Page 1

Notes on Unions

Typical Union Example, Comparing C and FM SL

The way FMSL unions work is very muchdiknions in C. The key dfference is that an FMSL union hastaltein
tag that C unions donhave The interpreter maintains thalue of the tag internallyo keep track of which union
component is currently in use.

An important syntax change that is not properly updated in the reference manual is the tagidiceropgrator
Previously it was just '?’, but it has been updated to The upcoming examples sthohow to use it.

What follows is a pretty typical use of union types in C and FMEk.the same union type in both cases, withyv

similar processing. The main difference is the automatic tag maintenance done in FMSL. Both examples are com-
pilable, in the filesuni on- exanpl e. ¢ and uni on- exanpl e. f sl , in the directoryf msl / docunent a-
tion/contrib/pcorw n.

C Union, with Programmer-Maintained Tags:

#defi ne bool unsigned char
#define true 1

typedef enum {I NT, BOOL, STRING Val Tag;

typedef struct {
Val Tag tag;
uni on {
int intVval;
bool bool Val ;
char* stringVval;
} val;
} IntOrBool OrString;

IntOrBool OrString ibs;
int i;

bool b;

char* s;

int main(int argc, char** argv) {

/*

* Use ibs as an int.

>/

ibs.val.intVal = 10; /1l Assign the intval field

ibs.tag = INT; /! Keep track that ibs is currently an int

i = ibs.val.intVal; /1 Assign 10 to i, as expected

/*

* Erroneously use ibs as a string, with int as the current conponent.

>/

s = ibs.val.stringval; /1 Assigns effective garbage to s; it's the
/1 programmer’s responsibility to keep track of
/1 which union field is currently active

/*

* Use ibs as a bool ean, again with progranmer-nai ntai ned change of tag.

>/

i bs.val . bool Val = true;

ibs.tag = BOOL;

Page 2

b = ibs.val. bool Val ;

/*
* Use ibs as a string, again with progranmrer-naintained change of tag.
*/

ibs.val.stringval = "xyz";

ibs.tag = STRI NG

s = ibs.val.stringVal;

/*

* Here is the normal way to safely use a union variable. 1t involves

* checking the current value of the tag, and accessing the field that the
* tag-check says is currently active. This is the place in C where the

*

programrer - mai nt ai ned tag val ue used. There are a nunber of ways to
* inplement it. The use of an enumlike ValTag is pretty typical.

*/

if (ibs.tag == INT) {

i = ibs.val.intVal; /1 Safely fetch the int val ue

/1 do whatever with i

}

if (ibs.tag == BOQL) {
b = ibs.val. bool Val ; /1 Safely fetch the bool val ue
// do whatever with b

}

if (ibs.tag == STRING {
s = ibs.val.stringVal; // Safely fetch the string val ue
/1 do whatever with s

}
/*
* Try to assign an integer to the whol e union variable.
*/
/'l ibs = 10; /1 Produces a conpiler type error.
}
FMSL Union, with Interpreter-Maintained Tags:
obj IntOrBoolOrString = intVal:integer or bool Val : bool ean or stringVal:string;
var ibs:1ntOBool OString;
var i:integer;
var b: bool ean;
var s:string;
op main() = (

(*
* Use ibs as an integer; here the interpreter keeps track of the fact that
* the intVal conponent is currently active.

*)

set ibs.intVal = 10; -- Treat ibs as an int; in contrast to C, the
-- interpreter internally maintains the tag,
-- which is set to indicate that the intVal
-- conponent is currently active

set i = ibs.intVval; -- Assign 10 to i, as expected

(*

* Erroneously use ibs as a string, with int as the current component.

*)

set s = ibs.stringVval; -- Assigns nil to s, since the interpreter

-- knows that ibs is currently an integer

Page 3

(*
* Use ibs as a bool ean, again with interpreter-naintai ned change of tag.
*

set ibs.bool Val = true;
set b = ibs. bool Val ;

(*

* Use ibs as a string, again with interpreter-maintai ned change of tag.
*)

set ibs.stringVal = "xyz";

set s = ibs.stringVal;

(*

* Here is the normal way to safely use a union variable. 1t involves

* checking the current value of the tag, and accessing the conponent that
* the tag-check says is currently active. This is the place in FMSL where
* the '?.° operator gets used. It returns true for the currently used

* field, false for all of the other fields.
*
if

)
i bs?.intVal then (

set i = ibs.intVval; -- Safely fetch the integer val ue
-- do whatever with i;

f ibs?. bool Val then (
set b = ibs. bool Val ; -- Safely fetch the bool ean val ue
-- do whatever with b

f ibs?.stringVal then (
set s = ibs.stringVal; -- Safely fetch the string val ue
-- do whatever with s;

)
(*

* Assign an integer to the whole union variable. This is called
* "auto-injection", and is not supported by C. DO NOT | MPLEMENT I T.
*)
set ibs = 10;
);

As the comments explain, the FMSL interpretees track of the type of the the currently in-use component of a
union. Inthis context, "in-use" means the component most recently accessed withotherator So, in a \al-

ueStruct for a union type, there is (at least) one Value* for the current component, and a tag that indicates which
component is current.

You can implement this in the interpreter in a number aysv Aquick and dirty way is to use tuple values almost
as-is for union &lues. Thenly change is to add a tag field, that the interpreter can use to keep track of the currently
active field. Inthis solution, the ValueStruct for a unioalwe is represented as the full tuple, plus the current tag.
Whenever the ' operator is used on a union value, the tag field is set to the component named on the right of the .
Otherwise, the implementation of is the same for unions as it is for tuples. And ttie ValueStruct itself that

keeps track of the current component, independent of what variable the value is bound to.

A more space-étient representation would V& aly one Value* for the current value, instead of the array of
Value* used for tuples. Unless you find this representation conceptually easier to impleseot,vithrth imple-
menting just for the storage saving.

Looking at the Mong example in your email
obj Money = coins:integer or dollars:integer;
it's legdin FMSL, just like it would be in C

Page 4

t ypedef enum { CO NS, DOLLARS} MoneyTag;
t ypedef struct {
MoneyTag t ag;

uni on {
int coins;
int dollars;
} val;
} Money;

Having a union with tw components of the same type probablytigth'that useful. That said, the way ydugccess
the coins and dollars fields would be justlik the examples alve. |.e., m?.coins returns true if the coins field is
active, and m.coins accesses this field. If coins is in fact thevadigld, then m.coins returns wheage value is
stored there. If m.coins is not current, then m.coins returns nil.

Auto-Injection

The last line of in the FMSL union example illustrates whedlled "auto-injection". "Injection" is the formal term
frequenting used for binding one of thalues of a union type to a union value itself. The current FMSL type
checler supports this, but it would be a pain to implement. $ldjké you to skip it, so you can get to the testing
stuff more expeditiously.

FMSL Unions as Enums

There are a lot of FMSL examples that use union types to do what enums ddereCis another side-by-side
comparison of C and FMSL, showing a typical enumerated type. xEmeptes are in the filesnum exanpl e. ¢
andenum exanpl e. f sl .

C Enum for Days of the Week
t ypedef enum {
Sun,
Mon,
Tue,
Ved,
Thu,
Fri,
Sat ,
} DaysO Week;

DaysOf Week d;
int main(int argc, char** argv) {

if (d == Sun) {
/1 Do Sunday processing

}
if (d == Mn) {

/1 Do Monday processing
}

/1 etc. for other days.

/* Here's the normal way to assign an enumvalue to a variable. */
d = Wed;

}

FMSL Enum for Days of the Week
obj DaysOf Week = sun: Sun or non: Mon or tue: Tue or wed: Wed or thu: Thu or
fri:Fri or sat:Sat;
obj Sun;

Page 5

obj Mon;
obj Tue;
obj Wed;
obj Thu;
obj Fri;
obj Sat;

var d: DaysOf Week;
op main() = (

if d?.sun then (

-- Do Sunday processing
);
if d?.non then (

-- Do Monday processing

)

etc. for other days.

(* Here's how to assign an enumvalue to a variable, given this style of
* enumin FMSL. Getting this to work also involves auto-injection. *)
set d = 'Wed’';

);
As the comment for the last line again explains, tkésrgle requires auto-injection to work properlf/necessary,
| can get auto-inject to work reasonably quickly.

Unions of Concrete Values

A topic weve ot discussed directly is tuples and unions with components that are coatuete \Heres another
version of the DaysOfWeek enumeration that uses this feaflirs.in the fileenum stri ng- exanpl e. f sl .)

obj DaysCOfWeek = "Sun" or "Mn" or "Tue" or "Wed" or "Thu" or "Fri" or "Sat";
var d: DaysCOf Week;
op main() = (

if d="Sun" then (
Do Sunday processing

if d="Mn" then (
-- Do Monday processing
)

etc. for other days.

(* Here's how to assign an enumvalue to a variable, given this style of
* enumin FMBL. *)
set d = "Wed";

)
As with the auto-inject feature, you DON'T need to implement constant-valued tuples and enums; the ddsting w
can be showcased fine without this functionalithe good nes is that these features should pretty well work with
the implementation of tuples and unions you wiNda@mpleted alreadyi.e., without having focused specifically
on constant-valued tuple and union components.

