [44] observed that “test-first 
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programmers are more likely to write software in more and smaller units that are less 

complex and more highly tested.”

The better end-product software may be a result of the developers’ increased 

understanding of the system.  Myers et al. explained that “if you run simple claims 

early  on  and  then  gradually  increase  the  complexity  of  your  claims  to  explore 

intricacies  of the system behavior then you have a basis of understanding both the 

model and the system” [53].  This improved understanding can help developers to 

more  easily  spot  errors  or  problems,  and  it  can  improve  customer-developer 

communication [46].  It would seem that early simulation and test-first together are a 

synergistic  combination,  and  since  testing  costs  typically  make  up  a  significant 

portion of overall software labor costs [15] then this synergy should be friendly on the 

budget.

The  ultimate  synergy  between  formal  specification  and  test-driven 

development may come with the wider-scale adoption of automated test generation 

tools, such as Korat [21] and the commercial product JTest [3].  With such tools, unit 

test  cases  are  generated  automatically  from  specified  preconditions  and 

postconditions.   In  this  way,  a  specification-driven  methodology  automatically 

becomes a test-driven methodology.  If a tool does not generate a sufficient set of 

tests,  then  manual  test  creation  supplements  the  generated  cases.   The  formal 

specification can be used synergistically to guide manual test creation, based on the 

many years of research in specification-based testing [57].
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2.3.2  Light-Weight Formal Methods and UML

The Unified Modeling Language is generally not regarded as formal, since it 

lacks a fully formal semantics.  However, there has been a significant amount of work 

on integrating formal methods into UML.  The Object Constraint Language (OCL) is 

part of UML itself, and is discussed further in Section 2.4.4 of this thesis.  Several 

formalized versions of UML have been used in conjunction with the specification of 

software security [4].  For general-purpose use, UML-B is an integration of UML and 

the B formal specification language [59].

UML-based formal methods are arguably all light-weight.  Each uses a subset 

of UML as the basis for formalization.  In this way, some but not all properties of a 

complete UML specification can be treated formally.

2.3.3  Cost Effectiveness

On the topic of costs, the choice to utilize light-weight methods may be both 

practical and cost-effective [38].  Jackson agrees that “a small amount of modeling 

and  analysis  during  the  initial  determination  of  requirements,  specifications,  or 

program design costs only a tiny fraction of the price tag of checking all the code but 

provides a large part of the benefit gained from an exhaustive analysis” [42].  This 

relatively low-cost investment provides reasonable coverage of test cases against a 

model, and yields an increased confidence in the model’s correctness [22].  If more 

assurance is needed after utilizing light-weight formal methods, model checking can 

be used in selected, particularly critical aspects of the model [28].
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For all the above reasons, light-weight formal methods may be attractive to 

industry.   Since light-weight formal methods provide something of an incremental 

change to existing software processes – rather than a revolutionary change – they may 

be more likely to be seriously considered, particularly in large organizations where it 

is difficult to push against process inertia [25, 48]. 

2.4  Model Checking Tools and Formal Specification 

Languages

Many automated  model  checking  tools  and  formal  specification  languages 

exist.  Each has a set of characteristics that make it suited to particular types of use. 

In kind, FMSL has its own characteristics and potential uses.  What follows is a brief 

survey of some existing model checkers and formal specification languages: VeriSoft, 

SMV, JML and Korat, UML/OCL, OOSPEC, and Aslantest.

2.4.1  VeriSoft

VeriSoft,  developed  at  Bell  Laboratories,  is  a  “general-purpose  ‘model 

checker’” [23] tool that explores the state spaces of a concurrent system in order to 

detect  potential  problems  such  as  deadlocks  (when  each  system  process’  next 

operation is blocking) and violations of user-specified assertions [35].  Rather than 

analyzing  a  separate  system  model,  VeriSoft  directly  analyzes  the  actual  system 

implementation.  VeriSoft performs system analysis through a scheduler that controls 
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relevant processes on a system by controlling and observing visible operations, which 

are  operations  that  facilitate  inter-process  communication.   Through  system  re-

initialization and the ability to suspend and resume processes, VeriSoft can explore 

transitions been system states and report back the sequence of states that led to a 

system problem.  VeriSoft offers an automatic state space exploration mode and a 

manual mode where the user can explore specific paths between system states.

VeriSoft  assumes  that  a  system is  deterministic,  i.e.,  it  performs  the same 

sequence  of  execution  steps  for  the  same  data  inputs.   The  authors  of  VeriSoft 

recognized that the environment in which a system operates can add elements of non-

determinism to the system’s execution, and so they implemented a mechanism that 

allows  the  user  to  optionally  hook  a  user-defined  environment  implementation 

together with VeriSoft.  While optional, this hook mechanism enhances VeriSoft’s 

utility since it can enable the user to run VeriSoft through a more realistic collection 

of state spaces.

2.4.2  Symbolic Model Verifier

The  Symbolic  Model  Verifier  (SMV)  tool  checks  finite  state  machine 

representations of systems that range from synchronous to asynchronous and from 

detailed to abstract [51, 53].  This experimental SMV tool accepts as inputs a system 

model  description  and  a  set  of  expected  properties  of  the  system,  expressed  in 

computational tree logic (CTL).  The SMV input language that describes the model 

has a formal semantics and includes support for modular descriptions and re-usable 
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components.   The  data  types  available  to  SMV  are  finite  data  types  (Booleans, 

scalars, fixed arrays, and static structured data types).  The expected properties are 

checked against the model using an ordered binary decision diagram (OBDD).  A 

diagram-based  algorithm  is  used  to  determine  whether  the  CTL  property 

specifications  are  satisfied  in  the  model.   If  it  discovers  that  some  part  of  the 

specification  is  false,  the  SMV model  checker  attempts  to  produce  and output  a 

counterexample to prove that the model is not correct.  McMillan [51] suggests that 

SMV is a tool intended to facilitate experimentation with symbolic model checking 

techniques as applicable to hardware verification.

To speed up the model checking process, Myers et al. [53] created a GUI-

based SMV prototype tool that allows the user to input a visual representation of the 

model and conveniently enter in properties to check against the model.  Their initial 

version has limited functionality that translates visual state diagram models into SMV 

input language code, but they describe their ideal version as something that allows the 

user to model complete, complex systems.

2.4.3  JML and Korat

The  Java  Modeling  Language  (JML)  [49]  is  a  behavioral  interface 

specification language that  is  intended to be used for specifying Java modules  by 

describing preconditions, postconditions, and intermixed assertions.  Leavens et al. 

[49] created JML with the additional goals that it be “readily understandable” by Java 

developers  and  that  the  language  be  “capable  of  being  given  a  rigorous,  formal 

semantics, and must also be amenable to tool support.”   Rudimentary uses of JML 
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include  placing  Boolean  precondition  (keyword:  requires)  and  postcondition 

(keyword:  ensures)  specifications  in  comments  above Java method declarations 

within  .java  source  files,  although  JML  specifications  can  exist  in  standalone 

specification files as well.

An example tool built on JML is Korat, a “framework for automated testing of 

Java programs” [21].  Korat is novel in that it works by first generating the set of all 

non-isomorphic inputs, bounded by a given size, that satisfy the Boolean requires 

precondition specified in JML.  Korat uses the JML tool-set to generate a test oracle 

from the Boolean  ensures JML postcondition in combination with the generated 

inputs.   Finally,  Korat executes the method on all  these generated test  inputs and 

evaluates  the  method  outputs  against  the  test  oracle,  and  Korat  reports  any 

postcondition violations as counterexamples [10, 21].

2.4.4  UML and OCL

The  Unified  Modeling  Language  (UML)  [18]  is  a  visual  language  that 

facilitates the description or modeling of software designs and patterns, and it has 

become the “de facto standard for modeling software applications” [56].  A UML 

model generally consists of one or more diagrams and “provides a more compact 

code description than an ordinary programming language does” [58].

Although UML typically is not thought of as an executable language, there are 

some subsets of UML that can be rendered executable.  These subsets consist of one 

or  more  of  the  following  forms  of  UML  elements:  class  diagrams,  StateChart 
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diagrams, activity diagrams, sequence diagrams, and the Object Constraint Language 

(OCL) [58].  Bouquet et al. [19] have isolated such a subset of UML 2.1 and clarified 

the semantics of the subset to make it interpretable by model-based testing tools.

When modeling operations in UML, preconditions and postconditions can be 

described using pseudocode, OCL, or plain English text [56].  OCL is a language 

with syntax and keywords, and although it cannot modify the model it can be used to 

describe  preconditions,  postconditions,  and  invariants.   Within  these  descriptions 

OCL syntax includes support for basic scalar types, conditionals, a let construct for 

improved expressiveness, and universal and existential quantifiers.

There are mixed opinions of OCL.  Some critics claim that OCL expressions 

are “unnecessarily hard” to read or write [41, 62] yet they concede it is more easily 

used by non-mathematicians compared to some other modeling languages [41].  Also, 

OCL is not a standalone language since it always must be accompanied by a UML 

diagram [41, 62].  Still, Kuhn et al. suggest that the combination of UML with OCL is 

formal enough that the combination can “provide a rigorous system specification” 

and could be used by model checkers [46].

2.4.5  OOSPEC

OOSPEC  [55]  is  an  executable  “model-based  specification  language  and 

development  system”  intended  to  be  used  to  introduce  formal  methods  and 

specifications to undergraduate students.  OOSPEC has an object-oriented form with 

concepts of classes, inheritance, instances, and objects and it supports “high level” 
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structures like sets and sequences.  In OOSPEC, operations are specified completely 

through preconditions and postconditions described in a predicate calculus notation 

that allows for sequential,  conditional, and iterative evaluation.  Paryavi et al. [55] 

also  provide  a  graphical  user  interface  environment  prototype  that  allows  for 

“creation and evaluation of partial and full specifications.”

2.4.6  ASLAN and Aslantest

ASLAN [12]  is  a  formal  specification  language  that  takes  the  state-based 

approach  to  describing  systems.   ASLAN  supports  identifiers,  lists,  sets,  types, 

conditional statements, quantification, constraints, and invariants.  All these together 

enable the ASLAN user to specify a system in terms of a collection of states and 

definitions  of  state  transitions  with  specific  entry  and  exit  criteria  (similar  to 

preconditions and postconditions).

Aslantest [27] is a symbolic executor tool that animates and tests Aslan formal 

specifications  to  give  the  user  assurance  that  the  model  satisfies  functional 

requirements.   Aslantest  provides  the  user  with  two  approaches  of  animating 

specifications: individual test case evaluation and symbolic execution.  The individual 

test case evaluation allows for testing specific examples that the user considers to be 

important, while the second approach – symbolic execution – is a method that enables 

the user to establish proofs about the model  since the results  consist  of  symbolic 

values and constants.
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The Aslantest  tool  provides  the  user  an interface  to  conveniently  navigate 

through the specification animation process.   The tool  allows the user to enter  in 

Aslantest commands interactively, but a sequence of commands also can be read from 

a text file.  With the tool, the user can:

• execute state transitions one at a time or in sequence

• get debug information about the current state

• save the state or restore a state

• add assertions

2.5  Empirical Successes with Formal Methods

Through research and industry experiments, researchers have tried to gather 

information to evaluate whether formal methods really are useful.  The following sub-

sections  summarize  several  industry  and  university  experiments,  all  of  which 

conclude that formal methods are beneficial.

2.5.1  BASE: A Trusted Gateway

Larsen  et  al.  conducted  an  experiment  at  British  Aerospace  Systems  and 

Equipment Ltd. (BASE) to determine the cost and quality effects of utilizing formal 

methods during development  of  a  system [48].   BASE had a  need for  a “trusted 

gateway,” and so they created two teams of similarly qualified engineers to develop 

the system independently.  One team followed conventional methods and the other 
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was encouraged to use formal specification wherever the team deemed it appropriate. 

Throughout development both of these teams were monitored to observe engineering 

methods, communications with the customer, and other development activities.

After  reviewing  the  customer  requirements,  both  teams  were  given  the 

opportunity to ask the customer for additional detail.  Larsen et al. observed that the 

formal methods team not only asked more questions – 60 vs. 40 – but their questions 

focused heavily on the data and exceptional conditions, which is a sensible emphasis 

when  developing  a  security-critical  system.   Also,  the  formal  methods  team’s 

modeling of the system shed light on an exceptional condition that was not initially 

called out in the original requirements.  The conventional methods team did not catch 

the potential occurrence of the exceptional condition, and they later had to develop a 

patch to their software.

Once  the  teams  finished  initial  implementations  of  their  trusted  gateway 

software, Larsen et al. tested the systems using the identical user interface that was 

provided  to  both  teams.   The  trusted  gateway  systems  were  run  against  their 

separately developed test suites and then run against each other’s test suites.  The 

conventional  methods  team’s  software  failed  some  of  the  formal  methods  team’s 

tests,  which  included testing  of  the  exceptional  condition  mentioned  above.   The 

trusted gateways also were benchmarked for performance and the formal methods 

team’s software performed fourteen times faster during normal operation, although it 

took longer to initialize (which was an acceptable trade-off given the requirements). 

Lastly,  the  overall  effort  spent  by both  teams was roughly equivalent,  which  ran 
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counter  to  some  criticisms  of  formal  methods  that  claim  formal  methods  are 

prohibitively expensive for use in industry.

2.5.2  Miami University of Ohio: OOD Course

Sobel et  al.  conducted an experiment to judge the effects  of integration of 

formal  methods techniques into an undergraduate  software engineering curriculum 

[60].   The  experiment  sought  to  evaluate  students’  potential  for  learning  formal 

methods  and to  increase  their  complex  problem solving  skills.   To  carry  out  the 

experiment  Sobel  et  al.  worked  with  two  separate  classes  broken  into  teams  of 

students for an Object Oriented Design (OOD) course: one control group of 13 teams 

that had taken the university’s normal curriculum and one formal methods group of 

six  teams  that  had  taken  two semesters  of  formal  methods  courses.   The  teams’ 

workflow  on  a  common  elevator  project  was  monitored  to  observe  design  and 

implementation efforts  and methods.   All  teams were asked to provide executable 

source  code  for  this  project  and  all  teams  were  encouraged,  but  not  required,  to 

submit  a  UML diagram of  their  system design.   The  formal  methods  group was 

additionally asked to submit a formal specification – a first order logic description of 

preconditions, postconditions, and invariants – of their system.

The experiment showed that the formal methods teams generally followed a 

more  rigorous  design  process.   For  example,  none  of  the  thirteen  control  teams 

submitted a UML diagram of their design (in fact, no design artifacts could be found) 

whereas three (out of six) of the formal methods teams submitted UML diagrams of 
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their design and four of the formal methods teams submitted a formal specification. 

Although some of the formal methods teams used symbols incorrectly (for example, 

they  interchanged  existential  and  universal  quantifiers),  their  system  description 

demonstrated  a  good  understanding  of  the  system  behavior.   In  all,  the  formal 

methods teams had relatively better designs.

The formal  methods  teams’  implementations  had a  significantly  better  test 

success rate compared to the control group teams’ submissions: 100% correctness vs. 

45.5% correctness.  Of the 13 control teams, two did not provide any submission at 

all.   Overall,  the formal  methods teams’ source code was less complex while the 

control  teams’  source  code  was  more  complex  and  offered  poorer,  more  tightly 

coupled  solutions.   Sobel  et  al.  were  surprised  that  the  various  teams  across  the 

control and formal methods groups produced solutions with counts of source lines of 

code that were not significantly different, but the benefits of formal methods training 

were  clear:  100% of  the  students  trained  in  formal  methods  techniques  produced 

correct solutions compared to only 45.5% of the control teams’ students.

2.5.3  NASA: Lightweight Formal Methods

At  the  National  Aeronautics  and  Space  Administration  (NASA),  many 

engineering practices rely on informal processes – such as inspection – and generally 

do not employ careful requirements engineering in critical areas [29].  Easterbrook et 

al.  set  out  to  observe  the  effects  of  implementing  lightweight  formal  methods  in 

several  NASA  programs  to  evaluate  whether  their  incorporation  into  existing 
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engineering practices might yield increased safety or reduced cost.  Their approach 

involved assigning formal methods experts the task of incorporating formal methods 

techniques early on in the requirements  phases of three new space systems where 

many of the requirements were still  volatile.   In these three cases they followed a 

common approach that involved unambiguously re-stating requirements, identifying 

and correcting inconsistencies,  testing the requirements,  and finally  discussing the 

results with the requirements’ authors.

Ultimately the authors of [29] did not perform an extensive analysis on the 

cost benefits of formal methods in their studies, but they concluded that application of 

formal methods early on added value since their use helped detect errors and clarify 

requirements.   Examples of the many types  of requirements problems that  formal 

methods helped uncover include: ambiguities, inconsistencies, missing assumptions, 

missing  preconditions,  traceability  problems,  logic  errors,  missing  requirements, 

inadequate  requirements,  and  incorrect  expression  of  timing  requirements. 

Easterbook et al. also observed that the development team was much more receptive 

to working through these errors discovered through the use of formal methods, since 

these techniques were applied so early on in the process.

2.6  The Work of this Thesis in the Spectrum of Formal 

Methods

While some of the aforementioned languages and tools may have similarly 

positive  impacts  on  a  software  project,  FMSL’s  qualities  and  characteristics 
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distinguish it from other formal methods languages and tools.  The remainder of this 

sub-section summarizes some of these differences.

Whereas  Verisoft  [23]  is  a  model  checking  tool  that  analyzes  a  system 

implementation,  FMSL is suitable  for pre-implementation formal  modeling,  which 

can be beneficial  since “verification at early stages is more likely to be tractable” 

[22].  Vaziri and Jackson assert that it is “near impossible to get a system right by 

fudging  late  in  the  day,  so  early  investment  in  modelling  and  analysis  will  be 

essential” [62].

The FMSL language itself provides formal methods capabilities in a practical 

and balanced fashion.  For example, like the SMV input language [51], FMSL has a 

formal semantics – a must for modeling languages [43] – and it exhibits a natural 

language expressiveness that should be “familiar to the user” [38].  These qualities 

could make FMSL appealing to non-software professionals [37] and engineers [48]. 

Unlike SMV, which is a heavier-weight model checking tool that uses a diagram-

based algorithm to search for counterexamples to prove that a model is not correct, 

FMSL provides users with a lighter-weight approach that does employ exhaustive 

model checking algorithms.

FMSL specifications do not lend themselves to any specific implementation 

programming languages, whereas JML [49] is intended to be used for specifying Java 

modules.  As a separate GUI front-end to facilitate specification validation could be 

an effective companion tool for FMSL (see Section 7.2.3), JML also can be integrated 

with  other  tools.   Korat  [21],  which  automatically  generates  test  cases  for  JML 

specifications, is one such tool.
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Unlike some other languages – for example, OCL – FMSL does not fall into 

the  category  of  being  so  implementation-oriented  that  it’s  not  “well-suited  for 

conceptual modeling” [62].  Another difference between OCL and FMSL is that, as 

mentioned in a preceding sub-section, OCL must be accompanied by a visual UML 

diagram [41, 62].  While visual representations of FMSL specifications may have 

some utility, they are not required.

OOSPEC [55]  and FMSL share some common qualities:  both  are  used to 

introduce formal methods and specifications to undergraduate students, both have an 

object-oriented form, and both support operation specification through precondition 

and postcondition definition.  FMSL’s combination of a functional interpreter and a 

means  to  execute  preconditions  and  postconditions  may  make  FMSL  useful  and 

appealing to software engineering students, who expect an executable specification 

language  [55].   One  major  difference  between  them is  their  respective  styles  of 

specification expression.  Specifically,  while FMSL draws heavily from functional 

programming languages,  OOSPEC draws strongly from languages that  utilize  set-

theoretic notation – VDM [16] and Z [26].

ASLAN [12] and FMSL support similar similar features like identifiers, lists, 

types, and quantification.  While ASLAN users specify systems in terms of states and 

state  transitions,  FMSL  users  specify  systems  using  objects  and  operations  with 

constraints.   State  transition  entry  and  exit  criteria  constraints  in  ASLAN  are 

comparable  to  operation  preconditions  and postconditions  in  FMSL.   While  both 

Aslantest  [27],  a  tool  that  executes  ASLAN  specifications,  and  FMSL  support 

execution through individual test cases, Aslantest also supports symbolic execution. 
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FMSL  and  Aslantest  also  handle  quantifier  execution  differently,  and  those 

differences are discussed in Chapter 6.

With its particular set of qualities and characteristics, FMSL is designed to be 

easy to understand.  According to Sobel and Clarkson, even those who do not fully 

understand  a  formal  modeling  language  (or  formal  method)  still  can  gain  some 

benefit  from using  it  [60].   In  addition  to  the  academic  benefits,  while  Jackson 

cautions  that  “as  in  a  building,  when  the  software’s  foundation  is  unsound,  the 

resulting structure is unstable” [42], using FMSL to describe and validate a model 

may increase the likelihood that the model will  serve as better  foundation for the 

software that implements the model.  The FMSL modifications for this thesis aim to 

transform FMSL into a more effective and useful tool that fits well with light-weight 

formal methods techniques, and so its use could be introduced incrementally.
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Chapter 3  Demonstration of Tool Capabilities

FMSL specifications consist primarily of object and operation definitions. The 

following is a simple illustrative example.

object PersonList
    components: Person*;
    description: (*
        A PersonList contains zero or more Person records.
    *);
end PersonList;

object Person
    components: first:Name and last:Name and age:Age;
    description: (*
        A Person has a first name, last name, and age.
    *);
end Person;

object Name = string;
object Age = integer;

operation Add
    inputs: p:Person, pl:PersonList;
    outputs: pl':PersonList;
    precondition: not (p in pl);
    postcondition: p in pl';
    description: (*
        Add a person to a list, if that person is not already in the 
list.
    *);
end Add;

Figure 3.1: Sample FMSL specification

This example illustrates the two primary forms of definition in FMSL: objects 

and  operations.   Objects  have  components,  which  are  defined  in  terms  of  other 
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objects.   Object  definitions  “bottom out” in  one of the built-in  primitive  types  of 

integer, real, string, or boolean.

Operations have inputs, outputs, preconditions, and postconditions.  The types 

of  inputs  and  outputs  are  the  names  of  defined  objects.   Preconditions  and 

postconditions  are  boolean  expressions.   Other  notational  features  worthy  of 

explanation are the following:

• '(*' and '*)' are used to enclose comments

• Name and Age use an optional short form of object definition; it can 

be useful for objects of simple scalar types, with no description

• the in operator is built-in; it tests for list membership

• any identifier can have an apostrophe character as a suffix; this is 

purely a lexical form, in that a trailing apostrophe is a legal character 

in an identifier; it is used most often in operation outputs when the 

type of an input and output object are the same; e.g., the Add input list 

is named pl and the output list is pl', read “pl prime”

A complete discussion of FMSL syntax and semantics is given in its reference 

manual  [1].   This  thesis  will  only  use  a  subset  of  its  features,  specifically  those 

features that are germane to the topic of specification validation.

Given a specification  such as the example  above,  a  basic  question is  this: 

“How does one validate that it is correct?”  Firstly, static correctness can be validated 

using  the  FMSL  type  checker,  which  performs  syntactic  and  semantic  analysis 

32



comparable to that performed by a programming language compiler.  A particularly 

useful part of static analysis is completeness checking.  For example, if the specifier 

left out the definitions of the Name and Age objects, the checker would flag the error 

in the definition of the Person object that uses Name and Age.

The  focus  of  this  thesis  is  determining  the  dynamic  correctness  of  a 

specification.   For  an  operation,  this  fundamentally  requires  some  means  of 

evaluation.   In the example at hand, the  Add operation could be evaluated in the 

following manner:

(*
 * Sample person, an empty person list, and a one-person list
 *)
value p:Person = {"Arnold", "Schwarzenegger", 61};
value pl:PersonList = [];
value pl':PersonList = [p];

> Add(p, pl);                      -- invoke the Add operation

Figure 3.2: Person definitions with Add

The following aspects of notation warrant brief explanation:

• a value declaration defines a constant value of some type of object

• tuple values are enclosed in curly braces; a tuple is an object defined 

with anded components

• list values are enclosed in square brackets; a list is an object defined 

with * components

• point-to-end-of-line comments are defined with '--'
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• expression evaluations are preceded with the prompt character '>'; 

these are typically entered in the top-level of a conversational 

interpreter, but may be included within a specification file; the 

important point is that the '>' prompting character distinguishes an 

expression to be evaluated from a specification declaration, in this and 

all subsequent examples.

• an operation is invoked in the way standard to most programming 

languages, with the operation name followed by a parenthesized list of 

actual parameters

So, the question at hand is “What value does the invocation of Add(p, pl) 

produce?”  Since the Add operation has no defining expression, the value of invoking 

Add(p, pl) is nil, where nil is the empty value for any type of object.  Nil is 

in fact is result of evaluating Add for any inputs, given that Add is defined only with 

a precondition and postcondition.

The precondition  and postcondition  for  Add define a behavior.   However, 

they do so in a declarative and analytic form, not a constructive form.  It is possible to 

define FMSL operations constructively, but that is not the point here.  What is desired 

is a way to validate  Add’s precondition and postcondition, given a particular set of 

inputs and expected outputs.
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One way to do this is to extract the precondition and postcondition expression, 

and evaluate them individually.  For example, given the preceding value declarations, 

the precondition expression could be tested with logic expressions such as this:

> p in pl;                      -- should be false
> not (p in pl);                -- should be true
> not (p in pl');               -- should be false

Figure 3.3: Precondition logic expressions

The postcondition expression could be tested like this:

> p in pl';                     -- should be true
> not (p in pl');               -- should be false

Figure 3.4: Postcondition logic expressions

These  are  clearly  rudimentary  expressions.   The  point  is  that  the  logic  of 

preconditions and postconditions can be dynamically validated by plugging in various 

values  and  examining  the  results.   The  work  of  this  thesis  has  included  the 

implementation  of  this  form  of  expression  evaluation  in  FMSL.   This  form  of 

evaluation  supports  the  notion  cited  earlier  from Myers  [53]:  “if  you  run  simple 

claims  early,  ...  then  you  have a  basis  for  understanding  both  the model  and the 

system.”

While isolated evaluation of boolean expressions can be helpful, it would be 

even handier to invoke an operation with sample input and output values directly. 
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This  kind  of  validation  invocation can  be  characterized  as  follows  for  the  Add 

precondition:

Given inputs p and pl, what is the value of the Add precondition?

A more complete validating invocation is this:

Given inputs p and pl, expected output pl', what are the values of the Add 

precondition and postcondition?

The syntax for such a validation invocation looks like this:

> Add(p, pl) ?-> pl';

The output of this validating invocation is a boolean two-tuple, that looks like 

this:

{ true, true }

The notational particulars are these:

• the first part of a validation invocation looks like a regular operation 

call, e.g., Add(p, pl)
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• the '?->' is the validation operator; per the preceding characterization, 

it means the following in this example: Given inputs p and pl, is the  

Add precondition true, and given pl', is its postcondition true?

• the output value of { true, true } is the standard curly brace 

notation for a boolean two-tuple

A validation counter example can be tested, such as

> Add(p, pl) ?-> pl;

which produces the result { true, false }.

The preceding introduction to Chapter 3 has presented a simple motivating 

example.   The  remainder  of  this  chapter  will  cover  the  details  of  specification 

evaluation, including in particular the evaluation of conditions with quantifiers.  The 

coverage will feature the validation of a long-standing pedagogic example, in which 

the use of validating evaluations revealed a heretofore undiscovered flaw.  This is a 

particularly good result, and demonstrates well the utility of dynamic specification 

validation.
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3.1  Standard Expression Evaluation

In FMSL, expression evaluation entails invoking an operator or operation and 

returning the calculated result.  This is the same behavior as exhibited by interpreted 

programming languages, including Lisp [61], ML [52], and Python [50].

FMSL has  a  strongly-typed,  functional  semantics,  much  like  that  of  ML. 

There is limited type inference, in the form of value declaration and let variables, that 

can be declared without explicit types.  More advanced type inference, such as that 

available in ML and Haskell [40] is purposely omitted from FMSL.  As a modeling 

and specification language, it  is considered appropriate for the specifier  to declare 

object and parameter types explicitly, rather than having types inferred by a language 

translator.

FMSL supports  evaluation  of  a  collection  of  built-in  Boolean,  arithmetic, 

tuple,  and  expressions  as  well  as  evaluation  of  user-created  operations.   For  a 

complete list of built-in operators, see Tables 5.2 through 5.6.

The example in Figure 3.5 demonstrates evaluation of the Boolean relational 

operators: not, and, or, xor, => (implication), and <=> (two-way implication.  In 

the  example,  the  FMSL code  first  declares  and assigns  values  to  two  boolean 

variables and then performs a series of Boolean expression evaluations.
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(*
 * Declare and assign values to t, f
 *)
val t:boolean = true;
val f:boolean = false;

(*
 * Boolean operator examples
 *)
> not t;                        -- evaluates to false
> t and f;                      -- evaluates to false
> t or f;                       -- evaluates to true
> t xor f;                      -- evaluates to true
> t => f;                       -- evaluates to false
> t <=> f;                      -- evaluates to false

Figure 3.5: Evaluating Boolean expressions

A notational matter in Figure 3.5 is the use of the abbreviated keyword val in 

place of  value.  FMSL provides abbreviated versions of all major keywords, as a 

matter of readability.

The example in Figure 3.6 demonstrates evaluation of the arithmetic division 

operator.  In the example, the FMSL code first declares and assigns values to two 

real variables and then performs the division (with result: 1.15573).

(*
 * Declare and assign values to x, y
 *)
val x:real = 3.141592654;
val y:real = 2.718281828;

(*
 * Evaluate x divided by y and output the result
 *)
> x / y;

Figure 3.6: FMSL division operator expression evaluation
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Further  examples  of  expression  evaluation  appear  in  this  and  following 

chapters.

3.2  Quantifier Evaluation

Quantifiers  are  Boolean-valued  expressions  that  evaluate  a  quantified  sub-

expression multiple times.  FMSL supports both bounded and unbounded universal 

(forall) and existential (exists) forms of quantification.  A bounded quantifier 

ranges over a discrete set of values.  An unbounded quantifier ranges over all of the 

values in a type of object.  For types grounded in integer, real, or string, the quantifier 

range is unbounded.

Formally, an object definition defines a data type.  As noted earlier, FMSL has 

a strongly typed semantics, meaning that the types of all declared values, variables, 

and operation parameters are determined statically, before any expression evaluations 

takes place.

FMSL employs a structural type equivalence rule, meaning two data types are 

equivalent if they have the same type structure, whether or not they have the same 

object name.  As described below, a name-based typing scheme is used to define the 

value  universes,  for  the purposes  of  evaluating  unbounded quantifiers  in bounded 

time.  This name-based typing is used as an expedience for quantifier evaluation, and 

does  interfere  with  the  purely  structural-equivalence  typing  performed  during  the 

static type checking of a specification.
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The  following  sub-sections  describe  the  evaluation  of  different  forms  of 

quantifier expressions different forms of quantifiers.  In the examples, the  Person 

object is defined by the FMSL code listing in Figure 3.7, which is the definition that 

appeared in the introductory example at the beginning of Chapter 3.

(*
 * Define the Person object type
 *)
object Person is
   components: first:Name and last:Name and age:age;
   description: (*
      A Person has a first name, last name, and age.
   *)
end Person;

Figure 3.7: FMSL Person object type definition

The form of quantification in FMSL is common to that  of typed predicate 

logic.  The general format of universal quantification is the following:

forall (x:t) predicate

This is read “for all values x of type t, predicate is true” where x must appear 

somewhere in predicate.

There are also two extended forms of forall, shown in Table 3.1.
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Extended Form Reading Equivalent To
forall (x:t | p1) p2 For all x of type t, such 

that p1 is true, p2 is true.
forall (x:t)
    if p1 then p2

forall (x in l) p For all x in l, p is true. forall (x:basetype(l))
    if x in l then p

Table 3.1: Extended forms of forall

Existential quantification has three comparable forms, seen in Figure 3.8:

exists (x:t) predicate
exists (x:t | predicate1) predicate2

exists (x in l) predicate

Figure 3.8: Existential quantification forms

3.2.1  Bounded Quantifier

The code in Figure 3.9 creates a list of integer values and then evaluates a 

bounded quantifier to check whether all the integer elements are positive.  Since 

all the integer elements are positive, the result is true.
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(*
 * Declare an IntList object type and an IntList value
 *)
obj IntList = integer*;
val list:IntList = [ 1, 1, 2, 3, 5 ];

(*
 * Test that all the integer elements within list are positive.
 *)
> "Expected: true";
> forall (i in list) i > 0;            -- evaluates to true

Figure 3.9: FMSL bounded quantifier example

3.2.2  Unbounded Universal Quantifier: forall

The following code in  Figure 3.10 declares  two  Person values  and then 

evaluates an unbounded quantifier to test that all the  Person objects have non-nil 

last  names.   Since the two existing  Person objects  have non-nil  last  names,  the 

result is true.

(*
 * Create values p1 and p2, which puts them in the Person value
 * Universe.
 *)
val p1:Person = {"Alan", "Turing", 97};
val p2:Person = {"Arnold", "Schwarzenegger", 61};

> forall (p:Person) p.last != nil;        -- evaluates to true

Figure 3.10: FMSL unbounded forall quantifier example

The universe of all values of type Person is unbounded, since it consists of 

component  types  integer and  string.   Clearly,  however,  a  means  must  be 
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established to execute the quantifier in bounded time.  Simply put, the value universe 

for an unbounded quantifier  consists of all values of the quantified type that have 

come into existence during a particular  execution session.  In this  small  example, 

there are only two values populating the universe of the  Person type.  Complete 

details of quantifier evaluation are covered in Chapters 4 through 6 of the thesis.

3.2.3  Unbounded Existential Quantifier: exists

The code in  Figure 3.11 declares two Person values and then evaluates an 

unbounded quantifier to indicate whether there exists a Person object with a nil last 

name.   Since  all  the  Person objects  have  defined  last  names,  the  exists 

expression evaluates to false.

(*
 * Create values p1 and p2, which puts them in the Person value
 * Universe.
 *)
val p1:Person = {"Alan", "Turing", 97};
val p2:Person = {"Arnold", "Schwarzenegger", 61};

> exists (p:Person) p.last = nil;          -- evaluates to false

Figure 3.11: FMSL unbounded exists quantifier example

3.2.4  Unbounded Universal Quantifier: forall with such that

The  code  in  Figure  3.12 declares  three  Person values,  but  unlike  the 

previous two examples this sequence of value declarations includes a Person value 
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that has a nil last name.  The unbounded quantifier with a such that clause evaluates 

whether all Person objects with non-nil last names have last name lengths of at least 

six characters long.  The result of this expression is true.

(*
 * Create values p1 and p2, which puts them in the Person value
 * Universe.
 *)
val p1:Person = {"Alan", "Turing", 97};
val p2:Person = {"Arnold", "Schwarzenegger", 61};
val p3:Person = {"Charles", nil, 218};

(*
 * Evaluate: for all Person objects such that p.last is not nil,
 * the last name length is at least 6 characters.
 *)
> forall (p:Person | p.last != nil) #p.last >= 6; -- eval to true

Figure 3.12: FMSL unbounded forall / suchthat quantifier example

3.3  Operation Validation

This section describes how a user can utilize the FMSL validation operator 

(?->) to incrementally validate a specification by performing a sequence of operation 

validations.  Recall from the earlier brief description, an invocation of the validation 

operator requires an operation name, an input argument list, and an output argument 

list.  Then general format is the following:

operation_name(input argument list) ?-> (output argument list)
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FMSL uses input and output arguments as values in the specified operation’s 

precondition and postcondition to execute the precondition and postcondition.  The 

result  of the validation operator invocation is a tuple that  contains two  boolean 

values: the first expresses the result of the precondition evaluation and the second 

expresses the result of the postcondition evaluation.

The material in the following sub-sections steps through the formalization of 

selected  components  of  a  simple  user  database  specification.   The  user  database 

specification is part of an extended pedagogical example for a distributed calendaring 

application  [32].   The  example  is  used  for  undergraduate  instruction  at  Cal  Poly 

University,  San  Luis  Obispo.   The  specific  course  is  Introduction  to  Software 

Engineering, CSC  308, as taught by Cal Poly faculty member Gene Fisher.

The following examples come directly from Fisher’s CSC 308 lecture notes, 

weeks 7 and 8 [31].  Some of the explanatory text in the thesis is excerpted verbatim 

from the notes.  For the following examples, the object type definitions in Figure 3.13 

apply.  These definitions describe individual components of a user record and a user 

record database.

46



object UserDB
    components: UserRecord*;
    operations: AddUser, FindUserById, FindUserByName ChangeUser,
                DeleteUser;
    description: (*
        UserDB is the repository of registered user information.
    *);
end UserDB;

object UserRecord
    components: name:Name and id:Id and email:EmailAddress and
        phone:PhoneNumber;
    description: (*
        A UserRecord is the information stored about a registered
        user. The Name component is the user's real-world name.  The
        Id is the unique identifier by which the user is known to
        the Calendar Tool.  The EmailAddress is the electronic mail
        address.  The PhoneNumber is for information purposes.
    *);
end UserRecord;

object Name = string;
object Id = string;
object EmailAddress = string;
object PhoneNumber = area:Area and num:Number;
object Area = integer;
object Number = integer;

Figure 3.13: FMSL UserDB and UserRecord definitions

3.3.1  AddUser: English Precondition and Postcondition in 

Comments

In  the  lecture  notes,  the  formalization  process  begins  by  first  stating  the 

precondition and postcondition predicates in English.  In Figure 3.14 below, each of 

the AddUser inputs and outputs appears with a name and corresponding type.  By 

convention, if an operation uses the same type as both an input and output, the name 

of the output is the same as the input with an apostrophe appended; the apostrophe is 

read “prime”.  Note that the precondition and postcondition are described in English 

and are enclosed in comments.
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operation AddUser
    inputs: udb:UserDB, ur:UserRecord;
    outputs: udb':UserDB;

    precondition:
        (*
         * The id of the given user record must be unique and less
         * than or equal to 8 characters; the email address must be
         * non-empty; the phone area code and number must be 3 and 7
         * digits, respectively.
         *);

    postcondition:
        (*
         * The given user record is in the output UserDB.
         *);

    description: (* As above *);

end AddUser;

Figure 3.14: AddUser with English precondition and postcondition

Although  the  AddUser precondition  and  postcondition  descriptions  from 

Figure 3.14 appear in plain English, that form of the AddUser operation already is 

executable  through  the  validation  operator.   To  demonstrate  this  executability,  in 

Figure 3.15 we create a set of sample user record inputs, an initial database, and the 

expected output result of adding a user record to the initial database.  The last line of 

the example invokes the validation operator with input and output arguments, and we 

expect  the  precondition  and postcondition  execution  result  tuple  to  be  { true, 

nil }.

 By definition an operation without a precondition has no entry constraint, and 

so the precondition execution result tuple field is true.  As there is no postcondition 
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defined, and since the absence of a postcondition is represented in the result tuple by 

nil, we see nil as the postcondition execution result tuple field.

(*
 * Create some testing values.
 *)
val ur1 = {"Corwin", "1", nil, nil};    -- sample user record
val ur2 = {"Fisher", "2", nil, nil};    -- sample user record
val ur3 = {"Other", "3", nil, nil};     -- record to be added
val udb = [ur1, ur2];                   -- the initial input db 
val udb_added = udb + ur3;              -- the expected result

> "Expected results of AddUser(udb,ur3)?->(udb_added) are:";
> "{ true, nil }";
> AddUser(udb,ur3)?->(udb_added);

Figure 3.15: AddUser basic tests

In  Figure 3.15, plain strings are used as output messages.  As is typical  in 

interpreted programming languages,  top-level execution is performed with a  read-

eval-print loop.   That  is,  an  expression  is  read  from a  prompted  input  line,  the 

expression is evaluated, and the result is printed.  There is a built-in print function in 

FMSL, to provide more in the way of output formatting,  but plain strings can be 

usedful for simple output messaging.

3.3.2  AddUser: Basic Postcondition Logic 

The English comment in the postcondition (“The given user record is 

in the output UserDB”) describes the essence of an additive collection operation: 
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the output collection (udb’) must contain the user record to add (ur).  To formally 

represent this concept, we use the in operator shown in Figure 3.16.

operation AddUser
    inputs: udb:UserDB, ur:UserRecord;
    outputs: udb':UserDB;

    postcondition:
        (*
         * The given user record is in the output UserDB.
         *)
        ur in udb';

end AddUser;

Figure 3.16: AddUser with basic postcondition logic

In Figure 3.17 we create a set of sample user record inputs, an initial database, 

and the expected output result of adding a user record (ur3) to the initial database. 

The last line of the example invokes the validation operator with input and output 

arguments.   According to the postcondition,  since  udb_added contains  ur3 we 

expect  the  precondition  and postcondition  execution  result  tuple  to  be  { true, 

true }.  
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(*
 * Create some testing values.  These are the same as the
 * comment-only version.
 *)
val ur1 = {"Corwin", "1", nil, nil};
val ur2 = {"Fisher", "2", nil, nil};
val ur3 = {"Other", "3", nil, nil};
val udb = [ur1, ur2];
val udb_added = udb + ur3;

> "Expected results of AddUser(udb,ur3)?->(udb_added) are: ";
> "{ true, true }:";
> AddUser(udb,ur3)?->(udb_added);

Figure 3.17: Basic tests for formal postcondition

3.3.3  AddUser: Basic Postcondition Logic Challenged

Generally,  a  fundamental  question  to  ask  about  preconditions  and 

postconditions  is:  are  they strong enough?   Since  there  is  no  precondition  in  the 

AddUser example, that means it is maximally weak.  A later example will focus on 

strengthening the precondition.  In the meantime, we will focus on the postcondition. 

To  check  whether  the  postcondition  is  strong enough,  we can  use  the  validation 

operator to run some example inputs and outputs against AddUser.  The example in 

Figure 3.18 tests whether the postcondition is strong enough to enforce that there are 

no spurious additions or deletions from the user database collection.
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val ur1 = {"Corwin", "1", nil, nil};
val ur2 = {"Fisher", "2", nil, nil};
val ur3 = {"Other", "3", nil, nil};
val ur4 = {"Extra", "4", nil, nil};
val udb = [ur1, ur2];

(*
 * A database value representing a spurious addition having
 * been made.
 *)
val udb_spurious_addition = udb + ur3 + ur4;

(*
 * A database value representing a spurious deletion having
 * been made.
 *)
val udb_spurious_deletion = udb + ur3 - ur2;

> AddUser(udb,ur3)?->(udb_spurious_addition);

> AddUser(udb,ur3)?->(udb_spurious_deletion);

Figure 3.18: Test for postcondition strength

The first invocation of the validation operator in Figure 3.18 tests whether the 

postcondition  prevents  a  spurious  addition  to  the  user  database,  since  the  output 

argument  contains  an  extra  user  record  (ur4).   The  second  validation  operator 

invocation tests whether the postcondition prevents a spurious deletion from the user 

database, as that output argument contains a user database that specifically lacks ur2. 

Whereas we would like to see a { true, false } result in both cases, instead 

the validation tuple that returns is { true, true } since the lack of precondition 

comes  back  with  a  true field  and  the  postcondition  only  tests  whether  udb’ 

contains ur3.  From that result we can deduce that the AddUser postcondition is not 

strong enough.

52

gfisher
Cross-Out

gfisher
Replacement Text
value



3.3.4  AddUser: Strengthened Postcondition Logic

The AddUser postcondition in Figure 3.16 checked the fundamental property 

that  we  want  to  hold  true:  the  output  collection  must  contain  the  user  record 

designated for addition.  What it lacked, as evidenced by the results of running the 

test in Figure 3.18, was a guarantee that the rest of the database would remain intact. 

To build on the previous postcondition, we can add an additional condition to enforce 

that all other records in the output database are those – and only those – from the 

input database.  The postcondition in Figure 3.19 reflects this additional constraint on 

the output database.

operation AddUser
    inputs: udb:UserDB, ur:UserRecord;
    outputs: udb':UserDB;

    postcondition:
        (*
         * The given user record is in the output UserDB.
         *)
        (ur in udb')

            and

        (*
         * All the other records in the output db are those from the
         * input db, and only those.
         *)
        forall (ur':UserRecord | ur' != ur)
            if (ur' in udb)
            then (ur' in udb')
            else not (ur' in udb');

end AddUser;

Figure 3.19: AddUser with stronger postcondition
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When we re-run the test from Figure 3.18 against this updated specification of 

AddUser that contains a stronger postcondition, we find that the validation operator 

invocation result tuple is { true, false } in both cases.  Running sample inputs 

and  outputs  through  FMSL’s  validation  operator  helped  uncover  that  the 

postcondition  initially  was  too  weak,  and  we  used  it  to  verify  that  the  revised 

postcondition was strong enough to properly handle the “no spurious additions or 

deletions” requirement.

3.3.5  AddUser: Constructive Postcondition

So far the examples presented have utilized only analytic  operations in the 

postcondition, but when describing preconditions and postconditions we also have at 

our  disposal  constructive  operations.   Constructive  operations  perform  an  actual 

constructive  calculation,  whereas analytic  operations  evaluate  Boolean expressions 

about  the arguments.   In  some cases  a  precondition  or  postcondition  that  utilizes 

constructive  operations  may  be  clearer  than  its  corresponding  analytic  operation-

based counterpart.  For example, in Figure 3.20 see the AddUser specification with 

a  postcondition  that  contains  a  constructive  operation  (the  ‘+’  or  concatenation 

operator).
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operation AddUser
    inputs: udb:UserDB, ur:UserRecord;
    outputs: udb':UserDB;

    postcondition:
        (*
         * The given user record is in the output UserDB.
         *)
        udb' = udb + ur;

end AddUser;

Figure 3.20: AddUser with constructive postcondition

Analytic  specifications,  as in Section 3.3.4, have the benefit  of introducing 

minimum implementation bias.  Constructive specifications can be useful to simplify 

specification logic. A complete discussion of the relative merits of analytic  versus 

constructive specification is beyond the scope of this thesis.  Validation invocations 

can be used with either style.

While value construction need not be used in a postcondition, it is definitely 

required for validations calls.   The point of a validation call is to test constructed 

values against pre- and postcondition logic.

There are different styles to accomplish this.  Which style to use is a matter of 

convenience  and  clarity  of  presentation.   For  example,  the  set-up  in  Figure  3.21 

creates the same testing values as in the preceding examples, but without using list 

concatenation or deletion operators.  These tests produce the same results, with either 

the constructive or analytic AddUser specification.
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val ur1:UserRecord = {"Corwin", "1", nil, nil};
val ur2:UserRecord = {"Fisher", "2", nil, nil};
val ur3:UserRecord = {"Other", "3", nil, nil};
val ur4:UserRecord = {"Extra", "4", nil, nil};

> "Expected retults are";
> "{ true, true }";
> AddUser([ur1, ur2], ur3) ?-> [ur1, ur2, ur3];

> "Expected results are";
> "{ true, false }";
> AddUser([ur1, ur2], ur3) ?-> [ur1, ur2, ur3, ur4];

>  "Expected  results  of  AddUser(udb,ur3)?->(udb_spurious_deletion) 
are";
> "{ true, false }";
> AddUser([ur1, ur2], ur3) ?-> [ur1, ur3];

Figure 3.21: Alternate style of validation invocations

3.3.6  FindUserByName: English Definition in Comments

The  following  sequence  of  examples  steps  through  the  definition  of  the 

FindUserByName operation, which is intended to search through the user database 

and return records with names that match the given  name input argument.  Figure

3.22 has the FindUserByName definition, with the precondition and postcondition 

described in English.
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operation FindUserByName
    inputs: udb:UserDB, name:Name;
    outputs: ur':UserRecord*;

    precondition: (* None yet. *);

    postcondition:
        (*
         * A record is in the output list if and only if it is in
         * the input UserDB and the record name equals the Name
         * being searched for
         *);

    description: (*
        Find a user or users by real-world name. If more than one is
        found, output list is sorted by id.
    *);
end FindUserByName;

Figure 3.22: FindUserByName with English precondition and postcondition

As  with  the  AddUser example,  at  this  point  FindUserByName is 

sufficiently  formally  defined  so  that  we  can  begin  running  validation  operator 

invocations against it.  The FMSL code below creates several UserRecord values, 

a  UserDB, and collection of possible outputs.  The final statements of the example 

invoke the validation operator on FindUserByName to test postcondition strength.
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(*
 * Create some testing values.
 *)
val ur1:UserRecord = {"Corwin", "1", nil, nil};
val ur2:UserRecord = {"Fisher", "2", nil, nil};
val ur3:UserRecord = {"Other", "3", nil, nil};
val ur4:UserRecord = {"Extra", "4", nil, nil};
val ur5:UserRecord = {"Fisher", "5", nil, nil};

val udb = [ur1, ur2, ur3, ur4, ur5];
val unsorted_result = [ur5, ur2];
val sorted_result = [ur2, ur5];
val too_many_sorted = [ur2, ur2, ur2, ur5];
val too_many_unsorted = [ur2, ur5, ur2, ur2];

(*
 * We want a generously populated universe of integers to be
 * available to FindUser precondition and postcondition
 * constraints, so let's do some populating.
 *)
> [1 .. 100];

> "What happens if there are unique, unsorted records?";
> FindUserByName(udb,"Fisher")?->unsorted_result;

> "What happens if there are unique, sorted records?";
> FindUserByName(udb,"Fisher")?->sorted_result;

> "What happens if there are non-unique, unsorted records?";
> FindUserByName(udb,"Fisher")?->too_many_unsorted;

> "What happens if there are non-unique, sorted records?";
> FindUserByName(udb,"Fisher")?->too_many_sorted;

Figure 3.23: FindUserByName operation validation tests

The  comment  about  populating  the  integer  value  universe  relates  to  the 

manner in which unbounded quantifiers are evaluated.  This topic is covered fully in 

Chapter 6 of the thesis.

As in the example from Section  3.3.1, the precondition and postcondition in 

Figure 3.23 are not yet formally defined, so we expect the result for all four tests to be 

{ true, nil }.  Figure 3.24 shows the output where this is the case.
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"What happens if there are unique, unsorted records?"
{ true, nil }
"What happens if there are unique, sorted records?"
{ true, nil }
"What happens if there are non-unique, unsorted records?"
{ true, nil }
"What happens if there are non-unique, sorted records?"
{ true, nil }

Figure 3.24: FindUserByName initial validation results

3.3.7  FindUserByName: Basic Postcondition Logic 

A sensible next step in formalizing the postcondition might be to make sure 

that the operation output consists of all records of the given name in the input db. 

The formal logic in Figure 3.25 contains a postcondition that satisfies this constraint.

operation FindUserByName
    inputs: udb:UserDB, n:Name;
    outputs: url:UserRecord*;

    precondition: (* None yet. *);

    postcondition:
        (*
         * The output list consists of all records of the given name
         * in the input db.
         *)
        (forall (ur: UserRecord)
            (ur in url) iff (ur in udb) and (ur.name = n));

    description: (*
        Find a user or users by real-world name.  If more than one
        is found, the output list is sorted by id.
    *);
end FindUserByName;

Figure 3.25: FindUserByName with basic postcondition
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To test our new definition of  FindUserByName,  we run the same set of 

tests from Figure 3.23 against it.  Since in all these examples the output records all 

have the given name field, in all cases we expect the result to be { true, true } 

(see Figure 3.26).

"What happens if there are unique, unsorted records?"
{ true, true }
"What happens if there are unique, sorted records?"
{ true, true }
"What happens if there are non-unique, unsorted records?"
{ true, true }
"What happens if there are non-unique, sorted records?"
{ true, true }

Figure 3.26: FindUserByName basic validation results

3.3.8  FindUserByName: Formal Postcondition Logic with Sort 

Constraint

Although  the  FindUserByName definition  in  3.3.7 ensures  that  all  the 

records  in  the  output  collection  have  names  that  match  the  given  name,  the 

postcondition  does not  address the constraint  that  the matching records  should be 

sorted  alphabetically.   Ultimately  we  would  like  the  FindUserByName 

postcondition to reject validation operator invocations where the output collection is 

unsorted, which was not the case in  Figure 3.26.  To address this requirement, the 

FindUserByName definition  in  Figure  3.27 adds  a  sort  constraint  to  the 

postcondition.
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operation FindUserByName
    inputs: udb:UserDB, n:Name;
    outputs: url:UserRecord*;

    precondition: (* None yet. *);

    postcondition:
        (*
         * The output list consists of all records of the given name
         * in the input db.
         *)
        (forall (ur: UserRecord)
            (ur in url) iff (ur in udb) and (ur.name = n))

            and

        (*
         * The output list is sorted alphabetically by id
         *)
        (forall (i:integer | (i >= 1) and (i < #url))
           (url[i].id <= url[i+1].id));

    description: (*
        Find a user or users by real-world name.  If more than one
        is found, the output list is sorted by id.
    *);
end FindUserByName;

Figure 3.27: FMSL FindUserByName with sort constraint

When  running  the  tests  in  Figure  3.23 against  the  updated 

FindUserByName,  the  unsorted  cases’  postconditions  now fail  with  { true, 

false } while the sorted cases’ postconditions pass with { true, true } (see 

output in Figure 3.28).  
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"What happens if there are unique, unsorted records?"
{ true, false }
"What happens if there are unique, sorted records?"
{ true, true }
"What happens if there are non-unique, unsorted records?"
{ true, false }
"What happens if there are non-unique, sorted records?"
{ true, true }

Figure 3.28: FindUserByName with sort constraint validation results

3.3.9  FindUserByName: Strengthened Postcondition

As we ask the question “is the postcondition strong enough?” we focus on the 

results  of  the  last  validation  operator  invocation  from  the  tests  in  Figure  3.23. 

According to the output in Figure 3.28, the FindUserByName postcondition defined 

in  3.3.8 accepts an output collection where the matched record collection contains 

duplicates of the same record.  Since we would like record uniqueness in the output 

collection, those results indicate that the postcondition is not yet strong enough.  By 

examining the postcondition, we can see that the specification contains an easy-to-

miss logic error: the sort constraint uses the ‘<=’ operator to validate sortedness, and 

replacing it with the ‘<’ operator would validated sortedness and uniqueness.  See the 

listing in Figure 3.29 for an updated FindUserByName definition that utilizes the 

‘<’ operator in the sort constraint.
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operation FindUserByName
    inputs: udb:UserDB, n:Name;
    outputs: url:UserRecord*;

    precondition: (* None yet. *);

    postcondition:
        (*
         * The output list consists of all records of the given name
         * in the input db.
         *)
        (forall (ur: UserRecord)
            (ur in url) iff (ur in udb) and (ur.name = n))

            and

        (*
         * The output list is sorted alphabetically by id
         *)
        (forall (i:integer | (i >= 1) and (i < #url))
           (url[i].id < url[i+1].id));

    description: (*
        Find a user or users by real-world name.  If more than one
        is found, the output list is sorted by id.
    *);
end FindUserByName;

Figure 3.29: FindUserByName with strengthened postcondition

As  we’ve  updated  our  FindUserByName postcondition,  we  re-run  the 

validation tests against it.  As we’d hoped, the output in Figure 3.30 shows that the 

FindUserByName postcondition  now  accepts  only  the  output  collection  that 

contains matching, unique, sorted records; it rejects all the others.  
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"What happens if there are unique, unsorted records?"
{ true, false }
"What happens if there are unique, sorted records?"
{ true, true }
"What happens if there are non-unique, unsorted records?"
{ true, false }
"What happens if there are non-unique, sorted records?"
{ true, false }

Figure 3.30: FindUserByName strengthened validation results

3.3.10  FindUserByName: Postcondition with Auxiliary Functions

FMSL  allows  users  to  define  functions  that  accept  one  or  more  input 

parameters and return an output value, which is set to the result of last expression 

evaluation in that function.  Functions can be invoked from within preconditions and 

postconditions, and that abstraction can lead to clearer specifications.   For example, 

the  FindUserByName definition  in  Figure  3.31 abstracts  out  the  concepts  of 

RecordsFound and SortedById into their own respective functions that return a 

Boolean true or false result.

64



operation FindUserByName
    inputs: udb:UserDB, n:Name;
    outputs: url:UserRecord*;

    postcondition:
        RecordsFound(udb,n,url)
            and
        SortedById(url);

end FindUserByName;

function RecordsFound(udb:UserDB, n:Name, url:UserRecord*) =
    (*
     * The output list consists of all records of the given name in
     * the input db.
     *)
    (forall (ur' in url)
       (ur' in udb)
          and
       (ur'.name = n));

function SortedById(url:UserRecord*) =
    (*
     * The output list is sorted alphabetically by id.
     *)
        (if (#url > 1) then
            (forall (i in [1..(#url - 1)])
               url[i].id < url[i+1].id)
         else true);

Figure 3.31: FindUserByName with auxiliary functions

The FindUserByName definition in  Figure 3.31 is functionally equivalent 

to  the  FindUserByName definition  in  Figure 3.29,  although it’s  arguably more 

readable.  Observe in  Figure 3.32 that the validation tests yield the same results, so 

this  postcondition  that  utilizes  auxiliary  functions  is  equally  as  strong  as  the 

postcondition from the example in Figure 3.29.

65



"What happens if there are unique, unsorted records?"
{ true, false }
"What happens if there are unique, sorted records?"
{ true, true }
"What happens if there are non-unique, unsorted records?"
{ true, false }
"What happens if there are non-unique, sorted records?"
{ true, false }

Figure 3.32: FindUserByName with aux. functions validation results

3.4  Additional Uses of Validation Invocations and 

Exploratory Expression Evaluation

An  important  part  of  refining  a  specification  is  translating  user-level 

requirements,  stated in English prose,  into Boolean logic.   Exploratory expression 

evaluation, including validation invocations, can be useful in this translation process.

The following are typical user-level requirements for an operation like adding 

a record to a database, i.e., the AddUser operation described in the previous section 

of the thesis:

• There is no user record in the input database with the same id as the 

record to be added; this is a no duplicates requirement.

• The id of an added user record cannot be empty and must be 8 

characters or less fewer in length; this is an id syntax constraint.

• If the area code and phone number are present, they must be 3 digits 

and 7 digits respectively; these are phone number format constraints.
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Figure  3.33 contains  a  sample  specification  of  a  flawed  AddUser 

precondition.  The intent of the precondition logic is to define these requirements. 

This  sample  characterizes  the  kind  of  logic  oversights  that  have  been  observed 

regularly in students’ initial efforts to translate user-level requirements from English 

prose into formal logic.

operation AddUser
    inputs: udb:UserDB, ur:UserRecord;
    outputs: udb':UserDB;

    precondition:
        (*
         * There is no user record in the input UserDB with the same
         * id as the record to be added.
         *)
        (not (ur in udb))

            and

        (*
         * The id of the given user record is not empty and 8
         * characters or less.
         *)
        (#(ur.id) <= 8)

            and

        (*
         * If the phone area code and number are present, they must
         * be 3 digits and 7 digits respectively.
         *)
        (#(ur.phone.area) = 3) and
        (#(ur.phone.num) = 7);

    postcondition: (* Same as above *);

end AddUser;

Figure 3.33: Flawed attempt at AddUser precondition

Figure 3.34 has corrected logic, for comparison purposes.
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operation AddUser
    inputs: udb:UserDB, ur:UserRecord;
    outputs: udb':UserDB;

    precondition:
        (*
         * There is no user record in the input UserDB with the same
         * id as the record to be added.
         *)
        (not (exists (ur' in udb) ur'.id = ur.id))

            and

        (*
         * The id of the given user record is not empty and 8
         * characters or less.
         *)
        (ur.id != nil) and (#(ur.id) <= 8)

            and

        (*
         * If the phone area code and number are present, they must
         * be 3 digits and 7 digits respectively.
         *)
        (if (ur.phone.area != nil) then (#(ur.phone.area) = 3)) and
        (if (ur.phone.num != nil) then (#(ur.phone.num) = 7));

    postcondition: (* Same as above *);

end AddUser;

Figure 3.34: Improved AddUser precondition

As with any form of debugging, there are a variety of ways to test and correct 

flaws in  logic.   Validation  invocations  provide  a  useful  tool  that  can  help  in  the 

process. In the example at hand, each flaw can be revealed with a single, reasonably 

straightforward validation invocation.
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The first flaw is the translation of the English requirement “There is no user  

record in the input UserDB with the same id as the record to be added.”  The flawed 

versus correct versions of the logic are

(not (ur in udb))

versus

(not (exists (ur' in udb) ur'.id = ur.id))

This flaw can be detected with a validation condition that attempts to add a 

user record with the same id, but different name, to the database. E.g.,

val phone:PhoneNumber = {805, 5551212};
val email:EmailAddress = "pcorwin@calpoly.edu";
val ur:UserRecord = {"Corwin", "1", email, phone};
val ur_duplicate_id:UserRecord = {"Fisher", "1", email, phone};
val udb:UserDB = [];
val udb_added:UserDB = [ur];

> AddUser(udb_added, ur_duplicate_id) ?-> (udb_added);

The  correct  output  of  this  validation  is  { false, nil },  since  the 

precondition should fail  when trying to add a record with the same id value to a 

database containing a record with that id, i.e., “1”.  The flawed logic is not strong 

enough, since it does not check specifically for the id value of each extant record. 

This  kind  of  error  is  typical  with  students  who may  be  initially  averse  to  using 
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quantifiers, and will do their best to avoid their use.  A validation counter-example 

can succinctly illustrate the problem with the flawed logic.

The second flaw is the translation of “The id of the given user record is not  

empty and 8 characters or less.”  The flawed versus correct versions of the logic are:

(#(ur.id) <= 8)

versus

(ur.id != nil) and (#(ur.id) <= 8)

The problem here is that the length operator returns  0 for a  nil string 

value.  The following validation condition reveals the problem:

val ur_empty_id:UserRecord = {"Corwin", nil, email, phone};

> AddUser(udb, ur_empty_id) ?-> (udb);

The  result  of  this  evaluation  should  be  { false, nil },  since  the 

precondition should fail if the id is nil.  Here nil is the translation of “empty” in 

the prose statement of the requirement.  The flawed logic precondition evaluates to { 

true, nil }, since #(ur.id) = 0 when ur.id is nil, and hence 0 <= 8 

evaluates to true.
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To some extent, this problem has to do with the specific semantics of FMSL. 

However,  all  formal  specification  languages  have  specific  rules,  and users  of  the 

languages must understand clearly what the rules are.  Using validation invocations 

and additional exploratory evaluation can help a user develop such understanding.

Some additional exploration of this example could take the following form:

val empty_integer:integer = nil;
val empty_string:string = nil;
obj StringList = string*;
val empty_list:StringList = nil;

> #empty_integer;
> #empty_string;
> #empty_list;

where all three expressions evaluate to 0.  In the case of the integer value, the 

length operator is overloaded to evaluate to the number of integer digits.  The rules 

illustrated here could be read in the FMSL users manual.  However, the ability to 

explore interactively can be enlightening, as it is in the environments of interpretive 

and conversational programming languages.

The third and final flaw in Figure 3.33 is the translation of “If the phone area 

code and number are present, they must be 3 digits and 7 digits respectively.”  The 

flawed and correct versions of the logic are:
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(#(ur.phone.area) = 3) and
(#(ur.phone.num) = 7));

versus

(if (ur.phone.area != nil) then (#(ur.phone.area) = 3)) and
(if (ur.phone.num != nil) then (#(ur.phone.num) = 7));

The problem is revealed with the following validation invocation:

val ur_empty_phone:UserRecord = {"Corwin", "1", email, nil};

> AddUser(udb, ur_empty_phone)?->(udb);

The correct  validation  result  is  { true, nil },  since the requirement 

allows the phone number components to be empty.   Without the explicit check for 

this, the sub-expression  ur.phone.area evaluates to  nil.  As explained in the 

previous example, the length operator applied to a  nil value uniformly returns  0. 

This means that  #(ur.phone.area) returns  0, which leads the precondition to 

evaluate to false instead of true.
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Chapter 4  Overall System Design

Prior  to  the  work  of  this  thesis,  the  mechanized  checking  of  an  FMSL 

specification  was  limited  to  static  syntax  and  semantic  analysis.   As  with  most 

programming language compilers, the output of the static analysis is empty,  unless 

errors are detected.  Figure 4.1 is a visual representation of the FMSL translator initial 

structure.

Lexer Parser
Type 

Checker

Source 
Code

Parse 
Tree

Symbol 
Table

Error
Messages

Figure 4.1: FMSL translator initial structure

The work for this thesis has added support for evaluating expressions through 

a functional interpreter.  This functional interpreter implementation does not perturb 

the existing type-checking capabilities of FMSL.  Per conventional compiler design 

principles, the interpreter implementation relies on the type-checker’s results.
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With  the  addition  of  functional  interpretation,  the  execution  output  is  no 

longer limited to type errors, but it also includes – where appropriate – results from 

expression evaluations and any run-time errors.  Figure 4.2 is a visual representation 

of the revised FMSL translator structure and where the functional interpreter fits into 

the design.  Functional interpreter implementation details are discussed in Chapter 5.
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Type
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OK?
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YES
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Figure 4.2: FMSL translator structure with interpreter

4.1  Execution of Preconditions and Postconditions

Preconditions and postconditions describe properties of the input and output 

values for an operation before and after execution of that operation.  To meet the goal 

of  allowing  the  user  to  execute  a  specification,  a  key  capability  is  the  ability  to 

execute preconditions and postconditions.

To test  the specification,  the user creates a set  of inputs and outputs for a 

given operation.  By providing an operation name along with the inputs and outputs, 

connected by the validation operator, the user instructs FMSL to run these inputs and 
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outputs against the operation’s formal description.  FMSL performs the execution and 

returns a meaningful response that consists of a pair of Boolean values that indicate 

results from precondition and postcondition evaluation.

It is important to note that precondition and postcondition evaluation can take 

place even when the operation is not constructively defined.  A constructive function 

definition is denoted in FMSL in a manner comparable to functional programming 

languages.   For example, the following is the constructive definition of an operation 

that checks if all the elements of an integer list are positive:

operation ConfirmPositiveConstructive(il:integer*) =
    if #il = 0 then true
    else il[1] > 0 and ConfirmPositiveConstructive(il[2:#il])
end;

This is a standard tail-recursive definition, with the idiom [2:#il] denoting 

the 2nd through last elements of a list.   I.e., this is the FMSL analog of Lisp's cdr 

function.

For  comparison,  the  following  is  the  purely  analytic  definition  of  this 

function:

operation ConfirmPositiveAnalytic(il:integer*)
    pre: ;
    post: forall (i in il) i > 0;
end;
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Comparative invocations of these two functions are the following:

(*
 * evaluates to false
 *)
> ConfirmPositiveConstructive([1,2,-3,4]);
(*
 * evaluates to {true,true}
 *
> ConfirmPositiveAnalytic([1,2,-3,4]) ?-> false;

Chapter  5  of  the  thesis  discusses  the  details  of  how  these  two  forms  of 

invocation  are  implemented.   The point  of this  comparative  example  has been to 

clarify  the  two  forms  of  invocation  for  operations  defined  constructively  versus 

analytically.

4.2  Quantifiers

In  order  to  facilitate  execution  and  evaluation  of  sufficiently  useful 

preconditions and postconditions, FMSL includes support for quantifiers.  Quantifiers 

are  Boolean-valued expressions  that  evaluate  a  quantified  sub-expression multiple 

times.   FMSL  supports  universal  and  existential  quantifiers,  both  bounded  and 

unbounded.  A bounded quantifier is a quantifier that iterates over a discrete set of 

values.  An unbounded quantifier,  on the other hand, iterates over values within a 

universe that  is  unbounded or,  conceptually,  infinitely  large.   Whereas a  bounded 

quantifier might iterate through all the values within a fixed-size list, an unbounded 

quantifier might iterate over the set of all integers.
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To evaluate a bounded quantifier is straightforward, and likewise the FMSL 

implementation approach was relatively clear-cut.  Some mystery surrounded how to 

approach and implement  something  useful  for unbounded quantifications  as,  so it 

turned out, an infinitely large value space can be rather difficult  for computers to 

internalize.  Although some tools and languages employ other approaches to handle 

this  evaluation,  for  this  thesis  the  decision  was  made  to  evaluate  unbounded 

quantifications  by treating  them like  a  bounded case  where  the  object  values  are 

supplied to the predicates from an incrementally built universe of values.  Chapter 6 

covers quantifier implementation details and provides a more in-depth discussion of 

approaches to dealing with unbounded quantifiers.

4.3  Value Universe for Unbounded Quantifier Evaluation

The Value Universe is a discrete pool of values, indexed by type, that supply 

meaningful values to unbounded quantifier predicates.  When the FMSL interpreter 

encounters an unbounded quantifier, the interpreter iterates over all values of the type 

of interest to evaluate the predicate result.  FMSL’s Value Universe grows 

incrementally as values appear during specification execution, whether through 

purposeful Universe population operations or through normal specification execution. 

The Value Universe can contain values of any value type, ranging from simple atomic 

types to complex types defined as lists and tuples.

The decisions regarding when the FMSL interpreter should add values to the 

Value Universe were influenced by the importance of repeatability, i.e., that tests and 

77



executions should be repeatable so that running the same data through the same 

operations in the same order should consistently result in the same outputs.  That in 

mind, the FMSL implementation adds values to the Value Universe primarily in 

contexts where the values cannot be mutated: let expressions, parameter binding, and 

list construction.  Although value mutation is still possible, and so the Universe 

values can be changed in some cases, the FMSL user should understand that 

performing mutations can cause undesirable side effects that ripple throughout the 

universe and in normal execution.  The bottom line is that non-functional value 

mutation may lead to unrepeatable testing results.  This is consistent with the notion 

that value mutations are generally considered harmful in a functional environment.

All of the examples presented in Chapter 3 were fully functional, i.e., no value 

mutating operators were used.  The only mutation-producing operator in FMSL is 

named set.  Its semantics are comparable to Lisp's setf function, or mutations 

through references in ML.  Chapter 5 discusses the use of set in FMSL.  The rule for 

avoiding potentially harmful mutations in FMSL is very simple -- do not apply the set 

operator to anything but a plain variable.

By default, FMSL does not allow a value to be added into in the Universe if 

the Universe already contains that value (of a specific type).  Although this decision 

adds up-front processing time when calculating whether to add a value to the 

Universe, it saves memory and cuts processing time during evaluation of unbounded 

quantifiers.  To give the user additional control over whether the FMSL 

implementation should check for duplicates upon adding a value to the Universe, the 
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user can enable Universe duplicates by appending the “-universe-

duplicates” command-line parameter when invoking the FMSL translator.

4.3.1  Universe Implementation Details

The Value Universe is implemented as a block of memory where each 

memory slot is a pointer to a homogenous list of values for a particular type.  Figure

4.3 is a visual representation of the Value Universe structure.

type n 
val 1

type n 
val ...

type n 
val m

Value Universe

type 1

type 2

...

type n

type 1 
val 1

type 1 
val ...

type 1 
val m

Figure 4.3: Value Universe structure

The FMSL code listing in Figure 4.4 declares a Person object type and 

contains two “let” expressions.
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(*
 * Define the Person object type
 *)
object Person is
   components: firstName:string and
               lastName:string and
               age:integer;
end Person;

(*
 * Let p1 and p2 be specific Person values
 *)
> (let p1:Person = {"Alan", "Turing", 97}; true;);
> (let p2:Person = {"Arnold", "Schwarzenegger", 61}; true;);

Figure 4.4: Universe Person FMSL code listing

Upon encountering the “let p2” expression in this context, the FMSL 

implementation first looks up the Person memory slot in the Value Universe by 

hashing the Person type name to an index location.  If there doesn’t already exist 

such a slot, it assigns one and creates a value list of that type.  Since a Person slot 

already exists in the Universe (see Figure 4.5:1) and since we are not allowing 

duplicates, the FMSL implementation accesses the list of Person values and verifies 

that the value represented by p2 does not already exist in the Universe.  Since it 

doesn’t already exist in the Universe, the FMSL implementation adds the value 

represented by p2 to the end of the Person list (see Figure 4.5:2).
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1.

2.

Person
Val

Val
1

Val
…

Val
m

Value Universe

type 1

Person

...

type n

Val
1

Val
…

Val
m

Figure 4.5: Value Universe Add Person Value

By executing the code in Figure 4.4 from the command-line with the -dump-

universe parameter we can see a listing of what’s contained in the Value Universe 

at the end of specification execution.  Figure 4.6 has the FMSL output, which shows 

that the Value Universe contains both Person values, after executing the code in 

Figure 4.4 with the “-dump-universe” command line option.

true
true
Value Universe contains: <
Person: [ { "Alan", "Turing", 97 }, { "Arnold", "Schwarzenegger", 61 
} ]
>

Figure 4.6: FMSL output after lets
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Chapter 5  The Functional Interpreter

The functional interpreter goes beyond type checking and allows for actual 

expression evaluation, maintains internal storage for objects of various types, 

supports operation invocation, validation operator invocation, and more within a 

specification.

5.1  Basic Object Types and Operator Interpretation

FMSL  supports  the  following  basic  atomic  types:  boolean,  integer, 

real, and string.  boolean objects hold values of true or false.  integer 

objects  hold  non-fraction  numbers.   real objects  hold  double-precision  decimal 

numbers.  string objects hold sequences of characters or the empty string.  FMSL 

has a uniform nil value, which symbolizes the concept of “no value” and can be the 

value of any object.  FMSL also provides built-in support for a collection of operators 

that act on these basic types.

5.1.1  Basic Object Type Implementation

All object values in FMSL are stored internally within a common structure, 

called a ValueStruct, which gives the interpreter access to meta-information 
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about the value.  A ValueStruct is a C structure that stores all the information, 

shown in Table 5.1.

Internal Name Description
LorR whether the underlying value is an L- or R-value
tag the general type of the value
type the full type structure
size the type size, which can be number of elements or number of 

bytes
val the value’s actual byte representation in memory

Table 5.1: Contents of ValueStruct

Internally the C code accesses and manipulates the object’s value in memory 

by referencing the val field within the ValueStruct.  The val field is a C 

union that can represent any FMSL value (or a pointer to the FMSL value), as 

illustrated in Figure 5.1.
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ValueStruct

LorR

tag

type

size

val

int IntVal

double RealVal

String* StringVal

etc.

bool BoolVal

...

Figure 5.1: ValueStruct structure with val union

5.1.2  Operator Descriptions

FMSL provides built-in support for a collection of operators on these basic 

types.   For  descriptions  of  the built-in  operators  available  for  boolean,  number 

(integer and  real),  and  string typed objects  see  Table 5.2,  Table  5.3, and 

Table 5.4, respectively.
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Operator Description Returns
not negation boolean
and conjunction boolean
or disjunction boolean
xor exclusive disjunction boolean
=> implication boolean
<=> two-way implication; if and only if boolean
if b1 then b2

where b1, b2 are 
Boolean expressions

conditional boolean

if b1 then b2 
else b3

where b1, b2, b3 are 
Boolean expressions

conditional with else boolean

Table 5.2: Operators on booleans

Operator Description Returns
+ Addition integer or real
- Subtraction integer or real
* multiplication integer or real
/ Division integer or real
mod Modulus integer
+ (unary) returns 1*the number integer or real
- (unary) returns -1*the number integer or real
= Equality boolean
!= Inequality boolean
> greater than boolean
< less than boolean
>= greater than or equal to boolean
<= less than or equal to boolean

Table 5.3: Operators on numbers
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Operator Description Returns
= equality boolean
!= inequality boolean
# string length integer
in membership test boolean
+ concatenation string
[n] single character selection string
[m .. n] range / substring selection string

Table 5.4: Operators on strings

5.1.3  Operator Implementations

When the interpreter is tasked with evaluating the result of a simple 

expression that involves an operator, the interpreter runs through a series of steps to 

determine what it’s supposed to do.  Those steps involve first determining the 

structure of the expression (does the expression have one operand?  Two operands? 

Three operands?  No operands at all? etc.).  The interpreter then determines which 

specific operator is being called.  Once it has established the structure and operator, 

the interpreter calls the proper C function with the operand(s).

A straightforward example traces the execution path of the binary division 

operator (/).  Note that the term binary operator here means that there are two 

operands, not that the operands are represented in binary format.  In the listing in 

Figure 5.2, the last line of FMSL code tells the interpreter to perform division where 

the operands are of type real.
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Code listing:

(*
 * Declare and assign values to x, y
 *)
val x:real = 3.141592654;
val y:real = 2.718281828;

(*
 * Evaluate x divided by y and output the result
 *)
> x / y;

Output:

1.15573

Figure 5.2: FMSL division example listing and output

The interpreter processes the last expression by following these steps:

1. Determine that the expression involves a binary operator

2. Determine the operator (/)

3. Call and return the result of the function that performs the division 

(doRealDiv), and pass as parameters the ValueStructs 

corresponding to the x and y operands

The C code for evaluating the division appears in Figure 5.3.
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ValueStruct doRealDiv(ValueStruct v1, ValueStruct v2, nodep t) {

    /*
     * Propagate null value if either is operand is null.
     */
    if ((v1 == null) or (v2 == null))
        return null;

    /*
     * Handled the overload for real or integer operands.
     */
    switch (v1->tag) {
        case RealTag:
            if (v2->tag == IntTag) {
                if (v2->val.IntVal == 0) {
                    free(v2);
                    lerror(t, "Divide by zero.\n");
                    return null;
                }
                v1->val.RealVal = v1->val.RealVal / v2->val.IntVal;
            }
            else {
                if (v2->val.RealVal == 0) {
                    free(v2);
                    lerror(t, "Divide by zero.\n");
                }
                v1->val.RealVal = v1->val.RealVal / v2->val.RealVal;
            }
            free(v2);
            return v1;
        case IntTag:
            if (v2->tag == RealTag) {
                if (v2->val.RealVal == 0) {
                    free(v2);
                    lerror(t, "Divide by zero.\n");
                    return null;
                }
                v1->val.RealVal = v1->val.IntVal / v2->val.RealVal;
                v1->tag = RealTag;
            }
            else {
                if (v2->val.IntVal == 0) {
                    free(v2);
                    lerror(t, "Divide by zero.\n");
                    return null;
                }
                v1->val.IntVal = v1->val.IntVal / v2->val.IntVal;
            }
            free(v2);
            return v1;
    }
}

Figure 5.3: doRealDiv implementation

88



Tracing through the code, doRealDiv inspects the ValueStruct’s tag 

field and establishes that we’re dealing with parameters of type real.  It’s important 

to make this determination since, as indicated in Table 5.3, the / operator also can be 

used on integer operands or mixed real and integer operands.

It is worth noting that the only runtime type checking that is necessary is for 

overloaded operators, such as arithmetic.  The static type checker ensures that 

arithmetic operators are never applied to non-numeric operands.  Doing so results in a 

type checking error, which precludes any subsequent expression evaluation.  From a 

type-theoretic standpoint, FMSL is a 100% statically typed language.  The use of 

types at runtime is an overloading implementation technique.  Conceptually, there are 

separate versions of each overloaded operator, for each combination of operand types.

There is a third parameter in doRealDiv: nodep t.  Within doRealDiv, 

t is referenced to help describe the location of a runtime error if one occurs, which in 

this function could happen since we might see an attempt to divide by zero.  Since 

we’re not dividing by zero in this example, the C code performs the division and 

assigns the result.  Finally, doRealDiv returns v1, the ValueStruct that 

contains the result.

The FMSL interpreter evaluates all the expressions that contain FMSL 

operators in a fashion similar to the example described above.
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5.2  Complex Structures

In  addition  to  the  basic  object  types  (boolean,  integer,  real,  and 

string),  FMSL supports  structured types  with lists  and tuples.   FMSL lists  are 

homogenous data structures that hold zero or more object values, analogous to an 

array  with  no  predetermined,  fixed  size.   FMSL  tuples  are  heterogeneous  data 

structures that hold a fixed number of components of specific object types, similar to 

a C  struct.  See  Table 5.5 and  Table 5.6 for details on list and tuple operators, 

respectively.

Operator Description Returns
= equality boolean
!= inequality boolean
in membership boolean
# element count integer
+ concatenation list type
- deletion from list list type
[n] element selection list type
[m .. n] range selection list type

Table 5.5: Operators on lists

Operator Description Returns
= Equality boolean
!= inequality boolean
. field access any field type

Table 5.6: Operators on tuples
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The following FMSL code declares  an object  type  called  IntegerList, 

which is a list of integers.

object IntegerList = integer*;

The FMSL code in Figure 5.4 declares an object type called Person, which 

contains several fields that together help describe a person.

object Person
   components: firstName:string and
               lastName:string and
               age:integer;
end Person;

Figure 5.4: Person object type definition

5.2.1  List and List Operator Implementation

Internally, an FMSL list is implemented as a ValueStruct where the val 

union data item is a pointer to a C list structure called ListVal.  ListVal is a 

ListStruct (see Figure 5.5), which is a C struct that contains a linked list of 

generic list elements and other list metadata such as list size.
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ListStruct

ListElem* first

ListElem* last

int size

int ref_count

ListElem* enum_elem

Figure 5.5: ListStruct definition

The FMSL code snippet in Figure 5.6 below defines an IntegerList 

object type and creates an IntegerList instantiation called intlist.

Code listing:

(*
 * Declare the IntegerList type.
 *)
object IntegerList = integer*;

(*
 * Declare an intlist value and assign a collection of integers.
 *)
val intlist:IntegerList = [1,1,2,3,5,3+5];

> intlist;

Output:

[ 1, 1, 2, 3, 5, 8 ]

Figure 5.6: FMSL IntegerList initialization

To construct an FMSL list, the FMSL implementation first builds a 

ValueStruct to hold a list of values of the specified element type.  It then iterates 

through and evaluates each item in the expression list of elements, which was 
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assembled by the parser and the type checker.  The result of each expression 

evaluation is placed at the end of the list, and finally the list constructor function 

returns the newly assembled list ValueStruct.  

Note the importance of evaluating expressions when creating the internal 

representations of the list elements: in the code listing in Figure 5.6, the last element 

of the list of integers is 3+5.  During list construction, the C implementation 

evaluates that expression – i.e., in this case it performs the addition – and stores the 

result (8) at the end of the list.  See Figure 5.7 for the doListConstructor C 

code that performs list construction.
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ValueStruct doListConstructor(t)
    nodep t;
{
    TypeStruct type             /* Type of the array */
              = t->header.attachment.type;
    ValueStruct rtn,            /* Return val temp */
           rval;                /* Value of each elem expr */
    nodep e;                    /* Working expr pointer */

    /* if we arrive here and type is undefined, return nil now */
    if (!type)
    {
        rtn = MakeVal(RVAL, NilType);
        return rtn;
    }

    rtn = MakeVal(RVAL, type);
    rtn->val.ListVal = NewList();

    for (e = t->components.expr.left_operand; e;
                e = e->components.exprlist.next) {

        /*
         * Evaluate the value expressions along the way and
         * assign to a memory slot.
         */
        rval = interpExpr(e->components.exprlist.expr);
        PutList(rtn->val.ListVal, (ListElemData*)rval);

        /*
         * Add constructed list elements to the universe of the 
         * list’s base type.
         */
        if (isIdentType(basetype)) {
            UniverseAddValue1(
                basetype->components.type.kind.ident.type->
                components.atom.val.text, rval);
        }
    }

    return rtn;
}

Figure 5.7: doListConstructor implementation

An example list operator implementation that’s notable is the range selection 

operator.  The range selection or list-slice operator returns a list of subcomponents. 
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For example, the last line of the code listing in Figure 5.8 returns a list that consists of 

components at indexes 3, 4, and 5 within the list.

Code listing:

(*
 * Declare the IntegerList type
 *)
object IntegerList = integer*;

(*
 * Declare an intlist value
 *)
val intlist:IntegerList = [1,1,2,3,5,3+5];

(*
 * Select the subcomponents at indexes 3, 4, and 5.
 *)
> intlist[3..5];

Output:

 [ 2, 3, 5 ]

Figure 5.8: FMSL list selection example

When the interpreter is tasked with evaluating a list selection expression, the 

interpreter first establishes that the expression of interest has three operands: the list, 

the lower bound of the range selection, and the upper bound of the range selection. 

The interpreter then evaluates each of the three operands and passes them as 

parameters to the doArraySliceRef function, seen in Figure 5.9.  Next, the code 

determines that the v1 parameter is an FMSL list1 and so the C code initializes 

result as an empty list.  By looping from the lower bound value v2 to the upper 

bound value v3, one at a time the code accesses the selected subcomponents of v1 

1 Recall that according to Table 5.4, the selection operator also applies to string objects and so the 
code here must determine whether v1 is a string or a list.
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and copies (or puts) them into result.  Finally doArraySliceRef returns 

result, which is the ValueStruct that contains the sub-list.

ValueStruct doArraySliceRef(v1, v2, v3)
    ValueStruct v1;
    ValueStruct v2;
    ValueStruct v3;
{
    ValueStruct result;
    int i;

    /* start building the new list */
    result = MakeVal(RVAL, v1->type);
    if (v1->tag == ListTag) {
        result->val.ListVal = NewList();

        /*
         * loop through from lower .. upper and add the elements
         * to result.
         */
        for (i = v2->val.IntVal; i <= v3->val.IntVal; i++) {
            PutList(result->val.ListVal,
                    GetListNth(v1->val.ListVal, i));
        }
    }
    else if (v1->tag == StringTag) {
        result->val.StringVal =
            (String *)SubString(v1->val.StringVal,
                                v2->val.IntVal,
                                v3->val.IntVal);
    }
    return result;
} /* end function doArraySliceRef */

Figure 5.9: doArraySliceRef implementation

5.2.2  Tuple and Tuple Operator Implementation

Internally, an FMSL tuple is implemented as a ValueStruct where the 

val union data item is a pointer to a C list structure called StructVal.  Like 

ListVal, StructVal also is implemented as a ListStruct (Figure 5.5); 
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however, unlike ListVal, each item in the StructVal list corresponds to a field 

within the FMSL tuple.  Figure 5.10 has an FMSL code listing that declares a variable 

of type Person, initializes that variable through tuple construction and then accesses a 

field within the tuple.

Code listing:

(*
 * Declare p, a person variable
 *)
val p:Person = {"Arnold", "Schwarzenegger", 61};

(*
 * Access p's last name field
 *)
> p.lastName;

Output:

"Schwarzenegger"

Figure 5.10: Person tuple FMSL code listing

The strategy for constructing an FMSL tuple in C is similar to the strategy for 

constructing lists, although there are some differences.  To construct a tuple, 

doTupleConstructor (see Figure 5.11) first checks to make sure it has field 

values to instantiate and add to the tuple.  It then creates the rtn tuple 

ValueStruct and initializes it with the correct type.  Internally, the field order 

within a tuple is relevant and so in order doTupleConstructor loops through 

evaluating field expression values and placing each result in rtn’s StructVal 

field.  Finally, doTupleConstructor returns the rtn tuple ValueStruct.
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ValueStruct doTupleConstructor(t)
    nodep t;
{
    ValueStruct rtn,
        rval;
    nodep e;
    TypeStruct tupleType;

    /* if this isn't going to work, return nil now */
    if (!t->components.unop.operand)
    {
        rtn = MakeVal(RVAL, NilType);
        return rtn;
    }

    /* get the tuple type and initialize it */
    tupleType =
        t->components.unop.operand->components.exprlist.type;
    rtn = MakeTupleVal(RVAL, tupleType);
    rtn->val.StructVal = NewList();

    /*
     * loop through the tuple fields and add each one
     * as a list element.
     */
    for (e = t->components.unop.operand;
                e;
                e = e->components.exprlist.next) {
        rval = interpExpr(e->components.exprlist.expr);
        PutList(rtn->val.StructVal, (ListElemData*)rval);
    }

    return rtn;
}

Figure 5.11: doTupleConstructor implementation

An example operator on tuple objects is the field access operator (“.”), which 

is used as follows: <tuple object>.<field name>.  The field access 

operator returns the value contained in the tuple within the stated field, much like the 

way struct access works in C.  The last line of the code listing example in Figure

5.10 demonstrates field access.
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To evaluate tuple field access, the FMSL interpreter first determines that it’s 

processing a binary operator with two operands: the tuple and the field within the 

tuple.  The interpreter then calculates the memory location of the tuple and calls 

RecordRef (see Figure 5.12), passing in the memory location of the tuple and 

information about the the field to be accessed.  RecordRef first determines the 

position of the field within the list of fields for this tuple.  In our field access example 

from Figure 5.10 we’re accessing a field via a field name (“lastName”), and so 

RecordRef accesses the tuple’s symbol table to look up the field’s ordinal position 

from the textual field name.  RecordRef then gets the ValueStruct stored at 

that field position within the tuple ValueStruct’s StructVal.  Next, 

RecordRef allocates memory for newDesig, a new ValueStruct pointer. 

Finally, RecordRef makes newDesig point to the field value of interest and 

returns it.
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ValueStruct RecordRef(desig, field)
    ValueStruct desig;  /* L-value for the left operand. */
    nodep field;        /* Ident for the right operand. */
{
    ValueStruct valueField,
        tuple,
        newDesig;
    SymtabEntry *f;
    int n;
    TypeStruct type = ResolveIdentType(desig->type, null, false),
        fieldType;

    /*
     * If the field is represented by a field name, look up
     * the field name in the symbol table to get the position
     * within the list.
     * 
     * Otherwise we have an anonymous access into a tuple, so
     * we already have the numbered position.
     * 
     * In either case we need to get the field type.
     */
    if (field->header.name == Yident) {
        f = LookupIn(field->components.atom.val.text,
                     type->components.type.kind.record.fieldstab);
        fieldType = ResolveIdentType(f->Type, null, false);
    }
    else {
        f = null;
        n = field->components.atom.val.integer;
        fieldType = ResolveIdentType(
          GetNthField(type->components.type.kind.record.fields, n)->
            components.decl.kind.field.type,
          null, false);
    }

    /*
     * coming in, desig->LVal should point to the ValueStruct
     * of the struct.
     */
    tuple = (ValueStruct)*(desig->val.LVal);

    /* Note: Our lists are 1-indexed */
    valueField = (ValueStruct)GetListNth(tuple->val.StructVal,
        f ? f->Info.Var.Offset + 1 : n);
    /*
     * if we have valueField filled in, use its type.
     * Otherwise, use the fieldType.
     */
    if (!valueField) {
        newDesig = MakeVal(LVAL, fieldType);
    }
    else {
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        newDesig = MakeVal(LVAL, valueField->type);
    }

    /* 
     * Allocate some storage for the field ValueStruct pointer
     * and put field value there.
     */
    newDesig->val.LVal = (ValueStruct *) malloc(sizeof(Value **));
    *(newDesig->val.LVal) = valueField;

    return newDesig;
}

Figure 5.12: RecordRef implementation

5.3  Operation Invocation

As  outlined  in  Chapter  4,  FMSL  supports  the  definition  of  computation 

operations.  These have the standard semantics of procedural abstractions definable in 

almost  all  programming  languages.   Parameter  passing  is  strictly  call-by-value. 

When operations have no mutating set expressions, they are side-effect free.  This is 

the case for all of the examples presented in the thesis.  Figure 5.13 has an example of 

a simple FMSL operation called Cube, which returns the result of cubing the integer 

input parameter.

Code listing:

operation Cube (x:integer) = x * x * x;

> Cube(2);
> Cube(5);

Output:

8
125

Figure 5.13: Cube operation FMSL listing
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The FMSL implementation performs operation invocations by first pushing an 

activation record onto the stack.  The implementation then evaluates each of the input 

parameters  and  binds  the  corresponding  values  to  the  proper  memory  locations 

according to the formal parameter names.  After performing the parameter binding, 

the implementation pushes the local symbol table to the top of the symbol table stack 

and executes the operation body.  The operation result is equal to the result of the last 

expression in the operation, which gets saved off before popping the activation record 

and  returning  the  symbol  table  to  its  original  state.   Finally,  the  implementation 

returns the ValueStruct operation result.

5.4  Operation Validation through the Validation 

Operator

FMSL’s validation operator is designed to support incremental  testing of a 

specification.   Whereas a more classic operation invocation involves passing only 

input parameters to an operation, the validation operator accepts  an operation name, 

input parameters, and output parameters.  Generically, the validation operator usage 

is:

operation_name(input argument list) ?-> (output argument list)
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The in arguments are values that map to the operation’s input parameters and 

the  out  arguments  map  to  the  operation’s  output  parameters.   The  result  of  a 

validation operator invocation is a tuple that contains two boolean values: the first 

expresses the result of the precondition evaluation and the second expresses the result 

of  the  postcondition  evaluation.   See  Table  5.7 for  a  list  of  potential  value 

combinations within the returned tuple.

Tuple Returned Indication
{ nil, nil } execution failure in the precondition; postcondition 

evaluation not attempted
{ false, nil } precondition evaluation failed; postcondition 

evaluation not attempted
{ true, nil } precondition evaluation passed; no postcondition 

specified or there was an execution failure in the 
postcondition

{ true, false } Precondition evaluation passed; postcondition 
evaluation failed

{ true, true } Both precondition and postcondition evaluation 
passed

Table 5.7: Validation result values

The "execution failure" referred to in  Table 5.7 results from an expression 

returning a nil value.  Genuine failures include fatal arithmetic errors, such as division 

by zero; list index out-of-bounds; or access to uninitialized tuple fields.  A complete 

discussion of such errors is in the FMSL reference manual [1].

An expression can  also produce a  nil result  on purpose,  for  example  an 

operation  that  returns  a  nil value  to  indicate  that  no  meaningful  value  was 

computed.   Conceptually, an evaluation result of nil means "undefined".  Whether 
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such is the result of a specific error or purposeful computation is based on the context 

of the evaluation.  In this sense, an evaluation result of  nil represents an abstract 

representation of undefinedness.  This is comparable to the evaluation of null pointer 

values in programming languages, where null may be the result of a computational 

error, or used to represent a purposeful result.

By  executing  a  sequence  of  validation  operator  invocations  with  varying, 

thoughtfully selected values for the input and output arguments,  the user can gain 

additional confidence in both the test data and the specification or discover errors in 

the data or the specification.  Examples of such value selections were presented in 

Chapter 3.  In the event that the validation operator invocation returns a tuple with 

both  values  of  true,  the  test  inputs  and  outputs  agreed  with  both  the  operation’s 

precondition and postcondition.  In the event where there were failures along the way, 

the user might see other meaningful combinations of  boolean values in the result 

tuple.

As outlined in Table 5.8, if the first tuple field is false then the test values for 

the inputs were invalid or the precondition was specified incorrectly.  If the first tuple 

field is true and the second tuple field is false, the test input values were valid and the 

output values were invalid or the postcondition was specified incorrectly.  The first 

occurrence of a nil value in the returned tuple could signify that there is a problem 

with the specification of the precondition or postcondition.

104



Tuple Returned Significance
{ nil, nil } The precondition may be specified incorrectly since 

a run-time / execution error was detected during 
precondition execution

{ false, nil } Test values for inputs were invalid or the 
precondition was specified incorrectly

{ true, nil } Test values for inputs were valid, but the 
postcondition either wasn’t specified or it may be 
specified incorrectly since a run-time / execution 
error was detected during postcondition execution

{ true, false } Test values for inputs were valid, but the output 
values were invalid or the postcondition was 
specified incorrectly

{ true, true } Test values for both inputs and outputs agreed with 
both the precondition and postcondition

Table 5.8: Validation result significance

When  choosing  test  data  for  inputs  and  outputs  in  a  validation  operator 

invocation, the user may want to create and run some test data inputs and outputs 

against an operation such that the result is known to  not be  { true, true }. 

While some symbolic model checking tools initialize input fields only to values that 

adhere to the precondition [45], with FMSL’s validation operator the user also can get 

additional, helpful assurance that there is an absence of unintended behavior instead 

of  just  “verify[ing]  the  existence  of  a  particular  feature”  [46].   Through 

comprehensive  test  data  selection  and by observing  the  feedback FMSL provides 

after performing a validation operator invocation, the user can utilize FMSL to help 

detect specification and test data errors.
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Chapter 6  Quantifier Execution

FMSL  supports  both  bounded  and  unbounded  universal  (forall)  and 

existential (exists) forms of quantification.  Table 6.1 has a summary of the FMSL 

bounded and unbounded quantifier syntax.

Syntax Quantifie
r Type

Reads Like …

forall (x in S) p bounded for all values x in list S, p is true
forall (x:t) p unbounded for all values x of type t, p is true
forall (x:t | p1) p2 unbounded for all values x of type t such that p1 is true, p2 is 

true
exists (x in S) p bounded there exists an x in list S such that p is true
exists (x:t) p unbounded there exists an x of type t such that p is true
exists (x:t | p1) p2 unbounded there exists an x of type t such that p1 is true and 

p2 is true

Table 6.1: FMSL quantifier syntax

A bounded quantifier evaluates over a discrete universe of values, as seen in 

Figure 6.1.  In the example, the forall ranges over all five elements [1, 1, 2, 3, 5] 

that  make  up  IntList list.   Since  each  integer element  within  list is 

greater  than  zero  in  the  example  in  Figure  6.1,  the  bounded  universal  quantifier 

evaluates to true.
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(*
 * Declare an IntList object type and an IntList value
 *)
obj IntList = integer*;
val list:IntList = [ 1, 1, 2, 3, 5 ];

(*
 * Evaluate: all the integer elements within list are positive.
 *)
> forall (i in list) i > 0;          -- evaluates to true

Figure 6.1: Example of a bounded quantifier in FMSL

In the example in Figure 6.2, unlike in Figure 6.1, it is not immediately clear 

how the  interpreter  should  evaluate  the  unbounded  universal  quantifier  since  the 

Person space is a potentially infinitely-large universe.  

obj Person = name:Name and age:Age;
obj Name = string;
obj Age = integer;
> forall (p:Person) p.age >= 21;

Figure 6.2: Example of an unbounded quantifier in FMSL

For this thesis, FMSL evaluates unbounded quantifiers by iterating through an 

incrementally built universe of values and evaluating the predicate for each value. 

Other  methods  were  considered,  and  Section  6.1  discusses  quantifier  execution 

approaches  found  in  other  formal  methods  tools.   Section  6.2  lays  out  several 

quantifier examples and describes their implementations.
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6.1  Methods of Quantifier Execution

Formal methods tools and methods that support specification execution take 

different approaches to handling unbounded quantifiers.  For example, Aslantest [27], 

Jahob [64], and executable Z [36] all handle unbounded quantifiers in different ways.

The  symbolic  execution  tool  for  Aslan,  Aslantest  [27],  attempts  to 

automatically  evaluate  all  Boolean  expressions  contained  within  a  specification. 

When Aslantest encounters a Boolean expression – like an unbounded quantifier – 

that it cannot automatically reduce to a simple true or false, it suspends specification 

execution and calls upon the user to play the role of the simplifier.  The user then 

must enter the Boolean value result of the expression that could not be reduced.  The 

Aslantest tool takes record of the user response and then execution continues.

The  Jahob  verification  system  [64]  proves  correctness  properties  by 

generating  condition  formulas  –  that  together  show  that  a  program  respects 

preconditions, postconditions, and invariants – and then proving them using theorem 

proving techniques.  When Jahob encounters an unbounded quantifier, the Jahob user 

is encouraged to utilize Jahob’s pickAny construct that makes the variable involved in 

the  unbounded  quantifier  predicate  appear  to  be  a  specification  variable  with  an 

arbitrary value.  The Jahob user also can state lemmas that involve the variable of 

interest, which together with the pickAny construct effectively remove the unbounded 

quantifier evaluation and thus simplify the theorem proving task.

Z is a “formal notation which aims to support, besides others, the specification 

of early requirements” [36].  In [36] Grieskamp et al. detail their experiments with 
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use cases described in an executable form of Z.  When they describe constraints that 

involve  unbounded  universal  quantifiers  then  their  execution  or  computation 

diverges, or in other words unbounded universal quantification is a “source of non-

executability”  in  their  setting.   To  avoid  the  problem  of  non-executability,  their 

solution involves generally treating these constraints as compiler assumptions.

6.2  Unbounded Quantifier Execution in FMSL

What  follows  is  a  description  of  the  implementation  approaches  taken  to 

evaluate  unbounded  universal,  existential,  and  universal  with  suchthat  (“|”) 

quantifiers.

6.2.1  Example: forall

The code listing in Figure 6.3 demonstrates a forall example.
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(*
 * Perform lets with p1, p2 to put them in the Universe
 *)
> (let p1:Person = {"Alan", "Turing", 97};);
> (let p2:Person = {"Arnold", "Schwarzenegger", 61};);

> "Expected: true";
> forall (p:Person) p.lastName != nil;

(*
 * Since p3, with a nil last name, has been introduced
 * then we expect false below.
 *)
> (let p3:Person = {"Charles", nil, 218};);
> "Expected: false";
> forall (p:Person) p.lastName != nil;

Figure 6.3: FMSL forall example code listing

To populate  the  Universe  with  Person values,  the  code  lists  some  let 

expressions that assign  Person values to identifiers (p1 and  p2).  We expect the 

first forall example to evaluate to true since at this point all Person values in 

the Universe have defined lastName fields.

To evaluate the forall expression, the FMSL interpreter first identifies that 

p is of object type Person.  It then hashes the Person type name to locate the slot 

in the Value Universe where  Person values should be found (see  Figure 6.4:1). 

After  discovering  that  there  exist  Person values  in  the  Universe,  the  FMSL 

interpreter  accesses  that  list  of  Person values  (see  Figure  6.4:2).   The  FMSL 

interpreter then iterates through each Person value in the list, temporarily assigning 

the current Person value to p in the local symbol table.  At each stop along the way, 

the  FMSL  interpreter  evaluates  the  predicate  (p.lastName  !=  nil)  and 
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essentially  ANDs  the  results  together  (see  Figure  6.4:3)  to  arrive  at  the  final 

evaluation result.

1.

2.

3.

Value Universe

type 1

Person

...

type n

Val
1

Val
…

Val
m

Value Universe

type 1

Person

...

type n

Val
1

Val
…

Val
m

Val
1

Val
…

Val
m

(Val 1).lastName
!= nil

AND AND

(Val ...).lastName
!= nil

(Val m).lastName
!= nil

Figure 6.4: Forall example universe access

Note that in the example in Figure 6.3, we expect the first forall expression 

to evaluate to  true and we expect the second  forall expression to evaluate to 

false.   Just  prior  to  executing  the  second  forall in  the  example,  the  FMSL 
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interpreter processes the let p3 expression where p3 is assigned a Person value 

with the lastName field set to nil.  Since the FMSL interpreter picks up that p3 

Person value and places it in the Person pool of values in the Value Universe, the 

second forall expression should evaluate to false.  This expectation turns out to 

be correct, as evidenced by the output in Figure 6.5 below.

{ "Alan", "Turing", 97 }
{ "Arnold", "Schwarzenegger", 61 }
"Expected: true"
true
{ "Charles", nil, 218 }
"Expected: false"
false

Figure 6.5: FMSL forall example output

6.2.2  Example: exists

The code listing in Figure 6.6 demonstrates an exists example.

(*
 * Perform lets with p1, p2 to put them in the Universe
 *)
> (let p1:Person = {"Alan", "Turing", 97};);
> (let p2:Person = {"Arnold", "Schwarzenegger", 61};);

> "Expected: false";
> exists (p:Person) p.lastName = nil;

(*
 * Since p3, with a nil last name, has been introduced
 * then we expect true below.
 *)
> (let p3:Person = {"Charles", nil, 218};);
> "Expected: true";
> exists (p:Person) p.lastName = nil;

Figure 6.6: FMSL exists example code listing
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The example in  Figure 6.6 starts  out the same as in  Figure 6.3 where the 

Universe gets populated with some  Person values.  Where it is different are the 

exists quantifiers instead of forall quantifiers.

As when evaluating a forall quantifier, to evaluate the exists expression 

the FMSL interpreter first identifies that p is of object type Person.  It then hashes 

the  Person type  name to  locate  the  slot  in  the Value Universe  where  Person 

values should be found (see Figure 6.7:1).  After discovering that there exist Person 

values in the Universe, the FMSL interpreter accesses that list of Person values (see 

Figure 6.7:2).  The FMSL interpreter then iterates through each Person value in the 

list, temporarily assigning the current Person value to p in the local symbol table. 

At  each  stop  along  the  way,  the  FMSL  interpreter  evaluates  the  predicate 

(p.lastName = nil) and ORs the results together (see Figure 6.7:3) to arrive at 

the final evaluation result.
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1.

2.

3.

Value Universe

type 1

Person
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type n
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1
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m

Value Universe

type 1

Person

...

type n

Val
1

Val
…

Val
m

Val
1

Val
…

Val
m

(Val 1).lastName
= nil

OR OR

(Val ...).lastName
= nil

(Val m).lastName
= nil

Figure 6.7: Exists example universe access

By the  point  where  the  first  exists  expression  gets  executed,  none  of  the 

Person values picked up by the Universe have a nil lastName field.  As a result, we 

expect  the first  exists  expression to evaluate  to false.   Just  prior  to executing the 

second  exists  example,  though,  the  FMSL  interpreter  processes  the  let  p3 

expression where  p3 is assigned a  Person value with the  lastName field set to 

nil.  Since the FMSL interpreter picks up that p3 Person value and places it in 
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the  Person pool of values in the Value Universe, the second  forall expression 

should evaluate to false.  This expectation turns out to be correct, as evidenced by 

the output in Figure 6.8.

{ "Alan", "Turing", 97 }
{ "Arnold", "Schwarzenegger", 61 }
"Expected: false"
false
{ "Charles", nil, 218 }
"Expected: true"
true

Figure 6.8: FMSL exists example output

6.2.3  Example: var:type such that

The  code  listing  in  Figure  6.9 demonstrates  a  forall with  suchthat 

example.

(*
 * Perform lets with p1, p2, p3 to put them in the Universe
 *)
> (let p1:Person = {"Alan", "Turing", 97};);
> (let p2:Person = {"Arnold", "Schwarzenegger", 61};);
> (let p3:Person = {"Charles", nil, 218};);

(*
 * Evaluate: for all Person objects such that p.lastName is
 * not nil, the last name length is at least 6 characters
 *)
> "Expected: true";
> forall (p:Person | p.lastName != nil) #p.lastName >= 6;

Figure 6.9: FMSL forall with suchthat example code listing
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In Figure 6.9 the FMSL code populates the Value Universe with three unique 

Person values, and one of those Person values (p3) has a nil lastName field. 

In  this  example  the  FMSL  interpreter  accesses  the  Value  Universe  in  the  same 

fashion as in the  forall and  exists examples.  When evaluating the  forall 

suchthat  expression,  though,  the  FMSL  interpreter  first  evaluates  the  suchthat 

predicate (p.lastName != nil) and if it evaluates to true then it evaluates the 

second predicate (#p.lastName >= 6).  Although there exists in the Universe a 

Person  value  with  a  nil lastName field,  the  lastName has  at  least  six 

characters  in  all  those  Person values  with  a  lastName that  is  not  nil.   See 

evidence below in Figure 6.10 for evidence.

{ "Alan", "Turing", 97 }
{ "Arnold", "Schwarzenegger", 61 }
{ "Charles", nil, 218 }
"Expected: true"
true

Figure 6.10: FMSL forall with suchthat example output
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Chapter 7  Conclusions

The  focus  of  this  thesis  has  been  a  technique  and  tool  to  facilitate  the 

incremental validation of formal software specifications.  Demonstrations of the tools 

efficacy  were  presented,  as  were  a  detailed  review  of  the  tool's  design  and 

implementation.

7.1  Summary of Contributions

The specific contributions of the thesis are these:

1. The design and implementation of a functional interpreter for a formal 

specification language, rendering the language executable for the first 

time.

2. The design and implementation of a novel technique to execute purely 

predicative specifications, using validation invocations.

3. Demonstration  of  how  the  execution  capabilities  can  be  used  to 

validate formal specifications, as presented in educational setting.

4. A thorough discussion of how the specification execution capabilities 

fit into the realm of light-weight and heavy-weight formal methods.
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7.2  Future Work

The following section describes potential  future work, which could involve 

creating a GUI front end to facilitate testing, creating a UML to FMSL conversion 

tool, adding a test case generator, improving FMSL’s execution speed, and making 

FMSL use memory more efficiently.

7.2.1  UML to FMSL Tool

As UML is  the  standard  for  modeling  software  applications  [56],  a  UML 

front-end for creating FMSL models could speed up the FMSL formal description 

creation process.  Similarly, some people might find it helpful to view some parts of 

an FMSL specification in UML.

The general approach of UML-to-FMSL mapping is similar to the approach 

taken with other formal specification languages, such as UML-B [59].  Since UML 

does not have its own fully formal semantics, constructs of UML are mapped to the 

specification language, and those constructs assume the semantics of the language. 

This idea is consistent with the overall philosophy of UML, whereby the semantics of 

a particular UML diagram can “absorb” the semantics of an underlying language to 

which  the  diagram maps.   For  example,  a  UML inheritance  diagram for  a  C++ 

program can assume the semantics of inheritance in C++.  The same diagram used to 

depict a Java program has a different semantics of inheritance.

The FMSL reference manual describes a UML-to-FMSL mapping.  Given this 

mapping, extant UML tools can be employed to render FMSL with UML diagrams. 
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For example, the Dia diagram editor [7] provides a plug-in capability, with which a 

textual  representation  of  a  diagram can  be  rendered  as  an  editable  drawing.   An 

experimental  version  of  a  UML-to-FMSL graphical  editor  was  implemented  as  a 

senior project at Cal Poly University, San Luis Obispo [54].  Since Dia is a Linux-

based tool, its distribution is limited to Linux platforms.  Wider distribution could be 

supported by using some other open-source UML editing framework,  such as that 

currently under development for the Eclipse IDE [2].

Although there isn’t a one-to-one correspondence between UML classes and 

FMSL object types, there is some overlap in meaning and so such a tool set seems 

feasible and useful.

7.2.2  Test Case Generator

As broad test coverage tends to build confidence about an implementation’s 

correctness,  so  would  broad  test  coverage  build  confidence  about  a  model’s 

correctness.  Currently,  FMSL validation operator test cases must be generated by 

hand.  There are some benefits  to generating test  cases by hand, such as that  the 

person generating the test cases may gain a better understanding of the model and 

data.  Also, the person generating the test cases can carefully pick meaningful test 

cases.  This process could be time-consuming and there exist tools, such as Korat [10, 

21], that automatically generate test cases.  Combining automated test case generation 

with FMSL’s specification execution capabilities could make FMSL an even more 

useful tool for validating specifications.
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7.2.3  GUI Front End

The validation operator allows the FMSL user to specify operation inputs and 

outputs  and  then  see  the  result  of  their  evaluation  against  the  preconditions  and 

postconditions.  As mentioned above, currently the user must choose the inputs and 

outputs, and enter them for execution in a text-based interpreter environment.  A GUI 

front  end  to  the  specification  validation  and  testing  process  could  speed  up  and 

streamline the test case generation and evaluation process.  It could help the user to 

manage a specification’s test suite, which would consist of a set of test plans.  Each 

operation could have its own test plan that consists of a set of inputs, outputs, and 

expected results of validation operator invocations.

Figure  7.1 is  a  sketch  of  the  user  interface  for  a  GUI  front-end  to  the 

specification validation functionality of the FMSL interpreter.
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Figure 7.1: GUI overview sketch
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The interface allows the user to load a specification, and focus on a particular 

operation.  Each line in the Test Plan table corresponds to a validation invocation of 

the operation in view.

7.2.4  Improve Value Universe Performance

Although FMSL evaluation of quantifiers  is fast  on even a relatively slow 

personal  computer,  some  improvements  can  be  made  to  the  Value  Universe  to 

improve execution time when many values of a particular type have been ingested by 

the  Value  Universe.   As  shown  in  Figure  4.3,  the  values  for  a  given  type  are 

maintained in a simple linked list structure.  Since by default FMSL checks for value 

existence  before adding a new value to the Value Universe,  this  existence search 

process  can  slow  down execution.   The  search  process  execution  time  could  be 

reduced  by  implementing  a  companion  structure  that  allows  for  translation  of  a 

hashed value pointer into an existence determination.

7.2.5  Garbage Collector

The current FMSL implementation does not manage memory very carefully, 

so we expect that FMSL executions probably lead to memory leaks.  An improvement 

to FMSL memory management  would be to utilize  a third party C-based garbage 

collector, so FMSL would perform all memory allocation and de-allocation through 

the garbage collector’s interfaces.
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