Chapter 3:

Suggested new material for introduction to the chapter:

FMSL specifications consist primarily of object and operation definitidiee following is a simple illustrate
example.
obj ect PersonLi st
conponents: Person*;
description: (*
A PersonLi st contains zero or nore Person records.
*) ;

end PersonlLi st ;

obj ect Person
conponents: first:Nane and | ast: Nane and age: Age;
description: (*
A Person has a first nane, |ast nane, and age.
*)’

end Person;

obj ect Nane = string;
obj ect Age = integer;

operation Add
i nputs: p:Person, pl:PersonlList;
out puts: pl’:PersonlList;
precondition: not (p in pl);
postcondition: pin pl’;
description: (*
Add a person to a list, if that person is not already in the list.
*)
end Add
This example illustrates the éwprimary forms of definition in FMSL: objects and operations. Objects kampo-
nents, which are defined in terms of other objects. Object definitions "bottom out" in one oiittire grimitive
types ofi nt eger,real ,string, or bool ean.

Operations hee inputs, outputs, preconditions, and postconditidrtse types of inputs and outputs are the names of
defined objects. Preconditions and postconditions are boolean expressions.

Other notational features woytf explanation are the following:
«’(*’and ™) ' are used to enclose comments

« Nane andAge use an optional short form of object definition; it can be used for objects of simple scalar types,
with no description

« thei n operator is built-in; it tests for list membership

« any identifier can hee an goostrophe character as a suffix; this is purely a lexical form, in that a trailing apos-
trophe is a Igd character in an identifier; it is used most often in operation outputs when the type of an input
and output object are the same; e.g. Athd input list is namegl and the output list ipl ’ , read ‘pl prime"

A complete discussion of FMSL syntax and semanticsviengn its reference manual [45]. This thesis will only
use a subset of its features, specifically those features that are germane to the topic of specification validation.

Given a gecification such as the example eh@ kasic question is this: "Wodoes one validate that it is correct?"
Firstly, static correctness can be validated using the FMSL type ehegkich performs syntactic and semantic
analysis comparable to that performed by a programming language condpiterticularly useful part of static
analysis is completeness checkingor example, if the specifier left out the definitions of tRerme and Age
objects, the checker would flag the error in the definition oPéreson object that useSanme andAge.



The focus of this thesis is determining the dynamic correctness of a specifi¢aian qeration, this fundamen-
tally requires some means ofakiation. Inthe example at hand, ti#eld operation could beveluated in the fol-
lowing manner:

val ue p: Person = {"Arnol d", "Schwarzenegger", 61}; -- a sanpl e person

val ue pl:PersonList =[]; -- an enpty person |ist
value pl’':PersonList = [p]; -- a one-person |ist

> Add(p, pl); -- invoke Add operation

The following aspects of notation warrant brief explanation:
< aval ue declaration defines a constant value of some type of object
« tuple values are enclosed in curly braces; a tuple is an object definethdéd components
« list values are enclosed in square brackets; a list is an object definédcwitiponents
« point-to-end-of-line comments are defined with

« expression ealuations are preceded with the prompt characterthese are typically entered in the topde
of a cowersational interpretetbut may be included within a specification file; the important point is that the
'>' prompting character distinguishes an expression tov#leated from a specification declaration

« an eration is imoked in the way standard to most programming languages, with the operation nametbllo
by a parenthesized list of actual parameters

So, the question at hand"#hat value does the invocation of Add(p, pl) produce?" Since theAdd operation
has no defining expression, the value @bking Add(p, pl) isnil,wherenil isthe empty value for grtype
of object. Ni | is in fact is result of wuating Add for ary inputs, gven thatAdd is defined only with a precondi-
tion and postcondition.

The precondition and postcondition fadd define a behaor. Howeve, they do so in an atirely declaratre form,
not a constructe form. Itis possible to define FMSL operations constuabti but that is not the point her&Vhat
is desired is a ay to \alidateAdd’s precondition and postcondition,vgn a particular set of inputs andgected
outputs.

One way to do this is to extract the precondition and postconditfmession, andwaluate them indiidually. For
example, gven the precedingal ue declarations, the precondition expression could be tested with kgiese
sions such as this:

>pin pl; -- shoul d be fal se
> not (pin pl); -- shoul d be true
> not (pinpl’); -- shoul d be fal se

The postcondition expression could be testeslthis:

>pinpl’; -- should be true
>not (pinpl’); -- shoul d be fal se

These are clearly rudimentarypgessions. Theoint is that the logic of preconditions and postconditions can be
dynamically validated by plugging in various values and examining the results. The work of this thesis has included
the implementation of this form of expressioraleation in FMSL. This form of waluation supports the notion

cited earlier from Myers [6]: "if you run simple claims early then you hae a lasis for understanding both the
model and the system".

While isolated eauation of boolean expressions can be helpful, it wouldvea bandier to inoke an operation
with sample input and output values directhhis kind ofvalidation invocation can be characterized as foll for
the Add precondition:

Given inputs p and pl, what is the value of the Add precondition?
A more complete validating wocation is this:

Given inputs p and pl, expected output pl’, what are the values of the Add precondition and postcondition?
The syntax for such a validationvotation looks lile this:



> Add(p, pl) ?-> pl’;
The output of this validating wocation is a boolean two-tuple, that look<likis:
{ true, true }
The notational particulars are these:
« the first part of a validationwocation looks lile a egular operation call, e.gAdd(p, pl)
« the '?- >’ is the validation operatérper the preceding characterization, it means the following in xaisiple:
Given inputs p and pl, is the Add precondition true, and given pl’, isits postcondition true?
« the output value of true, true } isthe standard curly brace notation for a boolean two-tuple

A validation counter example can be tested, such as
> Add(p, pl) ?-> pl;
which produces the resylt t rue, fal se }

The preceding introduction to Chapter 3 has presented a simpietingtexample. Thaemainder of this chapter
will cover the details of specificatiorvauation, including in particular thevauation of conditions with quantifiers.
The cwerage will feature the validation of a long-standing pedagogic example, in which the adidating ealu-
ations reealed a heretofore undisamed flav. This is a particularly good result, and demonstrates well the utility
of dynamic specification validation.

Future Work:
Add brief description of GUI.

Add future work section on controlled 308 experiment to test fieaef of the tool to impree the quality of stu-
dent specs.

A detailed experimental design isyloed the scope of this thesiBriefly, in will be structured along the folldng
lines:

Two sections of the same class, with each sectiorking on the same projects. One section will use #iielater,

the other will not. The specifications will be assessed quamtitatind qualitatiely to determine their accunac
completeness, consisten@nd soundnessThe instructor will ensure that certain aspects of the specification are
covered in both versions of the projects, so that a specific definition of soundness can b&\itlaidethat defini-
tional frameavork, specific types of specification errors will be defined, andxisteace of such errors will be deter
mined in both the control and tool-use groups.

T The somewhat curious syntax of the validation operator igetiiiom the FMSL syntax for operation signatures; i.e., the
signature of the Add operation(i®er son, PersonLi st) -> PersonlLi st, where the > notation has been used in oth-
er specification languages in the denotation of input/output signatures.



