Page 1

SpecL/FMSL/RSL Implementation Ideas

Nil, ], and ” (26feb09)

To be formal, the type of the empty-list valug ™ is ?T*. Similarly, the type of the valueless function valle "

is op(?T)->(?T) . The latter definition may be unnessamyerly complicated, and stupid. If it really is, then
we'll just say that’ is a synonym for nil for anopaque type or valueless function. If we need toerthls work
formally, or even reflexively in SpecL, then it wuld appear that we need some way to define "opaque" type in the
SpeclL type algebra.

At this point, Id say that the easy way out is to representformally as a special casealoading of a bit of syn-
tactic sugr, that's easy enough to define in the formal semanticg, dmes not need to be defineable directly in
SpeclL, e.g., as somethingdikis would-be definition:

obj " = (op(?T)->(?T)) or ?T|is_opaque(?T);

Outputless Ops (26feb09)

They are offcially "valueless" operations, thatwalys return nil, and hee o type. Thisbegs the question as to
whether the &word "nil " should be usable as a type ident. The bottomline is that | sayRé@ionnale follass.

While NilType is in fact an internal interpreter type, it neakings too loose to ale it to be wsed in a source
specification. Herg'why. Having ary data ident be declared Nijpe is useless, because themsw way to mean-
ingfully allocate storage for it.

| was initially tempted to say that an op with not explicit return typse &n "opaque" type, but that seems not to be
sensible. Whatve can say is that the sym’lit is the only &isting value for a valueless functiolVe an hae”

be a synonym for nil, but for operation types, in the same way[thas a synogm for nil for list types. There
seems to be some degenerate consigtesre, though it may be more complicated thawibrth. Sedhe preced-

ing item in these notes for further discussion.

Setting Output Parms by Name (25feb09)

As if we need yet another unsettled "idea", leoak. Itmay be worthwhile to consider an exception to tloeila-
be rule thatset can only be used on declaredrs , that exception being the use s#t on output parms.So,
motherfuckerconsider it.

One More Time, and the LAST Time, for “Attribute’ ' versus "Property’’ (20feb09)

At this point, | think its larmgely futile to worry about hdng ary substantial agreement with SpecL versus UML ter
minology. Where it doesn’significantly comprimise SpecL syntax and/or semantics, then SpecL/UML agreement
is fine. Otherwise, F it.

A particular case in point is the long-standing anxietgr the UML use of the term "attritble" compared to the
SpecL use.Having read Wikipedia, of all places ( the article on Entity-atitebvalue model ), Ve become fully
comfortable with the SpecL sense of the term beimgttwkeeping, and hence we will NOrename SpecL
"attributes" to "properties".

We'll havean appropriate section in the ref man that discusses the issue thorpadidps een with a small dose
of whimsy The idea is this: "Look at the UML, understand it in terms of the underlying SpecL, andvdory
about the differences in UML versus SpecL terminolodyUML diagram is-a UML diagram. By gmother name,
it would smell just as bad."



Page 2

Most Recent Thoughts on Grammar Rules, Symlits, and Multi-Paradignmness (20feb09)

Keep grammar rules, but damhake them synomous with obj def&eep symlits, as the way to represent something

that has mnemonic name, but is not modelwise considered to be a 8tvingould forget the second of these if we

redo the latest term-factok@&mple with double-quoted strings for terminals instead of symlits, but having looked at

it yet again, symlits are bettéf not significantly so, as terminal symbols in a gramraamell as other places that

we've dted often enough, including

a. asan enumeration literal, in lieu of a strinBo hase a €ction on this in the ref man, that does a side-by-side

comparison of the tavrepresentations of, sag DaysOfTheVéek enumeration, as a string union versus a sym-
lit union. Explain, explain, explain.

A FIRM DECISION: We should in fact hae ®pareate syntax for aweype of entity called a "rule". It can look
like a @nventional grammar rule, so that the latest and greatest version of theatton4dttribute still works. |
thought for a bit about king a nev 'rule ' keyword, but that would mak gammar rules look stupidAnother
good reason to separate grammar rules from obj defs is tiggetiheally not the same entities, despite the areas of
similarity. In particular embedded actions really damhake ®nse for obj defs, and inheritance doesaém to
malke much if ary sense for grammar rules.

There is the kitechen-sink-esque nature of having grammar rules as a separate languageiféahindg; ibcan be
((reasonably) well) rationalized on the grounds that SpeclL is, after all, billed as a "multi-paradignm" specification
language. Wo whit, the semantic paradigms that are supported are:

a. model-based/predicedi

b. dgebraic/equational

c. functional/operational

d. imperatve/operational

e. dataflav

f. entity/relationshignot sure this is separate from one or more of thee&bo
g. attribute grammar

h. possiblystate-machine

Text for Ref Man Discussion of Vars, Etc. (16feb09)

"... There is a simple rule to remember about specifications that use variables -- if you want your specification to be
purely functional, dort’haveary variable declartions."

"So, what is the differece between a let expression with and wihtout an explicit type declaltasianidtle, haing
to do with inheritance Also worth noting is the issue of testing valueverses. (These both need to beptained
thoroughly.)

Overloading WRT Type Vars, and Nixing Coarity Overloading (15feb09)

For the purposes ofwerload resolution, a type var anywhere in a signature subsuvedsaaling at the typear
position. E.g.the following results in a function redef error:

op O1(x:?X, y:integer, z:string);

op O1(y:?Y, y:integer, z:string);
as does

op O1(x:?X, y:integer, z:string);

op O1(x:integer, y:integer, z:string);

For even more symplicity it may well be vorthwhile to say that a typeavanywherein a signature subsumesgen-
loading at all. E.g., the following also results in a redef goromore clearly an eror described as redef of a poly-
morphic function:



Page 3

op O1(x:?X, y:integer, z:string);
op O1(...); /I For *any* zero or more parameters in "..."

And for even further simplicity we will nix coarity overloads. (Motherfucgr -- this decision was made firmly 8.5
years ago, in the 21sep00 entryhis is one shocking and scary motherfucker of an observation, mottearfuck
Time to get things the fuck done, once and for motherfucking all. Did | say Motherfucker?!?)

No More Grammar Rule Cuteness, and Other Syntactic Musings (13feb09)

Given how ill-used the kywordless, space-delimited obj definitions areljkto be, and he not-really-that-messy a
file like term-factor-does-ark.rsl looks, | think its ime to simplify the fuck out of things by getting rid of the syn-
tax that allows objects to be declared without an "oéjord, and with space-delimited componentn exprs.

Once this is done, parens will be a better means to declare parameterized types than angle brackets, since the latter
most likely causes syntactic clash, if no visual confusion with >’ as the inheritance shortcut.

And another (?final for now?) syntactic observation is that we may \aell to allov al type expression ops in an
op signature, to alle the ready definition of functions Bkthe ML for loops. We dasses-archies/530/exam-
ples/ml/for.ml and the rudimentary attempt to duplicate this in newer-inputs/for.fmsl.

Let Semantics, Redux (14feb09)

OK, haw bout we screr ML, and hae genuine single-assessment lets, meaning in particular that ydueassign

a let var the way you can an Mlale. Thiswill make things nicer pretty much all around, since more than one
appearance of letav on the LHS of a let is a redeclaration erroets can stil, of course, appeare on the RHS of
another let, as long as tiee declared lexcically before their RHS uskhis makes lets li let* in Lisp, in that
order is in fact relant.

Testing Ideas (11feb09)

Provide different leels of axiom validation:
a. afterevay operation imocation (default)
b. dter every expressionwaluation, i.e., expressions in an actual parameter list or expression sequence
c. afterevay boolean clause evaulation, i.e., afterwery boolean AND, OR, or NDoperator gal
d. afterevey operator ealuation, i.e., after thevaluation of aly and all sub-expression operators

Semantics of let, val, and expression sequences (4feb09)

OK, here are conclusions related to the 3feb09 discussion of this topic:

a. Lets can only appear in an explicit expression sequence, which megnsath®t be used va immediately
after a top-leel prompt. Anexpr list is legd at the top-leel prompt, but it creates its own local scope, such
that ary lets it contains goveay at the close of that scope, i.e., at the end of that expression seqeeca-
tion.

b. We will change the syntax of the anachronistic "desig := expr" to "set desigr= d think this is a much
more sensible syntax, and we can explain clearly in a ref man section entitled "fEnenidod Betweelet
andset ". To whit:

i. only names, not designators can appear on the LHS of the;let’
ii. let's ae "single assignment" local variables, blah, blah, blah

iii. Values, declared withval ', are strictly one-time declared global constanifbey cannot be redeclaredxaepted
within module boundariesThey are not eecutable expressions inyaway, so ey cannot appear inxgr lists, as in
ML. Value exprs must beva@luatable before runtime, and hence cannot contain variables, or be defined circularly.

iv. Variables, declared withvar ', are strictly one-time declared global§hey cannot be redeclared, excepted within
module boundariesThey are not &ecutable expressions in yaway, so they cannot appear inx@r lists. Var



Page 4

intialization exprs must bevaluatable before runtime, and hence cannot contain unitialized variables, or be defined
circularly.

v. Expression sequences define their own open scope letithbeing the sole form of declaration within the scope.
Within expr sequences, let and set identifiers are completely separgt@ticular thelet declaration of a local
identifier X hides awg let var X defined in an outer scope, and/ aariable named. Hence, det var has a difer-
ent class than a globaawy and the are not interchangeableA clash between let and set vars can only happen
within an expression sequence, and only in the following circumstance:

A let var is declared, and subsequently appears on the LHS of a set; the typecheck error message in this case
is "cannot use set on a local variable declared with let".

Note that the corerse of this will not cause a clash, since a globaiable name appearing on the LHS of a let will
redeclare that var name localénd hence hide the global.

Semantics of let, val, and expression sequences (3feb09)

Doing work on the interp has led to reconsideration of these semantics, and their implementation. Here are some initial
notes, with more to folle, perhaps on a different date.

For the implementation of valuexecution, it can be done as last pass in the type ehedfter all other checking has
been done Alternatively, it could be done as first pass in the interpreWwhether values are constants, or "lettable" is
discussed further beho I'm strong inclined to keep them constants.

To avoid confusion betweeriét ’and ="', we could say that let'rot legd at the top-level of the interp, which can be
done havever it needs to happen. Probably only a single expr shouldwidle "> "prompt", instead of an expr list.
This shoud tak care of lets not being allowed at the topele Explicit paren-enclosed expr lists will still be allowed at
the top leel, but the lets, if ap in these contexts willl be local only to those ayroous scopes, and therefore not stgvi
out to the top feel. Whathis means, also, is that only global var decls and assignment can be used at tret ttop le
store intermediate sandboalues. Thisnay well be fine.

I’ve onsidered making the semantics of FMSL values tilose of ML, havever the problem with this is that it alks
values to be redeclared, which is not really what we want in fif@l.example, if FMSL vals wrked like ML, we could
do the following:

val x = 10;

opf() =x;

> X;

> 10

val x =x + 1;

> X;

> 10
outputs

10

10

11

10

But this seems (hasvedys seemed) rather disengenuous, since x is really acting me \Bkiable than a value in this
case. Thaon-wariable behdor here is that the use f retains the historical value of x, rather than values of x made subse-
guent to s declaration. Here what things could look li&in AMSL to get the same semantics:

let x = 10;

op f() =x;

> X3

> £

letx=x+1;

> X3

> f(;



Page 5

The deal here is that let is a functional single-assignment thing, that temporally redeclares a variable, sygiraéhiat an
ous uses refer to a different value than a subsequent redclarétienseems a bit better than ML, though it does still
have the "temporal surprise" issue.

Let's ty to rationalize things here, in terms of values, variables, and fétst, avalue declaration is a constant
through the lifetime of a specification. It isna@lys an error to re-declare a value identi@tso, a \alue declaration is a
top-level entity declaration, N@ an expression. Thisneans a value declaration cannot appear in an expression sequence,
in particular in a function bodyThe value identifier itself is an expression value, and can appeay irvalue &pres-

sion context.

A variable is like avalue , declarationwise. l.e.a variable  declaration is top-lel only, and cannot be re-
declared. Itmodels a piece of data that is shared by all operations a funcomariable identifier is anx@ression
value, and can appear inyanvalue or l-value context.

A let is both a declaration and arpeession. l{re)declares an identifién the current scopeand may appear in §n
expression contd. Specifically a let of the form

let name = expr

declaresname in the current scope, if it is not already declared. It then binds the value @fgheto name. A let
name can appear inyasubsequent-value context, where it isvsduated by immediate macrxgansion. This means, in
particular when a let variable appears as a@alue within the body of an operation declaration,ef@uatedvalue of the

let varible is placed within the function bqdyOT the uneauated let variable name. The most important consequence
of this is that if and when the operation is subsequentiykead, it (efectively) uses the most recent bound value of the
let name, not ansubsequent value that the letriable may hee been re-bound to. This behavior is akin to the kidra

of val in ML.

A let expression, as with amther expression, CANNDappear in a top-kel declaration contd, although it can be
executed in the top-hel execution scope. I8 the latter case that gets a little fynkurprisavise. E.g.,
> | etx=10;
var x:integer;
ERROR: you cannot redeclare the sweet and inoocent let variable "x"
to ba a nasty and evil global variable

>x :=10;
ERROR: you cannot change the sweet and innocent let variable "x"
with the nasty and evil assignment operator ":="

var y: integer;

> | ety =10;

ERROR: you cannot change the nasty and evil global variable "y"
with the sweet and innocent let operator

I’'m inclined to use these as actual error messags, tso that the whimsy might help diminish the nastiness of the sur
prise.

Another possibility is teyntacticallyrestrict let exprs to be at thediening of an expression list. This would be consis-
tent with Lisp and ML, and makhings much simpler with gard to mixing and matching global vars and lets.

The General Idea of “Functionalizing” or ' 'Purifying’ ' a Spec (14jan09)

It may well hae dready been done/thought-of in the literatufmyway, the idea is to find uses of global vars and term
them into explicit function parmd. think it can be done staticallwith a transitve dosure on the calling chain of each
fucntion using one or more globals.

A quick look at the Wikipedia article on parallel computing is a bit depressing in gasl rgiven that there appears to

be a lot of shit | do’know about, &en as arly as Lampors 1979 shit of the sequential egdience of parallel program.
Anyway, the idea of "purifying”, or at least having the type checker check for pureness may be worthwhile, if not ground
breaking.



Page 6

Syntax of Expression Sequence (27dec07)

To avoid CJ culture shock, consider using/allowing curly braces for expression sequences. Thiswedodd them

with their use as tuple constructbut this is probably OK. One potential ramification of this is the assignment of func-
tion values to function-valued variables, but this might just wehkaut fine. This brings up the issue of fre¥in a
function body which presumably we should deal withdikisp, hut have the type cheker issue a warning of the form
"Variable X is unbound in function F."

Decisions (4dec07)

Based on the seral entries of todag' date that follav, plus other entries further down the list, and in the interest of sim-
plification, here are what | hope are some defmitecisions:

a. possiblyeliminateall abbreviated leywords (except pre/post); specifically: ax, eq, func, is, obj, op, ops, precondi-
tion, postcondition, thm, val, var

b. alternatively diminate all unabbreriated leywords (except axiom); specifically: ax, eq, func, is, obj, op, ops, pre-
condition, postcondition, thm,

c. getrid of functions altogetheteaving onlyop as the kyword

d. getrid of the separatexecutable expressions, retaining assmnt (witlv rget’ syntax), foreach, and while, thereby
eliminatingif-then  as a statement amdturn . This leares exactly three non-functional constructs -- set, fore-

ach, while.
e. foget about typename field access, once and for all
f. changethe use of 6p" in a parts spec tolambda " or perhaps function "; it would be nice not to h& ay

keyword at all for a function type expression, but a quick hack in paaeds 2 s/r and 4 r/r conflicts; we may be
able to get it to work, but | donknow at this point (obviously don’'do this if we go with the get-rid-of-funcs idea)

g. replacé<’ with >’ as extends abbreviation

h. replacghe term "atomic type" with "primite type"

i. replacethe term (and éyword) "attribute” with "property"

j- getrid of sym lits

k. forget about Object " as the top type

I. gofor type vars fullyincluding use in generic obj decls and op signatures

m. theuse of ;’, "and’, and ' ' should be fully interchangeable in all list contexts, insofar as LALR allows it

A Not-Yet-Fully-Explored Problem with Typename Access to Fields (4dec07)

What do we do about cases where the name of a tuple field or parm is not a plain ident, as in

ManagerRecord > PersonRecord = Employee*;
InterspersedStuff = (Tag or Text)*;

?

| believe the answer must be that typename field access can only work when the type of a component is a plain ident,
which doesotinclude a type & This is a bit of a duh, in that the designation tgeefield access means that wee’
referring to the field by it®amedype, not some type expression.

I’'m not sure at this point if this realization is a potential nail in the coffin of typename field attiisk it might well

be. Inreading again the 23apr03 entryn thinking it's not really as compelling an example as it seemed at the time.
Further having a good IDE, with tuple component completion, could go a long weards lessening the need for type-
name field access.

So lets do an &plicit pro/con analysis for typename field access:

Pros:
a. simplejn particular to the novice, e.g., the intro SE student



Page 7

b. can be cleaner and shorter

Cons
a. violatessimplicity principle
b. rotationally violates the use of type names in expressioes,ikit’'s a $iorthand that does not violate the under
lying semantics
c. doemot apply uniformly to all types, specifically tuples with non-ident field types
d. getscomplicated for tuples with twor more fields of the same type

e. adecent IDE, including specldoc inclusion of show/hide names button, can gowajitetavards lessening the
benefit of typename field access

So far it looks pretty clear that the cons/bat.

No Topmost Object Type (4decQ7)

If we go for nicely parameterized objects, | dahink Object as the "top" type is necessamiot having it makes us
more functional "feeling" than OO feeling, for what teatirth. Furtherit avoids the weak typing holexemplified in
newer-inputs/min-max.fmsl

Possibly Eliminate obj and op keywords Altogether (4dec07)

The idea remplified just belav, of no keywords at all, is just finel can &en live with using angle brackets for parame-
terized objects. As far aslword elimination goes, what just might work best of all is to eliminate the ahbed
keywords, e.g., 8bj ", and 'bp". This seems to be a reasonable compromise between retagywwgrkls for clarity if
the user so chooses, versus simplifying by eliminating exesssokds.

And with a decent IDE, the shorteewvords arert really all that useful. Thedywordless forms are good for on-the-
board use and quick typing, while the full-lengdykord forms will work fine in a template-aen IDE.

The other nice thing about aghtising the kywordless forms is that it makes grammar definitions just a normal thing,
without doing something fungkto dlow grammars as a special cade.the "I can gen live with it" file again, 1d put
using just plainZ’ as the LHS/RHS separatdnstead of having:'= " as yet another "is" &yword.

Heres an ample of full-blown lkeywordless and variabless defs:

PersonRec = Name and ID;
DB = PersonRec*;

Add(PersonRec, DB)->DB
pre: PersonRec.Name != nil and not (PersonRec.Name in DB);
post: NoJunkNoConfusion(PersonRec, DB, DB’);

end;

NoJunkNoConfusion(item:?T, in_list:?T*, out_list:?T*) =
item in out_list
and
forall (item’ in_list) item’ in out_list
and
#out_list = #in_list + 1;

GenericList<?T> = ?T%;

Note here that:
* we @an' use regular parens for parameterized types, since they’ll be ambiguougwitirdless op defs;
« when field or parm types are not plain idents, namestbe used; a type var it considered a plain ident.



Page 8

With this, | still think it fine to say that 'and’, ’;’, and ’ ’ are synonous ways delimit list items.

An advantage of héng no obj/op kywords at all is that allows them to be used as var nameislireg the possibly con-
fusing error when using alword as a user-defined idertlowever, | think this is a small enough advantage that retain-
ing obj/op leywords is highly aguable. Anadvantage with this is that it can help a definition read more cleary.

Regarding (still) allowing coponent and parm names, it can eeat on the basis of style, particularly if one wants to
male expressions less verbose-looking, as in the followingweiguhe abee:

PersonRec = n:Name and id:ID;

Add(db:DB, pr:PersonRec)->db’:DB
pre: pr.name != nil and not (pr.name in db);
post: prin db’;
end;
And more importantlywe musthave rames when field types are not plain idents (see "A NotVlly-Explored ...
(4dec07)" item abe).

In the end, as long as we dbmake things absurdly complicated and/or sacrifice understandabiligrigdif at all),
having optional syntaxes will be fineAnd we can hee a snart(er) syntax checker that warns of inconsistent notations, if
the user wants to turn on suchmings. Calin "notational lint" mode.

Possibly Eliminate Non-Abbreviated Keywords, For Simplicity (4dec07)

Candiates to get rid of includeollject ", "operation ", "function ", "operations ", "precondition "
"postcondition”.

Problems with this include:
a. text book presentation using full wordBject " may look better thandbj "
b. gecs arguably look better with the fully spelled-out entéywords
c. lthink there are more cases where abbreviatgddrds are a pain than the non-abbreviated ones
d

. whilel don’t much care for the fully spelled-oueyword "variable " compared toVar ", | can live with it for
overall consistency

Op Equivalent of 23may02 Tuple Notation (4dec07)E.g.,
op O(A,B)->C
pre: A<B,;
post: C = A + B
end O;

op P(D,E)->E
pre: D <E;
post: E'=D +E;
end P;
Possibly big problem here is that we're using type names directipis.eWe could do this:
op O(A,B)->C
pre: in.A <in.B;
post: out.C = inA+in.B;
end O;

but I think thats fucked up.

But maybe as long asstdear what we're doing here, referring to vars by their type names could b&@&HK just hae
to do some definite examples to be completely sure.



Page 9

Axiom Syntax, Yet Again (1decQ7)

Despite the 26nov07 thoughts on the mattdrink having axiom (and theorem) names is a prefectly reasonable thing to
do. It'll provide a consisteryowith other entity defs. At least thathe thought for the moment.

Syntax Rationale (1dec07)

'=" binds a hame to arxpression. Specifically
«in anobject definition, =" binds anobject nameo atype expression
«in anoperation  definition, =" binds anoperation naméo anunevaluated computable expression
«inavalue definition, =" binds avalue nameo acompile-time-evaluated computable expression

e in an axiom ortheorem definition, =’ binds aformal declaration nam#o anunevaluated computable boolean
expression

«in an initializing variable  definition, =" binds avariable namedo arun-time-evaluated computable expression
einalet expression, =’ binds avariable namedo arun-time single-assignment computable expression
«inaset expression,=’"binds avariable namedo arun-time-evaluated computable expression

Yet M ore to Do to Fnish Things Up (29nov07)

Define fully the semantics of relational operators on all typesahit (for starters, at least):
« for lists, the lenghts of both operands must be the same, and if so, each element is compared

« for tuples, operands must be strongly compat, not just subtype compat; this ensures that both opertmeds ha
same numbetype, and position of fields; if this is the case, fields are reelysiompared

« for unions, the operands must be strongly compat, which means that the fields of the union type must all be strongly
compat

If I'm not mistalen, weve wsed the term "equélent” to mean strongly compatWhatever, we reed to be precise about
all of this, both in the ref man and the SpecL spec.

Think through the Co-existence of Generics and Type Vars (29nov07)

4dec07 Update: Given that wete going with angle brackets for generics, the revised version of the example thed follo
is this:
obj GenericList<?T> = 2T*;
op Opl(gl:GenericList<integer>, i:integer) = gl + i;
op Op2(l:2T*, x:?T) = | + x;
and the discussion that follis is nav obsolete, insofar as it deals with the use of parens in the syntax of generic type
instantiation. It retained here for historical and rationale purposes.

If it's ot been stated explicitly (enough) s, this needs to be done, to ensure that the co-existence is in fact doable.
E.g.,

obj GenericList(T?) = T?*;

op Opl(gl:GenericList(integer), i:integer) = gl + i;

op Op2(l:T?*, x:T?) = | + x;

The on-the-fly generic instantiation seems not to conflict with a construtmaiion, since the former is used in a decla-
ration context, whereas the latter is used in an expression context.

Adding State Machines to SpecL (29nov07)

Sparled by need for a state machine definition as part of FIPS 140 compliance, I'm thinking it might not be that tough to
add state machine syntax and semantics. The graphical forms are a state-transition table and FSM graph.



Some would-be syntax:
(* Input symbols: *)
a; b; c;

(* Output symbols: *)
d;e;f;

machine M1
states: SO, S1;
transitions:
--> S0, -- Initial state
S0 --a--> S1, -- Goto S1 from SO, on input 'a’,
S1 --b--> S2, -- Goto S2 from S1, on input b’
S0 --c/d--> S3; -- Goto S3 from S1, on input 'c’, producing output 'd’
description: (* ... *);
end M1;

state SO
inputs: a,b,c;
outputs: d,e;
description: (* ... *);
end;
The presence or absence of inputs and outputs determines the type of machine it is:
« if all states hae inputs onlywith no outputs for anops, then the machine is a recognizer
« if all states hae exactly one ouput, it a Moore transducer

« if one or more states Y nore than one ouput, st'a Mealy transducer

If we have the gumpshum, the type checker can perform the following (types of) checks:

* determination of NR versus DFA

« determination of recognizer versus Moore machine versus Mealy machine

« malformedness, including:
ono start state, if appropriate
ono end state, if appropriate
odisallavance of non-opaque objects as symbols
odisallovance of outputless state of one or other states has outputs (or default to nil ouput?)
o ?others?

We may want to consider thesigword "symbol " as a guivaent way of defining opaque types. l.e.,

symbol x;
symbol a,b,c;
symbol d
description: (* ... *);
end d;

is equiaent to

object x;
object a;
object b;
object c;

andsymbol s ae disallowed from having a components attribute.

Page 10



Page 11

HOWEVER -- Gven that opaque objects can be declared as shown at the top of the preceding example, i.e.,

(* Input symbols: *)
a; b; c;

(* Output symbols: *)
d; e;f;

| really dont think the 'symbol " keyword is necessanat least for the state machine context.

Yet M oron Short-Form Object Defs (26nov07)

Am | smoking something, or is '<’ backwards for a UMLdikmemonicette for inheritance. l.e., shouldbbe >', so
the inherited-from object is in the pointy end of thewfoE.g.,

object EmployeeRecord > PersonRecord
= \WageScale and EmployeeStatus;

VEersus

object EmployeeRecord < PersonRecord
= WageScale and EmployeeStatus;

or even

object EmployeeRecord > PersonRecord
<> WageScale and EmployeeStatus;

Also, we should consider allowing extends and '=’ to be interchanageable in the order of an object definition, as in

object EmployeeRecord = WageScale and EmployeeStatus
extends PersonRecord;

Versus

object EmployeeRecord extends PersonRecord
= \WAgeScale and EmployeeStatus;

Rethinking Axiom Naming (26novQ7)

I'm not sure there wasver a kig clamour for naming axioms, and soyey the potential unclarity of the name/axiom-
body separator syntax (i.e., "’ versus '="), I'm not really sure we needv® &&om names, after all. Whatd’like to
see is a complelling example were axiom naming is useful.

The arguments against it include:

a.
b.

funky syntax

n seeming way to "imoke" or use an axiom by name in a spec, meaning the naming is only useful for (humans)
talking about a spec

asfar as browsing goes, we could i@ the checker automatically enumerate the axioms, giving them module-quali-
fied names of theM An", whereMis a module name (including the deft "Main "), andn is a unique gen-sym’
integer garting at 1, for each module; then the browser could ttak viaver to the appropriate source code, when
the user clicks on the axiom name in the browser

. usingthe nev javadoc-style comments, the comment immediately preceding the axiom definition would go in the

data dictionary for that axiom; an entry in the data dictionary for an axiom is of the form
Name (auto-gen’d) Expression Description

which is nicely analogous to the data dic entry for an object, viz.,
Name (declared) Components Description



Page 12

How Type Safe ae Unions?? (21nov07)

Do unions of incompatible types imply runtime type checking? Rereadeht and look at functional languages about
unions, including ML (datatypes), Haskell, and Z.

As weVe d least hinted at before, | think | &khe idea of having differentVels, or strengths, of type checking. At the
stongest leel, we could say that unverloaded equality is not defined for unions of incompatible component tyjoes.
sure, look agin fully at what ML does to require that functiongodatatypes account for all alts of an Mhtatype ;
see, e.g., 530/ml/lisg¥*.ml. Thewarning message from the ML compiler is "match ndraistve”, the specl analog of
which is the preceding idea of "weaker" type checking.

Type Var Naming (21nov07)

Figure out if type vars should V& the '?’ at the beginning, end, either one or more times gwhere in the identifier
string.

Also figure out whether type vars should be required in defining parameterized (aka, generic) types. See,ee-g., the v
sions with and without the syntactic use of type vars in newer-inputs/parameterized-types.fmsl.

Also figure out if just plain '?’ is OK as a typarvas bng as we dom’care about neighboring types constrairitw-
eve, it may be the case that '?’ outside of the context of an ident may cause syntax problems. Need to check it out.

Also figure out if we should limit '?’ in an ident to type idents, i.eveh@parate lexical/syntactic categories for ident and
type_ident.

Yet M oron Posssible Alignment with UML Terminology and Related BS (15n0ov07)

Re. the rationale for the term "object" instead of "class", | think we can rationally argue that specl objects are not really
classes in what might be called the widely-conceptalized sense, for at least the followning reasons:
a. operationslo no belong to objects, in the strongly object-oriented sense of UML
b. gecl objects can in fact be considered teehapects of both UML classes and UML objects, in the sense that
specl objects can contain concrete values

c. fundamentatllyspecl objects are most closely related to UML/Q§ghes

It is clear that English word "object" is highlyasloaded when used in SE circles. The sense most closely aligned with
its use in specl comes from the phrase "objects and operations”, used in context of software requirements analysis anc
modeling. Yadamotherfuckingyada.

Extending Primiti ve Types (12novQ07)

Despite what it says beloin the 270ct07 item, | think "primitg" is in fact a better term that "atomiclt’s &in to the
"attribute" versus "property" discussion. l.e., since | tiseé awy particularly compelling reason tafa "atomic" type
over "primitive" type, we can go with the latter on the groundsvefall clarity.

Now to the question at hand -- can we extend primitypes. I'mnot sure we/e come to a definitie conclusion on this,
but we dearly need to. What needs to be done is a scan of items in this file, andestsefollowed by a DECISION.
You know what one of those is, right motherfucker?

Moron Posssible Alignment with UML Terminology (10novQ7, cf 4nov07)

One possible, seemingly benign change in SpecL terminology (yes, | think I'll start calling it that now) is changing specl
"attribute" to "property”. This woids confusion with UMIs use of the term "attribute”, and there is some historical
precedent for the term "property” in spec lang contexts such as this.



Page 13

Mor e Syntx Fiddling (6nov07)
4dec07 Update: We will in fact use '=’, as discussed in the "Syntax Rationale" entry of 1dec07.

With the full adent of '=" instead of ’is’, we should consider if it makes better semantic senseetdhbauple compo-
nent initializer be =’ instead of '=".What brought this on was the odd-looking one-tuple definition imene
inputs/const-components.fmsl:

obj OneTupleOfintegerinitializedToTen = integer = 10;

with the thinking that
obj OneTupleOfintegerlnitializedToTen = integer := 10;

looks (somewhat) betteiThe question to be answered is if component initialization is marafikguality definition or
an assignment.

| just had a somewhat serking thought about possibly (re...re)changing the syntax of object declaration (backwto) allo
ing (having) "’ be the (only) separator in a short-form obj definitiénquick hack to the grammar wealed that it
appears to work.

But fuck it -- | think '=" is just fine for binding a type name to a typaltie". W\ can go on about this, but | really don’
think we need to.

Generics (4nov07)

4dec07 Update: With the use of '>’ instead of '<’ as inheritance aughere is no extra s/r conflict when using '<’ ... >’
to bracket genric object parms.

Consider strongly replacing the curreviiere attribute stuf (aka, kludge) with a more ceentional syntax, as illus-
trated, e.g., in neerinptus/parameterized-types.fmsl. gyntactic issue is the conflict betweesi as a ype parm
braclet versus the inheritance symbol, whichaetfdoes cause an s/r conflict in the current grammiean just hackd

in. Thereare a number of syntactic options, including using femint bracketing, or changing or eliminatirng as

inheritance sugar.

Further thought on this syntactic issue is thgular parens should be fine for parameterized types, as shown in the sec-
ond example in th@arameterized-types.fmsl , and the commented out RHS obj_heading , dated with

todays date (4n@07). We need to ma& are it all works out in terms of type refgjtthopefully its OK. Theres amet-

ing to be said for regular parens instead of angle brackets, on at leasttwnts. Firstregular parens are consistent

with the terminology "parameterized types", akin to the notation for parameterized functions. Also, using regular parens
avdds the introduction of additional bracketing syntax, when it is arguably unecessary.

One potentially very good thing about this moxpliit form of type parameterization is that it may well at least partially
address the more "featureful" form of composition in UML 2.1, vis a via UML 1.5, as discusséélated-
work/uml/general-info/UML-2-comp-model.pdf . This was rather wrrisome on first reading, but general-

ized parameterized typing seems to go in this direction, in that the type parm can be used in relatioimad, atirib

addtion to just the components that (seemed to be) the case for where instantiation. More thought is necessary here,
including theredefinesandsubsetassociation constraints that are most likely related to all this.

Re. the semantics of generalized type parameters, my initial thought (hope) is that it eandiese if not identical to
the current semantics of where clause instantiation. This obviously needs toked wut. We d course need to study
(and understand) fully ¥a generics.

Posssible Alignment with UML Terminology (4nov07)

In looking some more at the UML specs, the thought occurs, again, to consider using terminolegytbatbnsistent
with UML, e.g., 'tlass " instead of (in addition to)object ", "association(al)" instead of (in addition to) "rela-
tion(al)". Whatl would very much prefer is to spell out the terminological diffs between FMSL a UML, and rationalize

why they exist. Andl think this preferred course is in fact quite doable.



Page 14

Enum Trouble in River City (4nov07)

Whithernext andprev ops on enumalues? It a bt kludgy, but perhaps we can say thaglf union components are
of type "the T x", for some typ€, then there ar@ext andprev ops defined. This implies thesean @der to union
(and tuple) components, which in fact there is, per the Meiikion of #n to access the nth component. Whatree’
saying here is that if a union (and, what the heck, a tuple) has components of the same type, theméxtreaace
prev functions aailable.

We d course need to define "same type" formadiyd there are some subtype and type compatibility things going on
here we need to deal with. E.g., if all of the elements of a union (tuple) are compatible with each other directly or indi-
rectly, there arenext /prev ops. Indirectly compatible means somethingdikcompatible with other type", as in forall

i "the T x" are compat withT.

What we might be able to do is generalize this to all unions and tuples being fully indexable, in the normal sqeare-brack
way. What we do is makthe co-arity of the indeop be he union of the component types, modulo union type simplifi-
cation. Thisnotion of unionsimplificationis related to (or may subsume) the notiiodirect compatibilitymentioned in

the preceding paragraph. E.g., "union of T or T or T" simplifies to "T"; "union of thgeinfeor the integer 2 or the inte-

ger 3" simplifies to "intger". Soundgromising (but so do a lot of other motherfucking things).

Moron Relational and Valued Attributes (4nov07)
Allow multiplicity in Relational Attritutes. Seeg.g., newer-inputs/attr-multiplicity.fmsl.
Make the functional basis for relational valuesrbé .

| don't remember right ne why we aurrently allav attributes to hae general expressiions as values (see the parser syn-
tax for obj_attribute , Which includesexpr as a RHS alternat. Given that we seemed to ¥.& gone whole-hog

into concrete-valued objects, we doréally need this alt gnmore, and it causes a reduce/reduce when we added the
syntax for relational multiplicity shown in thewer-inputs example cited just al So, we should get rid of it, if at all
possible.

Cleaning Up Syntax and Semantics of Const and Ind’ Components (3nov07)

As noted in the LOG entry of this date, the "possibly starred" biznis in parser.y seems rather Auitiggcall, it was
done incrementally to al@ stars in signatures.

With the coming of refs, we need to revisit this area, and see if we should go a mlged#ibly starred and/or fetl",

or what the fuck.We may just want to rethink the ML-style of auto-tuplg®rthough as | recall this had some poten-
tially serious problems, lkthe concept of a truly multi-grfunction in a datafle diagram. Aryway, we reed to get clo-
sure on this.

Related to this is the idea of the difference between consthrdel/tuple components, versus initialized tuple compo-
nents, as illustrated in the following examples:

| think it's pretty clear at this point, if it has been so (and discussed) Wl that the verbosely mnemonic object names
of this exmaple spell things ouNow we nmust male sure this shit is spelled out in the ref man, and wherade fuck
else it should be.

Regarding the fabled "ref man", | think #'time to hae an dfficial two- or maybe \en three-pass version, akin to the
"Gentle Introduction to Haskell'ersus the full Haskell ref man.think we can readily motate the gentle intro, includ-
ing including some phrasiology BK'But can | do this ...", a preliminary lists of subheadings for which includes:

* Can | define constant data fields?

« Can | define statically initialized data fields?

* Can | define default values for operation inputs?

« Can | define generic objects, as indgenerics or C++ templates?
« Can | define an object-oriented model?



Page 15

« Can | define something that looksdila elational data model, as in an ER diagram or thevelguit in UML?
« Can | model something that looksdila gammay including an attribute grammar?

 Can | define general UML-style associations and multiplicities?

« Can | define an ontology?

 Can | test a model in some way?

 Can | prave things about a model?

* Can | execute a model?

» Can | model sequential programvilén some way short of eecuting it?

* Can | model a state machine, petri net, or UML activity diagram?

* Is there an easier way to access tuple compnents, other than having tovegncereponent?

« Can | define global variablesyen though | shouldn’t?

« Can | specify the behavior of an operation with "pseudo code", instead of preconditions and postconditions?

Summary of Syntactic Sugarincluding Auto Ops (300ct07)

| think we should fill this in here, and include it in some form in the ref man. $tbeelist so far:
1. auto-deref-on-field-select-of-ref-to-tuple

. auto-unbndle-n-tuple-as-arg-to-n-ary-op

. auto-lindle-n-args-into-n-tuple-for-1-ary-op-of-n-tuple-arg

. auto-gen-constructaps-for-objs

. (possibly)auto-gen-of-new-heap-object-on-binding-of-constructed-value-to-ref

. allov type names as tuple field names, with appropriate disambiguation

. #n form of tuple field access

. operatooverloading

© 0 N O U b~ WN

. allof the syntactic alternates and short cuts

The Point of “obj EnumLit = string’ ’ (300ct07)

With all the thinking wele cone, the question for a newbie might d#hy allow both "value X = const-val" and "object
X = const-val". A decent answer for allowing the latter is to say thatattbgenerate case of alling a type to hee
one or more constant values as components, without creating one or more specidemamne for what is and is not
legd. Moreover, as long as thers’'no karm in allowing this, things are just fine.

The benefit of allowing values in general to be object components isvitigsoa natural and straight forward way to
define enumerated types, as can be done in mostIRlagldition, one can easily model other forms of enumerations, all
stemming from one basic idea.

Mor e on Ref Type (29,300c¢t07)

Given that both UML and ML hee refs, | think we should consider seriously adding them to FMSL (cum Spétie).
ML syntax and semantics looks a bit fynko we @uld go with something lethis:
a. Examples:
obj A = integer;
obj B = boolean;
obj C = string;
obj ARef =ref A;
obj ABC = A and B and C;
obj ABCRefs =ref A, ref B, ref C;



Page 16

op Op(a:A, b:B, c:C, aref:ARef, rt:RefTuple) = (

a = 10; -- normal int var and val

aref = new A(10); -- ref var and heap val

aref = A(10); -- equiv OR replacement for the to preceding;
--  see discussion below

aref = new A(); -- ref var and heap val, uninit'd

@aref = 10; -- deref to access "ref to int"

(@aref).A = 20; -- deref then field select

afef.A = 20; -- equiv to prev expr, courtesy of

--  auto-deref-on-field-select-of-ref-to-tuple

aref = new integer() -- ERROR: new can only be applied to user-defined types
let a =100; -- single assighment

set a = 200; -- mutating assignment

a = 2 00; -- syntactically sugared mutating assignment

-- a bit more syntax
obj X =rtiref T and It:T*;
)

b. ref as a leyword can only be applied to a named type, &xiends .

c. Inthe area of shalle versus deep equaljthiopefully we can eliminate the need forotaperators. Vz., for two ref
varsaref andbref ,

aref = bref -- shallow equality
@aref = @bref -- deep equality

d. If we do things right, we may be able to create heap values without an expliciHoeeve, for clarity, it may be
appropriate to retain theew operatoy just to mak it completely clear when and when not refs are creatdis
said, here are a some (the?) possibilities in this area:

i. Saythat a constructor callwwbys returns a ref, and requir@to stick it in a non-ref var.

ii. Saythat a constructor call\abys returns a non-ref, and requireeiv’ to stick it in a ref \ar. (NOTE: This is
probably the best alternagi)

iii. Saythat a constructor call returns a ref or a non-ref, depending on the context, i.e.,saoamitl to. In this
case, the only indication that wevieaa ef value is what i bound to, and the seemingly only reason we need
'@ is things like deep equality (but he "things like" does not really match up with "only reason", but what-
eva, you get the fucking drift).

The good thing about the last approach is that it fits pretty darn well with modeling, as opposed to programming.
l.e., what we care most about is allowing refs to be used yiin a model, including its pre- and postconds.
Given this, and gien the idea of trying to define analytic, aka, non-constvacgpecs as much as possible, the
transpareng of using on not usingnew is not our focus. Hence, we could legitmately say something along the
lines of "Hey, dudes, when you start hacking with constructors, you need to What the heck you're doing, and

be avare of the fact that when you bind a value to a egfthe value goes on the heap." Buving just said that, |

still may be inclined to lea in the new opeartoyagan for clarity’s sake, and since its use is not really much if an
of an incorenience.

e. Thel7dec04 item belw talks about possibly eliminating auto-gegmbnstructors, based on a lack of need for them.
However, with this nev ref stuff, | think thg're in fact necessaryThe reason is that we need a way to construct
built-heap valueslicitly, and if we disallev anything but user-defined types on the heap, the (auto-gen'd) type
constructor makes sense, if not being required.

f. So,if we've rot spelled it out fully by this late date, we'll say that feerg user-defined obj type, There are these
overloads of an auto-gesh'constructor op created:
i. T() -- parameterless constructor op, leaving all fields uninitialized
ii. T(T) --fullinitializing constructor op (but see just below)
Re. the full-init \ersion, see the discussion mmew-inputs/fiddling-with-auto-gen-construc-
tors.rsl and new-inputs/uto-gen-constructors , the important gists are auto-unbundling to mak



Page 17

constructor imocations slightly more wieldyand the need for "holes" in tuple constructors for tuples with constant
values.

But wait on the following "but wit". Whats emerging here are at least a couple ideas:

a. The"pure" subset, or "core" of SpecL, that we can describe andateoin the ref man. It would be cool if we
could define this as simply as "no refs and no sets" and possibly "no constructors". And since loops are useless
without sets, it leges them out too.
b. A potentially clearer picture of whrefs are hard toerify. The deal is that when we creat@ew vaue, wete
adding it to a pool, aka heaplet of values of its type. I'm thinking there may be aalewino junk, no confu-
sion” rule for ops that modify heap values that we must state that the modification hizethonefnything in the
value's heaplette. Hmmpretty interesting, this, and we may on to something.

BOGUS: But wait just aafrging minute. Java has no explicit refs in it, and we seem to be able to do just file wiBuit.
then, theres thesetf stuff in Lisp, that we really should considdimm, this needs plenty of thought. :SUGOB

Death (at Last) to Sym Lits? (280oct07)

OK, heres what | think are the reasons we want g2z sym lits, and I'm getting to the point where | ddimhk the rea-
sons are strong enough to keep them:

« the value of an opaque typebut we @n argue that opaque types dbdéserve values -- that\what opaqueness is
all about; eg., we can define fieldless classes in Java without ever worrying about the factytidanthbave some
literal value notation for them.

« for non-terminals in the RHS of grammar rulebut hey, | think double-quated strings work just fine for this, and
might even be better in some sense (need to clarify why | think this)

* as a nore "accurate” model of constant enumeration literatgt-wait, is 'Monday’ really moe "accurate” in any
sense than "Monday"??

« abstract versus concrete syntaott | think this can get taken aaof by pauque types themselves, without the use
of opaque values, i.e., sym lits

Now that we hge (or just about hae) our good clean semantics for concresdues as object components, | think we can
hop in the vay-way-back machine, to the era when | seeminglyahaithought about ho potentially cool it was to
define an enumeration with just plain strings, as in

object Sex = "Male" or "Female";

| mean, it says what we want, we cawda srong-typed semantics for it, and we daméed to mess around withveeal
other ways to define the same thing with opaque types and/or sym lits.

Bottom line -- lets go br some simplicity here.

One More Time with Generics and a Built-In Topmost Object Type

It would appear what we t@ with generics is a reasonable deal for a modeling language, in that allows some useful
things to be defined in terms ofesloading and inheritance.

We've thought in the past about sowteat gratuitously throwing in the astyle Qbj ect . | don't think we can just do
this without doing one of tavthings:

a. Milnerstyle type inferencing
b. gpening the door to dynamic typing, via down casting
At this point, | think | could go either way here.

Re. type inference, my general inclination is that likely to be more trouble thanstworth, if what we're after is a
clean spec langHowever, | believe that type inference might be a bit easier in FMSkemgithat we do not ant ML-
style fully typeless op sigs. l.eyen for an op with a fully type-ariable signature, we still need to declare explicitly the
type of each parmHowever, type inference is still ligly to be an implementation pain, and the question remains if it’



Page 18

really worth it in the spec-based domain we're going for.

Re. dynamic typing, we just might be able tguar for dynamic typing, as agway to an wnderlying procedural pro-
gram. Infact, we might hage sctions in the ref man, after all of the functional sections, with a tige'lynamic yp-
ing and Procedural Computation"”, wherein we start oattfils:

"The features described thus far in the manuaé ttfined a fully functional, statically-typed language. In this
(and perhaps folleing) sections are defined procedural features (assignment, looping, refs (maybe)) and dynamic
typing features (Object and down casting)."

Lastly, for now, it might just be fine to hee bothtype inference and dynamic typing, if we can work out the details OK.
But you knav, motherfuckerlife’s getting shorter these days.

The Possible Re-Emergence of Operator Overloading, 28oct07

With the werload-based generics stwfie have going on nav, operator eerloading might just fit it, ¥en somewhat
sweetly What's come to mind just na (if not in the past), is an exampledikhis:
obj GenericDB = GenericRecord*;
op CompareRecords(grl:GenericRecord, gr2:GenericRecord) = grl = gr2;
obj NamedRecord < GenericRecord = name:string;
op CompareRecords(nrl:GenericRecord, nr2:GenericRecord) =
nrl.name = nr2.name;

which could be more ceeniently defined lik this:
obj GenericDB = GenericRecord*;
obj NamedRecord < GenericRecord = name:string;
op "<"(nrl:GenericRecord, nr2:GenericRecord) =
nrl.name < nr2.name,

the cowenience being not having to define thempareRecords op at all.

This could be nice, Ui at the price of opwerloading details that may takome time. The underlying hope is that the
current generic rules and semantics are effdgtiinchanged by this style of opaloading.

One issue is that comparison is built-in for all types (remembering thatutologically false for all function types).
Given this, we may want to limit\werloading to the comparison ops, though ffobably not necessary to do thid/hat
we can say is that opverloading has the potential to undermine the clarity of a speen that the appearance of an op
like "CompareRecords " is potentially more clear than jusk™, even in the context of record comparisons. And of
course thera’my frequent peee &out the non-transpargnof inheritance altogethein that the op name@ompare-
NamedRecords would be the clearest of all.

Ah, but a quick check of parser.y shows that strings are still valid op nénesll we gotta do mois update the type
checker (That'll be easy -- chuckle motherfucking chuckle.)

Maybe Already Said, but in Case Not, 270ct07
We dould probably disall inheritance from atomic types.

| was thinking that "primitie type" might be a better term than "atomic typeViegithat strings really arenhatomic.
However, we can in fact think of string as atomic asype in the sense that it is not composed of other types. dtte f
that stringvaluesdon' feel atomic is not really relant to the string type being atomiénd, in fact, we can think of
integer values as being unatomic, in that we can decompose them into separate digitsiaging 8io,'d say, the term
"atomic type" is fine.

Maybe Opaque Types === Sym Lits is OK, 270ct07

So the following doesh’'sound so bad, and aside from potential confusion of auto-decl of sym lits with opaque decls,
might just work out fine:



Page 19

An opaque type has exactly one value, anddtta¢’ symbolic literal of the typgname.

Types as Values, 23oct07, Updated 3nov07

To sy in ref man -- Careful:
obj TenAndTwenty = 10 + 20;
does NQ define TenAndTwenty to be the value 30, but rather to be the two-tuple containing the 10 and 20.

OR, we might just scre the way-old data dictionary syntax that allows '+’ as an operatdrgo back to only,” and
"and for tuple creation. This is actually probably a pretty decent idea. Think about it.

3nov07 update: | hae thought about it, and | think | doamt to get rid of +' as a @mponent expression operator
Among other things, | recall’ meaning logicabr in some dialects of boolean logic, with a multiplicatiorellkross"
operator meaning somethingdikupleness.

FMSL Meets Haskell, and Some Other Obsemtions, 230ct07

Did a bit of reading in the Haskell manual and gentle introduction. It woulédyanformatve o do me more Has\|
reading, and maybeven refer to it in appropriate places in the ref man.

One particular thing that stood out todagsathe statement that types are not at all first-class objects ielHask
FMSL, it would appear (I'm pretty sure,\amay), that typesre first-class in the case of union (and thereby) class types.
(BTW, if we haven't said it explicitly alreadythe definition of "class type" should simply be a type thaixisneled
from).

The use of union (class) types that eskhem first class comes from tf?e " and '?<’ operators, where type names are
used as expression operands. This needs to be expounded upon in the ref man.

Yet further musings on opaque types and symbolic literals, 23oct07

Given what appears to be the most recent thinking on this subjsatittlear if we still vant the one-to-one correspon-

dence of opaque types and sym litslso, we may want to de-emphasize the age-old way of defining enums using

opaque types(We can't entirely get rid of opaque-type-based enums, since if we lgpaque types, we canvays
malke wions out of them.)

A way to do this is to introduce awetomic type called Symbol. With this, the issue pretty much boils down to a
binary decision.Viz., is the type ok’ "symbol" or "the opaque type x"?

There are a number of questions and/or issues that need to beddsmie, and I'm purposely leaving them unresolv
at this particular junction (theserading to do). Said questions/issues include:

1. Theissues of specifier confusing that comes from:
a. auto-declaringn opaque type whever a ymbolic literalappearsanywhere
b. the complementary auto-declaring of sym lit values when an opgaue type is defined
where such confusion arises when trege’e-defined symbol error for an enum lit or opaque. (But this could
most likely be pretty much fixed with a decent error message, that explainkenérror happened.)
2. Theissue of being able to check the current value of an enyras/ar
if (color = 'Blue’)
as opposed to having to do type interrogation, as in
if (color.?Blue)

3. Idont recall if the current definition/implementation allows the following (I think the def allows it but the imple is

not there yet), but either wayaving sym lits be part of a "symbol" type would aldat:
obj Sex = Male or Female;
obj Male;
obj Female;



Page 20

var s:Sex;

... if (s =’'Male’)
Just looking (yet again) at this in this context, it looks pretty funkhavea sy that theres a ymbolic value
that's aeatedwith the same namas an (opaque) type.

4. If we go with the auto-create-sym-lit-on-opaque-type-def, then themgestion of what if apkind of values can
be bound to a var of an opaque tyjge mght want to say that no value but nil can be so bound, but thatiw
leave vars of an opaque type unassignable, and comparable to notitind. bThat might in fact be OK, if we
reason that an opaque type has no discernable value, ibpague meaning we cam’know what its value looks
like. Thiscould be a problem if we want to kmavhat type something is by looking at ilwe, but | think thas
probably wrong, since types and values donix like this. l.e.,we as what type something is with. ” and
'?<’, not by looking a value tha'in a \ar of a union typel think this is going in the right direction, but FUCK,
we need to get it the fuck nailed down.

5. Andwhile we're up (down?) in here, darforget that we just re-enabled the &iunf parsery that allows a type
comp expr to contain vaconstant values, and we need to fully explain and justify this in terms of the formal type
values.

6. For simplification, we may want to davay with the last point, i.e., values in typepes, given that we argue that
we dont do things like range constraints on lists within type®r, we ould (re)instate list range constraints.
Anyway, we reed to think through once and for all if allowing values in types is (a) OK fornfajlyorth ary-
thing. For the latterwe reed to dig out / come up with real examples whesasgful.

7. Whats going in in the last point is the struggle to allsmple enumerated types as something other than a special
case, while not raising a shitload of other theoretical or practical issues.

8. To be a lit more concrete, we can characterize the situation by saying that we canghug aftype "union of
(the int 1), (the int 2)" in an "int" vabut we cart ever put it back in a "union of (the int 1), (the int 2)" var.

9. Hmm. Whatve may just be doing is defining a way todaonst data fields without ax@icit const construct.
We @an confirm this by thinking about the translation inteaJand UML, if possible) of a type like

OneAndTwo =1 and 2;

Upgrade to Include “error’’ as a Distinguished Value, 8may07
In working out ideas in calendar/specification/ideas/duration-bounds.fmsl, g.v., it occurs to meitigatiha do double
duty as both themptyvalue and theerror value is weak. So, we shoud say that vars can assume three kinds of value --
1. nil , meaning empty or unassigned, the latter by virtue ofdbethat all the initial state of all not-yet-bouraty
isnil ;
2. error , meaning a run-time error occured whemleating the expression that produces thkig to be bound to a
var;
3. Anon-nil value of the variablg'declared type.
Another way of saying this is thateey type set containsil anderror

Examples of expressions that prodecer as a value are:
a. inde-out-of-bounds error

b. return value of an operation when a precond is violated
c. boundvalue that violates an axiom

We reed to complete this list of all cases whermor is created, as well as the rules éror propogtion during

expression eauation, notably doebool bool-op nil producefalse , nil orerror ? Atthis minute, Id say the

latter, but we need to work out the semanticsfadrror ... fully, it most likely being simply thagrror is pro-

pocated. Alsojt seems thagrror propogation will dominateil propogation, with rules likthis:

a. ifany one or more operands to built-in operatoremsr |, the value of the expressiongsor

b. if no operands arerror , but one or more isil , nil  maypropodte, but we may in fact want to consider pro-
pogatingerror in some cases, as iR "+ nil "=-error instead ohil



Page 21

Again, details need to be fully worked out.

Another Bottom Motherfucking Line, Reiterated

Based on the 24may02 and related entries, all opaque types are unique, and incompatiolg ethbr typesexcept
Object (7nil ?, if in fact there exists mil type??). Agway, the important thing is that opaque types afectifrely
unigue. And,as I'm nav working a specs for the wedftool, it has occured to me thatvirag opaque types be unique
may be pretty handy for dfd editing, in that when & pdge is created betweendwntyped nodes, a metype is created
of the form

obj edge-name

And to keep things really motherfucking simple, | think we're ready to get rig df&ltogether as adyword. It'll be a
pain to change the test suite, but worthvirall.

NIXED: [BI] think it's best as is, singeamong other things, an ax decddion like this "ax A1 = 1 = 1" looks funkier
than "ax Al: 1 = 1"; also, an axiom is naally like an entity that's being bound to a valydut rather a formula thag
being labeled. And even if it is, the fyd&ok thing wins out her

While we're at it, | think we need to change the syntax of named axioms to be

axiom [<name> '="] expr
instead of the current

axiom [<name> "] expr
:DEXIN

The REAL Bottom Motherfucking Line

Were going back to the 13m®5 bottom motherfucking line belo The problem with thei§/Cha$ business is that &
just too fucking hard to use these words sg ttmmsistently mak intuitve nse, and yet result in a formal definition that
works nicely So, the deal is that we'll sacrifice the intuéiuse of "is-a" for an otherwise consistent typing frauor.
The intuitve background we can refer to is that of standard data dictionary defs, that use "=" as the sefamtor
my real world, inheritance takes a way back seat to composition, and multiple inheritasca teky way back segbo
providing a more intuitg "is-a" notation for inheritance at the sacrifice of cleanliness elsewhere, is really not worth it.

It Looks Lik e isThas May Be a Pretty Cool Deal -- NO IT'S NO see just abwe)!

Examples:

obj DB has GenericRecord*;

obj EmployeeRecord has Name and ID;

obj SupervisorRecord is GenericRecord has Supervisee?*;

obj StaffRecord is EmployeeRecord has Supervisor;

obj Name is string; -- hmm, is this counterintuitive?

obj ID has number; -- hmm, how bout this? -- sure

obj DayName has Sunday or Monday or Tuesday or Wednesday or Thursday or
Friday or Saturday;

obj DB = GenericRecord*;

obj EmployeeRecord = Name and ID;

obj SupervisorRecord > GenericRecord = Supervisee*;

obj StaffRecord > EmployeeRecord = Supervisor;

obj Name = string; -- hmm, is this counterintuitive?

obj ID > number; -- hmm, how bout this? -- probably not

obj DB = GenericRecord*;

obj EmployeeRecord = Name and ID;

obj SupervisorRecord extends GenericRecord is Supervisee?*;
obj StaffRecord extends EmployeeRecord is Supervisor;

obj Name = string; -- hmm, is this counterintuitive?



Page 22

obj ID > number; -- hmm, how bout this? -- probably not

For a bit of detail, try this. We @an explain the ta flavars of 'is " as follows:

a. whenan object has exactly one component, you can consider that theislfecomponentgxplain how a one-
tuple and an is-a object aremantically the same thingopefully coming up with a somewhat better term for "is-a
object” vis a vis "one-tuple"

b. when an object inherits from another object, it is that object, plus it has additional components of its ey, ther
extending the object from whidt inherits

What these things mean technically from a language perngpéctinat theis clause can syntactically be one of the fol-
lowing:

a. anident list, probably allowing both comma aawdd to be used as the operator

b. aunion or function type, meaning the objexcbne of the union elements, a single list, or a single function type.
Theis clause caNOT be a tuple type; for thiflasmust be used.

Given the extant semantics that one-tuples and is-a types are semanticallyisegod has as leywords can be used
interchangeably to define is-a types.

I’'m thinking "singleton typ& might be a good name for type defined with is that has only a single nhame or non-tuple
composition expression and no extension \wak

Important Consequence of Going with “is’ and “has”

For non-tuple types, consider allowing is, particularly for simple enums and function tWiest we can be saying here
is that ag one-tuple type can be defined with "is".

OK, So It's Not “Prim’ ’ (15dec05)

Sorry but "Prim" as a name is (a) a bit too cute; (b) used for a bunch of other things, including ‘dyamthm" and
Source Forga'"Permission Record Information Machine".

"fmsl", on the other hand, shows upwiere at Sourcedfge, and is een pretty much nowheresville on Google, with
fmsl.net andfmsl.com still available. Andfmsl.org is the Franklin Mers Softball League -- pretty much fof
the beaten path.

Making the Decision to Define Primitives Equationally

Anything we want to consider primit that's ebove function irvocation, typing, arithmetic, and quantifier-free boolean
logic, we'll define equationallySo, heres the list of such things:

a. lists
b. tples
c. quantifiers

| believe that once we/e cone this, we can definearything else in terms of non-equational Prim (itselfheed to go
out and ma& are that this is &sher but | cant really see apreason it not. Pluswho the fuck is eer going to call me
on it anyvay?? Wéll, if goes to Source Forge,dtbe knda fun to hae ssmeone at least notice.

Ideas for V5, aka “Prim”
16jan06 one motherfucking moe bottom motherfucking line:

Given the poignant confusion about "is-a" and "has-a" vis a visR8k of "is", | really think we ought to see if we can
live with "is" and "has" as theegwords, without '=" or >’ at all. One of the main reasons for '=' is data dict compatibil-
ity, but I'm pretty darn comfortable just farging this.



Page 23

So, for good clean simplicitpne more motherfucking time, try this:

KeywordAttr Name Meaning

has, components: Defines the components of an objelt.
terms of typing, it binds the type defined
by the componentxpression to amb-

ject ident.

is , parents: Defines the parents of an object, thereby
defining the components of an object to
be thoses of its parents, wmdled and
anded if multiple parents, and then and-
ed to the object’ avn componnts.In
terms of typing, it binds the type "par
ent-type<1> OR ... OR <parent-type<n>
OR parent-types-unbundled and compo-
nent-type" to ambject ident.

With this style of defs, we can leate current type checking semantics in tact, except that we will disassieritance

from atomic types, perhaps including opaque types. The latter bit would be consistent with the 24may02 conclusion that
opaque types are at the "bottom" of the type hieyarttoweve, not being able to inherit from an opaque type may be
funky in terms of incremental delopment, because it precludes defining an object as a place holder and then refining it
later Also, Jaa (and one suspects other OO PLs) allows componentless classes withonatdem.

SO, we need to think through whether toalioheritance from opaque typekthink it has to be OK. WhetherstOK
to inherit from a non-opaque atomic type remains to be determined.

In terms of type rules, whether we do it by spelling or otherwise, | thimkritty darn clear at this point thatyatwo
differenct opaque types are incompatible. I'm not sure iff@v¢iought of this in structural terms, but | think it neak
sense at thatVel too, in a perhaps odd kind ofaywr The deal is that twdifferent opaque types each of no structure, and
types with no structure will be considered incomparable, and therefore notiegjucompat).

13nov05 bottom motherfucking line: here aidE keywords and symbols:
Keyword/Symbol/Attr Name Meaning

is , =, components: (for object),body: (for operation) T} T{
Binds a type to aobject identifier, an expression to amperation
identifier, or a \alue to avalue identifier; in the case of a type bind
ing, it defines the one or more components of the object; in the |case
of an pression binding, it defines the functional body of the opéra-
tion.

extends , >, parents: T{
Defines the one or more objects from which another object inherits, or
operations from which an operation inherits; values do not inherit,
T}

Symbol (concise) exmaples:

obj DB = GenericRecord*;

obj EmployeeRecord = Name and ID;

obj SupervisorRecord = Supervisee* > GenericRecord;

obj StaffRecord > EmployeeRecord = Supervisor and Status;
-— Or -—

obj StaffRecord = Supervisor and Status > EmployeeRecord



Page 24

- Or -
obj StaffRecord > EmployeeRecord <> Supervisor, Status
obj Name = string;
obj ID = number;

Keyword (verbose) examples:

obj DB is GenericRecord*;

obj EmployeeRecord is Name and ID;

obj SupervisorRecord extends GenericRecord is Supervisee?*;
- or o

obj SupervisorRecord is Supervisee* extends GenericRecord;

obj StaffRecord extends EmployeeRecord is Supervisor and Status;
- Or -
obj StaffRecord is Supervisor and Status extends EmployeeRecord;

obj Name is string;
obj ID is number;

You know, it may well be time to dispense with the "has" and "is" business, and just use symbols. The good thing about
this is that the sematics of one-tuples being\etgrit to type equality is just fine. If we go this root, then only the con-
cise examples bealowork.

Usehas andis for keywords instead ofs andinherits from , resp. Alsomake= and> synoryms forhas and
is , with the use of in particular suggesting the directionality of the UML arfor inheritance.

Concise exmaples:

obj DB = GenericRecord*;

obj EmployeeRecord = Name and ID;

obj SupervisorRecord = Supervisee* > GenericRecord;

obj StaffRecord > EmployeeRecord = Supervisor and Status;
- Or -

obj StaffRecord = Supervisor and Status > EmployeeRecord
- Or -

obj StaffRecord > EmployeeRecord <> Supervisor, Status

obj Name = string;

obj ID = number;

Verbose examples:

obj DB has GenericRecord?;

obj EmployeeRecord has Name and ID;

obj SupervisorRecord is GenericRecord has Supervisee?*;
obj StaffRecord is EmployeeRecord has Supervisor;

obj Name is string; -- hmm, is this counterintuitive?

obj ID has number; -- hmm, how bout this?

Consider using:- for assignment, including for parameter initializatid®egarding parm initialization, there’'the inter
esting issue of default inputs of the form "Untitlédforn=1 ... .

Probably or at kast maybe, get with the program of using "/*" and "//" as comments symbols.
Perhaps replace user-defined attributes with just plain relationships.

Build a GUI editor with this kind of dialog for objects:
=== Object Editor ===
Name:
Components:
Extends:
Description:



Page 25

In Module:

V Mre

Operations:

Equations:

+ -

V Mre

Relations:

Name: Entities:

+ -

V More:
Properties:
Name: Type:
+ -
and this kind for operations:
=== Qperation Editor ===
Name:
Inputs:
Outputs:
Description:
Module:
V Mre
Precondition:
Postcondition:
V Mre
Components:
Dataflow:
V Mre:
Properties:
Name: Type:

+ -
and this for modules:

Name:
Exports:
Imports:
Entity List:
V Mre
Theorems:
Axioms:

and this for values:

Name:
Type:

Value:

Attributes:
Keywords
Based on consistent 205 misusd,diggest putting back the singular or "input" and "output”, and for consystimen-
ponent". Thenwith the good Icon-style more accurate syntax error messages, we can be dandy.

19may05 Op Selection and a Bit on Op Validation
For the CJ types, ali®’.’ to be tsed as an op selectéor explicitly-delcared ops. E.g.,



Page 26

obj X

ops: a,b,c;
end;
objY;
op a(X)->X;
op b(X,Y)->X;
op c(Y)->X;
op d(Y)->Y;

op main(x:X, y:Y) = (
x.a();

x.b(y);
);

| inorder for . to be usable as an op selecttite obj being '’ed must a an declared an op of the name on the RHS of
the ', and that op must i@ exactly one input of the type of the obj being dotted. And then, the featop’ means
treatobj as the (sole) input of typgpeof(val)to op, and do not supply that input in the normal way within the parenthe-
sized list of inputs. All the complicatedness of thigesds just hov silly dotted selection of ops really is.

By these rules in the examples afax.a() and x.b(y) work fineHowever, x.b cannot work in anform, because it has
no input of typex.

A new hit of checking to add to op decls is that an op listed in ais ab§ decls must va the obj in at least on place in
its signature. By this rule, #OK to list c in X’s gps, since it has X as an outputer though we can’say x.c, because
X is not one of ¢§ inputs. Havever, d annot be lgdly listed in X’s gos, since it has X nowhere in its signature.

17Dec04 Note on Values versus Objects (updated 13nov05)

The answer to the "I donknow ..." in the next paragraph is "l do kmpand it's row decided". \iz., we can hee aly
mixture we lile of type versus value components of an objekd.the comment in parser.y explains, we're ready to go
with this syntacticallythe typechecker just needs to be fixed.

| don’t know if we've dready decided this, but it would seem that tleeeejuncture between objects and values at the
point where an object is declared with 100% concratees. Havever, by the "the" prefix spelling rule, an object can
never be wsed as a value, since its type willvaebe pefixed with "the". Hence, while the following twdefs amount to
the same entity in some senseythee still different because the object version cannot be used as a value aallithe v
version cannot be used as a type.

object XO is 1 and "xyz" and true;

value XV = {1, "xyz", true};
The object version okQis not in fact particuarly useful, because it can hold only one typalwé vnamelyXV. Further,
... (dropped dj. However, it's fine to allav it, as a general rule.

17dec04 Update to Auto-Gerd Constructor Ops

For objects with one or more constarglve components, the constructor does nee taags for those component<.g.,
for

obj X is "abc" and i:integer and "xyz"
the auto-gem constructor is

op X(i:integer)->X

Fuck, the abee gplies to unbundling, since the pieusly-defined deal with auto-gehtonstructors is that their signa-
tures are exactly the objects type, not itswmbed components. The unbundling is a courté¥hat the real issue here
is is what the fuck happens to a tuple constructor for constant components. E.g., for Xalgpe is {1} a wfficent
constructoror do here need to be some kind of place holders for the constant components1as in | think I like
the latter but it's not currently syntactically t. Figureit all the you-know-what outTheres a LOG entry of this date



Page 27

to this effect.

And here$ another potentially major thought about auto-gen constructor ops -- do we fucking need themvah all gi
structural equi? l.e.,if we have  pass a &lue constructor in as thegato a onstructor op, wi don’t we just use the
value op directlyinstead of having to wrap a constructor call aroundTit® only reason | can think of is to force the
type to be a particular name, but | dathink this is necessary\gn that this happens at bindingyavay. As | recall, the
only time we need name egus related to inheritance, and | dbsge clearly hw the value stifis going to be a prob-
lem here. So, check out the following example:

obj X = integer and string and boolean;
val x1 = X({1, "abc", true});-- the canonical (and stupid) constructor call

val x2 = X(1, "abc", true); -- slightly better, courtesy of auto-unbundling
val x3 = {1, "abc", true}; -- OK, but doesn’t guarantee x3 is type X

val x4:X = {1, "abc", true}; -- does the trick, without the constructor at all
val x5:X = {1, "abc", 1}; -- just-for-giggles test of type checking;

-- fuck me, it fails as of 17dec04, and so needs
-- to be FIXED; there’s a LOG entry for it

| think the comments there say it the fuck all. Il.e., if we're a smart motherfwoi should dump motherfucking auto-
gend constructors altogetheunless theres ©me lurking reason to kia them around that Ve forgotten about, in my
reinvention-of-the-motherfucking-wheelay. Fuck me, | need to go confirm thigjtd sure the fuck hope this is a nice
new discovery to simplify things.

9dec04 Thoughts about Extended Quantifier Forms and Pre/Post Logic in Zeneral" 2

Conclusion first, followed by blatherSo, heres the part 1 conclusion, abouxtended quantifier formsMOTHER-
FUCKER. Itwould appear that after all of the bullshit and anguisha tpne through wer elseless ifs, the normal truth
table definition of implication, aka elseless if, is actf"if x then y else true". This is because when x is false, "if x then
whatever" is aways true. Looking at the alternedi for of "not p or q" makes this quite cleance "not p" is true when-
eve p is false. Sothe conclusion to the discussion belabout needing to be 100% sure on the e@ences for
extended quanitifier forms is that we arevnia fact 100% sure. MOTHERFUCKER.

And heres part 2 of the conclusion about elseless ifs in postconds. Since elseless ifs amount to "go true for free cards” in
the cases where the if is false, using elseless ifs in postconds is just plain too weak. The deal isvésatitdets al-

ues unspecified for all of the cases where the if expressiatsés fThisshould in fact be a@red in the ref man, to say

that elseless ifs, in general, and in specific casesaasptes, are fundamentally too weak for postconds. What & ha

to say in general is that a postcond must explicitly specify a condition for all possible values in the range of each output
var. What exactly this means fully is part what werdvd work out, lut elseless ifs in postconds are a significant part of

it.

The blather related to the preceding@tnclusion paragraphs weastarts, from here to the next item.

We reed to be 100% sure about the current\atprices that are in the ref man when explaining the extendned quantifier
forms, e.g., "forall (x:t | y) p" <==> "forall (x:t) if y then p". The problem I'nofsied about right at the moment is the
what happens with y isfse. l.e.should in fact the equilence not be "forall (x:t) if y then p else trud"think the fuck

so, and | need to figure it totally the fuck out, pretty much right the fuek no

In general, we may need to come to grips with the one-time-conidered-to-be-an-oddity position of Lois Brady that else-
less if dont make £nse (in pre/post) logic. This may well be true, particularly for postconds, since the idea there is that
we need to oger al possible values for outputs.

Let's push on this a bit. Consider
op Op(i:integer)->j:integer
post: if i >= 0 then j = 20;
Given the current rules weé (sort of) got, what about when i < O%ell, according to the standard truth table for impli-
cation, we hee tis
[ j i >=0j=20(i>0 = (=2 0



Page 28

-1 19 0 0 0 => 1 = TRUE
-1 20 0 1 0 => 1 = TRUE
0 19 1 0 1 => 0 = FALSE
0 20 0 1 1 => 1 = TRUE

So OK, this really is not bogus per s&/hat it says is that the only time the postcond fails is when i >= 0 but j !4 20.
succeeds whemer i < 0 or when both i >= 0 and j = 20. What this means is that i < 0 is at'darg" case asaf as the
value of j is concerned.

Now, to push on this furtherare such "dort’ care" cases really sensible in the case of postconds, or do we reallp ha
cover all possible output values in a postcond?

Well, we might say that if a postcond rules out a particular case, then an elseless if might be OK, as in
op Op(i:integer)->j:integer
pre:i>=0;
post: if i >= 0 then j = 20;
But this is in fact bogus, or at least redundant, since the postcondveaimappen if i < 0, gien the precond. Hence in
this case, the if clause in the postcond is unnecessary.

What | think weve arived at is hat "dont care" cases are in fact bogus in postconds. l.e., we neegédhleaform be
like this:

op Op(i:integer)->j:integer
post:ifi>=0thenj=20elsej=...;

since otherwise the value of jfidly unspecifiedvhen i < 0. But

9dec04 Update to 24may02 -- One MerTime with “Does nil = false?”

| think the conclusion there about "x <bool op> nil = nil" may well be ddcl4p, based on much of what we'said in

205 notes, if not elsehere. Specificallywe reed to look at the ay we describe what goes wrong with unboudned quan-
tification in sorting to ma& things completely right. As | recall, the explanation doesaat $§ay that "x <bool op> nil =
false".

Constructive Normal Form

A postcond of the form "output-parm = expr".

The general way to get a construetformulation is if you can sob/(easily) for the outputar. Presumably this leaes
out ary quanified exprs as construgtj snce | dont think solving for var inside a quantifier body is possillet’s try.
l.e., what would it mean to sahfor | in the following expr?

forall (i in [1..#1-1]) I[i] < I[i+1]

Fag, | think it's pretty clear that it doeshiean agthing. Whatl need to do is come up with a bit more precigalana-
tion of the imposibility of solving for | in such a case, based on some reasonable definitionefdiSolNevertheless, |
think the answer is clear that unless weehgomething lilke constructve rormal form, solving is going to be difficult to
impossible.

“ Object” as Top

OK, in a lattice-theoretic seng@pject is Top. So, how about this as the lattice of Prim types:
Object

tuple union list op
integer real string boolean opaque

nil



Page 29

Exists as Search (13nov04)

See new-inputs/exists-as-search.rs| for the vaiitn for a newchoose operatoywith the following semantics:
(choose (xinl) p)

(lambda (Object, Object*, ... farg, this needs more thot; and | did not just
... fall off here; we’ll hopefully deal with this
... eventually; | added a LOG ref as a nudge

not (forall
exists (x:t) p <=> not forall (x:t) not p

OK, I'm not sure on what kind of shek gound it may put me, but | thinkd’like to go with using algebraic specs to
define anything wee oot thats primitive, but isnt part of pure boolean logic. See the 10nov05 entry in implementation
notes for detailsThe point of this here is that we’'ll define exists and choose equatiomaith should help us deal with
the formal "bootstrapping"”.

Value Spaces (13nov04)

How about this. We aan allav the definition of "value spaces” explicitly to bound otherwise unbounded quantification.
l.e., we provide some built-in syntax and/or operators to do this.

This can then be combined with the cute trick for testing-based value spaces in thiedolay. When during testing
values are sent to ops, thbecome part of the value spaces for whatéypes thg are.

And we might gen be dle to introduce this cute trick -v&ytime a constant of a particular type appears in a spec, it
automatically becomes part of that typsalue space.n this way, sSmply mentioninga constant value anywhere in a
spec adds it to a value space. And this mayaat be a very cute way of@ding some extra syntax/ops for defining
value spacesWe muld just say "define some constants" to do it.

Now the just "define some constants" could be tedious for thingdnli&ger but hey, | think we hae the solution to this
already in the " list constructor form. E.g.,

value IntegerValueSpace = [1 .. 65536];
value CardValueSpace = |

{. .k
The deal is that the specific value names tdfiypically) get used anywhere, but e appearance forces the internal
value spaces to be expanded.

WEell, two considerations ne come to mind. First, it would probably be nice to do some form of leayoé forms like
[1..65536], or at least say we're thinking about it when we warn folks that wie(dbptesent) do it.

A second consideration is one of @enience in defining something &kCard\alueSpace. linight be nice of we could
somehav embed '." in component values, so as to say that we want multiple values pérsajeger component without
having to define each one explicitly as a constant value.

What this may lead us to is the following idea -- whena value is created in grcontext during spec\eluation, it too
becomes a (permanent) part of iype’s value spaceThis has (potential) ramifications for garbage collecting, in that it
seems to imply that we canvee garbage collect gnvalues, or at least only garbage collect duplicate copiealoés.
(And it occurs to me that I'm reminded aboutywdioing the interpreter in ¥a is a good idea, so we can in factvea
garbage collection.)

Anyway, at this point, | think this idea is potentially quite promising, we just need to work out some more details.

The Bloat Goes On

Allow ops to be imoked via "." op, under the following circumstances:
a. theop is listed in the ob§ qps list



Page 30

b. the obj is the first input

Concepts Needed for Process Modeling (15aug04)

Question -- does it maksense to use the bp in an output list? It can if we say thatsta $ort cut for change only the
right operand of the’.. Whetherwe want to maé& this happen syntactically is a currently open question.

A pretty serious issue with formal process modelingngust at the process-step signatunelleis that we'll need the

highly generic "user input" as a formal input in the signature in order for thingsrko Wm not altogether sure weant

to open the fully formal can-o-worms for process modeling, as was noted in the Fall 04 version of the process chapter
Anyway, I'll do some more work on chapter 3 and see where things go.

Jass-style Change-Only Semantics

We reed some kind of equality operator that says tXptetuple Y, exceptfor one or more specific componentshe
idea of let ...in ..." comes to mind, but seems a bit cumbersome. Also comes to mind is some daonHidchar
equality op, but that may be fupkes dways. Whatwould be nice is some intwit-looking operator symbol, with some
way to havea list following.

OK, weve come to the syntax thatexemplified in nevinputs/except-tst.rsl. On¢hing worth noting is that we decided to
require that the left operand 6" be a rame, which disallows cases such as the following:

forall (x in I) x[i] = whatever except x[i].j = 10;
In such cases,lat must be used to get the desired effect, i.e.,
forall (x in I) (let xi = x[i]; xi = whatever except xi.j = 10);

Semantics of List Addition

If it' s not already clearly stated, it would appear that the semantics of list addtion are such that adding an element or a lis-
tified element hae exactly the same #dct. Thinkthis through and documentt it fully if not already.

The Semantics of Equality in the Face of the Top Object Type

It seems to me that we most likely need to define the operational semantics in terms of tagged values, since this the only

type-safe/meaningful @y to compare (with '=" and 'in’) te objects that inherit from some other common parent object.

The top Object type is the degenerate case, in that equaldysalype checks correctly statically forawalues of type

Object , but dynamically equality, specifically vl = v2, must be defined as follows:

. if not (typeof(vl) = typeof(v2) or typeof(vl) < typeof(v2) or typeof(v2) < typeof(vl)) then false

if (typeof(vl) = typeof(v2)) thenomponentwise equality

if (typeof(vl) < typeof(v2)) thenomponentwise equality for all common comonents from v2, not including specialized

components of vl

. if (typeof(v2) < typeof(vl)) then componentwise equality for all common comonents from v1, not including specialized
components of v2

o oW

o

The bottom line, as | think haswalys been the case, is that using inheritance weakens static type checking, and using
Object wealens the heck out of it. The same goes for union types, aratinitts the other way round, since inheri-

tance is defined in terms of unions. And B;Té definition of inheritance in terms of unions, if it will/can stand in the
face of the gistenceObject , will have b go £mething lile this: everytime a nev type is defined, the definition of
Object is dynamically extended with the newly-defined type, in the context of the semantics of the program being type
checked/recuted.

Reinstating isa as an Operator (14jun03)

Scrav the ungrammaticalness of exprselititem isa Appointment ". Theisa operator makes better sense as an
expression operatpso as to eoid overloading confusion withs as a type definition non-terminal. So, we will acf
get rid of ?” as an nfix operatorbut we'll leaveisa .



Page 31

One thing | dort’ think we got fully explained belo (we may hae, but whateer) is the difference betwedsa when
used as the formeP* versus ?<’ operator Heres the deal, I'm pretty sure: When used on a tolanion, it’s the
former ?’; when used on an inheriting obj,stthe former ?<’; when used on ajthing else, including a non-inheriting
tuple, it's an eror. One way or anothewe’ll always be able to disinguish between an toglenion versus an inherting
obj, since the later mustvedys be a tuple Even if it's a ane-tuple, by virutue of inheriting from an opaque parent, it still
won’t be mnsidered a top-el union for the purposes ofsa '. We reed to work out the complete details of thist b
one way or another we’ll makit work, even if it's a bt funky for a seeming top-el union that isnt because it also
inherits. Thericky bit has to do with the fact that we cananose a component type name as the right operarideaof,
instead of a component name, which means that thgm@bably no way to treat an inheriting-from-opaque togile
union as a union for the purposes i3’ except by using an explicit name or position access operdtuos is fine,
given that an inheriting-from-opaque tops&t union is a rare and fugkhing.

Mor e Circles (27may03)
See updates to jan03 item helo

One More Time with Accessing Fields by Typename (23apr03)
This item rgads the jan03 and 23may02 items on accessing tuple fields.

The jan03 item concludes that we should nix this type of reference, in part becaosky ita tad" more corenient.
Unfortunately | think the "tad" part is incorrect, based on tlxperience of adding the weekly-recurring clause to the
precondition of the ScheduleAppointment operation,ig.schedule.rsl.

The more serious reason to nix typename reference to fields, as stated in the jan03 item, is the incohtigsetype

of ref when it comes to op@s. Havever, a this point, I'm strongly inclined to say that the gemience issue outweighs
the inconsistencissue. Gien below is a gece of @idence for this inclination, in the form of excerpts of from object
defs necessary to support the aforementioned precondtion clause in ScheduleAppoifiedinst excerpt usexglic-
ity-named field reference whereas the second excerpt uses typename reference. As can be seehyriblref cleri-

cal, afterthe-fact component-name caca required in the first excerpt compared to the sEcerattual time spent on
the caca is not trial, since it took me a ¥e passes to get things to compile. The time-to-compile was to sgiaete
based on just hunting dm the full ref chain, with or without type namedowever, the mere typing of the extra name
syntax consumed some valuable time. So, tadegnclusion is to bring back typename access to fields, the rules for
which are detailed in the 23may02 item.

Here are the excerpts:

object Appointment inherits from Scheduledltem
components: start_time:StartTime and duration:Duration and
recurring:Recurringinfo and location:Location and security:Security and
priority:Priority and remind_info:RemindInfo and details:Details;

object Recurringlnfo is
components: is_recurring:IsRecurring and interval:Interval and
details:IntervalDetails;

obj Interval is
components: weekly:Weekly or biweekly:Biweekly or monthly:Monthly or
yearly:Yearly;

object IntervalDetails is
components: weekly:WeeklyDetails or monthly:MonthlyDetails;

object WeeklyDetails is



components: sun:OnSun and mon:OnMon and tue:OnTue and wed:OnWed and
thu:OnThu and fri:OnFri and sat:OnSat;

operation ScheduleAppointment is
inputs: cdb:CalendarDB, appt:Appointment;
outputs: cdb’:CalendarDB;

precondition:

if appt.recurring.is_recurring and appt.recurring.interval?weekly

then appt.recurring.details.weekly.sun or
appt.recurring.details.weekly.mon or
appt.recurring.details.weekly.tue or
appt.recurring.details.weekly.wed or
appt.recurring.details.weekly.thu or
appt.recurring.details.weekly.fri or
appt.recurring.details.weekly.sat

VErsus

object Appointment inherits from Scheduledltem
components: StartTime and Duration and Recurringinfo and Location and
Security and Priority and RemindInfo and Details;

object Recurringlnfo is
components: IsRecurring and Interval and IntervalDetails;

obj Interval is
components: Weekly or Biweekly or Monthly or Yearly;

object IntervalDetails is
components: WeeklyDetails or MonthlyDetails;

object WeeklyDetails is

components: OnSun and OnMon and OnTue and OnWed and OnThu and OnFri and

OnSat;

operation ScheduleAppointment is
inputs: cdb:CalendarDB, appt:Appointment;
outputs: cdb’:CalendarDB;

precondition:

if appt.Recurring.IsRecurring and appt.Recurring.Interval is Weekly

then appt.RecurringInfo.Details.Weekly.OnSun or
appt.Recurringlnfo.Details.Weekly.OnMon or
appt.Recurringlnfo.Details.Weekly.OnTue or
appt.Recurringinfo.Details.Weekly.OnWed or
appt.Recurringlnfo.Details.Weekly.OnThu or
appt.Recurringlnfo.details.Weekly.OnFri or
appt.Recurringlnfo.Details.Weekly.OnSat

Page 32



Page 33

Mother Fucker -- 3mar03

Shit, the processing of imports rears its ugly headnagTheLOG file has notes about wowve'd like to do hem in V4,
including some discussion of making theneliva, which concludes with saying we shoutdry to be like Jva, given
the difference between whaiimportable to a module versus package..

So alyway, I'm inclined to go back to a way-old idea that can be characterized as "on-demand" import checking, in order
to avoid two possible problems with the "pass-3" style of import checking we've dwng. Thebenefit of on-demand
checking is that it carvaid the following problems:

a. Circularityof imports

b. Importingall of a modules exports into a local symtab, when the ".*' for is used in the imports and/or exports.

To darify and understand exactly Wwahe nev style of importing will be done, herg’a cescription of what happens in
each pass:

a. Inpass 1, done by the parser and sym-aux, all defined symbols (modules, objs, ops, and other named defs) are
entered into the symtab, without checkingy af their compoents or other attites. Importsare left unentered,
just sitting in their declaration lists waiting for pass 2. What weeteathe end of pass 1 are all of the module
symtabs allocated, all named entities within the modules entered in the symtabs, and import lists Hathging of
modules in purely symbolic form.

b. In pass 2 we can do import processing, ... fell off.

So, superceding all current design and implementation of imports, includings whaOG, heres a dear and simple
import scheme:

a. First,nuke exports entirely.

b. Second, embrace the fact that all topelanodules are part of the topvig global name space, which makes is all
visible to each otherTherefore, one automatically has qualified accessiyanodules ymbol. 1guess this is just
what Jaa dbes. Whas nore, Jaa £ems to hae lved the transitie type ref problem that Mod2 and FMSL still
have, namely that if we import a symbol we doautomatically import the transi¢ dosure of all its component
types. Whatlava £ems to be doing to get around this problem is fully qualifying types that come from imported
packages. See.g., “/code/jaal{pl,p2}/*.bjava. So what we hae 1 figure out is he Java is cing this. Hmm,
this may be it:

i. Ina quald ref of the following form:
M.t.f

the type returned is M,Mhere F is the type of field f of t, defined in module M

ii. Whatappears to be going on is that whaatex module qulifier appears on a type tkatie left of of a ".opera-
tor, that module qualification is

iii. Another thing that we probably e to deal with is the entry of a qualified type directly in the symtab, i.e.,
with the "." directly in the entered name. If we do this,\anef we don't, it seems that we’re going toveain
enhance the current resolveldentType function to include resolution of module qualification in type names.

c. Given the preceding rule, the only reason we need import decls at allisdaalifiedaccess to a symbol defined in
another module, which we can do a leaJaith the "M.*" notation.

d. Sowhat it looks lile is that we can in fact do pretty much whatalabes n, if not precisely what Ja cbes, to
get a much simpler import system.

So, heres the import-checking algorithm we ¥v&in mind:

a. Inpass 1: enter each imported symbol into the current symtab, flagging it as an import. No definition checking hap-
pens at this point, since we may notéget seen the module we're importing from.

b. In pass 2, we might consider entering all non-conflicing M.x symbols directly in the sywlinatively, we
could simple enhance lookup as follows:
i. Lookupan unqualified type or op symbol in the current symtab.
ii. If found there, maksaure it's not also found in an imported module, and if it is signal a mult-defined error.
ii. If not found locally check if it's imported in the form "M.X" for exactly one module, and if so use "M.X".



Page 34

it's imported in ".X" form from more than one module, compldifctually, this is probably the case where we
can complain at import decl processing time, since it seems clear that importing the same single symbol from
two modules is pointless because it cannot b&l nefiqualified in this case. Need to think this case through,
but I'm pretty sure we kne what we're talking about.)
iv. If not found locally or as an explicit single import, lookup in all of the module symtabs treaingort delcs
of the ".* form.
« If not found in awg of those, signal an undefined error.
« If found in more than one of thoses, signal a mult-defined error.

From Reading Beckman

Evidently there is a problem with reference-counting versus mark-and-sweep garbage collectors vis a vis Thisures.
may well mean that we want to implement the interpretenia, dging JNI access to the C-built parse tree and symbol
table.

NOT -- L et's Just Nix the Component-Ref-by-Typename Business (jan03)

This item rgards the 23may02 item on accessing tuple fields. The original title of this item started with "OI§ --='Let’
but now it's "NOT -- Let’s ...", which means wegé cecided to press on with the 23may02 ideas. The reason is shat it’
significantly more covenient for 205 students, as a visit with one (a 205 student) again made clear today (27may03).

In answer to the "major problem arises ..." comment in thée paragraph, an answer is to do the ML thing, where op
args can be treated as a single tuple-valugd Hrwe name the gs-as-a-tuple value someykvord, like say "args ",
then the problem described in the next paragraph is eliminated. chet’

While it might be cute and a tad more eement, a major problem arises when we want teeHae equialent notation

for op args, bt we cannot because in the case of op args, sheoedpalifying obj name, which means wiehavetype
names within the exprs of conditions and functiafugs. Gien this, | think I'm fine with the following strategy in the
reference manual, which is pretty much there alreddly., have a €ction after the basic intro to obj and op structure
called "Referring to Obj Components" (which is a bit stronger than the current "Names and Types" Séfetidm):t
really need this extra strengthening, but wiate At this point, the important thing is to nekeace with the idea once
and for all that we need explicitly-declared component names to refer to tuple fields.

In all likelihood, this decision does not affect the recent idea of making the right operand of "is" (formerly "isa") a type
name rather than a field name. The deal is that for unions, the type name is used for tag query (as it should be it seem:
pretty clearly now), and the field name is used to access the value as (of) a particular type.

On “isa’’ versus “?" as the Type Query Operator

OK, | may just hee lved the problem withisa " as a funky operator name, particularly when its right operand starts
with a vowel (as in ftem isa Appointment "). How "bout we use just plains' " as an @erator that applies uni-
formly to types, neer to values. Inthis way, its use in object defs and also in type queqgressions is consistent.
Check it out:

object X is A and B and C; -- In an object declaration, "is" equates

object A is string; -- a name with a type expression

object B is integer;

object C is boolean;

value x = {"xyz", 123, true}; -- In a value declaration, "=" equates a name
-~ with an expression value
function Op(X)->X = ...; -- The reason "=" makes sense for function
-- values is the construct following the "="

- s in fact a value
object Y is a:A or b:B or c:C;
vary:y,;
..if(yis A)then ...  -- Here, "is" appears in the context of a
-- value expression, however it is being used



Page 35

-- here as a runtime type query, hence the

-- use of "is" makes good sense.
..if(yisa)then... -- This form is now ILLEGAL, since is should

-- apply uniformly and consistently to types,

-- not to values.

So, with our new-found consistent use isf ", can we mag the following happen?
obj Days is Sunday or Monday or ... or Saturday;
var day:Days;
... if day = 'Sunday’ then ...

WEell, this can work if we mak the equality type checking rule godikhis:

one operand is a union type and the other is compap(bbably not subtype compat) with one of the elements of
the union. At runtime, the equalityauation entails the tavsteps of checking the type, then the value.

What's potentially misleading here is the in the case of enum literals as Daty example, the runtimealue check is
unnecessangnce theres exactly one value for each opaque type. In an exampmdHik,
obj IntOrString is integer or string;

var ios:IntOrString;
...ifios =1 then ...

the need for both the runtime type check aalde check isvedent. Atcompile time, the xpressionios =1 s legd
because the typk is one of thdntOrString union membersAt runtime, the ealuation ofios =1  involves first
checking the current tag afs to ensure that it isiteger , then performing the normal numeric equalitigleation.

Now, dl of this made me think for a sec that we might not need theperator at all for unions, since we can do the
injection (or is it projection) n@ so reatly Howeve, we do in fact still the “.on unions in order to bind a union value to
an explicitly-declared var of one of the union members, e.g.,
op X(i:integer) ...
... X(ios.integer) -- X(ios) won't work, by the (how) normal rules
-- of injection/projection

One last bit of syntax -- the use of "is" in an axiom declaration is not really consistent withwaetamnations. Using

"=" as the ax declaration separator would probably be most consisteittcduses some syntax problems since the right
operand of the ax declaration is an expression that can, of course, contain '=" as an. opleea¢dore, | think " is a
reasonable ax declaration separatdrile not perfectly consistent with the other uses of "is" and "s'fiite gven the
infrequeny in of ax decls in the kind of specs I'm kty ever to be aing. Also,upon a bit further reflection, using "="in
an ax declaration @uldn't be dl that consistent with the notion of "=" formle binding, since the axiom name fsn’
usable as a runtimealue. Hencethe name binding in an ax declaration is sort of an odd-ball cgs&agrso ":" as the
separator is probably as good a choice gsifinot in fact the best choice.

Yet, Yet, Yet, ... Again on Unions

I’'m not sure its ever been this clearso if not, for the zillionth time, here is an explanation of whéga projectionwise
and injectionwise.

obj Xis A or B or C;
op Main(x:X, a:A, b:B) =

letx = a; -- legal because x is already vague, and may hold values
of three alternative types
leta =x; -- illegal because a can only hold values of type A
obj A,;
obj B;

obj C;



Page 36

2jul02, Hmm About Union Types

How about if we dont'require that the components of a union be distinct, but justenttam that \vay, in the same ay
that a set-union operator dods.g., the type string or integer or string " is equivalent to (and reduces to)
"string or integer ", simply because we automatically thwout the secondtring component. Whatm con-
cerned with here is a potential problem that stems from the combination of structuvadretjiiheritance as unions.
Viz., in a definition of the form

obj Parent is integer and string;

obj Kid1 < Parent is integer;

obj Kid2 < Parent is integer;
In this case, the union that defines the inheritance containsstances of the same type, which by the up-te-ihink-
ing was an illgd union. Somethindpas to happen to makhis OK, which could be one (or more) of the following:

a. Saythat unions defined via inheritance are special cases that may contain dups (sergsfdik-defined idents
that can violate normal usewvk ident rules).
b. Use name type equin some way to mitigate the problem.
What the second of these altermedi aiggests is some name-based definition of tipenctnesor distinguishableness
that is separatable from egdence. E.g.we can say that all the components of a union mustsb@ct (or distinguish-
able), and then hze a ule that says that griwo ident types ardistinct (distinguishablg, even if they're (structurally)
equialent. Hmm,this doesrt sound too bad at this point.

1jul02, Possible Reprige d Sym Lits

There is havever the fundamental conceptual appeal of sym lits as distinct from string data in pretty much exactly the
same sense of its appeal in Lisp.

Bottom line -- | think it would be stupid to get rid of symbolic literals entiréihat we can do is describe them clearly
and rationally in the ref man and say something along the following lifias: use of sym lits as enum idents is in some
sense conceptually more "accurate" than the use of strings for the same purpibtbelspecifier does not care about
this, then using strings as enum idents is just’filéhe accuragis concretely evident in the preferred GUI for a particu-

lar type of data.Viz., if the preferred GUI is a free-form text-entry area, with a limited set of possible values that are
parsed bt not enumerated in a combo-box-style menu, then the more accurate representation is a tuple afisfring v
On the other hand, if the preferred GUI is a completebdfitist of identifiers, then the more accurate representation is a
tuple of sym lits.[And see below about a mixed-mode free-form entry plus combo-box stylé GUI.]

Given this, all of the following defs aredd, and hae essentially the same semantics:

definition using sym lits as enum idents:
obj Sex1 is 'Male’ or 'Female’;

definition using strings as enum idents:
obj Sex2 is "Male" or "Female";

definition using opaque types as enum idents:
obj Sex is Male or Female;
obj Male;
obj Female;

definition using defined string values as enum idents:

obj Sex is Male or Female;
val Male = "Male";
val Female = "Female";

Today’s conclusion: | think | really lik the idea of the concrete GUI hinting at the preferred specification representation.
But fuck, | was just about to write the following as an example of the specification representation for aatigng-v



Page 37

combo box:

obj Selections is "Alt 1" or "Alt 2" or ... "Alt n" or string;
meaning that the "Alt X" strings are the initial/gn values and the "or string" part deals with a user-enteakekv But
this is not a lgd union type in the latest FMSL semantics, since string subsumes all of the aitres. vButwait, if we

mix and match sym lits with strings, we could/@ahe following, which looks kind of sweet and may (help to) edhe
age-old problem of the precise FMSL representation for such things:

obj Selections is 'Alt 1’ or 'Alt 2’ or ... Alt n’ or string;
The reason that this may be a very accurate representation is that it can be paraphrased as follows:

entered by the user.

The potential downside representationally here is that we domsiderSelections  to be just a plain string with a set
of system-suppled dadilt possibilities, but rather a mixed-type union. Bu, ltieis may be precisely the kind of seman-
tics weve keen looking for all along.

The I-dont-think-ever-explicitly-defined alternatie to the mixed sym-lit string definition is something dikhe following:

obj Selections is string;
obj SelectionsBuiltinDefaults is "Alt 1" or "Alt 2" or ... or "Alt n";

The problem we/e perennially had with such (assumed) defs is that an abstract op that #stataknput of type
Selections , with the input tracing to a combo box, needs (seemingly) @SalectionsBuiltinDefaults as
well. Eitherthat, or we need to get into the definition of "abstractigeecs, as we did e.g. with Rick Myers, and pos-
tulate some op that outpuBelectionsBuiltinDefaults to the displayand then some select-from-aefts-list
that produces an integer (say) selector that is used by the actual abstract op as an input.

The mixed sym-lit/string type seemingly solves this perennial problem, but perhaps at the price of notational obscurity
and complgity. Agan, we can say in the ref man that the specifier may chose the representational form that suits her
And as alvays, we suggest that the same form is used consistently throughwoet gogicification.

I'll conclude with this thought. It seems potentially a bit églor at kest notationally strained, that
obj Selections is 'Alt 1’ or 'Alt 2’ or ... 'Alt n’ or string;

is illegd but
obj Selections is "Alt 1" or "Alt 2" or ... "Alt n" or string;

is not. l.e., its a ptentially holey "corvenience" that sym lits can be used to represent combo boxes gantigle We
need to think about it (but not too fucking much).

Oh, and one final reason to keep (and use) sym lits -- &s @&sened before, thgre a good way to represent graphical
icons symbolicallywhere a string\eerrepresents to some extent.

7jun02, Part 2

We may also want to fuck where clauses hard t@heck inputs/stack.rsl for a decent-looking parameterized type style
of generics, that can easily (and clealy) replace the where clauseTtrap.again, the idea that we can use tyqes v
directly in a comp expression, without declaring them, may wet kmappeal. Definintely need to think about it.

7jun02

Fuck symbolic literals -- hard. The point is that we’ll allthe way-old definition of the form
obj Sex is "Male" or "Female"
given the fact that we can fa@ ron-boolean concrete values in a parts sgégte fundamentally important part about this

is that a definition of such a form MOT of type 'string or string ", but rather of type (the string the
following does not type check, for the indicated reasons:

var sl:string := "Male";
value s2 = "Male";



Page 38

op IsMale(s:Sex) = s = "Male";

op main() = (
IsMale(s1); -- ERROR s is not compat with s1
IsMale(s2); -- ERROR s is not compat with s2

)
The point is that the following definition
obj S is "xyz";
defines S to be of typdhe string string.
And OK, this has all been made abundantly clear already in the 2junOQaadtothers belw it.

24may02 -- One Moe Time with “Does nil = false?”

Based on whad’ said in exists-as-search.rsl it seems pretty darn clear at this point that does NO =
false . Based on all the formal-semantic error propagation workevesne, plus thedct that a pre-cond-failing op is
supposed to retumil (NOT false ), we need to hae nil be a distinct value for all types, includibgolean . On
this basis, making an unconditional eglence betweemil andfalse is too much.Now, we may want to ma&
some kind of C-ish equalence in the conteé of some boolean ops, but | dothink we een want to do this. l.e., the
expressions il  <bool op> x"and "x <bool op>nil " should both produceil , not a truth value based on
some "cleer" coercion ofnil in the context of boolean operators.

| suppose we need to do one last search through als thegth said on this subjectytoright hav I'm pretty-to-quite
happy with the decision.

24may02 -- OK, Heres the Brand New Thing

OK, | just reread the 22mar02 injection and became thoroughly deprdgbatk the notion that we can use inheritance
to achi@e what we're after is dead, when what we're after is genuine statically-typed polymorphism and g&vkats.
needs to happen is the introduction of type variables, of the forme \se2n musing about for some time.

When this happens, | think we pretty much turn the opaque tygiedss on its head, in terms ofahwe now e it.
Viz., we currently see an opaque type as a topish kind of type from which all other types inherit, with the hope that this
scheme makes opaque types aa tijpe \ars. Asthe 22mar02 injection makes cletinis appears to be a forlorn hope.
So, what we’ll do nev with opaque types is put them (back) on the bottom wheyebileng. Thg're already there to
some extent, in that we V& the notion (though I'm not sure st'yet fully implemented) that a symbolic literal of an
opaque type name is the only value of that opaque type, and further that that value is unique and Largqo#i¢o
value whatsoeer. The reason that this is a complete head-turning is that instead of opaque typesingatible with
all other typesthey’re nav not compatible with any other typeg&.g., the equality check in the following axiom can
never type check correctly:

object X;

object Y;

axiom (forall x:X, y:Y) x = y;

But wait, | just ran this through the type checker afitie, i.e., it does not type check.

But wait agin (to reject the supposedly "very cool (re@¥ation here" belw). Given the statement "... a symbolic lit-
eral of an opaque type name is the only value of that opaque type, and further tretiéhist wnique and unequalaay
othervaue whatsoeer”, | believe (seemingly CONTRAR TO the "very cool (re?)relation” below), that thex' = y"
equality check in themmediately preceding example should in fact NDtype check correctlyTo be @nsistent with the
values of distinct opaque types being distinct, the types themselves should in fact be dikéneason the "very cool
(re?)revelation” works in the context of typeawtest.rsl is that therg’inheritance going on thatiot present in the imme-
diately preceding»ample. Thebottom line is that the immediately preceding example should N@act type check,
but the type-artest example should. The way that the immediately-precedimgme could type check correctly is if
we liberalized the type checking rules for equality to sayahgtypes can be compared for equliyt that if the types
are different, equals automatically returats€. Myimmediate reaction to this is that it selis type checking pretty
badly, but it's worth thinking through in the context of the "very cool (re®iaion" that nav follows immediately.



Page 39

OK, I've just had a very cool (re?¥&ation here. The reslation is that we shouldhView the 22mar02 example an
incorrectresult from<, but rather as aacuously falseesult from<. To recap, here the type-artest.rsl refd in the
22mar02 injection:

obj TypeVar;

obj X < TypeVar = integer and string;

obj Y < TypeVar = string and integer and string;

op CompareXY(x:TypeVar, y:TypeVar) -> boolean = (
X <y

);

op main(x:X, y:Y) -> boolean = CompareXY(X, y);

What we were depressed about here is the fact tat thie significant structural difference betweeandy, theres no
way we can be doing a meaningful runtime comparison in tgressionx < y. But hg, that'sjust finehere. What
static type checking says in a case liis is that the only thing that can be compared in an efClimpareXY is what-
eva componentx andy have in common, which in this case i components at alfjiven that the inherit from an
opaque type. Hence, in this case, th& y comparison is alays vacuouslyfalse, by the presumed rule thaype-
Var < 'TypeVar is false. Andthe reason that < y reduces tdTypeVar' < 'TypeVar’ in this case is
because in the context @bmpareXY where the inputs are boltypeVar , the only thing we can be comparing between
x andy is the commonTypeVar ness, which means that, asyttshould be, the other componentsofandy are
ignored, i.e., unseen, in the contexiGafmpareXY. If the body ofCompareXY were changed ta = y, basically the
same thing would happen, except the result wouldalbaously true, gen in this case we be mmparing'TypeVar’

= ' TypeVar

So, what this all boils down to is that the only reallpngthing intype-var-test.rsl is the mnemonic suggestion

of the name TypeVar " for the opaque type, because this type namensafly acting lile a frst-class type var at all.
(And this is in fact what we said in the 22marOfelation, but were (hopefully) unnecessary depressed about at the
time.) Andwhen all of this gets sorted out,lliforobably be just dandy to @ an explicit section in the ref man that
addresses this issue head on, perhaps titling the section something kE"Opaque Types are Not TypeaNables".
Cool.

Now, if we do want real type vars, we're gonnavbhap add them to the language, which is what this discussion is all
about. Soheres what a for-real type var test would look like:

obj JustSomeOpaqueType;

obj X < JustSomeOpaqueType = integer and string;

obj Y < JustSomeOpaqueType = string and integer and string;

obj $TypeVar; -- Just for pre-type-var-implementation compilation

op CompareXY(x:$TypeVar, y:$TypeVar) -> boolean = ( -- $ (for emacs)
X<y

)

op main(x:X, y:Y) -> boolean = CompareXY(X, y); -- ERROR: actual parameters

-- are incompatible with type
-- variable constraints:
--  exists <($TypeVar,$TypeVar)

obj $TypeVarl; -- Just for pre-type-var-implementation compilation
obj $TypeVar2;

op CompareXYOK(x:$TypeVarl, y:$TypeVar2) -> boolean = (
X <y; - - Should be OK once type vars are properly implemented

):

op "<"(x:X, y:Y) = x.integer < y.integer; -- Should be OK once we get the
-- new/old field ref stuff working



Page 40

op main2(x:X, y:Y) -> boolean = (

CompareXYOK(x, y); -- Should be OK once we get overloading finished
CompareXYOK(1, "xyz"); -- ERROR: actual parameters are incompatible with

-- type variable constraints:

- exists <($TypeVar,$TypeVar)
CompareXYOK(y, X); -- ERROR: actual parameters are incompatible with

-- type variable constraints:

- exists <($TypeVar,$TypeVar)

)
The proposed error message indicates what the problemGaeitipareXY here is. Viz., the body ofCompareXY
requires that there is &™" operator defined between theaargs o CompareXY. Further the signature o€ompareXY
requires that the actuals be of the same tyeror-messageise, we may want to tone things down here in the actual
implementation, since the typailfure in this case is not affected by the lack of a less-than op, but just by the fact that the
inputs toCompareXY must be the same type. I'm sure we cakwout these details just fine. At this point, the error
message example is useful to explain the thinking here, and we’lit i@k sich.)

Now, in the CompareXYOK op, things can work out OK because of the usedlff@rent type vars in the signature and
the provided werload of '<". This means that the first call to Compare®X works, but the second does notjepi that
theres no lilt-in or user-definederload of '<" for types integer and string. The third do¢svork either given that
the provided werload of '<" is not commutatie.

In the Wirthian mode, we should test ousA®und inspiration by writing some (more) progrands particularly good
example of where things can come together is in the specs for alRglian gaphic camases, where the power of vir
tual-function dynamic binding is s@ident. Anagging verry about fully static type checking hasvays been having to

do the virtual-binding dispatch logic explicitly by using the ‘?<’ and *.<’ operators in a big switch statement that fans out
on all subtypes of a parent typ@&/hat's particularly worrisome about this is the fact that wheneve add a n&v sub-

type, we need to go to all of the places where such dispatch lagis and add a mecase for the newly-defined sub-

type. Thisseems lik exactly the kind of place where the language should be helping us out. As weth@groblem

with the kind of help we get from the O-O wmb is that type checking must go dynamic, which we definitely want to
avad.

Well, | think | may hae just come up (and &'probably a reidention of someone elsegmart wheel) with the way to do
it with genuine type ars, including quantificationver types. Thddea is that instead of dynamically dispatchinvgra
subtype, we'll statically dispatch using a type-valued quantification. $leneample using the Redkreop:

object GraphicObject is ...;

object Line < GraphicObiject is ...;

object Rectangle < GraphicObject is ...;

object Ellipse < GraphicObject is ...;

object Canvas is graphics:GraphicObject* and ... ;

op Redraw(canvas:Canvas)->canvas’:Canvas
post:
forall (g in canvas.graphics)
forall ($GraphicSubtype in GraphicObject)
if g?<$GraphicSubtype then
ProperlyDrawn(g.<$GraphicSubtype)
end

Here’s the same example with slightly different syntax, which I think | prefer:

object GraphicObject is ...;

object Line < GraphicObject is ...;

object Rectangle < GraphicObject s ...;

object Ellipse < GraphicObject is ...;

object Canvas is graphics:GraphicObject* and ... ;

op Redraw(canvas:Canvas)->canvas’:Canvas
post:
forall (g in canvas.graphics)



Page 41

forall (?GraphicSubtype in GraphicObject)
if g isa ?GraphicSubtype then
ProperlyDrawn(g.<?GraphicSubtype)
end

Shit, if this is correct, or can be made to bs,aout as scarily invigorating and last nightdiscawery was depressing.

What it means is that the type checker is doing the dispatch for usshuot it runtime. This is exactly what we're after

here. lhave a $ight feeling that there may be some hidden conceptual problem lurking in Heveaver, given that

we've defined inheritance strictly and completely in terms of unions, it seems pretty clear to me that when we're quantify-
ing over types, it reduces to quantifyinge the list-valued semantic representation of a parent type, which is just a list
of its inheriting types. l.e., we can see with the formal semantics in mind that this should work out fine.

As a bit of formalization, we can say that theviién ’ form of the quantifier expression is eggleent to the folleving
more basic form:

forall ($GraphicSubtype:object) $GraphicSubtype?<GraphicObject

| think a really important observation here is thatre'®lOT going to define a Jaesque togObject or a generi@any

type. Thismeans that theeyword "object " in the cont&t of the abwe quantifier expression is not being used as a
type name, bt as a meta-type indicator that can only be used when the name part of a name/type pair isrialygpe v
name, not aalue-\ariable name. l.e., types amet first-class values here (though we might imagine that ¢bald be,
meaning we could al® both static and dynamic typing togethlaut | definitely think we need to keep this can-orms
closed till we (at least) get the static type varfstdrked out, including, one would hope, an atité&ddenotational
semantics thereof). What I'm pretty clear we're looking at here is a clarification of our entity categories, that allows us to
have value-\alued variables (what we Y& row) as well as type-alued variables, but the twain does not meet between
the two, and type-valued variables are only computable at compile time, not at rufdireese the lurking-qualm feel-
ing a bit more, | think we're on pretty safe ground hewergML, the only potential problem being the issue of inheri-
tance, which again gén the straight-forward union-based semantics thereof should workAdsd, we should read the
"adding inheritance to ML" paper that we came across in POPL during the 530 paper scan.

23may02 TODO Item
Change the precedenceasfd andor to be less than equality ops, as in CJ. DONE.

23may02 -- Accessing Tuple Fields by Type Name and Ordinal Position

For convenience, the components of an object can be referenced directly by their type Rameample, gven the fol-
lowing definition

object ABC is A and B and C;
access to the componentsABCcan be made as follows

operation Op(abc:ABC)
pre: abc.A =abc.B and abc.C = ... ;
end;

When an object has twor nore components of the same type, the components are disambiguated using a positional suf-
fix of the form#n, as in he following example

object PairOfA is A and A;

operation Op(pa:PairOfA)

pre: pa.A#1 = pa.A#2

end
The positional order is from left to right for each component of the same liyghis exkample,pa.A#1 refers to the
first component ifPairOfA , pa.A#2 refers to the second component.

Using the #' disambiguator is the only ay to reference compnents by name in objects with multiple same-type compo-
nents. Br example, the referenceRairOfA.A  without a #1’ or #2 is an error.

As another example, consider this definition:



Page 42

object ABCABA is A and B and C and A and B and A.
The components of an identifizrof type ABCABAcan be referenced as follows:

Reference  WhichComponent

a.A#l The first component of typ&
a.A#2 The second component of type
a.A#3 The third component of typ#
a.B#1 The first component of tyfg
a.B#2 The second component of tyBe
a.C The only component of typ@

.)Ji where first, second, and third refer to the left-to-right position of components of the same type.

In an object with inherited components of the same type, the positional order is from the top of the inheritancg hierarch
downward, and from right-to-left in multiple inheritance ord€onsider the following example:

object Top is x1:X and x2:X;

object Middlel inherits from Top is x3:X and x4:X;

object Middle2 is x5:X and x6:X;

object Bottom inherits from Middlel and Middle2 is x7:X and x8:X;
In this case, obje@ottom has a total of eight components of tygeThe ordinal position of these components is indi-
cated by the named throughx8. That is, these names indicate the order in which components are referenced by a dis-
ambiguating sdix. For an indentifie of type Bottom , b.X# i references the component that is narréed for i
between 1 and 8. Thixample also illustrates that a component can be referenced by either its type namepbc4ts e
itly-declared name.

In a tuple with one or more value components, those components can be referecned directly by thatugergrv
example

object OneAndTwo is 1 and 2;

operation Op(ot:OneAndTwo)

pre: ot.1 I=ot.2;

end;
A value component can only be referenced by its specific litatakynot by a variable or constant that contains the
value. For example, the following is ilgd based on the preceding definition of the tupleeAndTwa

operation Op(ot:OneAndTwo, i:integer)

pre: (i = 1) and (ot.i != ot.2);

end,;

While it may be untypical, literal components of the same value can be referencedtuginthé same was as other
components. & example,

object OneAndOne is 1 and 1;

operation Op(00:0OneAndTwo, i:integer)

pre: 00.1#1 + 00.1#2 = i;

end;
Here, since objed®neAndOnehas two literal components of the same integer valug; tam be referenced using’'to
disambiguate them.

There is one additional form of reference for tuple componentsy-btheferenced directly by ordinal position, without
a name at all.For example,
object ABC is A and B and C;
operation Op(abc:ABC)
pre: abc#l = abc#2 and abc#3 = ...
end,;



Page 43

A numeric suffix of the form#n’ refers to thenth component of a tuple, in left-to-right order of component declaration.
Hence,abc#1 refers to theA component ofABG abc#2 to B component, andbc#3 to theC component.Probably
not: The positional suffix##’ refers to the last component of a tuple.

The '#' operator can be used in a sequence of component references in theagaasete.”’ operator Consider this
example:
object ABC is A and B and C;

object Ais D and E;
object E is F and G;

For a variablea of type ABGC a#1#2#1 is a reference to tHe component of typé&.

A sub-tuplecan be accessed using a range of lower and upper ordinal posi@mmezample,

object ABCDEFG is Aand B and C and D and E and F and G;
operation ChangeC(a:ABCDEFG, c:C) =
a#l..2 + c + a#4..;

OperationChangeC concatenates the firsttvcomponents o& with a single componemt, then with components in the
fourth through the last positions @f The range forn#n.. refers to the sub-tuple from positiarto the last position.

The use of#’ as a sitional component reference is of lower precedence than its use as a component name disambigua-
tor. Consider this example:

obj AABC is al:A and a2:A and b:B and c:C;
obj Ais d1:D and d2:D

and a ariablea of type AABC In this case, thexpression a.A#2 " might be considered ambiguous, since it could refer
toa.a2 ortoa.al.d2 . The rule used to disambguate such cases is#hatinterpreted first as a name disambigutor
if necessarysecond as an absolute position irdélhereforein this exkample,a.A#2 is interpreted as a reference to
a.a2 ,nottoa.al.d2 . In fact, the interpretation oR'A#2 " as a eference t@.al.d2 is not possible, sincea’A "

by itself is an illgdly ambiguous reference to one of theoteomponents of typé. To accessa.al.d2 using #’, the
legd expression isK.A#1#2 .

It is worth noting that use off’ as a @mponent reference cannot be confused with its use as a length opetaier
used as a component referencer when its left operand is a tuple value or a typ&anmesed a length operator when
its right (and only) operand is a list, string, or numeric value.

To summarize the different forms of component reference, consider the following definition:

object ABCA is a:A and b:B and C and A and 5;
object A'is

and an identifiea of type ABCA There are four forms of reference by which componenssaain be accessed:

Type of Refeence Examples

explicitly declared component name| a.a, a.b

unigue component type name or valuea.B, a.C, a.5
positionally-disambiguated type namea.A#1 , a.A#2

absolute component position a#l, a#2, a#3, a#4, a#5

The positional ordering of components applies to union objects as well as to tuples. Consider for example
object U is i:integer or s:string or b:boolean;

and an indentifieu of typeU. The type-name and positional references saormponents are defined as follows:

Explicitt-Name  Type-Name  Positional
Reference Reference Reference



Page 44

Ui u.integer u#l
u.s u.string u#2
u.b u.boolean u#3

Given the higher precedence ahd composition @er or composition, care must be taken when using positionatrefer
ences in an object defined as a combinaticendf andor operators. Considéhe following example:

object X is integer or string and real or boolean;
Given the and/or precedence rules, the default structuxaof

integer or (string and real) or boolean
That is,X is a three-elelment union, not adxglement tuple For an identifierx of typeX, the following table defines the
legd type and positional references:

Reference  Meaning

X.integer thevalue of x as an integer

x#1 sames x.integer

X#2 thevalue of x as the two-tuple (string and real)
x#2.string | thestring value of the first component of x#2
x#2.real theeal value of the second component of x#2
x.boolean thevalue of x as a boolean

X#3 sames x.boolean

Since the right-hand operand dfrhust be an identifiethe second component xfis only accessible positionallyhat
is, there is no such form as

X.(string and real)
to access the second union componenmt of\s explained earliersuch an anonymous component can hega rame,
as in the following definition

izinteger or sr:(string and real) or b:boolean

which allows the second component to be refereneced by explicit natse as

Given the various forms of tuple reference, one might ask under what circumstancesetieatdibrms are camenient.
This clearly needs to be finished, with some compelling rationalexamdpées. W dhould definitely note that consis-
tency of notation is a very good idea, to mgbecs understandable.

Editorial Note: There is definitely a tradefofrorking here, between notational @enience versus complgy. An argu-

ment against caenience goes lik this: "Since the main point of SpecL is to be precise and help specs be understand-
able, it may not be a good idea tosddhings work in some sense by accident. l.e., being able to refer to tuple compo-
nents by their type names, which such references can cause understandability problems in a number of subtle ways."

23mar02 -- Limits on (Multiple) Inheritance

There can be no circularities in an inheritance hiegarély., the following is illgd:

object X inherits from Y;
object Y inherits from X;

An object cannot inherit more than once frony ather object, directly or indirectlyE.g., the following is illgd
object X'is ...;
object Y inherits from X and X;

as is the following

object Topis ...;
object Middle is ...;
objct Bottom inherits from Top and Middle;



Page 45

22mar02
See the "(22mar02 injection)" under the 14ded00 entrybelo

4dec01 -- Aux Functions as Vaporwear

In thinking about parsing, it seems to me that | might rather not write the aux functions to do this, but instead spec them
out. Thisleads to the concept that one can write aux functions congséyas bodiesor analytically with pre and post
conds. Hmmgoes this wrk? If so, lets make aure we can explain and rationalize it.

And one more observation on parsing -- we need to figure eutheobjects-as-BNF-rules scheme fits into things wrt
parsing. l.e.can we assume that we automaticallyeha arser if we write the grammar for something.

The motiation for this comes from Ciera asking about parsing a day/time string into a day/time tuple bjacted
writing this up using parsing aux functions in “/classes/205/examples/specs/parse-day-time.rsl, and startedvto see ho
ugly things were getting in terms of re@mting the parsing (onven just lexing) wheel.

4dec01 -- Yet Mok on Exists as Selector and nil <=> false

OK, in working today with kiko Tamura on part of the specs for EClass, | had the distinct desire to be ablexistase e
as an Object-valued operatdf we go kack to (or just stick with) the axiom that nil ==alde, then we could maleists
Object-walued. Not-withstandingvhat’s said in ./if-then-else-truth-table and @wk/rsl/testing/implementation/accep-
tance/new-inputs/exists-as-search.rsl, I'm pretty comfortable at this point with saying that nil === false.

9nov01 -- More Real Formal Stuff
See the discussion in new-inputs/exists-as-search.rsl

We should define formally that the type of nil is Objedthen we need to readeeything weve sid about the equi
alence of nil and false, and neakure things are consistent. In particubaith remarks to the effect of "I darknow if
I'm happy with the notion that (false = nil) = true". Get this ironed out ASAP!

28sep01 -- Type AnyYet Again

In recent thinking, e.g., retention-and-no-junk.rsl, g.v. vedieen considering using thevadasque identifyerObject
to be the top of the RSL type lattice. While this doegetmme appeal, particularly in that it helps students and others
famiilar with Jasa relate, I'm at the @ry moment leaning back to calling the top typey™. Thereason is that we ha a
potential conceptual problem with where atomic types fit in the type higralata in fact has this same problem, in that
the atomic types donhinherit fromObject . Given these observations, | think it might in fact be misleading to use a
capitalized typename as the top of the lattice, rather thayaikd or at least &yword-like identifier such aany .

Whatever we all it, there is the seeminglywer-unresolhed issue of what operators are applicablang. | think the
retention-and-junk.rsl provides at least one clearlygld op that can be applied t@ny, viz.,in ,asnho in
out_list , whereo is of typeany andout_list is of typeany* .

So, if we fully enumerate the ops that are applicablentp, and explain ha it serves asthe top of the inheritance
hiearcly, and in some sense the archetype opaque type, thewdhaneesoledness will be resolved, and life will be
wonderful. You what to do, bp

27jul0l -- Real-Life Example to Press Understanding of Wher2 Instantiation” 2

The reason the instantiatimghere type needs to be a subtype of what #placing is to woid type-breaking mutation.

This is because the where clause vgags used in the context of inheritance, which means that if we let an instantiating
type arbitrarily change an inherited component, then ref to that component when a value is in a parent-type var could be
bogus. E.g.,



Page 46

obj Parent = 01:01 and 02:02;
func Foo(p:Parent)->string = p.ol.s;
obj O1 = i:integer and s:string;

obj 02;
obj Child < Parent
where: 01 = 0O3; -- ERROR: this must be prevented per latest

-- semantics that say instantiating type must
-- be subtype of type it replaces

end;

obj O3 = i:integer and s:01;

func Foo2(c:Child)->string = c.ol.s; -- This egregiously breaks typing

-- since if the bogus where clause
-- actually worked c.ol.s is no longer
-- a string, but rather an O1

-- We be in trouble here, since both the preceding and next lines should not

-- be working. l.e., we can’t have it both ways -- c.01.s is either a string

--or an O1, but not both.  Somethings wrong somewhere, either because we
-- haven't finished type checking the return type of a function body, or the

-- where clause instantiation is bogus, or some of both.

func Foo3(c:Child)->string = c.0l.s.s;

func Foo4(c:Child)->string = c.01.s.s.s; -- Sanity check -- this is in
-- fact an error, as it should be

func Foo5(c:Child)->string = c; -- OK, it looks like the problem
-- that the type checking of func bods
-- against return types is not done
--yet. Never-the-less, the above
-- bogosity observations still hold and
-- need to be fixed.

-- OK, the preceding misses the point that we're trying to get at. Here itis.
func Foo6(c:Child)->string = Foo(c); -- Breaks types if where instantiation
-- worked as it appears it should.

-- The deal with Foo06 is that its call to Foo with ¢ as an arg breaks types

-- inside Foo, since c is sent in as a Parent, but when it gets there, its

-- mutated ol1.s component ends up mascarading as a string when its really

-- another O1. This be the reason that where instantiators must be subtypes of
-- what the sub for.

The "real-life" place where this has just arrisen is in the desgadhat recurring info needs to be different in Meetings
versus MeetingRequests in the Cal Tool specs. Hopefully you get the idea well enough in terms of what needs to be done

about this, both in the Cal Tool spec and RSL type checketrthe fuck to it, dickhead.

8jun01 -- Why It's OK to Use Type Name in a Tag Expression

Since ord components must be distinct, it would be OK to use the type name as the 2nd operandtaé '3 .way-old

stuff, but it keeps coming backlThe rule could go li& this: "If an ord component has an ident type name, then that type

name can be used as the right operand of a "?"".

1mar01l -- Yet More on the Inverted Pyramid Issue

We want/need a way to create a function out of pre/postcond ldgieres mention of this in the book formal-spec chap-

ter, but it's a bt equivocating. Thedeal is that we need syntax of the form



Page 47

OpX.:post(...)

where the ... are all of the inputs (? and outputs?) to OpX. The deal is that the pre and post attributes are defined func-
tions from ay to boolean, where the any-valued input signature specializes to arity (?and coarity?) of each op.

The question marks herevgaio do with not yet understanding twowe invoke a finction in a postcond and then say that
function’s postcond is trueln particular does the function denoted I§pX.:post(...) actually runOpX or do we
need to rurOpXfirst, e.g., in det clause , then callOpX.:post  with the same inputs as we r@pXwith, plus it's
returned outputs? Hmm, functionallyseems at the moment that the former caset @aork, given that it would irvolve
some kind of call-by-var semantics we ddmve What we need is a notation ttstot dreadfully unwieldybut still
fuctional. THISNEEDS TO BE WORKED OUT. (Sorry, but I'm not really dropping dfhere, | just need to get home
and wait until a bit later to figure this out.)

8jul02 update: Les do this for sure. The jaization of the notation should allo".pre " and ".post " as suffixes to a
class’ methods. This syntax is fine, since it daesmiflict with an existing Ja use of * ’, I'm pretty sure.

16sep02 update: I'm not really sure whatdsagetting in the paragraphs a couple back, i.e., with the question mark biz-

nis. Thedeal is, it seems to me, that the functionzied postcond is a boolean-valued functiowimritghg to be used in

the postcond of some other function as avenience. Sothe call-by-var semantics is not really an issue. l.e., fiere’

what goes on: In op B’postcond we want to say that ofs Aostcond is true But in order to say this, B must produce

some or all of the same outputs as A. Therefore, the way we use the A.post function is to pass it the outputs of B so that
they are validated as tlyawould be for A. That is, what is true ofsfoutputs is true of B. Thereason, | think, that ras-

ing the call-by-ar issue is really a non-issue is functiongihe only way that B can lia the same effect as A is for it to

produce the same output(s).

But hey, why do we reed A.post at all then¥hy don’t we just equate whichver of B's outputs we care about to the
return value(s) of A? While this means thas Bostcond "calls" A, wit should this be a problem as long as the call is in
the context of a boolearxgression? Hmmhave we really misunderstood things this badly for so long? l.e., has there
never been a need for a functionized postcond at all?? Fuck, this needs tolee wut by examining all of the comts

in which | thought that functionized postconds were necessherever the fuck thg are. Perthe abee rote, we should
start with the mentioned text chapter.

15dec00 -- Semi-Epiphany

OK, in pondering the 14decO00DO LOG entry for typechk.c, | think I'm onto the idea of tagged values at runtime,
basically as we’e dways been onto it, but with an | think wesmbellishment based on spelling-based type checking.
The embellishment is thatiles with discernable named types will be tagged with that type name, othernyise the

tagged with the structured type.

Well, in writing down the preceding paragraph, | realized that thexghing really ner there at all. Viz., we’'ll have
tagged values at runtime that are tagged with a type struct that can be an ident typ&Nownahat needs to be clari-
fied is exactly when values get tagged with ident types. The answer is under the following circumstances:

a. wherbound to a particular op@of a ramed type;

b. when built by the built-in constructor for an obj;

c. perhap®sther ways, but none that | can think of rightvno
The tagged value will let

Now, the other thing to talk about today is wit's OK for '<’ to be fully overloaded for all types, including opaque
types. Thereason is that we’ll do structural typing foregything, unless thers’an eplicit overload of '<’ for some
type(s) that want it. In this ay; it seems that we get the best of both worlds in terms of both full structural comparisons
on values that are tagged with unnamed types, versus specialized comparisalneothat are tagged with ident types

for which an eerload of one or more comparison ops has been defined.

| think that’s dl there is to it, and so at this point, I'm not quite sure just bBpiphanous it was, but it does seem that
there were some things said explicitly thatdaot been so said up towo



Page 48

14dec00 -- Nearing Conclusion on 7dec98 BIG BUG

OK, from what | can tell, wdowant to say the following:
a. foralltype T, opaque type ©, T < OT
We've now added this as a (currently the last) type compat rule in

The deal is that since an opaque type has no structure at all, itveamlaps that do anything structural to it, and hence
ary op that takes anopaque type as an input carvlany ¢her type sent to it, since thesebthing the op can do to the
opaque type that could be dig to do to aay non-opaque type sent to it.

It would appear that the preceding paragrafécaiely answers "Yes" to the question of whether an opaque type is the
same thing as a type vdt is the same thing by the very reasoning in the preceding paragraph.

(22mar02 injection -- Look fuek, an gpaque typés notthe same as a type var in the ML sense, since $heogliaran-
tee that tw ags of the same opaque type will be dynamically the same. See, evgnmats/type-vatest.rsl. Alsothe
deal that an opaque type has "no structure at all" and is therefore OK as the pargnitioératype is bullshit gien
structural equality The deal is that structural equality must wnihe structure of tev types, and gien the subtype com-
pat defs weje dlowed, all the built-in relational ops must be defined in terms of dynamic types. This is pretty fucking
depressing right at the momentyai the type correctness of the "x < y" line in thevrigpe-vartest.rsl file. Again, what
this means is that the deal with Mlequlity type stuf is biting us a@in. |was thinking there may be some way to
strengthen static type checking by doing some kind of dynamic binding. Also, I'm questioning vigthieridea that we
need to say something as strong as X'k forall X, OT. Why not just X < O when thats the way it5 eplicitly
declared? Fuckhis is getting really annoying going around in fucking circles seemingly endlessly®weeefinal piss-
off tonight -- do the spelling rules really mean that X* < Object*, forallW@ reed to work this out, since we just added
this to typechk.c, where we let the basetypes ofanays use assmntCompat instead of compat.)

We might ask at this point what good an opaque type is ¥thall really the same structurallVell, the answer has to

be in the name itself, and hence there can only be a meaningful distinction between opaque types where the name itsel
malkes a diference. Thisappears to be precisely the case when we’re instantiating a where clause, since we're using the
name in the where clause syntax. This seems therefore to obviate the needdidigonal '<’ or '<=" synatx in a

where in addition to the normal '=’ syntax. The deal in thigane is that, agin, since all types are compat an opaque

type, we dort'need the '<’ or '<=’ syntaxes for where clause substitution.

Now, another thot is that the '<’ in the al® quantifier expression is strictly '<’, not '<="By the current type compat
rule, it seems that '<’ is strict in the sense that it implies compatjbibtyequvalence. Thisneeds (a bit) more thought.

If all this is true, it fixes the big BIG BG problem, and it should be implemented, as soon as we do the last bit of think-
ing about it. So, get the fuck to the thinking, and thence implementation.

10dec00 -- Quick Reminder about DD Generator

In ref man revision, dohforget to describe ko html tags can be used entity descriptions to im@rormatting in DD.
Very cool javadoc-like duff, this.

3dec00 -- Some Quick Thoughts on RSL Manual Updates and Related Topics
In the manual, include an appendix of the current standard libaries.

It's pretty clear that weé going to hee an RSL library of common forms. This will require that we finish the implemen-
tation of multiple inheritance and thewnenodule import/include forms. Candidates for libraryhood currently include the
following:

object OrderedCollection, with ops to sort, etc.

function SumList (see new-inputs/sum-list.rsl)

function AddWithRetentionAndNoJunk

object Color

object Text



Page 49

Upon looking at the AddWithRetentionAndNoJunk function, this seems toda likry nice vay to allav reuse of logic
without having to go the (multiple) inheritance routde ould describe both ways (i.e., reusiong with inheritarere v
sus aux functions) and be clear aboutywtheritance sucks(Or then maybe it doesn’t,\g¢ nost recent musings in
sum-list*.rsl about the seeming similarity if not ecalénce of the OBJ theory/wieconcept with the Ja interface con-
cept.)

Here's ome verbiage in the manual abouttto dearly explain the should-be simple concept of enumerations:

In a number of progamming languages, including C and C++, there is the concemnoftggration Here is a
typical example:
enum DaysOfTheWeek = {Monday, ..., Friday}

[Hmm, maybe we should just not worry about PLs (toohuand just explain enumerations directly in the-se
eral rsl forms. OK, her omes.]

A very typical use obr composition is to define what are typically refered terasmeation typesn programming lan-
guages. Heris an example:

enum DaysOfTheWeek = {Monday, ..., Friday}

From here we ascribe thaMonday, etc. are the enum list, and then describe howepresent them as either strings or
symbolic literals.

Here's ome verbiage for the ref man about the difference between strings and symbolic literals:

The difference between double-quoted strings versus single-quoted symbolic literals isus digieificant. First
off, if you dont want to worry about the difference, you can get along just fine in RSL by using strags e
where that you might otherwise use a symbolic literal, and jugetf@bout symbolic literals entirelyf you care,
read on.

Now go on to describe how symbolic lite amre abstract; that the string/symbolic-lit distinction is precisely the

same as the string/symbolic-atomic distinction in Lisp; that when modelling views or other objects that have

abstactly atomic but concretely non-atomic struetugymbolic lits ae a nore accurate model (albeit subtly so);
also when that when modelingagnmas, symbolic literals mnvide the means to define abstract versus agacr
syntax.

And fuck me if that doeshall make ome pretty good sense.

3dec00 -- Some Details on the New import/include/export Scheme

To get the effect of nested modules, we de likis
module Outer;
export *,
include Innerl, Inner2, Inner3;
end Outer;

module Innerl;
export X;
obj X;
end Innerl
As in Jaa, we don't physically next module inside of each othiaut create a form of "virtual" nesting via includidow,
it seems to me that the only reason we need nesting is for namespace control, wahibksJay qualifying the name of
the package that a filelvorth of stuf is in. For us, we get the same effect by a definition of the Outer formeaboce
we can say

module User;
import Outer;

op Use(x:Outer.Innerl.X) = ...;



Page 50

The point here is that if we assume that the names "Innerl" and "X" are both potentially widely-used symbols, then we
want not qualification of "X" but of "Inner1" as well. If we didiare about this, then weinrite User lile this:
module User;
import Innerl, Inner2, Inner3;

op Use(x:Innerl.X) = ...;

We dhould note that export makesadable not only the entities directly listed, but the tramsitiosure of the compo-
nents of the entities for those who use the ™ form of importation.

In summarywe havethe following consistent and orthognal semantics:
a. "import"and "include" both makexported symbols visible in module.
b. The (only) difference between thedis is hat "import" is qualified and "include" is unqualified.

c. The* form means do a transite dosure on all componentdNe reed to be careful and fully clear here about
what happens when we trangity close through a series of nested modules. It shautana poblem, we just
have b make things completely clearWe may want to go back to the Mod-2 definitions where thas wpelled
out, including what | recall was a fiifence between version 1 and version 3, or somethiaghiit, as well as the
idea of import/export of a record working trangity on the record fields.

30nov00 -- Mot Ideas on Executability
Problems and issues include:

« Implementing unbounded quantification by quantifyimgr@ll allocated object values, where allocation takes place
by invocation of a construate @. Theproblem here is that if wexecute via only validation wocation, we dort’

really construct objectsObviously we reed to think about this. Oh, | guess /&ahought about it -- i down in
the next section under | had a flash today

« How to shaw, or distinguish, validation imocation in a DFD.A thought is to specify anverall mode for DFD (and
postcond) imocation, rather than a special form as shownvaeldoweve, such global modes donseem particu-
larly appealing. Anywaywe need to think about this some more.

14nov00 -- Ideas on Executability

One form can be pwiding input/output pairs and having the pre and postcovelsated. 1t like to havefirst-class RSL
invocation syntax for this form of "validationviacation", which might look something &khis:
op Foo(i:integer, s:string)->(i":integer, s’:string)
pre:i>0;
post: (i’ = 10) and (s’ = "abc");

op Test() =

begin
Foo(1,"xyz")?->(10,"abc");  (* Produces value {true, true} *)
Foo(1,"xyz")?->(9,"abc"); * Produces value {true, false} *)
Foo(0,"xyz")?->(10,"abc");  (* Produces value {false, nil} *)

end

The idea is that thewcation form
op- nanme(val ue, ...)?->(value, ...)

alwaysproduces a tuple of tygeool ean and bool ean. This looks awefully sweet to me at this point.
Note that when the precondals to false, the postcondustevd to nil.
Dealing with quantifieral will of course be an issud.had a flash today that we could deal with unbounded quantifiers

by saying we quantifierver al the concrete objects of avgh type that hee keen instantiatedver the course of a test,
where instantiation means that an object has been created and bound to a cuedadlgtion (i.e., in alie var directly



Page 51

or within a composite value thatound to a ke var). Inthis way, if we wanted to hee a hrge pool of actie values of a
particular type wer which to quantifywhere the pool holds what we consider to lvepgesentativecollection of alues,
we could do something kkthis:
obj IntAndString is integer and string;
op GenlnstancesOfIntAndString(i:integer,s:string)->IntAndString* =
if i>10000
then[]
else [i, string(i)] + GenInstancesOfIntAndString(i+1, ")
);

op Test() =
begin
var int_and_string_pool:IntAndString*;

Another way to do things might be to quantifyeoall values of a gien typeewer created In this way, we wouldn't need
to stick the values in a list, though we could if wanted. Thids sort of MLish, in the sense that values lforever.
And | think we hae a frm handle on "created" -alue creation happens wh&eean op hat outputs a particular type of
object is successfullyxecuted.

This hints at the idea that we could define some saptiantifier-generatofunction that defineswer which specific al-
ues of a gien type we quantify We wuld define such a function as a set of constraivis al values within a gien
type. Thissounds interesting, and definitely waorthf further thought.

190ct00 -- Making it up as we go along, some more

Hmm, it just occured to me that we may want to englkantification of types use name eglgnce. V¢ reed to think
(probably hard) about this.

190ct00 -- Making it up as we go along

Well, we've row decided, | hope correctlyhat a forall with a failing quantification clause, e.g. forall (x in []), returns
true. Therationale is, threefold. First, it seems by far morevenient and intuitre than returningdlse. Alsojt’s con-
sistent with the truth table for implication, which returns true for trueatsef Finallyif we look closely at the supposed
redcution translation of the "in" form of forall, the implication truth table business seems to be supported.

16nov01 update. Hergthe "look closely" part in the last sentence of the previous paragraph. Consider that
forall (x:O | p1(x)) p2(x) <=> forall (x:O) if p1(x) then p2(x)

Now, if p1(x) is never true, this means that "if p1(x) then p2(x)" isvays true, which means that the quantifier succeeds.
What this means intuitély is that if the quantifierariable clause yields no values at all, the forall quantifieraisu@sly)
true. l.e.,arything is true about nothingThis last statement has the same counteriméuftiel that logical implication
has, viz., false implies true. Be that as it pthings do indeed work out here thawthe/'re formulated, where "ork

out" means being sound wrt standard predicate logic, most particularly the truth table for implicationy as fak
sometimes think it is.

Complete discussion of this needs to go into the ref man.

190ct00 -- Making if-then-else formal

Though | dont think I've goenly acknowledged it excplcitly before, the problem with if-then-else is when it is used as
something other than a bool-valued functiie really do need to clear this up formallie., is if-then really equito
implies, or do we need to define it in Lisp logic terms?



Page 52

As of 15nov01, the answer to this is in ./if-the-else-truth-table.

190ct00 -- Clarifying Condition Inheritance in Ops

| actually dont remember the exact rules for op inheritance in the O-O sense. It occurred to me that it mightybe a v
nice feature to say that awenloaded op only inherits pre- and postconds where the specifier explicitly requests such
inheritance. W oould do this by constraining the conditions underwhéffectiveops are generated via inheritance.
Viz., the eflective g generation takes place only for ops that are lisigdictly in the operations clause of a parent class.

In this way one can alley logic not to be inherited, in the case that an effea didn’t want the inheritance.

We reed a good example of this. The cruxt of whatreveaying here is that an inheritance-generatedte®e g would

not want some or all of the input constraints that were defined for the parent-objesgaip, | cant think of a good
example right nw, but it is worth irvestigating, and | think wrth including as a feature to altlanore specification fia-

bilty.

I’'m not entirely sure about the last point (i.e., thatifiity is always necessarily a good thing), so the issue definitely
requires more thought.

21sep00 -- Dumping Coarity-Only Overloading

Per the 7jul00 LOG entryt's ime to dump coarity-onlyerloading, for the reasons listed thedenplementationwise,
theres not much to dump, since we’far from a complete implementation. What we need to get rid of in the implemen-
tation are the current quick hack that allows co-angrloading for a ery specific case, plus all the hooks that were put
in to support the future full implementation of coarity-onlertoading.

Conceptuallythe decision is ne final. Mz., there is no coarity-onlyverloading in RSL.

5jul00 -- Resurecting Formal Dataflav Defs

This is pretty bizzare, but | thought this was writtemvdo Anyway, here’s the idea.Oh fuck, | just found it (thexample
| was thinking about) in se-book/semi-formal-spec. Anyveggin, heres ©me more pertinent discussion.

We probably want to disalle anthing but ANDY op @mponents. Ihot, then we need to specify the semantics of OR
and SAR’'d components. Therhas been some thinking (in the pretty dark past) about defining these as non-determi-
nang and unfolded loops, respeatly. Howeve, with OR wet haveto reconcile with the connections to neadense of

it. Similarly, it would seem, for SARs. Arnyway, | think we’ll do best just to disalw anything but ANDS and say that

some future version of RSL may lift this restriction. One argument agaivet allewing ORs is that non-determinism
sucks pretty much (at least for my meager brain at this point, and probabbr)ore

2jun00

In the nev semantics, we need to be clear in the ref man about the following:

obj TheStringXYZ is "xyz";

val TheValueXYZ = "xyz";

val TheStringABC:TheStringXYZ = "abc"; -- ERROR: the LHS type is
- "the string xyz"
-- but the RHS type is
- "the string abc", which aren't
-- compat by the normal type rules

OK, forget about it in just the ref man, we need to be clear about it period. Question: s"\Mleatype of
TheStringXYZ and what is it compat with?". Ans: The type is "the string xyz" and as a type its counpaot{bqui)
with string. The trick bit we're getting at here is the following: Aale-constrainted type cannotvlkainconstrained
values assigned to it. l.e., an ident of tyffeeStringXYZ cannot hae any #ring other tharixyz" assigned to it.

This value-constrained type-definition rule does not apphakeevdefinitions (well n@ it does -- see "But wait" belg).
l.e., when a &lue identifier | is assigned a literal L that denotes a specific value of some tyipeldfined to be of type



Page 53

T, not (the T V) (actually not -- see again the "But wait" b&jo E.g.,TheValueXYZ defined just abee is of type
string , not the string xyz . But since values are constants,ytlvan neer by rebound, so therg’no ssue of
what it would mean to (re)assign sonsue other thanxyz " to TheValueXYZ . This efectively means thaf he-
ValueXYZ acts just lile a \ariable of typeTheStringXYZ , even though technically there of differenct typesThe
point is by compat rule§heStringXYZ is compat (but not equiv) witktring , and TheValueXYZ isis equv to
string, but since i§ a @nstant it cannot be rebound.

But wait! | think we want to fix the small anomoly in the preceding paragraph by saying #ilae&\n factof a \alue-
constrained type. Since value-constrined types are upward compat with their "parent” typesn'tpsitvary damper

on hav value can be usedt.g., TheValueXYZ is in fact of typethe string xyz , hot of the more general type

string . This does not constrain WoTheValueXYZ can be used, and seems to\allmr a more straightforard
implementation where all constant literals are formally defined (and implemented) to be of value-constrained types,
which means that the implementation ofadue declaration just copies the value-constrained type of the constant into the
type of of the constant ident.

Now, what we dort haveto worry about nav that objs and val's ae distinct, is that TheStringXYZ is a value -sitt.
Therefore it cannot be bound toyadent, which means we dariaveto worry about what i compat with in ag bind-

ing context. Well, this isnt exactly (if at all) right, it there$ dill not a problem.Viz., an ident of type TheStringXYZ
can be bound to an ident of type string, per the normal type rules. l.e., TheStringXYZ is compat with string. So fine.

Now heres an nteresting question -- does a var of a purejue-restricted typever need to be, or can itven be,
bound? E.g.what's up with a var decl of the following form?

var the_string_xyz:TheStringXYZ;

We mght say that since it can only hold one (non-ndjue, that that value is automatically bound to it when it’
declared. What don't like éout this is that it makes an exception to the rule that thaceauto-binding (except per
haps to nil) of ars. Whatthis means is that the_string_xyz could in factehtae value nil, until it5 bound to "xyz".
And the reason this seems a bit fuimkthat we hae  assign a value explicitly.

And heres (perhaps) a bit more funkiness. When we declare a tuple field to be a specific value, should that tuple field as
a var be automatically bound to thaalwe? Ithink the confusion I'm gmging on can be resolved with the fallmg
example:

obj AnIntAndAnXYZ is i:integer and the_string_xyz:"xyz";
obj AnIntAndAnXYZ is i:integer and the_string_xyz:TheStringXYZ;

Hmm, maybe this example cawmjuite resole things (later note: Ut read on, because it can). The question is are these
two types equi? Itlooks like the spelling rules say yes. In either case, the deal is that we want a value of this tuple type
to have mnstant value in the second element. But if we declare an ident of this tuple type, it hagpichly &ound

just like any ident, with the restriction that the second field can only be bound to the value "xyz". So it ledkerkk

isn’t any dff between the var and tuple case. Eithayyva type with one or more value-constrained components is still
just a type, not aalue. Ifit's a cegenerate case of all pure-valued components, so Bédé .fact that we call it "dgener-

ate" means that its behavior can be (a bit) yurikhe funkiness in this case is that it still needs to be explicitly bound to a
value, even though theres anly one non-nil value it can possiblyvea

Now, it appears that a union op turns a pure-valued type intmiable type, in the sense that more than one value can be
bound to it. E.g., compare

obj OneAndTwo is 1 and 2;
obj OneOrTwo is 1 or 2;

The first can only be bound to one non-nil value, whereas the second can be bound'to tvot sure if we need to say
arything more about this, other than to be clear that union types create a faxlemultiplicity (&/en) when the union
components are pure values.

Now, whither the concept of "constant'®/ell, | think we can say definitely that avalue is synonymous with "con-
stant". Butas the preceding discussion (hopefully) makes clraject (aka, type) is not (canvee be) a constant,
since an object (aka, type) isveea value.



Page 54

Now for the ref manyglanation. Wheran obj definition is a specific value, we’'aeated a type of object that can only

hold the single specificalue that it is defined to be. On the other hand, when we create a value of a specific literal-
denoted type, the literal in general denotes a broader type than its spduaiic s anly when that type is bound to a
value-restricted ident that the type becomes less general. Some further examplesuleesdmost certainly be in order

One of the examples can neakompletely clear win the ERFOR comment abe is true. E.g.the value "abc" can be
bound to a string, because by type rule (b) "the string abc", which is the type afudéabc”, is compat with "string”.
However, there is no rule that makes "the string abc" compat with "the string xyz". QED.

And finally, let’s probably gve a ef man example such as the following

obj ABC_Type is "abc";
var abc:ABC_Type :="abc"; -- holds the value "abc"

val ABC ="abc"; -- denotes the value "abc"

val strictly_ ABC:ABC_Type ="abc" -- denotes "abc", but in a stupid way
which illustrates that declaring an object to be of a singleevis just a round-about way of declaring a constalotey
where the "round about" part is that one must also declare and assigatdevof that type in order to V@ a sable
value on hand. The only (rather useless) distinction betweerati@bieabc and the alue ABCis that the variable can
hold the valuail but the constant will neer denotenil

And finally finally, we would probably hee an example that illustrates that a fully contant tuple typetiamy more use-
ful than value-constrained scalar type, in thaait only hold \alues of one type for all of its components, but that as a
type itdoes not'contain” values at all, and therefore a variable (or constant) of the type must be declared.

Yet Further Analysis Related to 190ct99 Note (31may00)

This item, i.e., all of the discussion under this 31may00 heading, appears o pledty definitve conclusion about sub-
typing and compatibility As we’ll see, the discussion here has led to an update of the spelling-based formal type rules,
and succeeds (I'm pretty sure correctly) in demystifying the lingering unclarity about subtyping versus subsetting.

So, lets gart by reconsidering the example presented in the "More Analysis" item just below:

obj OneOrTwo is 1 or 2;
op main(oot:OneOrTwo, i:integer) = begin
oot=1; (*Fine¥*)
oot =2; (* Fine also *)
oot =3; (* Clearly not fine *)
i =oot (* NOT fine *)
oot =i; (* Not fine, perhaps not so clearly *)
end;
The change here is that the assignmént=" o0 ot " is now considered NO@ fine, because we can reason by the
(pre-31may00) spelling-based formal type rules that it doesnk. Heres the reasoning:

a. Thetype spelling obot is "union of (the integer 1), (the integer 2)".
b. The type spelling of is "integer".
c. By application of the spelling-based compat rules, "union of (the integer 1), (the integer 2)" is not compat with
"integer". Whatthe potentially applicable rules do say is:
i. "theinteger 1" is compat with integer (by compat rule b)
ii. "theinteger 2" is compat with integer (again by compat rule b)
ii. "the integer 1" is compat with OneQrD (by compat rule c)
iv. "the integer 2" is compat with One@vd (again by compat rule c)

d. l.e.,we can stick a "the integer X" into an integer or into a One@r1But just because we can do this does not
mean that we can stick a One@uTlinto an integeror vice versa.



Page 55

Now, here’s an nteresting slip | originally made at point c in the abeasoning:

a. Thismeans thabot is compatwith i , but not equiv.
l.e., a alue of the type spelled "the iger X", for ary X, canbe bound to an identifier of the type spelled
"integer".
i. However, a \alue of the type spelled "irger" cannotbe bound to an identifier of the type spelled "thegete
X", for anyX.
This reasoning is stupid and iact totally going around in circles (based on the pre-31may00 type rules, which
are about to be amended}'s gupid because the subpoints i and ii dawally support the superpoint ¢n
order for this to happen, one of the subpoints woule ltasay “A value spelled "union of (the integer 1), (the
integer2)" is compat with "ingger"”, which is not true by the current (pre-31may00) formal type rules. The rea-
soning is going around in circles since ifie (kind of) reasoning thatas (apparently) used to think originally
(i.e., in and around 190ct99) that= o ot " was OK. (Hmm, oreen fuck!)

Anyway, let’s investigate what it would ta&to get OneOrWwo to be @mpat with intger. It looks like we'd haveto have
a (new) type rule of the form:

a union type is compat with type X if all components of the union tgpemapat with X

What's going on here is that we're considering a union type in which all elemewtsah@mmon compat-parentub

none is directly compat with each othdihis appears to be essentially the subtyping rule for compatilildy each ele-
ment of common-compat-parent union acte lddbtypes in the sense that none is compat with each other gullithe
share a parent with which there compat. (This is just rethinking of the basic oo rule that subtypes are compat with par
ent types).

Now, another way to look at things is that what weept going here are twways for a type to be compat with another:

(1) via being an element of union, which makes the element type compat with the union type, which by the union-based
definition of inheritance is the same as subtyping; (2) via being a type of the form "the X Y", whih thmakthe X Y"

type compat with X (which | guess can be called the "subsetting" rule (and see the conclusion of this note item below).

Next consider that i slly to have an explicitly-declared union of types that Vea @mmon inherited parent, because
that union type wuld be completely redundant with the automatically-generated inherited parent type. (Recall again that
with the union-based definition of inheritance, a parent type is in fact a union of its subtypes.)

Consider howeve, that unlike with subtypes that are explicitly declared, there is no explicit set of (infinite) declarations
that say a type X is defined as the (infinite) set of all types of the the form "the oYt does mak®nse to hee an
explicitly-declared union of value-style (i.e, of the form "the X Y") types that share a common compat packrgince

there are only te ways to be compat (as opposed to equiv), the kind of union we're talking about matidsstyle.

And it looks like what weve uncovered here is another way to define a collection of types with a common peient.

the set of all types of the form "the X Y"V&ate common (compat-)parent "X'Given this, it seems reaonable to add
the aboe rew mmpat rule, since it provides a measure of uniformity for thinghat's a ittle funky is the idea that i§

silly to have a union of types that all inherit from the same typeat thats what we get for having the automatic rule that
maps inheritance to subtyping.

To make everything crystal clear here, | think we must also consider the relationship between automtically-defined par
ent-class union types and thexnngpe rule. An automatically-defined parent-class union type is of the form

"union of (tuple oforiginal componenis (tuple oforiginal componentschild 1 componen)s ..., (tuple oforiginal
componentchild n componends.

Now, by the nev type rule, what is this auto-gehtype comapt with, if aything? Il.e.,does there exist a typewith

which each of the auto-gehtomponents is compat®/ell, except in the degenerate case when all child types<anty

the same type, it appears that the answer is "Mbfs is because each component type is at tyymb-d@ explicit tuple,

so the ne rule cannot be (recussly) applied to ag of the component types to get a compatible typed unless each

child type is the same, there witist some component of one of the tuples that is distinct from the others, hence preclud-
ing the exisitence of a common parent-compat fype



Page 56

So, nav that weve reasoned that such awéype rule would be OK, the question is do we want to bother withaet?
does it really buy us anything useful¥ell, by our reasoning, the only kind of union types we're dealing with to which
the nev rule would usefully apply are those with value-style compondrsthese types, is it a big deal (aree much

of a deal at all) to be able to do the kind of bindings that therale would allev? Consideagain the example weé
been working with

obj OneOrTwo is 1 or 2;
op main(oot:OneOrTwo, i:integer) = begin

*..”
i=oot (* NOT fine *)
*..”

end;

Is it useful to mak this type of assignment (and type-comparable parm bindingd? Ié\ell, if we dont make them
legd, what would we hee © do to nake them happen3.e., hav (if at all) can we assign a value of the OnefwTo a
var of type integger? \ll, it looks like we @nnot do such a whole-variable assignment, but rather must do explicit projec-
tion of the component elements. And to do this in the current structure of the language, it boles st give each
component a name. So, e.g., what we're trying to do would loekhi&:
obj OneOrTwo is one:1 or two:2;
op main(oot:OneOrTwo, i:integer) = begin
-(* *)
| 0 ot.one;
i 0 ot.two;
if oot?one theni=1elsei=2;

¢

end;

But this looks pretty brain damaged vemiencavise. Havever, what's dl this accomplishing anway? l.e.why do we

want to assign a restricted integer value to an unrestrictegeiritelts &in to, if not essentially the same as, being able

to assign an enumeration literal to an gaiewhich in a nicely strongly typed language need or ought bevedlo The

point is the follaving. By creating a type to be one of a restricted set of of constdunds; wly not just require that we

deal with it in a little island of restricted value manipulation that includes only explicit references to the constant values?

WEell, a good answer to the last question is not in binding, but in conditional logic. E.g., consider the following example:
obj OneOrTwo is 1 or 2;
op main(oot:OneOrTwo, i:integer) = begin
i = S omelntFunction(...);

if (i = oot) then
(*..."

else
(*. )

end;
Without the ne rule, it seems wd’ haveto do the following:

obj OneOrTwo is 1 or 2;
op main(oot:OneOrTwo, i:integer) = begin
i = S omelntFunction(...);

if ((1=1) and (oot = 1)) or ((i = 2) and (oot = 2)) then

..
else if (
¢

end;

which looks pretty painful.

So, Ive done it. I've alded the ne rule in the formal-type-rules file. It seems a bit &glgiven the power of the other
rules versus the relag Pecial-caseness of theweule, but | think we cane with it. To mitigate things in this gard



Page 57

a hbt, the only reason that compat rule c is all thawgdul is because of the unionization of subtyping, without which
we’d havesome more rules about subtype compatyway, it's done (at least for now) and letiive with it (at least for
now). Don't forget that we still hae o implement all of the formal type rules!!

So nav, | think we canat last, once and for FUCKING Al ldefuckingmystify the issue of subtyping not being subset-
ting. Thedemystification, it appears, has been in the spelling-based formal type rules all along.thideteal:
a. We havethe following twodistincttype compat rules:
i. atype spelled "the X Y" is compat with X;

ii. thetype X is compat with anunion type of which X is a component;

b. Rulei addresses the subsetting part of the issue whereas adiiress the sutyping part of the issue. The reason
thatii addresses subtyping is, again, due to the unionization of inheritance.

c. Thedeal is, subtyping and subsettingeant the same thindout by these rules tiredo individually imply the
same thing.

d. Instrctly logical terms:
i. letst be the propsition subtyping
ii. letss be the propsition subsetting
iii. let c be he propsition compatibility
iv. The compat rules say effectively the following:
(st=>c) and (ss =>c¢)

v. But this logic certainly does not imply that st <=> ss, or even a one-way implication between st and ss.

The point is that wee gparently been suffering in some anti-logical fog about all of this, thinking thatgisenee kind
of relationship betweessandst, but not being completely (ifven nearly) clear on what it isWell, it now appears clear
the the relationship is that heoth imply compatibility which in logical terms leses them otherwise unrelated. Cool (I
think and | hope).

The “Mor e Analysis” Called for at the End of 190ct99 Note

One of the things we need to get straight in terms of type safety is that a type with specific enumerated valpes of, say
type int, isSNOT compat with type int. E.g.,
obj OneOrTwo is 1 or 2;
op main(oot:OneOrTwo, i:integer) = begin
oot=1; (*Fine?*)
oot =2; (* Fine also *)
oot = 3; (* Clearly not fine *)
i=oot (* Fine *)
oot =i; (* Not fine, perhaps not so clearly *)
end;

What we hae gping here appears to be inheritance-oriented subtypingersee at least in terms of the cardinality of the
types. E.g.when T1 < T2, #T1 > #T2.)What's aurious about this, which in fact has been a very long-standing curios-
ity, is that subtype i$S NOTsulsetting snce the cardinalities arevesed.

Here We Go Again (190ct99)
(3dec00 addendum to the addendum -- | alreadwhiro a stupid dickhead. See the 31may00 itenval)o

(3dec00 addendum -- This was already figured out eastigrid dickhead. So, the "I'm not sure” heading is inae.
Viz., itis the case that the latest spelling-based semanties aloes to be part of types.)



Page 58

I’'m not sure if the latest semantics (defined ednd in be defined as a specific set alires. Thiswill let us get back to
the old way of doing enum literals like
object Sex = Male or Female;

value Male = "Male";
value Female = "Female";

What seems to ka been considered problematic before was teeHais definition of type Sebe "string or string". As
obsened belay, this isnt a good idea, since a union of the same typed &irthat sensible. But reallysex should not be
considered of type "string or string", but rather of type "value "Male"atuev"Female™, which may or may not be a
subtype of string or string, but is decidedly not equal to type string or string.

What still remains problematic is a syntax that wouldvalmnamed constants to appear directly in type defs, as in the
following version of the abha

object Sex = "Male" or "Female";

| believe the seat of the syntactic problem here is the redugdasribe "and" and "or" operators in comp exprs aallie
exprs. Hencewe cant havethe fully general syntax we’like of dlowing ary value expr as a component of a type.
However, we can hae rumeric and string literals as syntactically aléble components, which renders the immediately
preceding definition syntacticallydd. (This syntax has been tested in ersion of the parsebut is currently com-
mented out since it causes type checking problems. See newtests/string-and-num-lits-as-components.rsl.)

There is a small potential problem ofvirey an ident designate both a type andilue. Probablyhe easiest and most
sensible \ay to aoid this problem is to simply disalloit. l.e.,an ident cannot designate both a type and a value in the
same scope. This may be inconsistent with some part of the cuaanavwe formal type semantics, but | dahink

it's a undamental problem at all.e., the current semantics can be easily reconciled with the idea that typaland v
name spaces must be disjoint in@egiscope.

What's nice about this thinking is that we come full circle to some extent, in that we’llwm@llow the old notion of
strings as enum literalaVhat may also be nice is to davay with symbolic literals entirelyif possible, since thereally

are excess bagge to a certain (if not large}tent. Theold thinking in this rgard was alvays to hae grings be a single
concept of actual string data as well as enumeration litevédsmay be able to get back to this original RSL concept.

And heres me last little nugget in this topic areQuestion: should a type Bk'value "Male" or value "Female™ be
(automatically definitionally, formally) a subtype of "string"f so, by what formal rule?Similarly, should the type
"value 1 and value 2" be a subtype of "int and int"? Again, by what rule.

An initial crack at a rule li& this might go something léthis:

a. anor'd value set of values of the same type is a subtype of that type

b. anr or'd value of a set of values of different types is a subtype of an or of those types
c. anandd value set is a subtype of an and of the value types

This does require some more formal analysis toensaie it really works.

(And another 3dec00 Metanote: ymua still a double (if not triple) stupid fucking dick head, because the 31may00 item
above ptally says, and better so, wisait the next 3dec00 parenthetical remark.)

(Another 3dec00 Note: | think you're a stupid dickheddn pretty sure that a careful reading of the (longj)aat
spelling based compat rules naturally @llwhat we're gettin at here. Specificaltiie following compat rules

e atype spelled "the X Y" is compat with X (but very importantigf vice versa)
« atype X is compat with any union type of viahicis a @mponent (but again, pretty obvioystgt vice versa)

handle the (exactly) the case veetalking about heg, gven that the spelling rule type "the X Y" is the same thing as
we're above as "value X"



Page 59

I’'m pretty sure that the conclusion here isal@ the fuck up, the spelling-based type rules really are whatam"wSo,
among other things, stop calling things "subtypes" when you shobky’

Mor e Syntactic Cleanup

In addition to the st@ifbboutvalue keyword ... damn my eyes -- | fellfdfiere again.

Answer to the 7dec98 'BIG BUG' LOG Entry

The observation about a major conceptual bug in the 7dec98 LOG entry is evidently ddresichmediate answesfter

some thought, is that rather than require that an instantiating type be a subtype of the generic type, we should require tha
all generic types be opaque. This mgalsense from at least one major standpoint, viz., the basic structurevbitiee

clause. Whenve say X = Y"inthewhere clause, the intuitie interpretation is that of full substitution. In this sense,

saying that Y must be subtype of X, the more sensible where clause notation waxld>bé&™, which (perhaps flash),

we might actually add. But letdscuss some more basics first.

The reason that requiring all generic types to be opague makes sense is that when we do the where instantiation, we ar
intuitively substituting one typen total , for another Hence, that a generic type hay aamponent properties at all
seems stupid from this perspeetisnce ary such properties are completely wiped out by the instantiation.

Now, we haveapparently had in mind that instantiation is not really of the "wipe @utéty but more of the "specializa-
tion" variety, wherein ag properties that the generic type has specializedy rather than replaced by the instantiating
type. Andthis seems to makome sense, though this may be the first time thatenatually written it down in this
way.

Now, what may be possible, either notationatlyvia further clarification/extension of opaque type semantics, isvi® ha

it bothways. Mz., we will efectively, if not explicitly say the follwing: "If a generic type is opaque, then it can be
instantiated withany type; if a generic type is not opaque, then the instantiating type must be a subtype of the generic
type".

Now here comes the potentially cool paBuppose we say thatyatypeis in fact a subtype of gnopaque type. In this
way, we wouldn't haveto state the instantiation rule conditionally (!).

So nav what we need to do is tovestigate if the rule that all types are (automatically) subtypes of an opaque type mak
sense. Wl do this in the next item or two.

Type Definition and Subtyping at the Margins

OK, en route to our goal of all types being subtypes of opaque typssddeti ittle lemma-like reasoning, probably
again, on the nature of opaque types. If weeiot said so alreagljt seems reasonable to say that an opaque type is a
zero-tuple. (Itturns out that grepping for {0,zero}-tuple turns it up only once in typechk.c, where the comment is to
revert objs that turn out to be O-tuples back to opaque typhis comment is apparently consistent with what we're say-
ing now, viz., that we formally reard opaque types as O-tuples.)

Anyway, this being the case, hesaln nteresting postulate:
obj Xis T

and
obj X<T

are the same definition. In the first case, X is a one-tuple ti the second case, X is a zero-tuple that inherits from T
which turns it into a one-tuple of TOK, so this really isrt’'too startling.

So, what wea'e saying here is that at the margins, a one-tuple is-a opaque obj that inherits from one type that is-a identity
for the defining/inherited-from type. And | dathink this is nev at dl in the fundamental semantics as currently defined
in the typecheckedocumentation, and our heads.



Page 60

Back to the Latest 'Fundamental’ Question

So, are we OK to say that anyaspaque type is automatically a parent type of @on-)opaque type? Here are some
more questions in thisgerd that we’ll need to answer:

a. Dowe need the "(non-)" just abe i.e., can opaque type be a subtype of another opaque type, including hence itself?
I'm leaning "no" initially on this.

b. Should we soften this idea to say that an opaque type is automagibayedto be the parent type of ynon-opaque
type? Inthis way were talking about the potentiality of being a parent type, which may possibly be better (if it is in
fact ary different formally).

c. Shouldwe add a "<" (arper the change in syntax recommendedwgele=") form to the where clause, thatpéicitly
specifies inheriting rather than replacing instantiation semantics. It seems that this would be cumbersome and poten-
tially confusing notationally.

d. WIll this rule for opaque types mix OK with the probably-not-yet-fully-articulated idea that an opaque type is a form
of type variable?

e. Oh,and one last somewhat related, and I think still nagging question: doesiamyadense to inherit from an atomic
type?

I’'m pretty hapy for nown to gop here, think about it some more, and come back to finish things up. I'll be back.

OK, I'm back nav, with the following thoughts (and hopefully a conclusion).

As usual, | was the total fucking that | am, and did not conclude things Tieedatest thinking, which is pretty close to
a anclusion, is in the 14dec00 entry way @aho

Possible Syntactic Superflash

OK, if we go ahead as stated heland put invalue as a leyword, the "obj =" form of definition is e deprecated.
How about if we nev use "=" in place of "is" and loose "islltogether from the syntax.The benefit is that wean't be
dealing with the loaded English word "is" anymore, which has all the "is-a" inheritance baggage.

So, what we'll be left with are "=" and "<" for the dvghorthand definition forms, or we mightem want to use "<="
instead of "=". So, we'll hae

objX=AandBand C
and
objX<Z=AandBandC

Some more examples, to feel things out:

obj PersonRecord = Name and ID and Age;
obj SalariedEmployee < PersonRecord = Salary and Step;

Having both short forms together does look a little hard to figllut we can say that the user cawagls go to long
form. We might want to thrav in a £mi-colon, as in

objX<Z;=AandBand C
obj SalariedEmployee < PersonRecord; = Salary and Step;

but I'm not sure this helps muctBottom line, | think the long-form notation is plenty fine to alleviate the possibly con-
fusing look of using both "<" and "=" in the same short form definition.

An initial reaction here is that the only (probably slight)wdvacks are we loose the someone nice-feeling "is" for the
most early introduction to formal specs, and we change the semantics of "=" compared toegsidies wf RSL.The

first | expect we canve with just file, by saying "Hg look, we're starting to get formal here, so reeOK using the
slightly more formal looking’ is A and B"Plus, the major win here is we loose the potentially misleading use of "is" as
what amounts to "has". What we're saying is thatiiebdse both "is" and "has" entirelto avoid altogether the whole



Page 61

confusing pseudo-English definitional mess.

The second drawback is a bit more serious, bytfrebably not that mgnpeople (e.g., mostly Danyer used the
form of object defs arway, so we’ll be OK. Plus we’ll write him a nice Emacs script to go through and change all of his
RSL examples. Pluse’ll probably agree with the idea of eliminating the confusion around the (mis)use of "is" in RSL.
Another mitigating factor igarding the semantic change of the older "obj =" definition form is that we seemetadma-
mitted to the valuedyword syntax, which totally replaces the old meaning "obj 3/ay. So it appears that we iraft

have ®rendipity here with do together the change to the value form andwhaesning of "obj =".

Regarding using "<=" instead of "<", upon looking at it in the eb@amples, | think plain "<" looks bettePlus, "<="
when used together with "=" connotes a potentially confusing semaAtiesittedly, "<" by itself connotes a potentially
misleading semantics, since if there are no specializing components, "<" does in fact meatolsevér, on the whole,

I think "<" wins over "<=", at least thas$ the current thinking.

So, the final bottom line is that we should do this, in conjunction with addingbie keyword.

Yet, Yet, ... Yet More on Types versus Values

Today's mindset: it seems pretty foolish not to syntactically distinguish between objects and valeetaji the are
semantically separate things. This separation, is after all, quite fundamental, since types are statically defined and elabo-
rated whereas values are dynamically defined sadated. Thereford, suggest, most humhlyhat we just do it once

and for all -- introduce salue keyword. Thisnew keyword need not precluded partially instantiated types, necessarily

but the discussion on type spellings in

While we're at the ng value keyword, lets just go whole hog with definition for consistgrand say that the currently
unnamed entities -- axioms and theoremsy get names. Hence, we'll ia the folloving complete set of entity cate-
gories:

object name ...

operation name ...

value name ...

var name ...

axiom name ...

theorem name ...

Reminder

See belw about changing thedyword pair "instance of" to the pair "inherits from". sl& good and important idea.

Caution Re. Structural Equiv and Axioms

It seems that structural egughouldnot be used in the case of axioms that quantilr oypes. E.g.consider

obj MonthlyDate is integer;
axiom forall (md:MonthlyData) (md >= 1) and (md <= 31);

In this case, the hoped for meaning seems clearly to be that the axiom applies only to values of type MonthlyDate, not to
all integers. Thinkclearly about this.

Long-Missing Discussion of Auto-Generation of Op Types

| believe that weve dscussed this problem, but | do not find it explicitly explained in these notes. The problem is that the
automatic generation of an obj from and op is made messy byedpasling. \iz., with two or more orerloads of an op,
we get @erloaded objs, which cannot work exactly.

The problem with the thinking thuarfin this area has been that the duality should and probably cannot be complete in
this area. The statement of this would-be duality is

For any obj named "X", theris an @utomatically-genexted) op named "X" that is its constructor AND for any op
named "X" theg is an @utomatically-generated) obj named "X" that is its op type.



Page 62

The problem, | nev believe, is with the second conjoin in this statement, viz. the auto-gen of an opayped'X". The
problem is that this tarway naming cannot reallyavk. Whats confused here is that we Veatree semantic concepts
going on here when we needatfor the duality l.e., we hge ;e semantic concept too nyanThe concepts are

a. Ewery obj has a dual op of the same name called its constring@ignature of which is the objype.
b. BEvery op that has the same name as an obj and signature that matches tiipeolsj’the constructor for that ob;.
c. Ewery op has a type which is its type as an op type

What we’re saying here is that the last of these three concepts has to go when it comes to same naming. l.e., the op-typt
obj for an op should not (cannot)Jeathe same exact name as the Uge'll talk some more about this belobut a good

candidate name for this op type is the mangled name, with some kind of "Op" prefifooitisafprefix or suffix being
necessary for opaque types where the mangled name and actual name of an op are identical.

To further clarify the mattehere are some points the complements of whicmatr#ue (thats twisted, eh?):
a. Noteveay op is the constructor for some obj.

b. Not every obj is the op type of some op.

So, what about the naming e@ntion for auto-gerd op ypes? Hw about
Op<op-namee><op-inputsto<op-inputs>
E.g., for the op definition (t op Foo(X,Y,Z2)->(X,Y)

The auto-gem op type name is OpFooXandYandZtoXandY ". Someavhat ugly but (a) quite consistent
with intuitive type spellings of signatures; (b) finegi how infrequently users are likely to use auto-gemp
type names; and (c) fine because this form of autadgemhe is unlikely to coincidently match the name of a
userdefined type, particularly if normal RSL ammtions are used, which disaNdahe use of lowercase "and"
as a hame word separator.

Generalizing Relational Definitions

What hae we learned from studying UMLThat the RSL treatment of relations can be generalized and sanitized as fol-
lows:

a. Ingeneral, we should mosanitize things so that the syntax (and semantics) of an attribute are defined as either a
value-valued expression or type-valuedpeession. Thdormer can be callestalue attributes, the latterela-
tional attributes

b. Gven this, we define the syntax (and semantics) of a relational attribute to be a composition expression, period.
This allowvs both of the current cases of object name or comment, plus all of the general power of composition
expressions. Thiadmits much of the semantics of adornments that UMlwalland generally strengthens the
relational semantics of RSL.

c. All current attributes should v& a hiilt-in attribute name, inheritance and function value in particuldre
TODO list suggests "implementation” for the formiaut this sucks.Also, inheritance is problematic because |
cant think of a good single-word name for the attitila "inheritsfrom", "instance of", "subclass of" are candi-
dates. "inherits'as a single-word name is a possihilityinstance of" should probably be ruled owteni the
connotation of "instance" that has taken holdz., "instance" means concrete value, not subtyet's try
"inheritance"and"expression'for single-word namesTheres nore discussion bele BTW, the rationale for
“inheritance" is that i§ a roun, which is consistent with the current naming of a built-in ateg Ifwe go with
something lile "inherits from" weve noved into verb phrases, which is not necessarily bad, but is inconsistent
with current nomenclature style.

d. We should also allar the size of a list to be specified in a comp expression, using the normal syntax ofsist inde
ing, including ranges. E.g.,
obj X is Y[2] and Z[5..10];



Page 63

which means that X is a tuple of 2syand between 5 and 10 Z’s.

e. AsPorcelli noted, there mo appears to be an unnecessary redungdmetween the name/value notation of
attributes versus the very simitlooking name/value notation within compositionapes. Thiscan be nicely (I
think) rationalized by saying that namalive attribute pairs are meta-components, whereas name/value tuple ele-
ments are structural-components.

f. OK, so heres a petty sanitary rule for he to determine whether an attribute is type-valued @lug-\alued: if
there is a "’ used in the attribute definition thegs Wlue-valued, otherwise it is not.

g. Given this, we should be able to (actuallye must be able to) define the class of all of the built-in aitei®.
Heres a $ot at it:

i. componentstype valued

ii. inputsand outputs: type valued

iii. ops: (restricted) type alued (where commands are used as tuple operators, and the tuple elements are op
types)

iv. precond and postcond: op(any)->boolean

v. where: (restricted) boolean-valued

OK, let’s look at a revised nomenclature for built-in obj and op attributes:
object X inherits from Y and Z is A and B and C;
is the short form of
object X
inheritance: Y and Z;

components: A and B and C;
end X;

Here is a long form showing all of the built-in object attributes:
object X
inheritance: Y and Z;
components: a:A and b:B and c:C;
operations: P and Q and R;
equations: P(x) == Q(y);
actions: a.al = z.al,;
description: (* ... *);
where: D = E;
end X;

Note here that weé dopped the "is" in the long formNote also that a "value" attribute can be used in place of the com-
ponents attribute for a fully concrete object.

Yet M ore on Concrete Values

Yet another possibility for solving the abstract versus concrete value dilemma isviooaljpoconstant values in object
value expressions, where constant values do not include (some) expression operators. This makes sense imegeneral, gi
strong typing. Here are some more thoughts, rapidly.

We've always liked the ideas of partially concrete types, where, e.g., components could be somethintgdikr and 2
and intger". l.e.,one or more components can be concratees. Ifwe go with only allowing constant values syntacti-
cally as values, we can probably go back to the syntax thatsatiomposition expressions to be mixed types ahaes.
Recall that then problem with this syntax is that operatoes"hkd" are ambiguous in a composition expression that
allows both value and type expression operators.

The notion of dully concrete object is that all of its components alaes, not types. This is consistent with the nomen-
clature used in the type spelling rules where we say that the spelling of a value is "the ...".



Page 64

BOTTOM LINE for this discussion: It appears that the current solution of allovdahgeidentifiersin type expressions is
probably the best onddowever reasonable it may seem to disallboolean operators in constant expressions, this really
is an arbitrary restriction. After all, we cannot disailall expression operators in value expressions, since thigdw
prevent constructing concrete compositues with list and tuple operator&iven that we must adm#&omeexpression
operators in concretealue defs, it can only be arbitrary what ones to eliminate after that. When we think about it, it
really is just a syntactic coincidence that "and" hasnwanings in type versus value expressions.

So | think things are just fine if we stick with the current syntax that allows value identifiers irxpypsséons, but does
not otherwise allw mixing and matching of type and value expressions.

| believe it's dso OK to continue with the short form "is" versus "=" notatiombe former is for apform of abstract
object, including partially concrete oneBhe latter notation is reserved only for fully concrete objects. Syntactittadly
is what allows us to segydae type and value expressions.

As hinted abwe, we mght nov consider dropping the "is" from the long form of definition. This wilMed&is" strictly
as short form syntaxl. think | like this.

Given the graceful transition from abstract to concretli@s, the components attribute should be usable for both the type
and value parts of an objedtlere’s the ground rule for thisAn object identifier denotes either a type or a vahaser

both! Hence, the components attribute can be used to hold an shyjpet'or value, since an object willvee haveboth

at the same time. There is a potentially afmg syntactic problem with this, which has actually been around almest for

eve. Viz., the plural noun "components" seems an inappropriate name to used for the single value of an object, just as it
does for a single type. E.g., if we define type X as identically typgdnthe usage "components: integer": hagagb

been strained. Similarlyf we define X as identically the integer 10, the use of "components: 10" again seems strained.

To ome atent, at least formally amway, we've dleviated the "components" as singular attribute problem by defining a
one-tuple type to be the same as component type itself. This solves the problem for valuestoweedt, for some-
thing as fundamental as this, it seemsdyok havesuch a seere nomenclature problem.

Since we hee worked out the semantics sasisforily, we $ould be able to work out some accompanying notatitow

about this: (1) wdl allow both the singular "component" as well as the plural "components" as a nod to objectgethat ha
exactly one component; we couldea havethe checker check for this; (2) we'll ald'value" to be substituted for "com-
ponent(s)" when an object is a fully concrete value; the checker shoalet icheck for this, since we'll beatuating the

attribute differently in the tw cases (i.e., type versualue &pression). lwas just about to say that I'm noven sure

about the "value" attribute, since "component: 10;" would be as good as "valueHb®&ver, we nust recall the ambi-

guity between type andalue exprs, hence the necessity for "value" as a separate attribute name. After all of this is done,
if the user still has some doubt about the nomenclatural clarity of specifying type identity with a "component”, we can
sugar up the "one tuple of X = X" argument ancetedee of things pretty well.

We havetoyed with the idea of defaultvalue for an object, which could be present in addition to componégdtgather
not kuild such a thing in.Rather we’'ll just specify annitialize operation that creates objects and specifies certain
concrete values objects mustvbdor starters. See the next item for some further interesting discussion about this.

FLASH on Specifying Read-Only Objects

To make an doject read-onlywith a given concrete value throughoukecution, specify it with an axiom as follows:

obj X'is ...;
obj DefaultXVal = ...;
axiom forall (x:X) (x = DefaultXVal);

Hmm, this is pretty cute.

1 As noted on 24n@®7 in ../ref-man/formal-type-rules.me, this ground rule needs to be reconciled with the current write up of the
formal type rules.



Page 65

(Final) Decisions for Version 4
In light of preceding discussion, this item is bogus.

Oh, please, say this is really the last word on the subj®etrow will goto a separateaiue lkeyword, instead of the ’is’
versus '=' object notation. Herge’ow we’ll explain it.

There are tw main kinds of entities -ebjectsand operations Objects denote data types and operations denote func-
tions. Inaddition, there are the following ancillary kinds of entities:

« values which denote constant object values of some type

« variables which denote global state variables of some type

« axioms which denote definitional predicates that are globally true

« theoremswhich denote postulated predicates that should besghtoue with respect to axioms

« attribute definitionswhich are meta-definitions used to definesmatity attributes

Here is some further discussion/explanation to rationalizeejyedkd syntax, in particularin V4, let's have’is’ and '=’

be synogms. Thissounds pretty goodyen though it isnt quite in keeping with the so-calles-a versushas-adistinc-

tion. We aan easilyl think, rationalize this with the "lyewe’re in the specification language, not programming language
business" agument. Gien this, in V4 heres a evised bit of syntax table:

keyword equivalent symbol meaning

is is defined as; aka, is composed of
instance of < inherits from

This seems pretty clean syntacticadince it allows defs of the form
obj X <Y =AandB and C;
obj Y instance of Z is D and E and F;
Further rationalization goes &kthis. Thereason we use theeyword "value" instead of "constant" is again because
we’re a specification language, not a programming languabis seems to be shades of ML, which is fi&lobal)
variables break the functional semantics, but are considered necessary in order to specify certain state-based semantics
including concurrencbased on shared variables.

Well, We Gotta Keep Doin’ Better

In thinking about ha to resolve op nheritance, it occurs that we are not doing obj inheritance progderparticular in
order to be able to do struct egproperly, we reed to do the following:
* Define the order in which parent components are snatched.

* Allow duplicates, except of the same name.

Things to See in Test Files

See:
« rsl/alpha/newtests/one-tuple-niceties.rsl
« rsl/alpha/newtests/generic-sort-function.rsl

Yet More on “obj X =...” Versus “value X = ..7

Farg — dl of the crap belw is yet another circleTry this. Adefinition of the following form
obj X = "abc";



Page 66

definesboth a value and a type. Contrary to what we mayehkeen thinking, haever, the type of X isNOT string.
Rather its type is X, which is a unique opaque type with is a subtype of sitisgems that we may & had this idea
before, but were unable to meak work (except maybe in the "THE, Ultimate" discussion m8lo| think the reason is
we didnt haveone-tuple-of-X = X type equirule in place at the time.

To wnify things completelyit might be nice to go back to the old, old idea thadtigs can be first-class operands in com-
ponents gprs. Havever, this leads to very serious@loading problems, as in:

obj x is a and b;

wherein we cannot tell if obj x should be a tuple type or a boolean tygpeone interpretation of "a and b" takes "and"
to be tuple construction, whereas the expression interpretation of "a and b" takes "and" to be boolean cofijaisction.
wont do. Therefore, | think we need todiwith the slightly hoky

f(s:Sex)->boolean = s = "male";

OK, so we go with "value =" instead of "object =" -- what really do wg?bSeems$o me that if we don’really sohe

ary big problem, might want to stick with "object =" simply for backward compat and notational orthogan&ttythe
guestion remains, do we seleny big problem simply by subbing alue" for "object"? As | speak, I'm getting the feel-
ing that the answer is ndzssentiallywhat wete coming to is that an "obj =" definition does not in fact define a type at
all, but rather a (constaviable. Hencethe stuf about "restricted" type need notist. Sowhat we're left with is simply

a keyword thing. Viz., should be use "obj =" or "value ="? Is this really all there is th.@s day with the implemen-
tation and see, since wewoeed to fix the problem with rsI3/tests/dan-lawyers-and-judges.rsl.

OK, now we've implemented a bitTo be dear, what weve just implemented is that the "obj X = ..." formmndefines X

as of class C_af, not C_Obj. This makes things pretty darn clear cut semantibaliyras lead to someweassues. One
consequence of leaving the "obj =" form instead of the semantically potentially more descévigit" form are the

error messages that say "Components of objects must be objects (X is not)". This error message will happen if X is a
concrete value, which is quite confusing to the hapless tmrce, for nw, we've dealt with the problem by changing

the text of this error message "Components of objects must be *abstract* objects (X iAddt)e. hokey, but maybe

we can e with it.

Another potentially more troublesome consequence of the @eVar implementation is what' happened to the
tests/bnf.rsl gample. Recalthat this example is cited b&loin the nicely concluded discussion of symbolic literals.
What's happened nw is that bnf.rsl has gone bad @g?). Specifically

obj Operator is PlusSign | MinusSign | TimesSign | DivideSign;

obj PlusSign ="+,

obj MinusSign =",

obj TimesSign ="+

obj DivideSign ="'/";
now produces four error messages since PlusSign, etc. ereamerete objs (a.k.a. vars), which are ng@alén comp
exprs. Atthe same time, bnf-v2.rsl is (still) OK. It contains just

obj Operatoris '+ | ™" | ™" | 'T;
The seemingly ugly part here is that "equals-for-equals" semantics appeave twakan down, at least superficially
Viz., '+ is OK in directly in a comp expression, but not indirectly via having been defined as the value of a concrete
object. Ibelieve that the semantics are still sound here, in that the symbolic literal notation is define clearly as a special
form of designation that is thenly notation that designatesthera type or value, depending on coxtte Given this, the
declaration "obj PlusSign = declaration, PlusSign hasbezome a concrete value ondpd since idents do not Yethe
special dual designation property of sym lits, the use of such a concrete object ident such as PlusSign will (and should) be
illegd in a comp pression. Allof this reasoning not withstanding, I'm starting to think at this point, after this latest
round of implementation, the that "value =" notation mighw e better since it clearly denotes when something is a
value and not, therefore, an abstract object. Hmm., need to cogitate some more.



Page 67

Decisions, Decisions

Once and for all, let'do he following:

1. Throw out the syntactic form "obj X = ...", replacing it with "value X = ..(\\Well, as can seen ab®) we're
still thinking about this one.)

2. Implementhe short-hand usage if 'E’ lists in comp exprs.

3. Implementull struct type equi and the equialence of obj gprs and ins and outs. (As a practical matter
may neer get to this; rather we’ll just implement as much of it as necessary to get auto decl of constructor
ops, and whater other nice effects we needVere dill thinking about it as of n@.)

4. Implementthe "top" opaque type gnfrom which all types implicitly inherit.This will obviate the need to
implement "*" as a type, | think. The only op defined ory awill be '=", which is alvays false for function
types. (Stillthinking about this one too. Some recent work with opaque types as vars (in particular in
newtests/master-list.rsl) may obviate the need for a true top type.)

Concrete Values, Rere..gvisited

It seems to me that about the only reasorvevkeen clinging to the "obj is" versus "obj =" notation, instead ofxpficat

value keyword, is for enum literals as stringt seems further that the idea of enum literals as strings has pretty much
gone avay. Therefore, | dort'think we need to mess with the idea of a "restricted" type as we were Hele | recall

that this stemmed from the whole enums as strings mess.

Therefore, if we do stick with "obj = ..." instead ofalwe = ..." it5 for notational orthogonalifyhot because we want to
stick with restricted types or strings as enum literals. See discussion about the lattewto follo

The (Long-Standing) Trouble with Enum Lits

In PLs, there is are generallydveeparate constructs for enums versus unions. In RSL, there is theairigleboth.
This, it seems, has led to us going around in circles for so long abhewkhotly to represent enum litd.et's e if we

have a darifying summary of where weé mme to at this point, which is hopefully a sound solution to the problem of
how to represent enum lits.

First off, enum lits are NDstrings and NQ integers. Actuallyenum lits hae wo identities -- as types and aalues.
As a type, an enum lit is an opaque types. a value, an enum lit is a constructed value of an opaque type, which is fun-
damentally denoted as E(), for opaque typeSkice enum lits are an oft-used construct, the syntactic sugaring of 'E’ is
provided.
Conceptuallythe following rule may seem in order:

An opaque type E is a type, N@ value; an enum lit 'E’ is a value, NCa type.
This leads to the more general rule that

No single denotation can represent both a type and a value.

A, perhaps the only remaining, problem with thiseneplified by the bnf-v2.rsl file, where enum lit values are used as
type names. The problem with this bit of notational &igkis that it violates the preceding general rule, and leads back
to the idea of restricted types, which weereve fully formalized properly (But see bottom line belo)

A conclusion could be that we could probablyelinith the preceding rule, if it gés us a Bnple and sound semantics,
even if we don't get quite as nice a bnf notatio®ince BNFs in RSL are presumably not that common, this probably
isn't a major problem.

However, if we want to allav the comwenience of the notation irxamples lile nf-v2.rsl, a (the?) fundamental question
is:

Can we devise a sound semantics that will support enum lit designations being used as both types and values?
Heres a cack at hav we might implement the type checking of such:



Page 68

a. Wheneer a 'E’ lit appears in a typexpression, enter an opaque type of that name ("E") in thd Qesymtab
if one does not already exist.

b. Complain clearly if the enum lit is already @khs a ron-opaque type.
c. Wheneer 'E’ appears in a value expression, it denotes a value of type E.
d. Besure to clarify in the users manual that 'E’ isvere= "E".
Actually, this may be a pretty sweet little solution to the enum lit thorn in the %ide the following works fine now:
obj Sex is 'Male’ or 'Female’;
and doesrt’even look half bad. Also, it looks li it can be explained pretty easilfimm., maybe we'e fixed things
finally.

Also, bottom lineishlyexcept for idents 'E’ lits, no denotation is both b type and a value.

Why 0-ary Constructors for Non-Opaque Types ae NOT Senseless

WRONG REASONING: Because such a constructor wouldhyd have o create a nil value, butggn that nil is totally
overloaded anywayone might as well just use nil in the first place.

CORRECT REASONING: Because such a constructor willTNiways create a nil value, but rather for tuples will cre-
ate a tuple value with potentially initialized fields, per the object definit@ae note belw about nice duality between
obj's and op5 vis a vis initd name/type pairs.

On Generic Instantiation

See the very important discussion in newtests/one-tuple-niceties.rsl.

On Subtyping Atomic Types

If we've ot alreadywe reed to decide if this is alied. Apparentlithe 3.1 type checker thinksstOK, since it passes
tests/subtype-poly-tst.rsl, g.v.

On One-Tuples

As noted under the "POSSIBLE FLASH" heading belae can hopefully implement the following rule: there is no dis-
tinction between a one-tuple of type T and type T itS@&l€l11 talk more about this, and itsMdy consequences, soon.

On Generic Functions

Consider
function IsSorted(l:*)
forall (i,j: integer |
(iin [1..#]) and (j in [1..#]) and (i<j))
I[i].id < Ifj].id;
The idea is that alleing '*' by itself to be a type designatowve’re writing a generic function that can be applied tp an
list. Now, what happens if weverload this?Well, | think the same basic "lowest" rule fovesload resolution can apply
is with subtype polymorphismViz., such fully generic list functions are the "highest” in the chain, and wiNdred
den by ag other functions of the same name thaktatre specific forms of lists.

We might even consider that anlist object is automatically a subclass of generic type list, which means that it inherits
things that are true for all listde uld male omething conceptually nice and uniform out of this, if we could get the
different forms of instantiation done straight.

On the practical side, hesea &«etch of the (seemingly ML-like) way that such generic (list) functions wouke kmabe
type checked:



Page 69

1. Whenwe type check the generic itself, the base type of the list widl tiebe ®me type ar, which checks lik
type Ary (i.e., compat witheerything, except maybe function types, but we’lVad se about this).

2. Atary call to the function, we’ll hee o (re)instantiate the functiositody, with the appropriate generic instan-
tiation.
3. We reed to gre much better error messages that ML doesjalsly. Something lile the following would be
nice:
Generic function invocation fails because of the following type problems:

after which we simply proceed to list the error messages that normal type checking on the instantiated body
produces, probably with line numbers for the cite of the generic definition.

Conceptual Drift
NEW DISCUSSION:

The argument under "OLD DISCUSSION" belts evidently wrong, or at least confuse@ontrary to whag said there,
it seems that its OK to use opaque types as type vars, particularly if we use the rule that {T} and T are the same type.
Heres the deal.

Where the discussion b&l@oes wrong is in the following statement:

The earlier position was to treat opaque types as trsesud that any type could bind to an opaque tymed-
ulo varname use in a signature.

In particular it's the italicized part that’wrong. Mz., we do not let antype bind to an opaque type, onlypécitly
declared subtypes can so bindind this is precisely the normal subtype polymorphism rule -- thatygoe T1 can bind
toary type T2, if T1 <=T2.

Hence, we're OK with considering opaque types to fmra oftype \ar, but not the fully general form of typeay as n
ML.

OLD DISCUSSION:

It seems from the discussions belthat weve sitched positions diametrically with respect to the egance rule for
opaque typesViz.,

» The current position is that each distinct opaque object represents a distinct type,vadredoi ary other type.
This is in fact what the type checker enforc&be earlier position was to treat opaque types as type vars, such that
ary type could bind to an opaque type, modulo varname use in a signature.

Type latticewise, the current position has opaque types on the bottom of the lattice, whereas the earlier position has them
at the top.

What this means at present is that we should stick with the current position, but add a syntactic notationdi, ifpe v
necessaryWe dscuss the type var issue bslo

Type Vars Revisited

So, the question is, do we need type vars, and if so for what? Whike atétf, we need to fix all of the generic instantia-
tion crap thas in the ref man. In particulawvhen thinking about type vars in generics we probablytdeant to hae
where clause substitution types toéd be sibtypes of what thesubstitute for (see the ref man).

The point of confusion is to exactly what extent the seemingly true statement "inheritance" is not "generics" is true, par
ticularly in RSL. Lets look that the following very familiar example, the current where-clause way:
obj Stack is Elem*
ops: Push, Pop, Top;
end Stack;



Page 70

obj IntStack < Stack
where: Elem = integer;
end IntStack;

Let's ry a more coventional parameterized type way:
obj Stack(Elem?) is Elem?*
ops: Push, Pop, Top;
end Stack;

obj IntStack is Stack(integer);

A key poblem we're sufering with is the nature of inheritance as tuple creatiéven if a subobject does not addwne
components, iautomaticallypecomes a tuplel. think this needs to be reconsidered.

A promising-looking idea wuld be to eliminate the immediate wersion of a subtype to a tupl&ather wait until the
second inherited or defined component is found beforeettong to a tuple.

POSSIBLE FLASH (see full discussion aleii make no £mantic distinction between a one-tuple and a non-tuplg.,
an object of type integer is the same as an object of typayéirjte Onenice benefit of this approach is that thésting
anomaly of not being able to access a single-tuple elem’ vta hame would goveay. The rule would be that a one-
tuple could be accessed with or without a field name selddtom, this seems pretty-darn nice so far.

Another mess wege gotten ourselves into is not knowing the difference between generic instantiation via '<’ versus 'is’.
Consider the following example (excerpted from tests/stack.rsl):

obj Stack(<<Elem>>) is <<Elem>>*;

obj IntStack is Stack(integer); (* BIG QUESTION: what'’s the diff *)

obj InsStack < Stack(integer); (* between these two?? *)
Lest we think where-clause notation might fix things here, it dbeke’,we can hae a where clause with either '<’ or

is’.
Here are some pertinent questions related to this issue:

1. Shouldboth forms of instantiation be allowed?

2. If we use the parmd’types notation, should an instantiation form be allowed anywhere that a type is allowed, or
should we allw it only in a parts_spec? FORGET THIS: this wont mahy dff if op 9gs are nw the the
same as parts_specs.

Mor e on Op Args

In an effort to define automatic constructor ops, we need i &maddress preciselyyudo declare op as. We have
discussed at length that weowid like to dlow a fully general parts_spec in the input and output fields of arTopdo
this, we need to clarify if we kra he ML-like sngle-ag model, or if not, gactly what we do hea. Let’s try the follow-
ing:

« A full-on parts_spec can in fact bergi for op ins and outs.

 Eachtop-leveland operand is treated as a separate arg.

« If the parts_spec is a single list, then the function is n-ary.

« If the parts_spec is am’d expr, then the function has exactly ong af theor'd type.

« Syntactically we’ll fully unify parts_spec and ins(outs)_parts_sp€tobably the easiest way to do this is to use
parts_specwerywhere, with the addition of using init_name_type_pair in place of name_type_opfThigihas a
seemingly nice duality effect, in that we can interpret an initializer in axgbjte mean that whewer a concrete
value of the type is created, the initialized field(s) wil&ae given value(s). Thidoes seem to ka a grendipi-
tous duality effect, in that we are blending objects and ops quite niagly no



Page 71

Casting by Constructor

The following discussion is historical only in that wevéakcided to be happwith '<’ as the instance-of operation.
We'll also add subclass (of) for some additional syntactic sugaring.

We'd like o use " as the instance-of operatdrhis leads to an syntactic ambiguity with uses of ' to declare type in a
concrete obj decl. This, somewhat serendipitqusiggests that we should eliminate the latter use of concrete object of a
particular named type. This leads to the idea of an automatically defieddaol of object constructor that takes an
argument of the structured type of its components. Ah, but we probably alresdfiba

A motivating example for this is the biggie burger food menu, which in the pastweedhelared something léthis:
obj DefaultMenu:FoodMenu = [ ["Burger”, 1.89, [...]], ... I;
If we eliminate this use of :’, we get the following:

obj DefaultMenu =
FoodMenu( MenuSection("Burger", 1.89, Acessories(...)), ... );

which probably looks better mnemonically anyway.

There seems to be really little problem with eliminating this use of "', sirgerity of consequence in concrete obj
decls. Inother binding contexts, we’'ll a a eéclared formal (LHS) to determine the type, and in effect do the casting

for us. The "casting" to which we refer here is that of casting a structured value specified with the generic bracket con-
structors into a specific named type.

All of this is related, yet furtheto the next heading on concrete values.

Concrete Values, for the Umpteenth Time

| thinking again that we should add theyword "value" to the language. Ah shucks, | wish | could enag my nind
about this! Maybe we can maKlet" be a top-leel (i.e., module-lgel) construct, so that values can be created tlagt w
E.g., nav we have
module Foo;
object X = 10;
end Foo;

With a value kyword, wed have

module Foo;
val X = 10;
end Foo;

Allowing top-level I et, wetd havemodule Foo;
let X = 10; end Foo;

| kinda like that last one (the let). Latthink about it (pun partially intended).

New, Improved Import/Export Rules

Summary:

* Legd syntactic forms:
oimport M, for module named M
oimport X, for export X
oimport M.X, for module M, export X
oexport X, for defined symbol X
oexport all, for "all* a leyword

* old forms nav axed:
ofrom M import X

« import M, for M a module name, imports all exports from module M
« import x, for somexgort x, imports x from the first (only) module that exports it; seew&bo error cases (i.e, if 0



Page 72

or >1 modules export x)
« export all has the obvious meaning
« import M.x should be a ¢ form, with obvious meaning

« the qualification/redundancy/insufficignibusiness should be handled as follows:

o All imports should be unqualified by default wheerepossible; i.e., reference toyammport should automatically
be allowed in unqualified form, as long as the imported ident is not already defined in the importing scope.

oIf an imported ident is the same as an existing ident, then the checker issues a warning indicating that qualification
will be required for that ident.

o If > 1 module defines an import, then the checker issues a warning listing each of the modules that exports the
ident, and indicates that each version will izalable in qualified form only.

o Note that a warning or error is not issued at the timexpbr for a module that exports an ident for the second
time or bgond. Ratherthe warning is used at the time of importis is because multiple export is not really an
error at all, since it can be dealt with by explicit qualification, either at each use or at import.

« If 0 modules define an import, then the checker issues an error to that effect.

RSL-lik e syntax for DEMO interface modules

Given below is an aaptation of the following DISL code:

INTERFACE DummyName{
Objl := DrawRect(342, 110, 472, 142);
Obj0 := DrawRect(88, 112, 218, 144);

MAPPINGS Objo:
LEFTDOWN: op0;

OPERATION op0O(s : Selection; | : integer; b : integer) {
STIMULUS MoveSelection(s, |, b);
RESPONSE {
MoveSelection(Obj1, integer(3.250000 * real(l)),
integer(1.600000 * real(b)));

}
Heres the RSL-like equivalent (see ../../rsl/alpha/newtests/sample-demo-code.rsl):
(* interface *) module DummyName;

from Demo import Selection;

define object attribute leftdown;
define operation attribute stimulus, response;

object Obj1 = DrawRect(342, 110, 472, 142)
leftdown: opO;
end Obj1;

object Obj0 = DrawRect(88, 112, 218, 144);

operation op0(s:Selection, l:integer, b:integer) < DemoOp
stimulus:
MoveSelection(s, |, b);
response:
MoveSelection(Objl, integer(3.250000 * real()),
integer(1.600000 * real(b)));
end op0;



Page 73

end DummyName;

where module Demo is:

module Demo;
export Selection;

object DemoWorld;

object Selection;

operation DemoOp(DemoWorld)->DemoWorld;
end Demo;

Note that this requires that we expand RSL syntax tavattribute values to be exprs, which we’'done. ThisBTW,
lead to the ne reduce/reduce errowhich weve determined to be OK.

Yet Yet More on Func Call Type Checking

The latest idea is that we may be able teehdLish parm bundling and unbundling, as long as we do it at the ¥ep-le
of parm nesting onlyConsider the following familiar-looking defs:

(t

obj X is A, B, C; op F1(X)->(X); op F1(X)->(A, B, C) op F2(A, B, C)->(X) op F3(A, B, C)->(A, B, C);

NEED TO EXPAND THIS, looking carefully at what'dready been said beio

There are also some important, seemingly deeper thots on subtype poly vis a vis constructed types, e.g., with "[" ... "]"
and "{" ... "}". Ifit' s mot completely clear in what'said belav, these constructors construct types that are structurally
compat with list and tuple typesutoNOT subtype compat witiANY types. Thisis because these constructotsid
anorymous types, which cannot, by definition, be subtype compaeems like what could be emerging here is erv

sion of name type equthat relates to subtyping. l.e., wevhaa $ructural equi rule at the leel of straight types, bt

structural equi does not extend into subtypes. Probably should ddétutf and see what research there is about this out
there. Itseems likely that this kind of rule already exists, maybe from some time ago.

Type Any, One More Time

Thot: provide pre-ded type vars "any", and "anyn", for all n, with the intent that any1, e.g., used in a signature is (must
be) the same type in all signature occurrenagsisinot necessarily the same as, e.g,, tyg8.abravback here is using

up ident names, but this may not be a problem. Need to think ab@ltatnative, used in scattered examples, is to use

'?" an ident prefix or suffix to denote a typarvProb with this is l&ical/syntactic confusion with '?’ as the infix tag
selection operator.

On the Ultimate Generalization of Type Checking

It may just be possible to it all, viz., to have full subtype polymorphism; structural egalence; complete compati-
bility between comp>@rs and op sigs; andierloading. Hereare some observations and rules in thigngt which need
further discussion,

1. Ala ML, we can in theory consider all funcs to be of a single arg.

2. Considertherefore, using ( ,..., ) the generic tuple constructor; [ ,..., ] might still be the generic list condintictor
we might &en want to go for (,..., ) for list construction as well. This, it seems, will help unify the concept of
comp exprs and signatures being the same thing. Note that we might also wawe fo.lehand [ ... ] in, and
just hare ©me less-than-perfect rules fonhthey can be omitted in the context of an op call. E.g.,

op Op(integer and string)->integer;
op main() = (
Op(1, "abc"); (* OK™*)



Page 74

Op({1, "abc"}); (* Also OK, and equiv to the preceding. *)
Note that things get furgkin cases such as the following, wherein we’ll need some clear disambiguating rules:

obj Threelnts is integer and integer and integer;
op Op(integer and integer and integer and Threelnts integer*);
op main() = (
Op(1,2,3, 4,5,6, 7,8,9,10)
)i

3. To avoid absurdly difficult, if not impossible inference, an object constructed with the generic tuple or list con-

structor operatorscAN NEVER BEconsidered to be of a subtype, since tlser® rame associated with it.
Hence, to enable subtype inferencing in parm binding, a named constructor op must be used. E.g.,
obj X is string;
obj Y < X is integer and integer;
op DoX(X)->X;
vary:yY,;
axiom ... and DoX("abc",1,2) and ... ;
" This wont work since ("abc",1,2) is in fact compat with
* t ype Y, however it cannot easily be inferred to be a Y in this
* ¢ ontext, and hence a subtype poly match of DoX wont happen. *)

axiom ... and DoX(Y("abc",1,2)) and ... ;
(x This *will* work since Y("abc",1,2) is directly
* discernible as a Y, and hence the subtype poly match can be
* f ound. *)

Single-Tuple’s Revisited

Despite obsemtions to the contrarye may well want to aller single-elem tuples to be equjsay structurally) to types
of the elem type. The reason is a good one, when one consideristivgyeexamples of generic list-structured objects,
such as the ref man generic DBample. Consider:
obj GenericList is Elem*;
obj IntList < GenericList
where: Elem = integer;
end IntList;

op f(l:IntList, i:integer)->boolean =
I[1] = i; (* ! Wont work, because IntList is of type (integer* and)
* NOT of type integer*. Oops -- this ain’t so nice. *)

The reason, | behe, that we were clinging to non-equif single-elem tuples and the elem type is to cling to name type
equi, which in turn vas, among other possible reasons, tonathp adering dependencies to be specified by unique
types. Vi probably want to woid this aryway, but if it's really necessangay in a comm protocol specification, we can
do it via unique opaque types, since these avayalunique.| think we’ll be hosed pretty badly if we say that all opaque
types are equj o we @n rely on their uniqgueness. While this may mtide spec of sequential control depengeatit
uglier than it might otherwise be, we carelinith this since we want to frown on control dependencies anyway.

Mor e on Op Inheritance

The stuf below about reintroducing direc op inheritance still seems gosg. reed to mak the following refinement.
An op definition will define a type all right, but a value-constrained tylfre subtle problem we need to deal with is an
invocation of subop, bound to a var of a parent type. E.g., in the examplebelmave

op class GenericGraphicsOp(Canvas)->Canvas;
op Move(SelectClassPazOrms) < GenericGraphicsOp;



Page 75

op Scale(ScaleClassParms) < GenericGraphicsOp;

op ExecuteSelectClass(gop:GenericGraphicsOp, parms:GenericGraphicsOpParms) =
gop.<Move(parms.<SelectClassParms);

op main() = (
let s = Selection(...);
ExecuteSelectClass(Move, SelectClassParms(s, 10, 20));

The callgop.<Move(parms.<SelectClassParms) is just fine in this context, singop is bound to ofMove.
Suppose, hower, that the body oExecuteSelectClassOp was
gop(parms);

The deal here is that we cakhow thatgop is bound toMove, yet at runtime we must be able to run somethigg,

we’'ll have mebehaviorinheritance. Whathis means is than subops inherit Huly of their parent op. It seems that
the runtime rule can be thatyasubop will inherit the body(ies) of all parent ops, an analogous mannemtsubobjs
inherit fields. Then, in situations such as thevapwhen a subop instance is hanging out in a parent-type variable, the
inherited parent op body can beeuted by extracting it from the subop. Cool.

In general, the concept of behavior inheritance shalwdysbe on, to be precisely the dual of structural inheritarice.
be precise, behavior inheritance will work akin to constructor behavior inheritance in!BW¥. WOA HERE -- this
cant work in a functional setting, since we seem teeheo way to capture the returralue of parent>aecution. So,
maybe what has to go on here is xeoeite only parent behavior in cases such as thecahloere we hee a sibop \alue
hanging out in a parenaw !INO BUT WOA AGAIN -- maybe we do in fact a a vay to get at the return value of the
parent. Vz., it's in the output parm(s) of the parent. E.g., adding parm names to the op defs abo

op class GenericGraphicsOp(c:Canvas)->(c':Canvas);

op Move(scp:SelectClassParms) < GenericGraphicsOp;

op Scale(scp:ScaleClassParms) < GenericGraphicsOp;

Given this, we can refer to the output of GenericGraphicsOp as a parent op from within the definition of one of its chil-
dren, say Mue, as n:
op Move(scp:SelectClassParms) < GenericGraphicsOp =
c

which simply means that Me returns just the ¢’ that its parent GenericGraphicsOp returfidds could bevaycool, if
it pans out.)Move wuld do more if it chose, including not referring to ¢’ at all, in which casereturn value from
Move would be whateer its parent computed it to be. If Mewants to do more with ¢’, then it can, as in
op Move(scp:SelectClassParms) < GenericGraphicsOp =
f(c);

for some function f.

THE, Ultimate, For Sure, Absolutely Final Ruling on Union Types (Maybe)

OK, let’s ®e if we can define some type checking rules that willensakse out of all of the possibleays that unions
can be used, probably most particularly as enumeration types.

Rule 1: If all of the components of a union type are unique types, then the checker can infer the necessary injection in
binding contexts.

Rule 2: If all of the components of a union type are the same type, then the checker can infer the necessary injection in
binding contexts, which type is simply the component typkis rule will malke the old-style enumerations work as
expected.

Rule 3: If component types of a union are neither unique nor the same, then no injection inference is RERble.
HAPSwe want to disalle this case altogether.



Page 76

To make dl of this work, hav bout if we define concrete obj defs to mean the following.
obj x = val
<==>
obj x < typeof(val);
obj 'val’ < typeof(val);
where val must be a consgpgession. E.g.,
obj x = "xyz"
<==>
obj x < string;
obj 'xyz’ < string;

Do think about this some more.

Hmm, Really Great Looking Polymorphism May Not Be that Easy

OK, from the real demo.rsl example, herehat wed like to :

(*

* Primitive Graphic Operations

*)
op Select(Canvas, Selection, Location)->Canvas;
op Move(Canvas, Selection, Location)->c’:Canvas;
op Scale(Canvas, Selection, ScaleFactor)->Canvas;
(* Etc., ... ®)

obj Location is Coord and Coord;
obj Coord is integer;

(*
* Generic Graphic Op Parm Classes
*)
obj class GenericGraphicOpParms is Canvas;
obj SelectClassParms < GenericGraphicOpParms is Selection and Location;
obj ScaleClassParms < GenericGraphicOpParms is Selection ScaleFactor;

(*
* T he Generic Type of All Graphic Ops
*
)
obj GraphicsOperation is op(GenericGraphicOpParms)->(Canvas);
Given such defs, can we reasonably expect the following form of application to work?

op ExecuteSelectClass(gop:GraphicsOperation, c:Canvas,
s:Selection, x:Coord, y:Coord) =

gop(c, s, X, Y);
op main() = (

let s = Selection(...);
ExecuteSelectClass(Move, s, 10, 20);

The lkey questions/points here are:

i. Isthe type of operation M@, as it is @&fined, compat with type GraphicsOperation? If so, can we define a
sound bundling/unbundling scheme that will let us do what we hope for?

ii. If so, what kind of bndling/untlundling deal hee we done, and he might it adversely affectwerloading, in



Page 77

particular by increasing the amount of work weéh@ do to dheck for equialent bundled versus uohdled
proc defs during op definition checking?

Let's look a little closer at o things might work out here:
type of GraphicsOperation = op(GenericGraphicsParms)
>op(Canas, Selection, Coord, Coord)

=op(Canas, Selection, Location)
type of Move = op(Camwas, Selection, Location)

The hard part here seems to be the ">" inference step. Another way to look at things is that from a vanilla definition like
op Move(Canvas, Selection, Location)->c’:Canvas;

we cant necessarily infer
op Move(GenericGraphicParms)->c’:Canvas;

While we probably do’need to infer this at op definition time, we do at binding, which may still be troublesome, if not
impossible.

Another issue is that whater resolution algorithm is used to check bindings will also need to be used to check redundant
overloadings.

We might try to ameliorate the situation be defining
op Select(SelectClassParms)->Canvas;

as an werload of Select, i.e., leaving the original definition of Select in placeveltw, in order to hae te kind of
bundling we need to makthe other stdfwork, this should probably be a redundaverdoad of the extant, i.e., of

op Select(Canvas, Selection, Location)->Canvas;

Hmm, things dont look real promising at this juncture.

We oould brute force it as follows:

op ExecuteSelectClass(gop:GraphicsOperation, c:Canvas,
s:Selection, x:Coord, y:Coord) =
gop.<SelectClassOp(c, s, X, Y);

but we don’t havea SlectClassOp. Als@ven if we did, is this too gross and is it type safe?

OK, let’s just try it in @ more doable way and seevifrethat works:
(*
* Primitive Graphic Operations
*

op Select(SelectClassParms)->Canvas;
op Move(SelectClassParms)->Canvas;
op Scale(ScaleClassParms)->Canvas;

(* Etc., ... ®)

obj Location is Coord and Coord;
obj Coord is integer;

(*
* Generic Graphic Op Parm Classes
*

obj class GenericGraphicsOpParms is Canvas;
obj SelectClassParms < GenericGraphicsOpParms is Selection and Location;
obj ScaleClassParms < GenericGraphicsOpParms is Selection and ScaleFactor;

*

* T he Generic Types of Graphic Ops



Page 78

")
obj GenericGraphicsOp is op(GenericGraphicOpParms)->(Canvas);
obj SelectClassOp < GenericGraphicsOp;
obj ScaleClassOp < GenericGraphicsOp;

op ExecuteSelectClass(gop:GenericGraphicsOp, parms:GenericGraphicsOpParms) =
gop.<SelectClassOp(parms.<SelectClassParms);

op main() = (
let s = Selection(...);
ExecuteSelectClass(Move, SelectClassParms(s, 10, 20));

Hmm, we still seem to lva a indamental problem here. The cruxt of the problem is tkat ghe following defs
obj O1;
obj 02 < 01,
obj OpType is op(O1);

op F(02);
it seems that it cannot be the case that F (as a value) is compat with type Opdygieguegh the signature of F is (sub-
type) compat with the signature of QE. Thislack of compatibility seems to pretty well nix the kind of generic op
creation we're attempting abe@ For some concrete data in this area, see the C++ attempt at doing this, in “/c++/demo-
rsl.c. Itappears that this is a genuine problem area, since we get thrfgliextremely interesting at the point where
we try to bind Mee (he function value) to a parm of type GenericGraphicsOp:

warning: contravariance violation for method types ignored

Fascinating.

Heres a fash. Perhapse want to go back to the idea of operation subclassing, with an interpretatioysharteaanded
into subclasses. This seemselik might be the ky © the idea of an op type that allows more args in its subtypesg,
try this:

op class GenericGraphicsOp(Canvas)->Canvas;

op Move(SelectClassParms) < GenericGraphicsOp;
op Scale(ScaleClassParms) < GenericGraphicsOp;

op ExecuteSelectClass(gop:GenericGraphicsOp, parms:GenericGraphicsOpParms) =
gop.<Move(parms.<SelectClassParms);

op main() = (
let s = Selection(...);
ExecuteSelectClass(Move, SelectClassParms(s, 10, 20));

Hey, | think this, at last, has some promise. What we may well be opening the door to is that an op def automatically
defines a type, in a dual way to an obj automatically defining a (constructor) op. E.g., check this out:

op X(integer, integer)->integer;
automatically defines the type
obj X is op(integer, integer)->integer;

Woe, this is getting a little scarfut maybe really coolGiven the remarks abh@ &out ops defining valuesyidently, it

appears that an op definition definedfakkekinds of entities -- type, value, and op. Hopefully we can use xttotsort
out the namewerloading. Hmmthis is getting quite interesting indeed. [But asweedscovered in the future, it cat’
work just like this; see discussion aimaout auto-gen of op types.]



Page 79

Here’s Maybe a Cute Idea

Instead of imenting yet another imperag language, alle op decls of the form

op(...)->(...) ={

/* Normal C code, not including data type decls */
}

Note the use of curly braces to enclose the block, signaling C code is contained M&reould even enforce lage-
grain functionalism, but disallowing global vars and pointers, which is pretty natural to do anyway.

Yet Again on Types versus Values

Is it in fact possible to stick with the idea that types amdas are the same thing@ecifically can we meaningfully
reconcile the "obj is ..." construction (aka, abstract objects) with the "obj = ..." construction (aka, concrete objects)?

The closest wee emed to be able to get to it is to think of concrete objectseastriatedtype. E.g.with
obj Male = "male"

The type of Male is string, restricted to the specific value "male”. At type checking time, this means that Male is treated
exactly as if declared to be string. At runtime, it means that the only "male" can be bound &miattempt is made to
bind another string value to a variable of type Male, the variable will be set to nil.

On Injection Inference

It seems that this is possible when the elements of a union are unique, named types, otlerwiseR#therthan
restrict union elems arbitrarily/artificially to be named types /|lvijgst have the checker do its work silentlynaking
injection inferences when it can, and complaining, possibly xyicély to the point, when it cannot-or a kit of sup-
portive luman kindness, see Tennent page 215.

Extremely Hot News Flash (1 Dec 94)

That T2 is a subtype of T1 most emphatically dd& mean that the value set of T2 is a subset of the value set of T1.
In fact, it means the opposite. This concept is cotintaitive when we consider the notion of subtyping integers and
reals. E.g.with

obj subint < integer;

it is not the case that type subint is a subrange ofiénée Rathersubint is a single-elem tuple type, the element of
which is an integer.

More could definitely be said here, and it should be.

Back to Subtype Polymorphism, Yet Again
OK, maybe its OK. (Make up your mind, clown!)

Screw Name Type Equiv

We con't need it ay more. Forget mangling; we'll type checkverloading by checking each def altermati

Summary of Op Call Type Checking

This is a summary of the discussion el type checking op calls.

« Foreach op of gien name, check for parm match.

» Parm match defined as:
oIf atype is same name as ftype, then OK
oIf ftype is opaque,



Page 80

Farg — the abwe £ems to be leading back to subtype polymorphism, which we think isledd. try a purely equa-
tional definition to see whatup with all of this:

obj Thingy;
obj ThingyList
ops:
Insert(ThingyList, Thingy)->ThingyList;
FindNth(ThingyList,integer)->Thingy;
end;

Now, is the following call possible?

Insert(1, Insert(2.5, Insert("xyz", null)));

Well, it just might be, and it might be type-safe as well, for the following reason. While the list can contaichaob
different typed things, thereiothing that can be done with them unless we define some more ops on type Thingy.

OK then, lets try this:

obj Thingy
ops:
" * "(Thingy,Thingy)->Thingy;
end;

l.e., wele alded a requirement to the definition of Thingyow, can we do the following?

FindNth(Insert(1, Insert(2.5, Insert("xyz", null))), 1) *
FindNth(Insert(1, Insert(2.5, Insert("xyz", null))), 3)

HINMThis question must be answered!!!!!!1I\We'll do so at @r next meeting. Or at least try to do so.

Heres a aack a (partial) answer mo-- the solution may lie in theariable nature of opaque types in an op signature.
Viz., if there is > 1 opaque type in a signature, then as soon as the first parm of that type is fbasad, dther occur
rences of that opaque type in the signature to be the initially-bound type.

OK, here is, | beliee, the definitve answer on this subjecWiz., there is NO sibtype polymorphism alloweehd, in fact,
no genuine polymorphism at alRather apparently polymorphic functions are obtained via the generic instantiation
mechanism. Semsl3/tests/generic-list.rsl, about which more should be written here.

Overloading and Vararg Ops

Is it possible to combineverloading and the ML-style singlegfunctions? Les ®e. Considethe following defini-
tions:

var x:X, y:Y;

obj X is int,real,boolean;

obj Y is string,boolean;

op F1(X)->(Y);

op F2(int,real,boolean)->(Y);

op F3(X)->(string,boolean);

op F4(int,real,boolean)->(string,boolean);

Are F1 through F4 all the same function type? More pregidelgl of the following calls type check?



Page 81

F1(x.y);
F2(x.y);
F3(x.y);
FA(X.y);
F1(1,2.5,true);
F2(1,2.5,true);
F3(1,2.5,true);
F4(1,2.5,true);

Emeging rule: a function of a singlegacan be called with unbundled actuals, but not vies&. 1.e.a function of mul-
tiple args cannot be called with a singlg.at.i.e,actuals will be bndled automatically when necessdyt not unkin-
dled. Nav we reed to define the unbundling preciseMso, we need toxplain why this unbundling strategy has been
chosen. Andit better be a goodxelanation. I.e.this stratgy should only be chosen if iv@ids some actual ambiguity
or if it saves a sgnificant about of conceptual and/or implementation difficulty.

obj class Any;
obj FullyGenericFunc is op(Any)->(Any);

Classes as Unions

They are. Use"?<" op to check for membership. But this is an old ideay oot of date. Say what in that last sen-
tence??!? do belize that "?<" and its ilk are ale and well.

Name Type Equvalence and Type Variables

In order to support type vars with name type edhi following rule seems reasonable:
Are opaque types are distinct, unegient to a other type.

Precisely hw this rule actually affects things needs still to berked out. See the mesection for furtherhopefully
clarifying discussion.

The Low-Down on Polymorphism and Name Type Equialence

OK, let’s try the following simple example:

obj Any is any;
obj Al instance of Any is integer;
obj AR instance of Any is real;

op w(a:Any)->() =
WriteReal(a); * Should not type check. *)

op e(al:Any, a2:Any)

op AddRecord(gdb:GenericDB, gr:GenericRecord)->(gdb’:GenericDB);
(**

obj PRecord instance of GenericRecord;

obj SRecord instance of GenericRecord;

var gdb:GenericDB;
pr: PRecord;
sr: SRecord;

OK, try this rule on for size:
An opaque type represents, among other things, a type variable.



Page 82

Let us consider carefully the ramifications of this rule, particularly in comparison to the concept of representes type v
lexically, as in ML, with some notation such as a leading or trailing question mark. The disadvantage of opaque types as
type vars is that it creates sort of a special case for type checking proc calls, in that the type of an actual corresponding to
a type var can be grtype for which equality is defined. This is really no different than an ML tgpexcept I'm still a

bit uneasy about it somewhat.

The advantage of opaque types as type vars is its general orthogomapéyrticular constraints can be placed by the
normal operations and equations attributes rather than by some special-purpose notation. E.g.,
op F(x:X?,y:Y?)
where: exists G(X?,X?)->Y?;
Versus
obj X
ops:
G(X,X)->Y;
end;

Now consider:
obj Some;

obj SomeAndSome is s1:Some and s2:Some;

obj SomeList is Some*

What exactly can be done with/to these objects, and what is the nature of the polymorphism enabled by considering obj
Some to be a typeay? E.g.js Selectsl(SomeAndSome)->(Some) a polymorphic function fpotyge Some?Seems
that things are OK, since SomeAndSome needs to be thrown in talan

Let's consider some operations:

op SomeOp(sl:Some, s2:Some)->(s1:Some, s2":Some);
op SomeOp(sl:integer, s2:Some)->(s1:Some, s2:Some);

Both of these ops can bevoked with a pair of ints. But, let us sathat the 2nd will ceer the first, since it is more spe-
cific. |think this is a viable rule.
Let's se if we can (begin to) articulate the parm binding type checking rule:

1. If the function desig is a name, get the list of signatwakahble for that name.
2. If the function design is not a name, type check it to obtain the single signature designated.

3. Determinethe types of each of the actuals, and look first forxattematch, probably via mangled name
lookup.

4. Thenlook for a polymorphic match.
5. Finally, look for an exact or polymorphic match via bundling.

Somavhere in there we need to handle the chameleon functions -- thed@aded based on need. The bagittin
example is [...] (but see vision belav). It seems that this class may include in general functivedoaded on coarity
only.

Chameleon Operations

For starters, see tests/dérig-types-from-obj-gprs.rsl for an example and a bit of discussion. Botton line of this test file
is that the type ofr [c1,...,cn] is T* if typeof(ci) = T for all i, else the type is typeof(cl) and it could be interpreted as
former if necessary in a\gin context.



Page 83

In general, | belige that the definition of a "chameleon" expression is one which can be afrtaore types, depending
on the contet. Froma purely functional foundation, such chameleonswdesolely from chameleon functions, which are
defined as functionsverloaded on coarity.

Unoverloading [...]

Major news -- les ruke {...} as a comment delimiter and use it instead as ando constrdtiisris lagely in keeping
with extant PLs, such as @t also means that [...] is no longer a chameleon, which will no doubt simplify things. It also
opens the door to an interim version 3 that does nav alker-defined chameleons.

On the Top-Level M odule Context

Try this one on for size. In the past, wevbaonsidered hopping back and forth between modules at theuegre

order to change contes. Asan alternatie © this we could say that there is exactly on togllecope, conceptually the

module Main. The effect of switching scopes can be accomplished by opening and closing files, using the Open and
Close environment ops, explained shortly.

On Modestly Intelligent Import/Export

Import/export rule summary:

a. Dehult for ary module is to export all of its symbols, thereby making all of its symhbwitable for import.

b. If a module contains an explicit export declaration, then only those symbols exportedhibaielea for
export. (Thisis a bit odd, but seems to fit best with the "say-the-least, get-the-most-expected" principle.)

c. "importx", where x is not a module, imports x unqualified if

i. X is an export of exactly one opened module
ii. xis notdefined in the importing scope

d. "importx", where x is not a module, imports x qualified if

i. X is an export of exactly one opened module
ii. x isdefined in the importing scope
iii. (awarning is issued upon qualified import)
e. "importx", where x is not a module, fails with message if x is export of no module or more than one mod-
ule.

f. "import m", where m is a module name, imports all of the exports of m, per the individual "x" import rules
defined abwee.

g. Thereis an Open function that opens a file, and imports all of its exports into the current scope.
h. Thereis a Close function that unimports all the exports of a file.
Before ay module can be imported from, in must be opened. Opening happens when a file containing one or more

modules appears as a command-line arg, or when a module naveniagyan egument to the Open emonment
function.

i. Only module, object, and operation names may appear in import/export decls.
j- Exportsmay not be third partyl.e., a module may not exportyaof its imports.

k. Importnames may be qual idents, indicating from which module an import should come. Qual ident imports fol-
low the same import rules defined abo In particular an import as a qual ident does not automatically need to be
qualified in its usages.

I. Given the two-pass nature of importing described lelonports will be processeafter all defined module enti-

ties. Thereforean entity definition will neer be processed after an import, so that an error of the form "obj already
def'd as mport" will never occur.



Page 84

Note that one of the effects of the beba of Open is that all command-line files containing modules are opened and
have their exports put in the Main scop&his means that when the environment starts up, the ¥epdentains all
exports of all modules.

This seems to be pretty good. It means that the nompalceation of complete visibility happens automatically at the
top level. At the same time, modules themselves do not automatically gain access to other modules symbols without
explicitly importing those symbols.

Another efect of the preceding rules is import at the togellés basically meaningless, or at best redundant. This is the

case because command-line files are automatically opened and opening in turn automatically imports into the current
scope. © counter this, we might say that Open only emlsymbols "eilable" for importing into the top-ieel, rather

than automatically importing themHowever, this seems lik a bt of a nuisance, since the (vast) majority of the time,

users will vant to open and then import at the same time. The only possible advantage of not importing on open is that
we could &oid conflicts by creating a topye "pool" of modules with symbolsvailable for import. Then by selectie

symbol import, we could grab things into the togele This seems far less likely to happen, particularly since we're try-

ing to deemphasize information hiding altogether at the specificatiein le

A low-level implementation observation is that impoxpgert must (should) be accomplished in the second péss,
the first pass will parse all modules, thereby making each of tkgarts aailable for import. The second pass will
process all imports (which must lexically precede all other module decls), so that:

a. theras no forward ref problem with importing

b. imported symbols in a particular module will be processed at the beginning of the second pass, after which
module type checking will precede.



