
Page 1

SpecL/FMSL/RSL Implementation Ideas

Nil, [], and ’’ (26feb09)

To be formal, the type of the empty-list value "[] " is ?T* . Similarly, the type of the valueless function value "’’ "
is op(?T)->(?T) . The latter definition may be unnessary, overly complicated, and stupid. If it really is, then
we’ll just say that’’ is a synonym for nil for any opaque type or valueless function. If we need to make this work
formally, or even reflexively in SpecL, then it would appear that we need some way to define "opaque" type in the
SpecL type algebra.

At this point, I’d say that the easy way out is to represent’’ formally as a special case overloading of a bit of syn-
tactic sugar, that’s easy enough to define in the formal semantics, but does not need to be defineable directly in
SpecL, e.g., as something like this would-be definition:

obj ’’ = (op(?T)->(?T)) or ?T|is_opaque(?T);

Outputless Ops (26feb09)

They are offcially "valueless" operations, that always return nil, and have no type. Thisbegs the question as to
whether the keyword "nil " should be usable as a type ident. The bottomline is that I say NO.Rataionnale follows.

While NilType is in fact an internal interpreter type, it make things too loose to allow it to be used in a source
specification. Here’s why. Having any data ident be declared NilType is useless, because there’s now way to mean-
ingfully allocate storage for it.

I was initially tempted to say that an op with not explicit return type was an "opaque" type, but that seems not to be
sensible. Whatwe can say is that the sym lit’’ is the only existing value for a valueless function.We can have ’’
be a synonym for nil, but for operation types, in the same way that[] is a synonym for nil for list types. There
seems to be some degenerate consistency here, though it may be more complicated than it’s worth. Seethe preced-
ing item in these notes for further discussion.

Setting Output Parms by Name (25feb09)

As if we need yet another unsettled "idea", here’s one. Itmay be worthwhile to consider an exception to the would-
be rule thatset can only be used on declaredvars , that exception being the use ofset on output parms.So,
motherfucker, consider it.

One More Time, and the LAST Time, for ‘‘A ttribute’ ’ versus ’’Property’’ (20feb09)

At this point, I think it’s largely futile to worry about having any substantial agreement with SpecL versus UML ter-
minology. Where it doesn’t significantly comprimise SpecL syntax and/or semantics, then SpecL/UML agreement
is fine. Otherwise, F it.

A particular case in point is the long-standing anxiety over the UML use of the term "attribute" compared to the
SpecL use.Having read Wikipedia, of all places (the article on Entity-attribute-value model), I’ve become fully
comfortable with the SpecL sense of the term being worth keeping, and hence we will NOT rename SpecL
"attributes" to "properties".

We’l l hav ean appropriate section in the ref man that discusses the issue thoroughly, perhaps even with a small dose
of whimsy. The idea is this: "Look at the UML, understand it in terms of the underlying SpecL, and don’t worry
about the differences in UML versus SpecL terminology. A UML diagram is-a UML diagram. By any other name,
it would smell just as bad."

Page 2

Most Recent Thoughts on Grammar Rules, Symlits, and Multi-Paradignmness (20feb09)

Keep grammar rules, but don’t make them synomous with obj defs.Keep symlits, as the way to represent something
that has mnemonic name, but is not modelwise considered to be a string.(We could forget the second of these if we
redo the latest term-factor example with double-quoted strings for terminals instead of symlits, but having looked at
it yet again, symlits are better, if not significantly so, as terminal symbols in a grammar, as well as other places that
we’ve cited often enough, including

a. asan enumeration literal, in lieu of a string.Do have a section on this in the ref man, that does a side-by-side
comparison of the two representations of, say, a DaysOfTheWeek enumeration, as a string union versus a sym-
lit union. Explain, explain, explain.

A FIRM DECISION: We should in fact have separeate syntax for a new type of entity called a "rule". It can look
like a conventional grammar rule, so that the latest and greatest version of the term-factor attribute still works. I
thought for a bit about having a new ’ rule ’ keyword, but that would make grammar rules look stupid.Another
good reason to separate grammar rules from obj defs is that they’re really not the same entities, despite the areas of
similarity. In particular, embedded actions really don’t make sense for obj defs, and inheritance doesn’t seem to
make much if any sense for grammar rules.

There is the kitechen-sink-esque nature of having grammar rules as a separate language feature, but I think it can be
((reasonably) well) rationalized on the grounds that SpecL is, after all, billed as a "multi-paradignm" specification
language. Two whit, the semantic paradigms that are supported are:

a. model-based/predicative

b. algebraic/equational

c. functional/operational

d. imperative/operational

e. dataflow

f. entity/relationship(not sure this is separate from one or more of the above)

g. attribute grammar

h. possiblystate-machine

Text for Ref Man Discussion of Vars, Etc. (16feb09)

"... There is a simple rule to remember about specifications that use variables -- if you want your specification to be
purely functional, don’t hav eany variable declartions."

"So, what is the differece between a let expression with and wihtout an explicit type declaration?It’s subtle, having
to do with inheritance.Also worth noting is the issue of testing value universes. (These both need to be explained
thoroughly.)"

Overloading WRT Type Vars, and Nixing Coarity Overloading (15feb09)

For the purposes of overload resolution, a type var anywhere in a signature subsumes overloading at the type var
position. E.g.,the following results in a function redef error:

op O1(x:?X, y:integer, z:string);
op O1(y:?Y, y:integer, z:string);

as does

op O1(x:?X, y:integer, z:string);
op O1(x:integer, y:integer, z:string);

For even more symplicity, it may well be worthwhile to say that a type var anywherein a signature subsumes over-
loading at all. E.g., the following also results in a redef error, or more clearly, an error described as redef of a poly-
morphic function:

Page 3

op O1(x:?X, y:integer, z:string);
op O1(...); // For *any* zero or more parameters in "..."

And for even further simplicity, we will nix coarity overloads. (Motherfucker -- this decision was made firmly 8.5
years ago, in the 21sep00 entry!This is one shocking and scary motherfucker of an observation, motherfucker.
Time to get things the fuck done, once and for motherfucking all. Did I say Motherfucker?!?)

No More Grammar Rule Cuteness, and Other Syntactic Musings (13feb09)

Given how ill-used the keywordless, space-delimited obj definitions are likely to be, and how not-really-that-messy a
file like term-factor-does-work.rsl looks, I think it’s time to simplify the fuck out of things by getting rid of the syn-
tax that allows objects to be declared without an "obj" keyword, and with space-delimited componentn exprs.

Once this is done, parens will be a better means to declare parameterized types than angle brackets, since the latter
most likely causes syntactic clash, if no visual confusion with ’>’ as the inheritance shortcut.

And another (?final for now?) syntactic observation is that we may well want to allow all type expression ops in an
op signature, to allow the ready definition of functions like the ML for loops. We classes-archives/530/exam-
ples/ml/for.ml and the rudimentary attempt to duplicate this in newer-inputs/for.fmsl.

Let Semantics, Redux (14feb09)

OK, how bout we screw ML, and have genuine single-assessment lets, meaning in particular that you can’t reassign
a let var the way you can an ML value. Thiswill make things nicer pretty much all around, since more than one
appearance of let var on the LHS of a let is a redeclaration error. Lets can stil, of course, appeare on the RHS of
another let, as long as they’re declared lexcically before their RHS use.This makes lets like let* in Lisp, in that
order is in fact relevant.

Testing Ideas (11feb09)

Provide different levels of axiom validation:

a. afterev ery operation invocation (default)

b. after every expression evaluation, i.e., expressions in an actual parameter list or expression sequence

c. afterev ery boolean clausew evaulation, i.e., after every boolean AND, OR, or NOT operator eval

d. afterev ery operator evaluation, i.e., after the evaluation of any and all sub-expression operators

Semantics of let, val, and expression sequences (4feb09)

OK, here are conclusions related to the 3feb09 discussion of this topic:

a. Let’s can only appear in an explicit expression sequence, which means they cannot be used raw, immediately
after a top-level prompt. Anexpr list is legal at the top-level prompt, but it creates its own local scope, such
that any lets it contains go away at the close of that scope, i.e., at the end of that expression seqence’s execu-
tion.

b. We will change the syntax of the anachronistic "desig := expr" to "set desig = expr". I think this is a much
more sensible syntax, and we can explain clearly in a ref man section entitled "The Difference Betweenlet
andset ". To whit:
i. only names, not designators can appear on the LHS of the let ’=’;
ii. let’s are "single assignment" local variables, blah, blah, blah

iii. Values, declared with ’val ’, are strictly one-time declared global constants.They cannot be redeclared, excepted
within module boundaries.They are not executable expressions in any way, so they cannot appear in expr lists, as in
ML. Value exprs must be evaluatable before runtime, and hence cannot contain variables, or be defined circularly.

iv. Variables, declared with ’var ’, are strictly one-time declared globals.They cannot be redeclared, excepted within
module boundaries.They are not executable expressions in any way, so they cannot appear in expr lists. Var

Page 4

intialization exprs must be evaluatable before runtime, and hence cannot contain unitialized variables, or be defined
circularly.

v. Expression sequences define their own open scope, withlet being the sole form of declaration within the scope.
Within expr sequences, let and set identifiers are completely separate.In particular, the let declaration of a local
identifierX hides any let var X defined in an outer scope, and any variable namedX. Hence, alet var has a differ-
ent class than a global var, and they are not interchangeable.A clash between let and set vars can only happen
within an expression sequence, and only in the following circumstance:

A let var is declared, and subsequently appears on the LHS of a set; the typecheck error message in this case
is "cannot use set on a local variable declared with let".

Note that the converse of this will not cause a clash, since a global variable name appearing on the LHS of a let will
redeclare that var name locally, and hence hide the global.

Semantics of let, val, and expression sequences (3feb09)

Doing work on the interp has led to reconsideration of these semantics, and their implementation. Here are some initial
notes, with more to follow, perhaps on a different date.

For the implementation of value execution, it can be done as last pass in the type checker, after all other checking has
been done.Alternatively, it could be done as first pass in the interpreter. Whether values are constants, or "lettable" is
discussed further below. I’m strong inclined to keep them constants.

To avoid confusion between ’let ’ and ’:= ’, we could say that let’s not legal at the top-level of the interp, which can be
done however it needs to happen. Probably only a single expr should follow the ’>’ "prompt", instead of an expr list.
This shoud take care of lets not being allowed at the top level. Explicit paren-enclosed expr lists will still be allowed at
the top level, but the lets, if any, in these contexts willl be local only to those anonymous scopes, and therefore not survive
out to the top level. What his means, also, is that only global var decls and assignment can be used at the top level to
store intermediate sandbox values. Thismay well be fine.

I’ve considered making the semantics of FMSL values like those of ML, however the problem with this is that it allows
values to be redeclared, which is not really what we want in fmsl.For example, if FMSL vals worked like ML, we could
do the following:

val x = 10;
op f() = x;
> x ;
> f ();
val x = x + 1;
> x ;
> f ();

outputs

10
10
11
10

But this seems (has always seemed) rather disengenuous, since x is really acting more like a variable than a value in this
case. Thenon-variable behavior here is that the use f retains the historical value of x, rather than values of x made subse-
quent to f’s declaration. Here’s what things could look like in FMSL to get the same semantics:

let x = 10;
op f() = x;
> x ;
> f ();
let x = x + 1;
> x ;
> f ();

Page 5

The deal here is that let is a functional single-assignment thing, that temporally redeclares a variable, such that any previ-
ous uses refer to a different value than a subsequent redclaration.This seems a bit better than ML, though it does still
have the "temporal surprise" issue.

Let’s try to rationalize things here, in terms of values, variables, and lets.First, a value declaration is a constant
through the lifetime of a specification. It is always an error to re-declare a value identier. Also, a value declaration is a
top-level entity declaration, NOT an expression. Thismeans a value declaration cannot appear in an expression sequence,
in particular in a function body. The value identifier itself is an expression value, and can appear in any r-value expres-
sion context.

A variable is like a value , declarationwise. I.e.,a variable declaration is top-level only, and cannot be re-
declared. Itmodels a piece of data that is shared by all operations a functions.A variable identifier is an expression
value, and can appear in any r-value or l-value context.

A let is both a declaration and an expression. It(re)declares an identifierin the current scope, and may appear in any
expression context. Specifically, a let of the form

let name = expr

declaresiname in the current scope, if it is not already declared. It then binds the value of theexpr to name. A let
name can appear in any subsequent r-value context, where it is evaluated by immediate macro expansion. This means, in
particular, when a let variable appears as an r-value within the body of an operation declaration, theevaluatedvalue of the
let varible is placed within the function body, NOT the unevaluated let variable name. The most important consequence
of this is that if and when the operation is subsequently invoked, it (effectively) uses the most recent bound value of the
let name, not any subsequent value that the let variable may have been re-bound to. This behavior is akin to the behavior
of val in ML.

A let expression, as with any other expression, CANNOT appear in a top-level declaration context, although it can be
executed in the top-level execution scope. It’s the latter case that gets a little funky, surprisewise. E.g.,

> l et x = 10;
var x:integer;
ERROR: you cannot redeclare the sweet and inoocent let variable "x"

to ba a nasty and evil global variable

> x := 1 0;
ERROR: you cannot change the sweet and innocent let variable "x"

with the nasty and evil assignment operator ":="

var y: integer;
> l et y = 10;
ERROR: you cannot change the nasty and evil global variable "y"

with the sweet and innocent let operator

I’m inclined to use these as actual error message texts, so that the whimsy might help diminish the nastiness of the sur-
prise.

Another possibility is tosyntacticallyrestrict let exprs to be at the beginning of an expression list. This would be consis-
tent with Lisp and ML, and make things much simpler with regard to mixing and matching global vars and lets.

The General Idea of ‘‘Functionalizing’’ or ’ ’Purifying’ ’ a Spec (14jan09)

It may well have already been done/thought-of in the literature.Anyway, the idea is to find uses of global vars and term
them into explicit function parms.I think it can be done statically, with a transitive closure on the calling chain of each
fucntion using one or more globals.

A quick look at the Wikipedia article on parallel computing is a bit depressing in this regard, given that there appears to
be a lot of shit I don’t know about, even as early as Lamport’s 1979 shit of the sequential equivalence of parallel program.
Anyway, the idea of "purifying", or at least having the type checker check for pureness may be worthwhile, if not ground
breaking.

Page 6

Syntax of Expression Sequence (27dec07)

To avoid CJ culture shock, consider using/allowing curly braces for expression sequences. This would overload them
with their use as tuple constructor, but this is probably OK. One potential ramification of this is the assignment of func-
tion values to function-valued variables, but this might just well workout fine. This brings up the issue of free vars in a
function body, which presumably we should deal with like Lisp, but have the type cheker issue a warning of the form
"Variable X is unbound in function F."

Decisions (4dec07)

Based on the several entries of today’s date that follow, plus other entries further down the list, and in the interest of sim-
plification, here are what I hope are some definitive decisions:

a. possiblyeliminateall abbreviated keywords (except pre/post); specifically: ax, eq, func, is, obj, op, ops, precondi-
tion, postcondition, thm, val, var

b. alternatively, eliminate all unabbreviated keywords (except axiom); specifically: ax, eq, func, is, obj, op, ops, pre-
condition, postcondition, thm,

c. getrid of functions altogether, leaving onlyop as the keyword

d. getrid of the separate executable expressions, retaining assmnt (with new ’set’ syntax), foreach, and while, thereby
eliminatingif-then as a statement andreturn . This leaves exactly three non-functional constructs -- set, fore-
ach, while.

e. forget about typename field access, once and for all

f. changethe use of "op" in a parts spec to "lambda " or perhaps "function "; it would be nice not to have any
keyword at all for a function type expression, but a quick hack in parser.y adds 2 s/r and 4 r/r conflicts; we may be
able to get it to work, but I don’t know at this point (obviously don’t do this if we go with the get-rid-of-funcs idea)

g. replace’<’ w ith ’>’ as extends abbreviation

h. replacethe term "atomic type" with "primitive type"

i. replacethe term (and keyword) "attribute" with "property"

j. getrid of sym lits

k. forget about "Object " as the top type

l. go for type vars fully, including use in generic obj decls and op signatures

m. theuse of ’, ’, ’ and ’, and ’ ’ should be fully interchangeable in all list contexts, insofar as LALR allows it

A Not-Yet-Fully-Explored Problem with Typename Access to Fields (4dec07)

What do we do about cases where the name of a tuple field or parm is not a plain ident, as in

ManagerRecord > PersonRecord = Employee*;
InterspersedStuff = (Tag or Text)*;

?

I believe the answer must be that typename field access can only work when the type of a component is a plain ident,
which doesnot include a type var. This is a bit of a duh, in that the designation typenamefield access means that we’re
referring to the field by it’snamedtype, not some type expression.

I’m not sure at this point if this realization is a potential nail in the coffin of typename field access.I think it might well
be. Inreading again the 23apr03 entry, I’m thinking it’s not really as compelling an example as it seemed at the time.
Further, having a good IDE, with tuple component completion, could go a long way towards lessening the need for type-
name field access.

So let’s do an explicit pro/con analysis for typename field access:

Pros:
a. simple,in particular to the novice, e.g., the intro SE student

Page 7

b. can be cleaner and shorter

Cons
a. violatessimplicity principle

b. notationally violates the use of type names in expressions, even if i t’s a shorthand that does not violate the under-
lying semantics

c. doesnot apply uniformly to all types, specifically, to tuples with non-ident field types

d. getscomplicated for tuples with two or more fields of the same type

e. adecent IDE, including specldoc inclusion of show/hide names button, can go quite aways towards lessening the
benefit of typename field access

So far, it looks pretty clear that the cons have it.

No Topmost Object Type (4dec07)

If we go for nicely parameterized objects, I don’t think Object as the "top" type is necessary. Not having it makes us
more functional "feeling" than OO feeling, for what that’s worth. Further, it avoids the weak typing hole exemplified in
newer-inputs/min-max.fmsl .

Possibly Eliminate obj and op keywords Altogether (4dec07)

The idea exemplified just below, of no keywords at all, is just fine.I can even liv e with using angle brackets for parame-
terized objects. As far as keyword elimination goes, what just might work best of all is to eliminate the abbreviated
keywords, e.g., "obj ", and "op". This seems to be a reasonable compromise between retaining keywords for clarity, if
the user so chooses, versus simplifying by eliminating excess keywords.

And with a decent IDE, the shorter keywords aren’t really all that useful. The keywordless forms are good for on-the-
board use and quick typing, while the full-length keyword forms will work fine in a template-driven IDE.

The other nice thing about advertising the keywordless forms is that it makes grammar definitions just a normal thing,
without doing something funky to allow grammars as a special case.In the "I can even liv e with it" file again, I’d put
using just plain ’=’ as the LHS/RHS separator, instead of having "::= " as yet another "is" keyword.

Here’s an example of full-blown keywordless and variabless defs:

PersonRec = Name and ID;
DB = PersonRec*;

Add(PersonRec, DB)->DB
pre: PersonRec.Name != nil and not (PersonRec.Name in DB);
post: NoJunkNoConfusion(PersonRec, DB, DB’);

end;

NoJunkNoConfusion(item:?T, in_list:?T*, out_list:?T*) =
item in out_list

and
forall (item’ in_list) item’ in out_list

and
#out_list = #in_list + 1;

GenericList<?T> = ?T*;

Note here that:

• we can’t use regular parens for parameterized types, since they’ll be ambiguous with keywordless op defs;

• when field or parm types are not plain idents, namesmustbe used; a type var isnotconsidered a plain ident.

Page 8

With this, I still think it’s fine to say that ’and’, ’,’, and ’ ’ are synonous ways delimit list items.

An advantage of having no obj/op keywords at all is that allows them to be used as var names, avoiding the possibly con-
fusing error when using a keyword as a user-defined ident.However, I think this is a small enough advantage that retain-
ing obj/op keywords is highly arguable. Anadvantage with this is that it can help a definition read more cleary.

Regarding (still) allowing coponent and parm names, it can be argued on the basis of style, particularly if one wants to
make expressions less verbose-looking, as in the following equiv to the above:

PersonRec = n:Name and id:ID;

Add(db:DB, pr:PersonRec)->db’:DB
pre: pr.name != nil and not (pr.name in db);
post: pr in db’;

end;

And more importantly, we musthave names when field types are not plain idents (see "A Not-Yet-Fully-Explored ...
(4dec07)" item above).

In the end, as long as we don’t make things absurdly complicated and/or sacrifice understandability severly (if at all),
having optional syntaxes will be fine.And we can have a smart(er) syntax checker that warns of inconsistent notations, if
the user wants to turn on such warnings. Callin "notational lint" mode.

Possibly Eliminate Non-Abbreviated Keywords, For Simplicity (4dec07)

Candiates to get rid of include "object ", "operation ", "function ", "operations ", "precondition ",
"postcondition".

Problems with this include:

a. text book presentation using full word "object " may look better than "obj "

b. specs arguably look better with the fully spelled-out entity keywords

c. I think there are more cases where abbreviated keywords are a pain than the non-abbreviated ones

d. while I don’t much care for the fully spelled-out keyword "variable " compared to "var ", I can live with it for
overall consistency

Op Equivalent of 23may02 Tuple Notation (4dec07)E.g.,

op O(A, B) -> C
pre: A < B;
post: C = A + B;

end O;

op P(D, E) -> E
pre: D < E;
post: E’ = D + E;

end P;

Possibly big problem here is that we’re using type names directly in exprs. We could do this:

op O(A, B) -> C
pre: in.A < in.B;
post: out.C = i n.A + in.B;

end O;

but I think that’s fucked up.

But maybe as long as it’s clear what we’re doing here, referring to vars by their type names could be OK.We’l l just have
to do some definitive examples to be completely sure.

Page 9

Axiom Syntax, Yet Again (1dec07)

Despite the 26nov07 thoughts on the matter, I think having axiom (and theorem) names is a prefectly reasonable thing to
do. It’ll provide a consistency with other entity defs. At least that’s the thought for the moment.

Syntax Rationale (1dec07)

’=’ binds a name to an expression. Specifically,

• in an object definition, ’=’ binds anobject nameto atype expression

• in an operation definition, ’=’ binds anoperation nameto anunevaluated computable expression

• in avalue definition, ’=’ binds avalue nameto acompile-time-evaluated computable expression

• in an axiom or theorem definition, ’=’ binds aformal declaration nameto anunevaluated computable boolean
expression

• in an initializing variable definition, ’=’ binds avariable nameto arun-time-evaluated computable expression

• in a let expression, ’=’ binds avariable nameto arun-time single-assignment computable expression

• in aset expression, ’=’ binds avariable nameto arun-time-evaluated computable expression

Yet M ore to Do to Finish Things Up (29nov07)

Define fully the semantics of relational operators on all types.To whit (for starters, at least):

• for lists, the lenghts of both operands must be the same, and if so, each element is compared

• for tuples, operands must be strongly compat, not just subtype compat; this ensures that both operands have the
same number, type, and position of fields; if this is the case, fields are recursively compared

• for unions, the operands must be strongly compat, which means that the fields of the union type must all be strongly
compat

If I’m not mistaken, we’ve used the term "equivalent" to mean strongly compat.Whatever, we need to be precise about
all of this, both in the ref man and the SpecL spec.

Think through the Co-existence of Generics and Type Vars (29nov07)

4dec07 Update: Given that we’re going with angle brackets for generics, the revised version of the example that follows
is this:

obj GenericList<?T> = ?T*;
op Op1(gl:GenericList<integer>, i:integer) = gl + i;
op Op2(l:?T*, x:?T) = l + x;

and the discussion that follows is now obsolete, insofar as it deals with the use of parens in the syntax of generic type
instantiation. It’s retained here for historical and rationale purposes.

If it’ s not been stated explicitly (enough) so far, this needs to be done, to ensure that the co-existence is in fact doable.
E.g.,

obj GenericList(T?) = T?*;
op Op1(gl:GenericList(integer), i:integer) = gl + i;
op Op2(l:T?*, x:T?) = l + x;

The on-the-fly generic instantiation seems not to conflict with a construtor invocation, since the former is used in a decla-
ration context, whereas the latter is used in an expression context.

Adding State Machines to SpecL (29nov07)

Sparked by need for a state machine definition as part of FIPS 140 compliance, I’m thinking it might not be that tough to
add state machine syntax and semantics. The graphical forms are a state-transition table and FSM graph.

Page 10

Some would-be syntax:

(* Input symbols: *)
a; b; c;

(* Output symbols: *)
d; e; f;

machine M1
states: S0, S1;
transitions:

--> S0, -- Initial state
S0 --a--> S1, -- Goto S1 from S0, on input ’a’,
S1 --b--> S2, -- Goto S2 from S1, on input ’b’
S0 --c/d--> S3; -- Goto S3 from S1, on input ’c’, producing output ’d’

description: (* ... *);
end M1;

state S0
inputs: a,b,c;
outputs: d,e;
description: (* ... *);

end;

The presence or absence of inputs and outputs determines the type of machine it is:

• if all states have inputs only, with no outputs for any ops, then the machine is a recognizer

• if all states have exactly one ouput, it’s a Moore transducer

• if one or more states have more than one ouput, it’s a Mealy transducer

If we have the gumpshum, the type checker can perform the following (types of) checks:

• determination of NFA versus DFA

• determination of recognizer versus Moore machine versus Mealy machine

• malformedness, including:

ο no start state, if appropriate

ο no end state, if appropriate

ο disallowance of non-opaque objects as symbols

ο disallowance of outputless state of one or other states has outputs (or default to nil ouput?)

ο ?others?

We may want to consider the keyword "symbol " as a equivalent way of defining opaque types. I.e.,

symbol x;
symbol a,b,c;
symbol d

description: (* ... *);
end d;

is equivalent to

object x;
object a;
object b;
object c;

andsymbol s are disallowed from having a components attribute.

Page 11

HOWEVER -- Given that opaque objects can be declared as shown at the top of the preceding example, i.e.,

(* Input symbols: *)
a; b; c;

(* Output symbols: *)
d; e; f;

I really don’t think the "symbol " keyword is necessary, at least for the state machine context.

Yet M oron Short-Form Object Defs (26nov07)

Am I smoking something, or is ’<’ backwards for a UML-like mnemonicette for inheritance. I.e., shouldn’t it be ’>’, so
the inherited-from object is in the pointy end of the arrow? E.g.,

object EmployeeRecord > PersonRecord
= WageScale and EmployeeStatus;

versus

object EmployeeRecord < PersonRecord
= WageScale and EmployeeStatus;

or even

object EmployeeRecord > PersonRecord
<> WageScale and EmployeeStatus;

Also, we should consider allowing extends and ’=’ to be interchanageable in the order of an object definition, as in

object EmployeeRecord = WageScale and EmployeeStatus
extends PersonRecord;

versus

object EmployeeRecord extends PersonRecord
= WageScale and EmployeeStatus;

Rethinking Axiom Naming (26nov07)

I’m not sure there was ever a big clamour for naming axioms, and so, given the potential unclarity of the name/axiom-
body separator syntax (i.e., ’:’ versus ’=’), I’m not really sure we need to have axiom names, after all. What I’d like to
see is a complelling example were axiom naming is useful.

The arguments against it include:

a. funky syntax

b. no seeming way to "invoke" or use an axiom by name in a spec, meaning the naming is only useful for (humans)
talking about a spec

c. asfar as browsing goes, we could have the checker automatically enumerate the axioms, giving them module-quali-
fied names of the "M.An", whereM is a module name (including the default "Main "), andn is a unique gen-sym’d
integer, starting at 1, for each module; then the browser could take the viewer to the appropriate source code, when
the user clicks on the axiom name in the browser

d. usingthe new javadoc-style comments, the comment immediately preceding the axiom definition would go in the
data dictionary for that axiom; an entry in the data dictionary for an axiom is of the form

Name (auto-gen’d) Expression Description

which is nicely analogous to the data dic entry for an object, viz.,

Name (declared) Components Description

Page 12

How Type Safe are Unions?? (21nov07)

Do unions of incompatible types imply runtime type checking? Reread Tennent and look at functional languages about
unions, including ML (datatypes), Haskell, and Z.

As we’ve at least hinted at before, I think I like the idea of having different levels, or strengths, of type checking. At the
stongest level, we could say that un-overloaded equality is not defined for unions of incompatible component types.For
sure, look again fully at what ML does to require that functions over datatypes account for all alts of an MLdatatype ;
see, e.g., 530/ml/lispval*.ml. Thewarning message from the ML compiler is "match nonexhaustive", the specl analog of
which is the preceding idea of "weaker" type checking.

Type Var Naming (21nov07)

Figure out if type vars should have the ’?’ at the beginning, end, either, or one or more times anywhere in the identifier
string.

Also figure out whether type vars should be required in defining parameterized (aka, generic) types. See, e.g., the ver-
sions with and without the syntactic use of type vars in newer-inputs/parameterized-types.fmsl.

Also figure out if just plain ’?’ is OK as a type var, as long as we don’t care about neighboring types constraints.How-
ev er, it may be the case that ’?’ outside of the context of an ident may cause syntax problems. Need to check it out.

Also figure out if we should limit ’?’ in an ident to type idents, i.e., have separate lexical/syntactic categories for ident and
type_ident.

Yet M oron Posssible Alignment with UML Terminology, and Related BS (15nov07)

Re. the rationale for the term "object" instead of "class", I think we can rationally argue that specl objects are not really
classes in what might be called the widely-conceptalized sense, for at least the followning reasons:

a. operationsdo no belong to objects, in the strongly object-oriented sense of UML

b. specl objects can in fact be considered to have aspects of both UML classes and UML objects, in the sense that
specl objects can contain concrete values

c. fundamentatlly, specl objects are most closely related to UML/OCLtypes

It is clear that English word "object" is highly overloaded when used in SE circles. The sense most closely aligned with
its use in specl comes from the phrase "objects and operations", used in context of software requirements analysis and
modeling. Yadamotherfuckingyada.

Extending Primiti ve Types (12nov07)

Despite what it says below in the 27oct07 item, I think "primitive" is in fact a better term that "atomic".It’s akin to the
"attribute" versus "property" discussion. I.e., since I don’t see any particularly compelling reason to favor "atomic" type
over "primitive" type, we can go with the latter on the grounds of overall clarity.

Now to the question at hand -- can we extend primitive types. I’mnot sure we’ve come to a definitive conclusion on this,
but we clearly need to. What needs to be done is a scan of items in this file, and elsewhere, followed by a DECISION.
You know what one of those is, right motherfucker?

Moron Posssible Alignment with UML Terminology (10nov07, cf 4nov07)

One possible, seemingly benign change in SpecL terminology (yes, I think I’ll start calling it that now) is changing specl
"attribute" to "property". This avoids confusion with UML’s use of the term "attribute", and there is some historical
precedent for the term "property" in spec lang contexts such as this.

Page 13

Mor e Syntx Fiddling (6nov07)

4dec07 Update: We will in fact use ’=’, as discussed in the "Syntax Rationale" entry of 1dec07.

With the full advent of ’=’ instead of ’is’, we should consider if it makes better semantic sense to have the tuple compo-
nent initializer be ’:=’ instead of ’=’. What brought this on was the odd-looking one-tuple definition in newer-
inputs/const-components.fmsl:

obj OneTupleOfIntegerInitializedToTen = integer = 10;

with the thinking that

obj OneTupleOfIntegerInitializedToTen = integer := 10;

looks (somewhat) better. The question to be answered is if component initialization is more like an equality definition or
an assignment.

I just had a somewhat sickening thought about possibly (re...re)changing the syntax of object declaration (back to) allow-
ing (having) ’:’ be the (only) separator in a short-form obj definition.A quick hack to the grammar revealed that it
appears to work.

But fuck it -- I think ’=’ is just fine for binding a type name to a type "value". We can go on about this, but I really don’t
think we need to.

Generics (4nov07)

4dec07 Update: With the use of ’>’ instead of ’<’ as inheritance sugar, there is no extra s/r conflict when using ’<’ ... ’>’
to bracket genric object parms.

Consider strongly replacing the currentwhere attribute stuff (aka, kludge) with a more conventional syntax, as illus-
trated, e.g., in newer-inptus/parameterized-types.fmsl. Asyntactic issue is the conflict between ’<’ as a type parm
bracket versus the inheritance symbol, which in fact does cause an s/r conflict in the current grammar, when just hacked
in. Thereare a number of syntactic options, including using a different bracketing, or changing or eliminating ’<’ as
inheritance sugar.

Further thought on this syntactic issue is that regular parens should be fine for parameterized types, as shown in the sec-
ond example in theparameterized-types.fmsl , and the commented out RHS inobj_heading , dated with
today’s date (4nov07). We need to make sure it all works out in terms of type refs, but hopefully it’s OK. There’s somet-
ing to be said for regular parens instead of angle brackets, on at least two accounts. First,regular parens are consistent
with the terminology "parameterized types", akin to the notation for parameterized functions. Also, using regular parens
avoids the introduction of additional bracketing syntax, when it is arguably unecessary.

One potentially very good thing about this more explicit form of type parameterization is that it may well at least partially
address the more "featureful" form of composition in UML 2.1, vis a via UML 1.5, as discussed in../related-
work/uml/general-info/UML-2-comp-model.pdf . This was rather worrisome on first reading, but general-
ized parameterized typing seems to go in this direction, in that the type parm can be used in relational attributes, in
addtion to just the components that (seemed to be) the case for where instantiation. More thought is necessary here,
including theredefinesandsubsetsassociation constraints that are most likely related to all this.

Re. the semantics of generalized type parameters, my initial thought (hope) is that it can be very close if not identical to
the current semantics of where clause instantiation. This obviously needs to be worked out. We of course need to study
(and understand) fully Java generics.

Posssible Alignment with UML Terminology (4nov07)

In looking some more at the UML specs, the thought occurs, again, to consider using terminology that’s more consistent
with UML, e.g., "class " instead of (in addition to) "object ", "association(al)" instead of (in addition to) "rela-
tion(al)". WhatI would very much prefer is to spell out the terminological diffs between FMSL a UML, and rationalize
why they exist. AndI think this preferred course is in fact quite doable.

Page 14

Enum Trouble in River City (4nov07)

Whithernext andprev ops on enum values? It’s a bit kludgy, but perhaps we can say that ifall union components are
of type "the T x", for some typeT, then there arenext andprev ops defined. This implies there’s an order to union
(and tuple) components, which in fact there is, per the ML-like notion of #n to access the nth component. What we’re
saying here is that if a union (and, what the heck, a tuple) has components of the same type, then there arenext and
prev functions available.

We of course need to define "same type" formally, and there are some subtype and type compatibility things going on
here we need to deal with. E.g., if all of the elements of a union (tuple) are compatible with each other directly or indi-
rectly, there arenext /prev ops. Indirectly compatible means something like "compatible with other type", as in forall
i "the T x

i
" are compat withT.

What we might be able to do is generalize this to all unions and tuples being fully indexable, in the normal square-bracket
way. What we do is make the co-arity of the index op be the union of the component types, modulo union type simplifi-
cation. Thisnotion of unionsimplificationis related to (or may subsume) the notiionindirect compatibilitymentioned in
the preceding paragraph. E.g., "union of T or T or T" simplifies to "T"; "union of the integer 1 or the integer 2 or the inte-
ger 3" simplifies to "integer". Soundspromising (but so do a lot of other motherfucking things).

Moron Relational and Valued Attributes (4nov07)

Allow multiplicity in Relational Attributes. See,e.g., newer-inputs/attr-multiplicity.fmsl.

Make the functional basis for relational values beref .

I don’t remember right now why we currently allow attributes to have general expressiions as values (see the parser syn-
tax for obj_attribute , which includesexpr as a RHS alternative. Giv en that we seemed to have gone whole-hog
into concrete-valued objects, we don’t really need this alt any more, and it causes a reduce/reduce when we added the
syntax for relational multiplicity shown in the newer-inputs example cited just above. So, we should get rid of it, if at all
possible.

Cleaning Up Syntax and Semantics of Const and Init’d Components (3nov07)

As noted in the LOG entry of this date, the "possibly starred" biznis in parser.y seems rather kludgy. As I recall, it was
done incrementally to allow stars in signatures.

With the coming of refs, we need to revisit this area, and see if we should go a route like "possibly starred and/or reffed",
or what the fuck.We may just want to rethink the ML-style of auto-tuple args, though as I recall this had some poten-
tially serious problems, like the concept of a truly multi-arg function in a dataflow diagram. Anyway, we need to get clo-
sure on this.

Related to this is the idea of the difference between constant-valued tuple components, versus initialized tuple compo-
nents, as illustrated in the following examples:

I think it’s pretty clear at this point, if it has been so (and discussed) till now, that the verbosely mnemonic object names
of this exmaple spell things out.Now we must make sure this shit is spelled out in the ref man, and whereever the fuck
else it should be.

Regarding the fabled "ref man", I think it’s time to have an official two- or maybe even three-pass version, akin to the
"Gentle Introduction to Haskell" versus the full Haskell ref man.I think we can readily motivate the gentle intro, includ-
ing including some phrasiology like "But can I do this ...", a preliminary lists of subheadings for which includes:

• Can I define constant data fields?

• Can I define statically initialized data fields?

• Can I define default values for operation inputs?

• Can I define generic objects, as in Java generics or C++ templates?

• Can I define an object-oriented model?

Page 15

• Can I define something that looks like a relational data model, as in an ER diagram or the equivalent in UML?

• Can I model something that looks like a grammar, including an attribute grammar?

• Can I define general UML-style associations and multiplicities?

• Can I define an ontology?

• Can I test a model in some way?

• Can I prove things about a model?

• Can I execute a model?

• Can I model sequential program flow in some way, short of executing it?

• Can I model a state machine, petri net, or UML activity diagram?

• Is there an easier way to access tuple compnents, other than having to name every component?

• Can I define global variables, even though I shouldn’t?

• Can I specify the behavior of an operation with "pseudo code", instead of preconditions and postconditions?

Summary of Syntactic Sugar, Including Auto Ops (30oct07)

I think we should fill this in here, and include it in some form in the ref man. Here’s the list so far:

1. auto-deref-on-field-select-of-ref-to-tuple

2. auto-unbundle-n-tuple-as-arg-to-n-ary-op

3. auto-bundle-n-args-into-n-tuple-for-1-ary-op-of-n-tuple-arg

4. auto-gen-constructor-ops-for-objs

5. (possibly)auto-gen-of-new-heap-object-on-binding-of-constructed-value-to-ref

6. allow type names as tuple field names, with appropriate disambiguation

7. #n form of tuple field access

8. operatoroverloading

9. all of the syntactic alternatives and short cuts

The Point of ‘‘obj EnumLit = string’ ’ (30oct07)

With all the thinking we’ve done, the question for a newbie might be ‘‘Why allow both "value X = const-val" and "object
X = const-val"’’. A decent answer for allowing the latter is to say that it’s a degenerate case of allowing a type to have
one or more constant values as components, without creating one or more special-case exceptions for what is and is not
legal. Moreover, as long as there’s no harm in allowing this, things are just fine.

The benefit of allowing values in general to be object components is it provides a natural and straight forward way to
define enumerated types, as can be done in most PLs.In addition, one can easily model other forms of enumerations, all
stemming from one basic idea.

Mor e on Ref Type (29,30oct07)

Given that both UML and ML have refs, I think we should consider seriously adding them to FMSL (cum SpecL).The
ML syntax and semantics looks a bit funky, so we could go with something like this:

a. Examples:

obj A = integer;
obj B = boolean;
obj C = string;
obj ARef = ref A;
obj ABC = A and B and C;
obj ABCRefs = ref A, ref B, ref C;

Page 16

op Op(a:A, b:B, c:C, aref:ARef, rt:RefTuple) = (
a = 10; -- normal int var and val
aref = new A(10); -- ref var and heap val
aref = A(10); -- equiv OR replacement for the to preceding;

-- see discussion below
aref = new A(); -- ref var and heap val, uninit’d
@aref = 10; -- deref to access "ref to int"
(@aref).A = 20; -- deref then field select
afef.A = 20; -- equiv to prev expr, courtesy of

-- auto-deref-on-field-select-of-ref-to-tuple

aref = new integer() -- ERROR: new can only be applied to user-defined types

let a = 100; -- single assignment
set a = 200; -- mutating assignment
a := 2 00; -- syntactically sugared mutating assignment

-- a bit more syntax
obj X = rt:ref T and lt:T*;
)

b. ref as a keyword can only be applied to a named type, as isextends .

c. In the area of shallow versus deep equality, hopefully we can eliminate the need for two operators. Viz., for two ref
vars aref andbref ,

aref = bref -- shallow equality
@aref = @bref -- deep equality

d. If we do things right, we may be able to create heap values without an explicit new. Howev er, for clarity, it may be
appropriate to retain thenew operator, just to make it completely clear when and when not refs are created.This
said, here are a some (the?) possibilities in this area:

i. Saythat a constructor call always returns a ref, and require ’@’ to stick it in a non-ref var.

ii. Say that a constructor call always returns a non-ref, and require ’new’ to stick it in a ref var. (NOTE: This is
probably the best alternative.)

iii. Say that a constructor call returns a ref or a non-ref, depending on the context, i.e., what it’s bound to. In this
case, the only indication that we have a ref value is what it’s bound to, and the seemingly only reason we need
’@’ is things like deep equality (but hey, "things like" does not really match up with "only reason", but what-
ev er, you get the fucking drift).

The good thing about the last approach is that it fits pretty darn well with modeling, as opposed to programming.
I.e., what we care most about is allowing refs to be used intuitively in a model, including its pre- and postconds.
Given this, and given the idea of trying to define analytic, aka, non-constructive specs as much as possible, the
transparency of using on not usingnew is not our focus. Hence, we could legitmately say something along the
lines of "Hey, dudes, when you start hacking with constructors, you need to know what the heck you’re doing, and
be aware of the fact that when you bind a value to a ref var, the value goes on the heap." But having just said that, I
still may be inclined to leave in thenew opeartor, again for clarity’s sake, and since its use is not really much if any
of an inconvenience.

e. The17dec04 item below talks about possibly eliminating auto-gen’d constructors, based on a lack of need for them.
However, with this new ref stuff, I think they’re in fact necessary. The reason is that we need a way to construct
built-heap values explicitly, and if we disallow anything but user-defined types on the heap, the (auto-gen’d) type
constructor makes sense, if not being required.

f. So,if we’ve not spelled it out fully by this late date, we’ll say that for every user-defined obj type T, there are these
overloads of an auto-gen’d constructor op created:
i. T() -- parameterless constructor op, leaving all fields uninitialized
ii. T(T) -- full initializing constructor op (but see just below)
Re. the full-init version, see the discussion innew-inputs/fiddling-with-auto-gen-construc-
tors.rsl and new-inputs/uto-gen-constructors , the important gists are auto-unbundling to make

Page 17

constructor invocations slightly more wieldy, and the need for "holes" in tuple constructors for tuples with constant
values.

But wait on the following "but wait". What’s emerging here are at least a couple ideas:

a. The"pure" subset, or "core" of SpecL, that we can describe and motivate in the ref man. It would be cool if we
could define this as simply as "no refs and no sets" and possibly "no constructors". And since loops are useless
without sets, it leaves them out too.

b. A potentially clearer picture of why refs are hard to verify. The deal is that when we create anew value, we’re
adding it to a pool, aka heaplet of values of its type. I’m thinking there may be an equivalent "no junk, no confu-
sion" rule for ops that modify heap values that we must state that the modification has no effect on anything in the
value’s heaplette. Hmm,pretty interesting, this, and we may on to something.

BOGUS: But wait just a farging minute.Java has no explicit refs in it, and we seem to be able to do just file with it.But
then, there’s thesetf stuff in L isp, that we really should consider. Hmm, this needs plenty of thought. :SUGOB

Death (at Last) to Sym Lits? (28oct07)

OK, here’s what I think are the reasons we want to keep sym lits, and I’m getting to the point where I don’t think the rea-
sons are strong enough to keep them:

• the value of an opaque type --but we can argue that opaque types don’t deserve values -- that’s what opaqueness is
all about; e.g., we can define fieldless classes in Java without ever worrying about the fact that they don’t have some
literal value notation for them.

• for non-terminals in the RHS of grammar rules --but hey, I think double-quated strings work just fine for this, and
might even be better in some sense (need to clarify why I think this)

• as a more "accurate" model of constant enumeration literals --but wait, is ’Monday’ really more "accurate" in any
sense than "Monday"??

• abstract versus concrete syntax --but I think this can get taken care of by opauque types themselves, without the use
of opaque values, i.e., sym lits

Now that we have (or just about have) our good clean semantics for concrete values as object components, I think we can
hop in the way-way-back machine, to the era when I seemingly naively thought about how potentially cool it was to
define an enumeration with just plain strings, as in

object Sex = "Male" or "Female";

I mean, it says what we want, we can have a strong-typed semantics for it, and we don’t need to mess around with several
other ways to define the same thing with opaque types and/or sym lits.

Bottom line -- let’s go for some simplicity here.

One More Time with Generics and a Built-In Topmost Object Type

It would appear what we have with generics is a reasonable deal for a modeling language, in that allows some useful
things to be defined in terms of overloading and inheritance.

We’v e thought in the past about somewhat gratuitously throwing in the Java-styleObject. I don’t think we can just do
this without doing one of two things:

a. Milner-style type inferencing

b. opening the door to dynamic typing, via down casting

At this point, I think I could go either way here.

Re. type inference, my general inclination is that it’s likely to be more trouble than it’s worth, if what we’re after is a
clean spec lang.However, I believe that type inference might be a bit easier in FMSL, given that we do not want ML-
style fully typeless op sigs. I.e., even for an op with a fully type-variable signature, we still need to declare explicitly the
type of each parm.However, type inference is still likely to be an implementation pain, and the question remains if it’s

Page 18

really worth it in the spec-based domain we’re going for.

Re. dynamic typing, we just might be able to argue for dynamic typing, as a gateway to an underlying procedural pro-
gram. Infact, we might have sections in the ref man, after all of the functional sections, with a title like "Dynamic Typ-
ing and Procedural Computation", wherein we start out like this:

"The features described thus far in the manual have defined a fully functional, statically-typed language. In this
(and perhaps following) sections are defined procedural features (assignment, looping, refs (maybe)) and dynamic
typing features (Object and down casting)."

Lastly, for now, it might just be fine to have both type inference and dynamic typing, if we can work out the details OK.
But you know, motherfucker, life’s getting shorter these days.

The Possible Re-Emergence of Operator Overloading, 28oct07

With the overload-based generics stuff we hav e going on now, operator overloading might just fit it, even somewhat
sweetly. What’s come to mind just now (if not in the past), is an example like this:

obj GenericDB = GenericRecord*;
op CompareRecords(gr1:GenericRecord, gr2:GenericRecord) = gr1 = gr2;
obj NamedRecord < GenericRecord = name:string;
op CompareRecords(nr1:GenericRecord, nr2:GenericRecord) =

nr1.name = nr2.name;

which could be more conveniently defined like this:

obj GenericDB = GenericRecord*;
obj NamedRecord < GenericRecord = name:string;
op "<"(nr1:GenericRecord, nr2:GenericRecord) =

nr1.name < nr2.name;

the convenience being not having to define theCompareRecords op at all.

This could be nice, but at the price of op overloading details that may take some time. The underlying hope is that the
current generic rules and semantics are effectively unchanged by this style of op overloading.

One issue is that comparison is built-in for all types (remembering that it’s tautologically false for all function types).
Given this, we may want to limit overloading to the comparison ops, though it’s probably not necessary to do this.What
we can say is that op overloading has the potential to undermine the clarity of a spec, given that the appearance of an op
like "CompareRecords " is potentially more clear than just "<", even in the context of record comparisons. And of
course there’s my frequent peeve about the non-transparency of inheritance altogether, in that the op namedCompare-
NamedRecords would be the clearest of all.

Ah, but a quick check of parser.y shows that strings are still valid op names.So all we gotta do now is update the type
checker. (That’ll be easy -- chuckle motherfucking chuckle.)

Maybe Already Said, but in Case Not, 27oct07

We should probably disallow inheritance from atomic types.

I was thinking that "primitive type" might be a better term than "atomic type", given that strings really aren’t atomic.
However, we can in fact think of string as atomic as atype, in the sense that it is not composed of other types. The fact
that stringvaluesdon’t feel atomic is not really relevant to the string type being atomic.And, in fact, we can think of
integer values as being unatomic, in that we can decompose them into separate digits using division. So,I’d say, the term
"atomic type" is fine.

Maybe Opaque Types === Sym Lits is OK, 27oct07

So the following doesn’t sound so bad, and aside from potential confusion of auto-decl of sym lits with opaque decls,
might just work out fine:

Page 19

An opaque type has exactly one value, and that’s the symbolic literal of the type’s name.

Types as Values, 23oct07, Updated 3nov07

To say in ref man -- Careful:

obj TenAndTwenty = 10 + 20;

does NOT define TenAndTwenty to be the value 30, but rather to be the two-tuple containing the 10 and 20.

OR, we might just screw the way-old data dictionary syntax that allows ’+’ as an operator, and go back to only ’, ’ and
’and for tuple creation. This is actually probably a pretty decent idea. Think about it.

3nov07 update: I have thought about it, and I think I do want to get rid of ’+’ as a component expression operator.
Among other things, I recall ’+’ meaning logicalor in some dialects of boolean logic, with a multiplication-like "cross"
operator meaning something like tupleness.

FMSL Meets Haskell, and Some Other Observations, 23oct07

Did a bit of reading in the Haskell manual and gentle introduction. It would be very informative to do some more Haskell
reading, and maybe even refer to it in appropriate places in the ref man.

One particular thing that stood out today was the statement that types are not at all first-class objects in Haskell. In
FMSL, it would appear (I’m pretty sure, anyway), that typesare first-class in the case of union (and thereby) class types.
(BTW, if we hav en’t said it explicitly already, the definition of "class type" should simply be a type that is extended
from).

The use of union (class) types that makes them first class comes from the ’?. ’ and ’?<’ operators, where type names are
used as expression operands. This needs to be expounded upon in the ref man.

Yet further musings on opaque types and symbolic literals, 23oct07

Given what appears to be the most recent thinking on this subject, it’s not clear if we still want the one-to-one correspon-
dence of opaque types and sym lits.Also, we may want to de-emphasize the age-old way of defining enums using
opaque types.(We can’t entirely get rid of opaque-type-based enums, since if we have opaque types, we can always
make unions out of them.)

A way to do this is to introduce a new atomic type called "symbol". With this, the issue pretty much boils down to a
binary decision.Viz., is the type ofx’ "symbol" or "the opaque type x"?

There are a number of questions and/or issues that need to be resolved here, and I’m purposely leaving them unresolved
at this particular junction (there’s grading to do). Said questions/issues include:

1. Theissues of specifier confusing that comes from:
a. auto-declaringan opaque type whenever a symbolic literalappearsanywhere
b. the complementary auto-declaring of sym lit values when an opqaue type is defined
where such confusion arises when there’s a re-defined symbol error for an enum lit or opaque. (But this could
most likely be pretty much fixed with a decent error message, that explains why the error happened.)

2. Theissue of being able to check the current value of an enum var, as in

if (color = ’Blue’)

as opposed to having to do type interrogation, as in

if (color.?Blue)

3. I don’t recall if the current definition/implementation allows the following (I think the def allows it but the imple is
not there yet), but either way, having sym lits be part of a "symbol" type would allow it:

obj Sex = Male or Female;
obj Male;
obj Female;

Page 20

var s:Sex;
... if (s = ’Male’)

Just looking (yet again) at this in this context, it looks pretty funky to hav ea say that there’s a symbolic value
that’s createdwith the same nameas an (opaque) type.

4. If we go with the auto-create-sym-lit-on-opaque-type-def, then there’s a question of what if any kind of values can
be bound to a var of an opaque type.We might want to say that no value but nil can be so bound, but that would
leave vars of an opaque type unassignable, and comparable to nothing but nil. That might in fact be OK, if we
reason that an opaque type has no discernable value, it’s, er, opaque, meaning we can’t know what its value looks
like. Thiscould be a problem if we want to know what type something is by looking at its value, but I think that’s
probably wrong, since types and values don’t mix like this. I.e.,we as what type something is with ’?. ’ and
’?<’, not by looking a value that’s in a var of a union type.I think this is going in the right direction, but FUCK,
we need to get it the fuck nailed down.

5. And while we’re up (down?) in here, don’t forget that we just re-enabled the stuff in parser.y that allows a type
comp expr to contain raw constant values, and we need to fully explain and justify this in terms of the formal type
values.

6. For simplification, we may want to do away with the last point, i.e., values in type exprs, given that we argue that
we don’t do things like range constraints on lists within types.Or, we could (re)instate list range constraints.
Anyway, we need to think through once and for all if allowing values in types is (a) OK formally, (b) worth any-
thing. For the latter, we need to dig out / come up with real examples where it’s useful.

7. What’s going in in the last point is the struggle to allow simple enumerated types as something other than a special
case, while not raising a shitload of other theoretical or practical issues.

8. To be a bit more concrete, we can characterize the situation by saying that we can put a value of type "union of
(the int 1), (the int 2)" in an "int" var, but we can’t ever put it back in a "union of (the int 1), (the int 2)" var.

9. Hmm. Whatwe may just be doing is defining a way to have const data fields without an explicit const construct.
We can confirm this by thinking about the translation into Java (and UML, if possible) of a type like

OneAndTwo = 1 and 2;

Upgrade to Include ‘‘error’ ’ as a Distinguished Value, 8may07

In working out ideas in calendar/specification/ideas/duration-bounds.fmsl, q.v., it occurs to me that having nil do double
duty as both theemptyvalue and theerror value is weak. So, we shoud say that vars can assume three kinds of value --

1. nil , meaning empty or unassigned, the latter by virtue of the fact that all the initial state of all not-yet-bound vars
is nil ;

2. error , meaning a run-time error occured when evaluating the expression that produces the value to be bound to a
var;

3. A non-nil value of the variable’s declared type.

Another way of saying this is that every type set containsnil anderror .

Examples of expressions that produceerror as a value are:

a. index-out-of-bounds error

b. return value of an operation when a precond is violated

c. boundvalue that violates an axiom

We need to complete this list of all cases whereerror is created, as well as the rules forerror propogation during
expression evaluation, notably doesbool bool-op nil producefalse , nil or error ? At this minute, I’d say the
latter, but we need to work out the semantics ofif error ... fully, it most likely being simply thaterror is pro-
pogated. Also,it seems thaterror propogation will dominatenil propogation, with rules like this:
a. if any one or more operands to built-in operator areerror , the value of the expression iserror
b. if no operands areerror , but one or more isnil , nil maypropogate, but we may in fact want to consider pro-

pogatingerror in some cases, as in "x + n il " = error instead ofnil .

Page 21

Again, details need to be fully worked out.

Another Bottom Motherfucking Line, Reiterated

Based on the 24may02 and related entries, all opaque types are unique, and incompatible withany other types, except
Object (?nil ?, if in fact there exists anil type??). Anyway, the important thing is that opaque types are effectively
unique. And,as I’m now working a specs for the new dftool, it has occured to me that having opaque types be unique
may be pretty handy for dfd editing, in that when a new edge is created between two untyped nodes, a new type is created
of the form

obj edge-name;

And to keep things really motherfucking simple, I think we’re ready to get rid of "is " altogether as a keyword. It’ll be a
pain to change the test suite, but worth it overall.

NIXED: [BI] think it’ s best as is, since, among other things, an ax declaration like this "ax A1 = 1 = 1" looks funkier
than "ax A1: 1 = 1"; also, an axiom is not really like an entity that’s being bound to a value, but rather a formula that’s
being labeled. And even if it is, the funky look thing wins out here.
While we’re at it, I think we need to change the syntax of named axioms to be

axiom [<name> ’=’] expr

instead of the current

axiom [<name> ’:’] expr

:DEXIN

The REAL Bottom Motherfucking Line

We’re going back to the 13nov05 bottom motherfucking line below. The problem with the "is/Chas" business is that it’s
just too fucking hard to use these words so they consistently make intuitve sense, and yet result in a formal definition that
works nicely. So, the deal is that we’ll sacrifice the intuitive use of "is-a" for an otherwise consistent typing framework.
The intuitive background we can refer to is that of standard data dictionary defs, that use "=" as the separator. Also, in
my real world, inheritance takes a way back seat to composition, and multiple inheritance takes a way way back seat.So
providing a more intuitve "is-a" notation for inheritance at the sacrifice of cleanliness elsewhere, is really not worth it.

It Looks Lik e is/has May Be a Pretty Cool Deal -- NO IT’S NOT see just above)!

Examples:

obj DB has GenericRecord*;
obj EmployeeRecord has Name and ID;
obj SupervisorRecord is GenericRecord has Supervisee*;
obj StaffRecord is EmployeeRecord has Supervisor;
obj Name is string; -- hmm, is this counterintuitive?
obj ID has number; -- hmm, how bout this? -- sure
obj DayName has Sunday or Monday or Tuesday or Wednesday or Thursday or

Friday or Saturday;

obj DB = GenericRecord*;
obj EmployeeRecord = Name and ID;
obj SupervisorRecord > GenericRecord = Supervisee*;
obj StaffRecord > EmployeeRecord = Supervisor;
obj Name = string; -- hmm, is this counterintuitive?
obj ID > number; -- hmm, how bout this? -- probably not

obj DB = GenericRecord*;
obj EmployeeRecord = Name and ID;
obj SupervisorRecord extends GenericRecord is Supervisee*;
obj StaffRecord extends EmployeeRecord is Supervisor;
obj Name = string; -- hmm, is this counterintuitive?

Page 22

obj ID > number; -- hmm, how bout this? -- probably not

For a bit of detail, try this.We can explain the two flavors of "is " as follows:

a. whenan object has exactly one component, you can consider that the objectis its component;explain how a one-
tuple and an is-a object are semantically the same thing, hopefully coming up with a somewhat better term for "is-a
object" vis a vis "one-tuple"

b. when an object inherits from another object, it is that object, plus it has additional components of its own, thereby
extending the object from which it inherits

What these things mean technically from a language perspective is that theis clause can syntactically be one of the fol-
lowing:

a. anident list, probably allowing both comma andand to be used as the operator

b. aunion or function type, meaning the objectis one of the union elements, a single list, or a single function type.

The is clause canNOTbe a tuple type; for this,hasmust be used.

Given the extant semantics that one-tuples and is-a types are semantically equiv, is and has as keywords can be used
interchangeably to define is-a types.

I’m thinking "singleton type" might be a good name for type defined with is that has only a single name or non-tuple
composition expression and no extension withhas.

Important Consequence of Going with ‘‘is’’ and ‘‘has’’

For non-tuple types, consider allowing is, particularly for simple enums and function types.What we can be saying here
is that any one-tuple type can be defined with "is".

OK, So It’s Not ‘‘Prim’ ’ (15dec05)

Sorry, but "Prim" as a name is (a) a bit too cute; (b) used for a bunch of other things, including "Prim’s algorithm" and
Source Forge’s "Permission Record Information Machine".

"fmsl", on the other hand, shows up nowhere at Source Forge, and is even pretty much nowheresville on Google, with
fmsl.net and fmsl.com still available. And fmsl.org is the Franklin Men’s Softball League -- pretty much off
the beaten path.

Making the Decision to Define Primitives Equationally

Anything we want to consider primitive that’s above function invocation, typing, arithmetic, and quantifier-free boolean
logic, we’ll define equationally. So, here’s the list of such things:

a. lists

b. tuples

c. quantifiers

I believe that once we’ve done this, we can define everything else in terms of non-equational Prim (itself).I need to go
out and make sure that this is kosher, but I can’t really see any reason it’s not. Pluswho the fuck is ever going to call me
on it anyway?? Well, if goes to Source Forge, it’d be kinda fun to have someone at least notice.

Ideas for V5, aka ‘‘Prim’’

16jan06 one motherfucking more bottom motherfucking line:

Given the poignant confusion about "is-a" and "has-a" vis a vis RSL’s use of "is", I really think we ought to see if we can
live with "is" and "has" as the keywords, without ’=’ or ’>’ at all. One of the main reasons for ’=’ is data dict compatibil-
ity, but I’m pretty darn comfortable just farging this.

Page 23

So, for good clean simplicity, one more motherfucking time, try this:

KeywordAttr Name Meaning
has , components: Defines the components of an object.In

terms of typing, it binds the type defined
by the component expression to anob-
ject ident.

is , parents: Defines the parents of an object, thereby
defining the components of an object to
be thoses of its parents, unbundled and
anded if multiple parents, and then and-
ed to the object’s own componnts. In
terms of typing, it binds the type "par-
ent-type<1> OR ... OR <parent-type<n>
OR parent-types-unbundled and compo-
nent-type" to anobject ident.

With this style of defs, we can leave the current type checking semantics in tact, except that we will disasslow inheritance
from atomic types, perhaps including opaque types. The latter bit would be consistent with the 24may02 conclusion that
opaque types are at the "bottom" of the type hierarchy. Howev er, not being able to inherit from an opaque type may be
funky in terms of incremental development, because it precludes defining an object as a place holder and then refining it
later. Also, Java (and one suspects other OO PLs) allows componentless classes without any problem.

SO, we need to think through whether to allow inheritance from opaque types.I think it has to be OK. Whether it’s OK
to inherit from a non-opaque atomic type remains to be determined.

In terms of type rules, whether we do it by spelling or otherwise, I think it’s pretty darn clear at this point that any two
differenct opaque types are incompatible. I’m not sure if we’ve thought of this in structural terms, but I think it make
sense at that level too, in a perhaps odd kind of way. The deal is that two different opaque types each of no structure, and
types with no structure will be considered incomparable, and therefore not equiv (i.e., compat).

13nov05 bottom motherfucking line: here areTHE keywords and symbols:

Keyword/Symbol/Attr Name Meaning

is , =, components: (for object), body: (for operation) T} T{
Binds a type to anobject identifier, an expression to anoperation
identifier, or a value to avalue identifier; in the case of a type bind-
ing, it defines the one or more components of the object; in the case
of an expression binding, it defines the functional body of the opera-
tion.
extends , >, parents: T{
Defines the one or more objects from which another object inherits, or
operations from which an operation inherits; values do not inherit.
T}

Symbol (concise) exmaples:

obj DB = GenericRecord*;
obj EmployeeRecord = Name and ID;
obj SupervisorRecord = Supervisee* > GenericRecord;
obj StaffRecord > EmployeeRecord = Supervisor and Status;

-- or --
obj StaffRecord = Supervisor and Status > EmployeeRecord

Page 24

-- or --
obj StaffRecord > EmployeeRecord <> Supervisor, Status
obj Name = string;
obj ID = number;

Ke yword (verbose) examples:

obj DB is GenericRecord*;
obj EmployeeRecord is Name and ID;
obj SupervisorRecord extends GenericRecord is Supervisee*;

-- or --
obj SupervisorRecord is Supervisee* extends GenericRecord;

obj StaffRecord extends EmployeeRecord is Supervisor and Status;
-- or --

obj StaffRecord is Supervisor and Status extends EmployeeRecord;

obj Name is string;
obj ID is number;

You know, it may well be time to dispense with the "has" and "is" business, and just use symbols. The good thing about
this is that the sematics of one-tuples being equivalent to type equality is just fine. If we go this root, then only the con-
cise examples below work.

Usehas and is for keywords instead ofis and inherits from , resp. Also,make= and> synonyms forhas and
is , with the use of> in particular suggesting the directionality of the UML arrow for inheritance.

Concise exmaples:

obj DB = GenericRecord*;
obj EmployeeRecord = Name and ID;
obj SupervisorRecord = Supervisee* > GenericRecord;
obj StaffRecord > EmployeeRecord = Supervisor and Status;

-- or --
obj StaffRecord = Supervisor and Status > EmployeeRecord

-- or --
obj StaffRecord > EmployeeRecord <> Supervisor, Status
obj Name = string;
obj ID = number;

Verbose examples:

obj DB has GenericRecord*;
obj EmployeeRecord has Name and ID;
obj SupervisorRecord is GenericRecord has Supervisee*;
obj StaffRecord is EmployeeRecord has Supervisor;
obj Name is string; -- hmm, is this counterintuitive?
obj ID has number; -- hmm, how bout this?

Consider using<- for assignment, including for parameter initialization.Regarding parm initialization, there’s the inter-
esting issue of default inputs of the form "Untitledn", for n = 1

Probably, or at least maybe, get with the program of using "/*" and "//" as comments symbols.

Perhaps replace user-defined attributes with just plain relationships.

Build a GUI editor, with this kind of dialog for objects:

=== Object Editor ===
Name:
Components:
Extends:
Description:

Page 25

In Module:
V More
Operations:
Equations:
+ -
V More
Relations:

Name: Entities:
+ -
...
V More:
Properties:

Name: Type:
...
+ -

and this kind for operations:

=== Operation Editor ===
Name:
Inputs:
Outputs:
Description:
Module:
V More
Precondition:
Postcondition:
V More
Components:
Dataflow:
V More:
Properties:
Name: Type:
...
+ -

and this for modules:

Name:
Exports:
Imports:
Entity List:
V More
Theorems:
Axioms:

and this for values:

Name:
Type:
Value:
Attributes:

Keywords

Based on consistent 205 misuse, I’d suggest putting back the singular or "input" and "output", and for consistency, "com-
ponent". Then,with the good Icon-style more accurate syntax error messages, we can be dandy.

19may05 Op Selection and a Bit on Op Validation

For the CJ types, allow ’ .’ to be used as an op selector, for explicitly-delcared ops. E.g.,

Page 26

obj X
ops: a,b,c;

end;
obj Y;
op a(X)->X;
op b(X,Y)->X;
op c(Y)->X;
op d(Y)->Y;

op main(x:X, y:Y) = (
x.a();
x.b(y);

);

I inorder for ’.’ to be usable as an op selector, the obj being ’.’ed must have an declared an op of the name on the RHS of
the ’.’, and that op must have exactly one input of the type of the obj being dotted. And then, the form "val.op" means
treatobj as the (sole) input of typetypeof(val)to op, and do not supply that input in the normal way within the parenthe-
sized list of inputs. All the complicatedness of this reveals just how silly dotted selection of ops really is.

By these rules in the examples above, x.a() and x.b(y) work fine.However, x.b cannot work in any form, because it has
no input of typeX.

A new bit of checking to add to op decls is that an op listed in an obj’s ops decls must have the obj in at least on place in
its signature. By this rule, it’s OK to list c in X’s ops, since it has X as an output, even though we can’t say x.c, because
X is not one of c’s inputs. However, d cannot be legally listed in X’s ops, since it has X nowhere in its signature.

17Dec04 Note on Values versus Objects (updated 13nov05)

The answer to the "I don’t know ..." in the next paragraph is "I do know, and it’s now decided". Viz., we can have any
mixture we like of type versus value components of an object.As the comment in parser.y explains, we’re ready to go
with this syntactically, the typechecker just needs to be fixed.

I don’t know if we’ve already decided this, but it would seem that there’s a juncture between objects and values at the
point where an object is declared with 100% concrete values. However, by the "the" prefix spelling rule, an object can
never be used as a value, since its type will never be prefixed with "the". Hence, while the following two defs amount to
the same entity in some sense, they are still different because the object version cannot be used as a value and the value
version cannot be used as a type.

object XO is 1 and "xyz" and true;
value XV = {1, "xyz", true};

The object version ofXOis not in fact particuarly useful, because it can hold only one type of value, namelyXV. Further,
... (dropped off). However, it’s fine to allow it, as a general rule.

17dec04 Update to Auto-Gen’d Constructor Ops

For objects with one or more constant value components, the constructor does not have args for those components.E.g.,
for

obj X is "abc" and i:integer and "xyz"

the auto-gen’d constructor is

op X(i:integer)->X

Fuck, the above applies to unbundling, since the previously-defined deal with auto-gen’d constructors is that their signa-
tures are exactly the objects type, not its unbundled components. The unbundling is a courtesy. What the real issue here
is is what the fuck happens to a tuple constructor for constant components. E.g., for the typeX above, is {1} a sufficent
constructor, or do there need to be some kind of place holders for the constant components, as in{,1,} . I think I like
the latter, but it’s not currently syntactically legal. Figureit all the you-know-what out.There’s a LOG entry of this date

Page 27

to this effect.

And here’s another potentially major thought about auto-gen constructor ops -- do we fucking need them at all given
structural equiv? I.e.,if we have to pass a value constructor in as the arg to a constructor op, why don’t we just use the
value op directly, instead of having to wrap a constructor call around it?The only reason I can think of is to force the
type to be a particular name, but I don’t think this is necessary given that this happens at binding anyway. As I recall, the
only time we need name equiv is related to inheritance, and I don’t see clearly how the value stuff is going to be a prob-
lem here. So, check out the following example:

obj X = integer and string and boolean;
val x1 = X({1, "abc", true});-- the canonical (and stupid) constructor call
val x2 = X(1, "abc", true); -- slightly better, courtesy of auto-unbundling
val x3 = {1, "abc", true}; -- OK, but doesn’t guarantee x3 is type X
val x4:X = {1, "abc", true}; -- does the trick, without the constructor at all
val x5:X = {1, "abc", 1}; -- just-for-giggles test of type checking;

-- fuck me, it fails as of 17dec04, and so needs
-- to be FIXED; there’s a LOG entry for it

I think the comments there say it the fuck all. I.e., if we’re a smart motherfucker, we should dump motherfucking auto-
gen’d constructors altogether, unless there’s some lurking reason to have them around that I’ve forgotten about, in my
reinvention-of-the-motherfucking-wheel way. Fuck me, I need to go confirm this, but I sure the fuck hope this is a nice
new discovery to simplify things.

9dec04 Thoughts about Extended Quantifier Forms and Pre/Post Logic in 2General" 2

Conclusion first, followed by blather. So, here’s the part 1 conclusion, about extended quantifier forms.MOTHER-
FUCKER. Itwould appear that after all of the bullshit and anguish I’ve gone through over elseless ifs, the normal truth
table definition of implication, aka elseless if, is in fact "if x then y else true". This is because when x is false, "if x then
whatever" is always true. Looking at the alternative for of "not p or q" makes this quite clear, since "not p" is true when-
ev er p is false. So,the conclusion to the discussion below about needing to be 100% sure on the equivalences for
extended quanitifier forms is that we are now in fact 100% sure. MOTHERFUCKER.

And here’s part 2 of the conclusion about elseless ifs in postconds. Since elseless ifs amount to "go true for free cards" in
the cases where the if is false, using elseless ifs in postconds is just plain too weak. The deal is that it leaves outputs val-
ues unspecified for all of the cases where the if expression is false. Thisshould in fact be covered in the ref man, to say
that elseless ifs, in general, and in specific cases as examples, are fundamentally too weak for postconds. What we have
to say in general is that a postcond must explicitly specify a condition for all possible values in the range of each output
var. What exactly this means fully is part what we have to work out, but elseless ifs in postconds are a significant part of
it.

The blather related to the preceding two conclusion paragraphs now starts, from here to the next item.

We need to be 100% sure about the current equivalences that are in the ref man when explaining the extendned quantifier
forms, e.g., "forall (x:t | y) p" <==> "forall (x:t) if y then p". The problem I’m worried about right at the moment is the
what happens with y is false. I.e.,should in fact the equivalence not be "forall (x:t) if y then p else true".I think the fuck
so, and I need to figure it totally the fuck out, pretty much right the fuck now.

In general, we may need to come to grips with the one-time-conidered-to-be-an-oddity position of Lois Brady that else-
less if don’t make sense (in pre/post) logic. This may well be true, particularly for postconds, since the idea there is that
we need to cover all possible values for outputs.

Let’s push on this a bit. Consider

op Op(i:integer)->j:integer
post: if i >= 0 then j = 20;

Given the current rules we’ve (sort of) got, what about when i < 0?Well, according to the standard truth table for impli-
cation, we have this

i j i >= 0 j = 2 0 (i >= 0) => (j = 2 0)

Page 28

-1 19 0 0 0 => 1 = TRUE
-1 20 0 1 0 => 1 = TRUE
0 19 1 0 1 => 0 = FALSE
0 20 0 1 1 => 1 = TRUE

So OK, this really is not bogus per se.What it says is that the only time the postcond fails is when i >= 0 but j != 20.It
succeeds whenever i < 0 or when both i >= 0 and j = 20. What this means is that i < 0 is a "don’t care" case as far as the
value of j is concerned.

Now, to push on this further, are such "don’t care" cases really sensible in the case of postconds, or do we really have to
cover all possible output values in a postcond?

Well, we might say that if a postcond rules out a particular case, then an elseless if might be OK, as in

op Op(i:integer)->j:integer
pre: i >= 0;
post: if i >= 0 then j = 20;

But this is in fact bogus, or at least redundant, since the postcond can never happen if i < 0, given the precond. Hence in
this case, the if clause in the postcond is unnecessary.

What I think we’ve arrived at is that "don’t care" cases are in fact bogus in postconds. I.e., we need to have the form be
like this:

op Op(i:integer)->j:integer
post: if i >= 0 then j = 20 else j = ... ;

since otherwise the value of j isfully unspecifiedwhen i < 0. But

9dec04 Update to 24may02 -- One More Time with ‘‘Does nil = false?’’

I think the conclusion there about "x <bool op> nil = nil" may well be fucked up, based on much of what we’ve said in
205 notes, if not elsewhere. Specifically, we need to look at the way we describe what goes wrong with unboudned quan-
tification in sorting to make things completely right. As I recall, the explanation does in fact say that "x <bool op> nil =
false".

Constructive Normal Form

A postcond of the form "output-parm = expr".

The general way to get a constructive formulation is if you can solve (easily) for the output var. Presumably this leaves
out any quanified exprs as constructive, since I don’t think solving for var inside a quantifier body is possible.Let’s try.
I.e., what would it mean to solve for l in the following expr?

forall (i in [1..#l-1]) l[i] < l[i+1]

Farg, I think it’s pretty clear that it doesn’t mean anything. WhatI need to do is come up with a bit more precise explana-
tion of the imposibility of solving for l in such a case, based on some reasonable definition of "solve for". Nevertheless, I
think the answer is clear that unless we have something like constructive normal form, solving is going to be difficult to
impossible.

‘‘ Object’’ as Top

OK, in a lattice-theoretic sense,Object is Top. So, how about this as the lattice of Prim types:

Object

tuple union list op

integer real string boolean opaque

nil

Page 29

Exists as Search (13nov04)

See new-inputs/exists-as-search.rsl for the motivation for a newchoose operator, with the following semantics:

(choose (x in l) p)

(lambda (Object, Object*, ... farg, this needs more thot; and I did not just
... fall off here; we’ll hopefully deal with this
... eventually; I added a LOG ref as a nudge

not (forall

exists (x:t) p <=> not forall (x:t) not p

OK, I’m not sure on what kind of shakey ground it may put me, but I think I’d like to go with using algebraic specs to
define anything we’ve got that’s primitive, but isn’t part of pure boolean logic. See the 10nov05 entry in implementation
notes for details.The point of this here is that we’ll define exists and choose equationally, which should help us deal with
the formal "bootstrapping".

Value Spaces (13nov04)

How about this. We can allow the definition of "value spaces" explicitly to bound otherwise unbounded quantification.
I.e., we provide some built-in syntax and/or operators to do this.

This can then be combined with the cute trick for testing-based value spaces in the following way. When during testing
values are sent to ops, they become part of the value spaces for whatever types they are.

And we might even be able to introduce this cute trick -- everytime a constant of a particular type appears in a spec, it
automatically becomes part of that type’s value space.In this way, simply mentioninga constant value anywhere in a
spec adds it to a value space. And this may in fact be a very cute way of avoiding some extra syntax/ops for defining
value spaces.We could just say "define some constants" to do it.

Now the just "define some constants" could be tedious for things like integer, but hey, I think we have the solution to this
already in the ’..’ l ist constructor form. E.g.,

value IntegerValueSpace = [1 .. 65536];
value CardValueSpace = [

{ . .. };

The deal is that the specific value names don’t (typically) get used anywhere, but they’re appearance forces the internal
value spaces to be expanded.

Well, two considerations now come to mind. First, it would probably be nice to do some form of lazy eval of forms like
[1 .. 65536], or at least say we’re thinking about it when we warn folks that we don’t (at present) do it.

A second consideration is one of convenience in defining something like CardValueSpace. Itmight be nice of we could
somehow embed ’..’ in component values, so as to say that we want multiple values of, say, an integer component without
having to define each one explicitly as a constant value.

What this may lead us to is the following idea -- whenever a value is created in any context during spec evaluation, it too
becomes a (permanent) part of it’s type’s value space.This has (potential) ramifications for garbage collecting, in that it
seems to imply that we can never garbage collect any values, or at least only garbage collect duplicate copies of values.
(And it occurs to me that I’m reminded about why doing the interpreter in Java is a good idea, so we can in fact have
garbage collection.)

Anyway, at this point, I think this idea is potentially quite promising, we just need to work out some more details.

The Bloat Goes On

Allow ops to be invoked via "." op, under the following circumstances:

a. theop is listed in the obj’s ops list

Page 30

b. the obj is the first input

Concepts Needed for Process Modeling (15aug04)

Question -- does it make sense to use the ’.’ op in an output list? It can if we say that it’s a short cut for change only the
right operand of the ’.’. Whetherwe want to make this happen syntactically is a currently open question.

A pretty serious issue with formal process modeling, even just at the process-step signature level, is that we’ll need the
highly generic "user input" as a formal input in the signature in order for things to work. I’m not altogether sure we want
to open the fully formal can-o-worms for process modeling, as was noted in the Fall 04 version of the process chapter.
Anyway, I’l l do some more work on chapter 3 and see where things go.

Jass-style Change-Only Semantics

We need some kind of equality operator that says tupleX = tuple Y, except for one or more specific components.The
idea of "let ... in ..." comes to mind, but seems a bit cumbersome. Also comes to mind is some Icon-like multi-char
equality op, but that may be funky, as always. Whatwould be nice is some intuitive-looking operator symbol, with some
way to hav ea list following.

OK, we’ve come to the syntax that’s exemplified in newinputs/except-tst.rsl. Onething worth noting is that we decided to
require that the left operand of "˜= " be a name, which disallows cases such as the following:

forall (x in l) x[i] = whatever except x[i].j = 10;

In such cases, alet must be used to get the desired effect, i.e.,

forall (x in l) (let xi = x[i]; xi = whatever except xi.j = 10);

Semantics of List Addition

If it’ s not already clearly stated, it would appear that the semantics of list addtion are such that adding an element or a lis-
tified element have exactly the same effect. Thinkthis through and documentt it fully if not already.

The Semantics of Equality in the Face of the Top Object Type

It seems to me that we most likely need to define the operational semantics in terms of tagged values, since this the only
type-safe/meaningful way to compare (with ’=’ and ’in’) two objects that inherit from some other common parent object.
The top Object type is the degenerate case, in that equality always type checks correctly statically for two values of type
Object , but dynamically, equality, specifically v1 = v2, must be defined as follows:
a. if not (typeof(v1) = typeof(v2) or typeof(v1) < typeof(v2) or typeof(v2) < typeof(v1)) then false
b. if (typeof(v1) = typeof(v2)) thencomponentwise equality
c. if (typeof(v1) < typeof(v2)) thencomponentwise equality for all common comonents from v2, not including specialized

components of v1
d. if (typeof(v2) < typeof(v1)) then componentwise equality for all common comonents from v1, not including specialized

components of v2

The bottom line, as I think has always been the case, is that using inheritance weakens static type checking, and using
Object weakens the heck out of it. The same goes for union types, and in fact, it’s the other way round, since inheri-
tance is defined in terms of unions. And BTW, the definition of inheritance in terms of unions, if it will/can stand in the
face of the existenceObject , will have to go something like this: everytime a new type is defined, the definition of
Object is dynamically extended with the newly-defined type, in the context of the semantics of the program being type
checked/executed.

Reinstating isa as an Operator (14jun03)

Screw the ungrammaticalness of exprs like "item isa Appointment ". The isa operator makes better sense as an
expression operator, so as to avoid overloading confusion withis as a type definition non-terminal. So, we will in fact
get rid of ‘?’ as an infix operator, but we’ll leave isa .

Page 31

One thing I don’t think we got fully explained below (we may have, but whatever) is the difference betweenisa when
used as the former ‘?’ versus ‘?<’ operator. Here’s the deal, I’m pretty sure: When used on a top-level union, it’s the
former ‘?’; when used on an inheriting obj, it’s the former ‘?<’; when used on anything else, including a non-inheriting
tuple, it’s an error. One way or another, we’ll always be able to disinguish between an top-level union versus an inherting
obj, since the later must always be a tuple.Even if it’s a one-tuple, by virutue of inheriting from an opaque parent, it still
won’t be considered a top-level union for the purposes of ‘isa ’. We need to work out the complete details of this, but
one way or another we’ll make it work, even if i t’s a bit funky for a seeming top-level union that isn’t because it also
inherits. Thetricky bit has to do with the fact that we can now use a component type name as the right operand of ‘isa ’,
instead of a component name, which means that there’s probably no way to treat an inheriting-from-opaque top-level
union as a union for the purposes of ‘isa except by using an explicit name or position access operator. This is fine,
given that an inheriting-from-opaque top-level union is a rare and funky thing.

Mor e Circles (27may03)

See updates to jan03 item below.

One More Time with Accessing Fields by Typename (23apr03)

This item regards the jan03 and 23may02 items on accessing tuple fields.

The jan03 item concludes that we should nix this type of reference, in part because it’s only "a tad" more convenient.
Unfortunately, I think the "tad" part is incorrect, based on the experience of adding the weekly-recurring clause to the
precondition of the ScheduleAppointment operation, q.v. in schedule.rsl.

The more serious reason to nix typename reference to fields, as stated in the jan03 item, is the inconsistency of this type
of ref when it comes to op args. However, at this point, I’m strongly inclined to say that the convenience issue outweighs
the inconsistency issue. Given below is a piece of evidence for this inclination, in the form of excerpts of from object
defs necessary to support the aforementioned precondtion clause in ScheduleAppointment.The first excerpt uses explic-
ity-named field reference whereas the second excerpt uses typename reference. As can be seen, there’s a bunch of cleri-
cal, after-the-fact component-name caca required in the first excerpt compared to the second.The actual time spent on
the caca is not trivial, since it took me a few passes to get things to compile. The time-to-compile was to some extent
based on just hunting down the full ref chain, with or without type names.However, the mere typing of the extra name
syntax consumed some valuable time. So, today’s conclusion is to bring back typename access to fields, the rules for
which are detailed in the 23may02 item.

Here are the excerpts:

object Appointment inherits from ScheduledItem
components: start_time:StartTime and duration:Duration and

recurring:RecurringInfo and location:Location and security:Security and
priority:Priority and remind_info:RemindInfo and details:Details;

...

object RecurringInfo is
components: is_recurring:IsRecurring and interval:Interval and

details:IntervalDetails;
...

obj Interval is
components: weekly:Weekly or biweekly:Biweekly or monthly:Monthly or

yearly:Yearly;
...

object IntervalDetails is
components: weekly:WeeklyDetails or monthly:MonthlyDetails;
...

object WeeklyDetails is

Page 32

components: sun:OnSun and mon:OnMon and tue:OnTue and wed:OnWed and
thu:OnThu and fri:OnFri and sat:OnSat;

...

operation ScheduleAppointment is
inputs: cdb:CalendarDB, appt:Appointment;
outputs: cdb’:CalendarDB;

...
precondition:

...
if appt.recurring.is_recurring and appt.recurring.interval?weekly
then appt.recurring.details.weekly.sun or

appt.recurring.details.weekly.mon or
appt.recurring.details.weekly.tue or
appt.recurring.details.weekly.wed or
appt.recurring.details.weekly.thu or
appt.recurring.details.weekly.fri or
appt.recurring.details.weekly.sat

versus

object Appointment inherits from ScheduledItem
components: StartTime and Duration and RecurringInfo and Location and

Security and Priority and RemindInfo and Details;
...

object RecurringInfo is
components: IsRecurring and Interval and IntervalDetails;
...

obj Interval is
components: Weekly or Biweekly or Monthly or Yearly;
...

object IntervalDetails is
components: WeeklyDetails or MonthlyDetails;
...

object WeeklyDetails is
components: OnSun and OnMon and OnTue and OnWed and OnThu and OnFri and

OnSat;
...

operation ScheduleAppointment is
inputs: cdb:CalendarDB, appt:Appointment;
outputs: cdb’:CalendarDB;

...
precondition:

...
if appt.Recurring.IsRecurring and appt.Recurring.Interval is Weekly
then appt.RecurringInfo.Details.Weekly.OnSun or

appt.RecurringInfo.Details.Weekly.OnMon or
appt.RecurringInfo.Details.Weekly.OnTue or
appt.RecurringInfo.Details.Weekly.OnWed or
appt.RecurringInfo.Details.Weekly.OnThu or
appt.RecurringInfo.details.Weekly.OnFri or
appt.RecurringInfo.Details.Weekly.OnSat

Page 33

Mother Fucker -- 3mar03

Shit, the processing of imports rears its ugly head again. TheLOG file has notes about how we’d like to do them in V4,
including some discussion of making them like Java, which concludes with saying we shouldn’t try to be like Java, given
the difference between what’s importable to a module versus package..

So anyway, I’m inclined to go back to a way-old idea that can be characterized as "on-demand" import checking, in order
to avoid two possible problems with the "pass-3" style of import checking we’re now doing. Thebenefit of on-demand
checking is that it can avoid the following problems:

a. Circularityof imports

b. Importingall of a module’s exports into a local symtab, when the ’.*’ for is used in the imports and/or exports.

To clarify and understand exactly how the new style of importing will be done, here’s a description of what happens in
each pass:

a. In pass 1, done by the parser and sym-aux, all defined symbols (modules, objs, ops, and other named defs) are
entered into the symtab, without checking any of their compoents or other attributes. Importsare left unentered,
just sitting in their declaration lists waiting for pass 2. What we have at the end of pass 1 are all of the module
symtabs allocated, all named entities within the modules entered in the symtabs, and import lists hanging off the
modules in purely symbolic form.

b. In pass 2 we can do import processing, ... fell off.

So, superceding all current design and implementation of imports, including what’s in LOG, here’s a clear and simple
import scheme:

a. First,nuke exports entirely.

b. Second, embrace the fact that all top-level modules are part of the top-level global name space, which makes is all
visible to each other. Therefore, one automatically has qualified access toanymodule’s symbol. I guess this is just
what Java does. What’s more, Java seems to have solved the transitive type ref problem that Mod2 and FMSL still
have, namely that if we import a symbol we don’t automatically import the transitive closure of all its component
types. WhatJava seems to be doing to get around this problem is fully qualifying types that come from imported
packages. See,e.g., ˜/code/java/{p1,p2}/*.bjava. So what we have to figure out is how Java is doing this. Hmm,
this may be it:
i. In a qual’d ref of the following form:

M.t.f

the type returned is M.F, where F is the type of field f of t, defined in module M
ii. What appears to be going on is that whenever a module qulifier appears on a type that’s the left of of a ’.’ opera-

tor, that module qualification is
iii. Another thing that we probably have to deal with is the entry of a qualified type directly in the symtab, i.e.,

with the "." directly in the entered name. If we do this, or even if we don’t, it seems that we’re going to have to
enhance the current resolveIdentType function to include resolution of module qualification in type names.

c. Given the preceding rule, the only reason we need import decls at all is forunqualifiedaccess to a symbol defined in
another module, which we can do a la Java with the "M.*" notation.

d. Sowhat it looks like is that we can in fact do pretty much what Java does now, if not precisely what Java does, to
get a much simpler import system.

So, here’s the import-checking algorithm we have in mind:

a. Inpass 1: enter each imported symbol into the current symtab, flagging it as an import. No definition checking hap-
pens at this point, since we may not have yet seen the module we’re importing from.

b. In pass 2, we might consider entering all non-conflicing M.x symbols directly in the symtab. Alternatively, we
could simple enhance lookup as follows:
i. Lookupan unqualified type or op symbol in the current symtab.
ii. If found there, make sure it’s not also found in an imported module, and if it is signal a mult-defined error.
iii. If not found locally, check if it’s imported in the form "M.X" for exactly one module, and if so use "M.X".If

Page 34

it’s imported in ".X" form from more than one module, complain.(Actually, this is probably the case where we
can complain at import decl processing time, since it seems clear that importing the same single symbol from
two modules is pointless because it cannot be ref’d unqualified in this case. Need to think this case through,
but I’m pretty sure we know what we’re talking about.)

iv. If not found locally or as an explicit single import, lookup in all of the module symtabs that have import delcs
of the ’.*’ form.
• If not found in any of those, signal an undefined error.
• If f ound in more than one of thoses, signal a mult-defined error.

From Reading Beckman

Evidently, there is a problem with reference-counting versus mark-and-sweep garbage collectors vis a vis closures.This
may well mean that we want to implement the interpreter in Java, using JNI access to the C-built parse tree and symbol
table.

NOT -- L et’s Just Nix the Component-Ref-by-Typename Business (jan03)

This item regards the 23may02 item on accessing tuple fields. The original title of this item started with "OK -- Let’s ...",
but now it’s "NOT -- Let’s ...", which means we’ve decided to press on with the 23may02 ideas. The reason is that it’s
significantly more convenient for 205 students, as a visit with one (a 205 student) again made clear today (27may03).

In answer to the "major problem arises ..." comment in the next paragraph, an answer is to do the ML thing, where op
args can be treated as a single tuple-valued arg. If we name the args-as-a-tuple value some keyword, like say "args ",
then the problem described in the next paragraph is eliminated. Let’s do.

While it might be cute and a tad more convenient, a major problem arises when we want to have the equivalent notation
for op args, but we cannot because in the case of op args, there’s no qualifying obj name, which means we’d hav etype
names within the exprs of conditions and function values. Given this, I think I’m fine with the following strategy in the
reference manual, which is pretty much there already. Viz., have a section after the basic intro to obj and op structure
called "Referring to Obj Components" (which is a bit stronger than the current "Names and Types" section).We don’t
really need this extra strengthening, but whatever. At this point, the important thing is to make peace with the idea once
and for all that we need explicitly-declared component names to refer to tuple fields.

In all likelihood, this decision does not affect the recent idea of making the right operand of "is" (formerly "isa") a type
name rather than a field name. The deal is that for unions, the type name is used for tag query (as it should be it seems
pretty clearly now), and the field name is used to access the value as (of) a particular type.

On ‘‘isa’ ’ versus ‘‘?’’ as the Type Query Operator

OK, I may just have solved the problem with "isa " as a funky operator name, particularly when its right operand starts
with a vowel (as in "item isa Appointment "). How ’bout we use just plain "is " as an operator that applies uni-
formly to types, never to values. Inthis way, its use in object defs and also in type query expressions is consistent.
Check it out:

object X is A and B and C; -- In an object declaration, "is" equates
object A is string; -- a name with a type expression
object B is integer;
object C is boolean;
value x = {"xyz", 123, true}; -- In a value declaration, "=" equates a name

-- with an expression value
function Op(X)->X = ... ; -- The reason "=" makes sense for function

-- values is the construct following the "="
-- is in fact a value

object Y is a:A or b:B or c:C;
var y:Y;
... if (y is A) then ... -- Here, "is" appears in the context of a

-- value expression, however it is being used

Page 35

-- here as a runtime type query, hence the
-- use of "is" makes good sense.

... if (y is a) then ... -- This form is now ILLEGAL, since is should
-- apply uniformly and consistently to types,
-- not to values.

So, with our new-found consistent use of "is ", can we make the following happen?

obj Days is Sunday or Monday or ... or Saturday;
var day:Days;
... if day = ’Sunday’ then ...

Well, this can work if we make the equality type checking rule go like this:

one operand is a union type and the other is compat (but probably not subtype compat) with one of the elements of
the union. At runtime, the equality evaluation entails the two steps of checking the type, then the value.

What’s potentially misleading here is the in the case of enum literals as in theDays example, the runtime value check is
unnecessary, since there’s exactly one value for each opaque type. In an example like this,

obj IntOrString is integer or string;
var ios:IntOrString;
... if ios = 1 then ...

the need for both the runtime type check and value check is evident. Atcompile time, the expressionios = 1 is legal
because the type1 is one of theIntOrString union members.At runtime, the evaluation of ios = 1 involves first
checking the current tag ofios to ensure that it isinteger , then performing the normal numeric equalitiy evaluation.

Now, all of this made me think for a sec that we might not need the ‘.’ operator at all for unions, since we can do the
injection (or is it projection) now so neatly. Howev er, we do in fact still the ‘.’ on unions in order to bind a union value to
an explicitly-declared var of one of the union members, e.g.,

op X(i:integer) ...
... X(ios.integer) -- X(ios) won’t work, by the (now) normal rules

-- of injection/projection

One last bit of syntax -- the use of "is" in an axiom declaration is not really consistent with the above observations. Using
"=" as the ax declaration separator would probably be most consistent, but it causes some syntax problems since the right
operand of the ax declaration is an expression that can, of course, contain ’=’ as an operator. Therefore, I think ’:’ is a
reasonable ax declaration separator, while not perfectly consistent with the other uses of "is" and ":", it’s fine given the
infrequency in of ax decls in the kind of specs I’m likely ever to be doing. Also,upon a bit further reflection, using "=" in
an ax declaration wouldn’t be all that consistent with the notion of "=" for value binding, since the axiom name isn’t
usable as a runtime value. Hence,the name binding in an ax declaration is sort of an odd-ball case anyway, so ":" as the
separator is probably as good a choice as any, if not in fact the best choice.

Yet, Yet, Yet, ... Again on Unions

I’m not sure it’s ever been this clear, so if not, for the zillionth time, here is an explanation of what’s leg al projectionwise
and injectionwise.

obj X is A or B or C;
op Main(x:X, a:A, b:B) =

let x = a; -- legal because x is already vague, and may hold values
of three alternative types

let a = x; -- illegal because a can only hold values of type A

obj A;
obj B;
obj C;

Page 36

2jul02, Hmm About Union Types

How about if we dont’require that the components of a union be distinct, but just make them that way, in the same way
that a set-union operator does.E.g., the type "string or integer or string " is equivalent to (and reduces to)
"string or integer ", simply because we automatically throw out the secondstring component. WhatI’m con-
cerned with here is a potential problem that stems from the combination of structural equiv and inheritance as unions.
Viz., in a definition of the form

obj Parent is integer and string;
obj Kid1 < Parent is integer;
obj Kid2 < Parent is integer;

In this case, the union that defines the inheritance contains two instances of the same type, which by the up-to-now think-
ing was an illegal union. Somethinghas to happen to make this OK, which could be one (or more) of the following:

a. Saythat unions defined via inheritance are special cases that may contain dups (sort of like system-defined idents
that can violate normal user-level ident rules).

b. Use name type equiv in some way to mitigate the problem.

What the second of these alternatives suggests is some name-based definition of typedistinctnessor distinguishableness
that is separatable from equivalence. E.g.,we can say that all the components of a union must bedistinct (or distinguish-
able), and then have a rule that says that any two ident types aredistinct (distinguishable), even if they’re (structurally)
equivalent. Hmm,this doesn’t sound too bad at this point.

1jul02, Possible Reprieve of Sym Lits

There is however the fundamental conceptual appeal of sym lits as distinct from string data in pretty much exactly the
same sense of its appeal in Lisp.

Bottom line -- I think it would be stupid to get rid of symbolic literals entirely. What we can do is describe them clearly
and rationally in the ref man and say something along the following lines: ‘‘The use of sym lits as enum idents is in some
sense conceptually more "accurate" than the use of strings for the same purpose, but if the specifier does not care about
this, then using strings as enum idents is just fine.’’ T he accuracy is concretely evident in the preferred GUI for a particu-
lar type of data.Viz., if the preferred GUI is a free-form text-entry area, with a limited set of possible values that are
parsed but not enumerated in a combo-box-style menu, then the more accurate representation is a tuple of string values.
On the other hand, if the preferred GUI is a completely fixed list of identifiers, then the more accurate representation is a
tuple of sym lits.[And see below about a mixed-mode free-form entry plus combo-box style GUI.]’’

Given this, all of the following defs are legal, and have essentially the same semantics:

definition using sym lits as enum idents:

obj Sex1 is ’Male’ or ’Female’;

definition using strings as enum idents:

obj Sex2 is "Male" or "Female";

definition using opaque types as enum idents:

obj Sex is Male or Female;
obj Male;
obj Female;

definition using defined string values as enum idents:

obj Sex is Male or Female;
val Male = "Male";
val Female = "Female";

Today’s conclusion: I think I really like the idea of the concrete GUI hinting at the preferred specification representation.
But fuck, I was just about to write the following as an example of the specification representation for a string-value

Page 37

combo box:

obj Selections is "Alt 1" or "Alt 2" or ... "Alt n" or string;

meaning that the "Alt X" strings are the initial given values and the "or string" part deals with a user-entered value. But
this is not a legal union type in the latest FMSL semantics, since string subsumes all of the other values. Butwait, if we
mix and match sym lits with strings, we could have the following, which looks kind of sweet and may (help to) solve the
age-old problem of the precise FMSL representation for such things:

obj Selections is ’Alt 1’ or ’Alt 2’ or ... ’Alt n’ or string;

The reason that this may be a very accurate representation is that it can be paraphrased as follows:

entered by the user.

The potential downside representationally here is that we don’t considerSelections to be just a plain string with a set
of system-suppled default possibilities, but rather a mixed-type union. But hey, this may be precisely the kind of seman-
tics we’ve been looking for all along.

The I-don’t-think-ever-explicitly-defined alternative to the mixed sym-lit string definition is something like the following:

obj Selections is string;
obj SelectionsBuiltInDefaults is "Alt 1" or "Alt 2" or ... or "Alt n";

The problem we’ve perennially had with such (assumed) defs is that an abstract op that that takes an input of type
Selections , with the input tracing to a combo box, needs (seemingly) to take SelectionsBuiltInDefaults as
well. Eitherthat, or we need to get into the definition of "abstract" view specs, as we did e.g. with Rick Myers, and pos-
tulate some op that outputsSelectionsBuiltInDefaults to the display, and then some select-from-defaults-list
that produces an integer (say) selector that is used by the actual abstract op as an input.

The mixed sym-lit/string type seemingly solves this perennial problem, but perhaps at the price of notational obscurity
and complexity. Again, we can say in the ref man that the specifier may chose the representational form that suits her.
And as always, we suggest that the same form is used consistently throughout a given specification.

I’ll conclude with this thought. It seems potentially a bit hokey, or at best notationally strained, that

obj Selections is ’Alt 1’ or ’Alt 2’ or ... ’Alt n’ or string;

is illegal but

obj Selections is "Alt 1" or "Alt 2" or ... "Alt n" or string;

is not. I.e., it’s a potentially hokey "convenience" that sym lits can be used to represent combo boxes so "elegantly". We
need to think about it (but not too fucking much).

Oh, and one final reason to keep (and use) sym lits -- as we’ve observed before, they’re a good way to represent graphical
icons symbolically, where a string overrepresents to some extent.

7jun02, Part 2

We may also want to fuck where clauses hard too.Check inputs/stack.rsl for a decent-looking parameterized type style
of generics, that can easily (and clealy) replace the where clause crap.Then again, the idea that we can use type vars
directly in a comp expression, without declaring them, may yet have its appeal. Definintely need to think about it.

7jun02

Fuck symbolic literals -- hard. The point is that we’ll allow the way-old definition of the form

obj Sex is "Male" or "Female"

given the fact that we can have non-boolean concrete values in a parts spec.The fundamentally important part about this
is that a definition of such a form isNOT of type "string or string ", but rather of type "(the string the
following does not type check, for the indicated reasons:

var s1:string := "Male";
value s2 = "Male";

Page 38

op IsMale(s:Sex) = s = "Male";
op main() = (

IsMale(s1); -- ERROR s is not compat with s1
IsMale(s2); -- ERROR s is not compat with s2

)

The point is that the following definition

obj S is "xyz";

defines S to be of type "the string string.

And OK, this has all been made abundantly clear already in the 2jun00 entry, and others below it.

24may02 -- One More Time with ‘‘Does nil = false?’’

Based on what’s said in exists-as-search.rsl it seems pretty darn clear at this point thatnil does NOT =
false . Based on all the formal-semantic error propagation work we’ve done, plus the fact that a pre-cond-failing op is
supposed to returnnil (NOT false), we need to have nil be a distinct value for all types, includingboolean . On
this basis, making an unconditional equivalence betweennil and false is too much. Now, we may want to make
some kind of C-ish equivalence in the context of some boolean ops, but I don’t think we even want to do this. I.e., the
expressions "nil <bool op> x" and "x <bool op> nil " should both producenil , not a truth value based on
some "clever" coercion ofnil in the context of boolean operators.

I suppose we need to do one last search through all that’s been said on this subject, but right how I’m pretty-to-quite
happy with the decision.

24may02 -- OK, Here’s the Brand New Thing

OK, I just reread the 22mar02 injection and became thoroughly depressed.I think the notion that we can use inheritance
to achieve what we’re after is dead, when what we’re after is genuine statically-typed polymorphism and generics.What
needs to happen is the introduction of type variables, of the form we’ve been musing about for some time.

When this happens, I think we pretty much turn the opaque type business on its head, in terms of how we now see it.
Viz., we currently see an opaque type as a topish kind of type from which all other types inherit, with the hope that this
scheme makes opaque types act like type vars. Asthe 22mar02 injection makes clear, this appears to be a forlorn hope.
So, what we’ll do now with opaque types is put them (back) on the bottom where they belong. They’re already there to
some extent, in that we have the notion (though I’m not sure it’s yet fully implemented) that a symbolic literal of an
opaque type name is the only value of that opaque type, and further that that value is unique and unequal toany other
value whatsoever. The reason that this is a complete head-turning is that instead of opaque types beingcompatible with
all other types, they’re now not compatible with any other types. E.g., the equality check in the following axiom can
never type check correctly:

object X;
object Y;
axiom (forall x:X, y:Y) x = y;

But wait, I just ran this through the type checker an it’s fine, i.e., it does not type check.

But wait again (to reject the supposedly "very cool (re?)revelation here" below). Given the statement "... a symbolic lit-
eral of an opaque type name is the only value of that opaque type, and further that that value is unique and unequal toany
othervalue whatsoever", I believe (seemingly CONTRARY TO the "very cool (re?)revelation" below), that the "x = y "
equality check in theimmediately preceding example should in fact NOT type check correctly. To be consistent with the
values of distinct opaque types being distinct, the types themselves should in fact be distinct.The reason the "very cool
(re?)revelation" works in the context of type-var-test.rsl is that there’s inheritance going on that’s not present in the imme-
diately preceding example. Thebottom line is that the immediately preceding example should NOT in fact type check,
but the type-var-test example should. The way that the immediately-preceding example could type check correctly is if
we liberalized the type checking rules for equality to say thatany types can be compared for equlity, but that if the types
are different, equals automatically returns false. Myimmediate reaction to this is that it subverts type checking pretty
badly, but it’s worth thinking through in the context of the "very cool (re?)revelation" that now follows immediately.

Page 39

OK, I’ve just had a very cool (re?)revelation here. The revelation is that we shouldn’t view the 22mar02 example an
incorrect result from<, but rather as avacuously falseresult from<. To recap, here’s the type-var-test.rsl ref’d in the
22mar02 injection:

obj TypeVar;
obj X < TypeVar = integer and string;
obj Y < TypeVar = string and integer and string;

op CompareXY(x:TypeVar, y:TypeVar) -> boolean = (
x < y

);

op main(x:X, y:Y) -> boolean = CompareXY(x, y);

What we were depressed about here is the fact that given the significant structural difference betweenx andy , there’s no
way we can be doing a meaningful runtime comparison in the expressionx < y . But hey, that’s just finehere. What
static type checking says in a case like this is that the only thing that can be compared in an op like CompareXY is what-
ev er componentsx andy have in common, which in this case isno components at all, giv en that they inherit from an
opaque type. Hence, in this case, thex < y comparison is always vacuouslyfalse, by the presumed rule that’Type-
Var’ < ’TypeVar’ is false. Andthe reason thatx < y reduces to’TypeVar’ < ’TypeVar’ in this case is
because in the context ofCompareXY where the inputs are bothTypeVar , the only thing we can be comparing between
x and y is the commonTypeVar ness, which means that, as they should be, the other components ofx and y are
ignored, i.e., unseen, in the context ofCompareXY. If the body ofCompareXY were changed tox = y , basically the
same thing would happen, except the result would be vacuously true, given in this case we’d be comparing’TypeVar’
= ’ TypeVar’ .

So, what this all boils down to is that the only reallywrong thing in type-var-test.rsl is the mnemonic suggestion
of the name "TypeVar " for the opaque type, because this type name isn’t really acting like a first-class type var at all.
(And this is in fact what we said in the 22mar02 revelation, but were (hopefully) unnecessary depressed about at the
time.) Andwhen all of this gets sorted out, it’ll probably be just dandy to have an explicit section in the ref man that
addresses this issue head on, perhaps even titling the section something like "Opaque Types are Not Type Variables".
Cool.

Now, if we do want real type vars, we’re gonna have to add them to the language, which is what this discussion is all
about. So,here’s what a for-real type var test would look like:

obj JustSomeOpaqueType;
obj X < JustSomeOpaqueType = integer and string;
obj Y < JustSomeOpaqueType = string and integer and string;

obj $TypeVar; -- Just for pre-type-var-implementation compilation

op CompareXY(x:$TypeVar, y:$TypeVar) -> boolean = (-- $ (for emacs)
x < y

);

op main(x:X, y:Y) -> boolean = CompareXY(x, y); -- ERROR: actual parameters
-- are incompatible with type
-- variable constraints:
-- exists <($TypeVar,$TypeVar)

obj $TypeVar1; -- Just for pre-type-var-implementation compilation
obj $TypeVar2;

op CompareXYOK(x:$TypeVar1, y:$TypeVar2) -> boolean = (
x < y ; - - S hould be OK once type vars are properly implemented

);

op "<"(x:X, y:Y) = x.integer < y.integer; -- Should be OK once we get the
-- new/old field ref stuff working

Page 40

op main2(x:X, y:Y) -> boolean = (
CompareXYOK(x, y); -- Should be OK once we get overloading finished
CompareXYOK(1, "xyz"); -- ERROR: actual parameters are incompatible with

-- type variable constraints:
-- exists <($TypeVar,$TypeVar)

CompareXYOK(y, x); -- ERROR: actual parameters are incompatible with
-- type variable constraints:
-- exists <($TypeVar,$TypeVar)

);

The proposed error message indicates what the problem withCompareXY here is. Viz., the body ofCompareXY
requires that there is a "<" operator defined between the two args of CompareXY. Further, the signature ofCompareXY
requires that the actuals be of the same type.(Error-messagewise, we may want to tone things down here in the actual
implementation, since the type failure in this case is not affected by the lack of a less-than op, but just by the fact that the
inputs toCompareXY must be the same type. I’m sure we can work out these details just fine. At this point, the error
message example is useful to explain the thinking here, and we’ll take it as such.)

Now, in the CompareXYOK op, things can work out OK because of the use of two different type vars in the signature and
the provided overload of "<". This means that the first call to CompareXYOK works, but the second does not, given that
there’s no built-in or user-defined overload of "<" for types integer and string. The third doesn’t work either, giv en that
the provided overload of "<" is not commutative.

In the Wirthian mode, we should test our new-found inspiration by writing some (more) programs.A particularly good
example of where things can come together is in the specs for a Redraw op on graphic canvases, where the power of vir-
tual-function dynamic binding is so evident. Anagging worry about fully static type checking has always been having to
do the virtual-binding dispatch logic explicitly by using the ‘?<’ and ‘.<’ operators in a big switch statement that fans out
on all subtypes of a parent type.What’s particularly worrisome about this is the fact that whenever we add a new sub-
type, we need to go to all of the places where such dispatch logic exists and add a new case for the newly-defined sub-
type. Thisseems like exactly the kind of place where the language should be helping us out. As we know, the problem
with the kind of help we get from the O-O crowd is that type checking must go dynamic, which we definitely want to
avoid.

Well, I think I may have just come up (and it’s probably a reinvention of someone else’s smart wheel) with the way to do
it with genuine type vars, including quantification over types. Theidea is that instead of dynamically dispatching over a
subtype, we’ll statically dispatch using a type-valued quantification. Here’s an example using the Redraw op:

object GraphicObject is ...;
object Line < GraphicObject is ...;
object Rectangle < GraphicObject is ...;
object Ellipse < GraphicObject is ...;
object Canvas is graphics:GraphicObject* and ... ;

op Redraw(canvas:Canvas)->canvas’:Canvas
post:

forall (g in canvas.graphics)
forall ($GraphicSubtype in GraphicObject)

if g?<$GraphicSubtype then
ProperlyDrawn(g.<$GraphicSubtype)

end

Here’s the same example with slightly different syntax, which I think I prefer:

object GraphicObject is ...;
object Line < GraphicObject is ...;
object Rectangle < GraphicObject is ...;
object Ellipse < GraphicObject is ...;
object Canvas is graphics:GraphicObject* and ... ;

op Redraw(canvas:Canvas)->canvas’:Canvas
post:

forall (g in canvas.graphics)

Page 41

forall (?GraphicSubtype in GraphicObject)
if g isa ?GraphicSubtype then

ProperlyDrawn(g.<?GraphicSubtype)
end

Shit, if this is correct, or can be made to be, it’s about as scarily invigorating and last night’s rediscovery was depressing.
What it means is that the type checker is doing the dispatch for us, but it’s not at runtime. This is exactly what we’re after
here. Ihave a slight feeling that there may be some hidden conceptual problem lurking in here.However, giv en that
we’ve defined inheritance strictly and completely in terms of unions, it seems pretty clear to me that when we’re quantify-
ing over types, it reduces to quantifying over the list-valued semantic representation of a parent type, which is just a list
of its inheriting types. I.e., we can see with the formal semantics in mind that this should work out fine.

As a bit of formalization, we can say that the new ‘ in ’ f orm of the quantifier expression is equivalent to the following
more basic form:

forall ($GraphicSubtype:object) $GraphicSubtype?<GraphicObject

I think a really important observation here is that we’re NOTgoing to define a Javaesque topObject or a genericany
type. Thismeans that the keyword "object " in the context of the above quantifier expression is not being used as a
type name, but as a meta-type indicator that can only be used when the name part of a name/type pair is a type variable
name, not a value-variable name. I.e., types arenot first-class values here (though we might imagine that they could be,
meaning we could allow both static and dynamic typing together, but I definitely think we need to keep this can-o-worms
closed till we (at least) get the static type var stuff worked out, including, one would hope, an attribute/denotational
semantics thereof). What I’m pretty clear we’re looking at here is a clarification of our entity categories, that allows us to
have value-valued variables (what we have now) as well as type-valued variables, but the twain does not meet between
the two, and type-valued variables are only computable at compile time, not at runtime.To ease the lurking-qualm feel-
ing a bit more, I think we’re on pretty safe ground here given ML, the only potential problem being the issue of inheri-
tance, which again given the straight-forward union-based semantics thereof should work out.Also, we should read the
"adding inheritance to ML" paper that we came across in POPL during the 530 paper scan.

23may02 TODO Item

Change the precedence ofand andor to be less than equality ops, as in CJ. DONE.

23may02 -- Accessing Tuple Fields by Type Name and Ordinal Position

For convenience, the components of an object can be referenced directly by their type names.For example, given the fol-
lowing definition

object ABC is A and B and C;

access to the components ofABCcan be made as follows

operation Op(abc:ABC)
pre: abc.A = abc.B and abc.C = ... ;

end;

When an object has two or more components of the same type, the components are disambiguated using a positional suf-
fix of the form#n, as in the following example

object PairOfA is A and A;
operation Op(pa:PairOfA)

pre: pa.A#1 = pa.A#2
end

The positional order is from left to right for each component of the same type.In this example,pa.A#1 refers to the
first component inPairOfA , pa.A#2 refers to the second component.

Using the ’#’ disambiguator is the only way to reference compnents by name in objects with multiple same-type compo-
nents. For example, the reference toPairOfA.A without a ’#1 ’ or #2 is an error.

As another example, consider this definition:

Page 42

object ABCABA is A and B and C and A and B and A.

The components of an identifiera of typeABCABAcan be referenced as follows:

Reference WhichComponent

a.A#1 The first component of typeA
a.A#2 The second component of typeA
a.A#3 The third component of typeA
a.B#1 The first component of typeB
a.B#2 The second component of typeB
a.C The only component of typeC

.)i where first, second, and third refer to the left-to-right position of components of the same type.

In an object with inherited components of the same type, the positional order is from the top of the inheritance hierarchy
downward, and from right-to-left in multiple inheritance order. Consider the following example:

object Top is x1:X and x2:X;
object Middle1 inherits from Top is x3:X and x4:X;
object Middle2 is x5:X and x6:X;
object Bottom inherits from Middle1 and Middle2 is x7:X and x8:X;

In this case, objectBottom has a total of eight components of typeX. The ordinal position of these components is indi-
cated by the namesx1 throughx8 . That is, these names indicate the order in which components are referenced by a dis-
ambiguating suffix. For an indentifierb of type Bottom , b.X# i references the component that is namedxi, for i
between 1 and 8. This example also illustrates that a component can be referenced by either its type name or its explic-
itly-declared name.

In a tuple with one or more value components, those components can be referecned directly by that literal value. For
example

object OneAndTwo is 1 and 2;
operation Op(ot:OneAndTwo)

pre: ot.1 != ot.2;
end;

A value component can only be referenced by its specific literal value, not by a variable or constant that contains the
value. For example, the following is illegal based on the preceding definition of the tupleOneAndTwo:

operation Op(ot:OneAndTwo, i:integer)
pre: (i = 1) and (ot.i != ot.2);

end;

While it may be untypical, literal components of the same value can be referenced using ’#’ in the same was as other
components. For example,

object OneAndOne is 1 and 1;
operation Op(oo:OneAndTwo, i:integer)

pre: oo.1#1 + oo.1#2 = i;
end;

Here, since objectOneAndOnehas two literal components of the same integer value, they can be referenced using ’#’ to
disambiguate them.

There is one additional form of reference for tuple components -- they be referenced directly by ordinal position, without
a name at all.For example,

object ABC is A and B and C;
operation Op(abc:ABC)

pre: abc#1 = abc#2 and abc#3 = ... ;
end;

Page 43

A numeric suffix of the form ’#n’ refers to thenth component of a tuple, in left-to-right order of component declaration.
Hence,abc#1 refers to theA component ofABC, abc#2 to B component, andabc#3 to theC component.Probably
not: The positional suffix ’## ’ refers to the last component of a tuple.

The ’#’ operator can be used in a sequence of component references in the same way as the ’. ’ operator. Consider this
example:

object ABC is A and B and C;
object A is D and E;
object E is F and G;

For a variablea of typeABC, a#1#2#1 is a reference to theF component of typeE.

A sub-tuplecan be accessed using a range of lower and upper ordinal positions.For example,

object ABCDEFG is A and B and C and D and E and F and G;
operation ChangeC(a:ABCDEFG, c:C) =

a#1..2 + c + a#4..;

OperationChangeC concatenates the first two components ofa with a single componentc , then with components in the
fourth through the last positions ofa. The range form#n.. refers to the sub-tuple from positionn to the last position.

The use of ’#’ as a positional component reference is of lower precedence than its use as a component name disambigua-
tor. Consider this example:

obj AABC is a1:A and a2:A and b:B and c:C;
obj A is d1:D and d2:D

and a variablea of typeAABC. In this case, the expression "a.A#2 " might be considered ambiguous, since it could refer
to a.a2 or to a.a1.d2 . The rule used to disambguate such cases is that ’#’ is interpreted first as a name disambigutor
if necessary, second as an absolute position index. Thereforein this example,a.A#2 is interpreted as a reference to
a.a2 , not to a.a1.d2 . In fact, the interpretation of "a.A#2 " as a reference toa.a1.d2 is not possible, since "a.A "
by itself is an illegally ambiguous reference to one of the two components of typeA. To accessa.a1.d2 using ’#’, the
legal expression isX.A#1#2 .

It is worth noting that use of ’#’ as a component reference cannot be confused with its use as a length operator. ’#’ i s
used as a component referencer when its left operand is a tuple value or a type name.’#’ is used a length operator when
its right (and only) operand is a list, string, or numeric value.

To summarize the different forms of component reference, consider the following definition:

object ABCA is a:A and b:B and C and A and 5;
object A is

and an identifiera of typeABCA. There are four forms of reference by which components ofa can be accessed:

Type of Reference Examples

explicitly declared component name a.a , a.b
unique component type name or valuea.B , a.C , a.5
positionally-disambiguated type namea.A#1 , a.A#2
absolute component position a#1 , a#2 , a#3 , a#4 , a#5

The positional ordering of components applies to union objects as well as to tuples. Consider for example

object U is i:integer or s:string or b:boolean;

and an indentifieru of typeU. The type-name and positional references to u’s components are defined as follows:

Explicit-Name
Reference

Type-Name
Reference

Positional
Reference

Page 44

u.i u.integer u#1
u.s u.string u#2
u.b u.boolean u#3

Given the higher precedence ofand composition over or composition, care must be taken when using positional refer-
ences in an object defined as a combination ofand andor operators. Considerthe following example:

object X is integer or string and real or boolean;

Given the and/or precedence rules, the default structure ofX is

integer or (string and real) or boolean

That is,X is a three-elelment union, not a two-element tuple.For an identifierx of typeX, the following table defines the
legal type and positional references:

Reference Meaning
x.integer thevalue of x as an integer
x#1 sameas x.integer
x#2 thevalue of x as the two-tuple (string and real)
x#2.string thestring value of the first component of x#2
x#2.real thereal value of the second component of x#2
x.boolean thevalue of x as a boolean
x#3 sameas x.boolean

Since the right-hand operand of ’.’ must be an identifier, the second component ofx is only accessible positionally. That
is, there is no such form as

x.(string and real)

to access the second union componennt ofx . As explained earlier, such an anonymous component can be given a name,
as in the following definition

i:integer or sr:(string and real) or b:boolean

which allows the second component to be refereneced by explicit name asx.sr .

Given the various forms of tuple reference, one might ask under what circumstances the different forms are convenient.
This clearly needs to be finished, with some compelling rationale and examples. We should definitely note that consis-
tency of notation is a very good idea, to make specs understandable.

Editorial Note: There is definitely a trade-off working here, between notational convenience versus complexity. An argu-
ment against convenience goes like this: "Since the main point of SpecL is to be precise and help specs be understand-
able, it may not be a good idea to have things work in some sense by accident. I.e., being able to refer to tuple compo-
nents by their type names, which such references can cause understandability problems in a number of subtle ways."

23mar02 -- Limits on (Multiple) Inheritance

There can be no circularities in an inheritance hierarchy. E.g., the following is illegal:

object X inherits from Y;
object Y inherits from X;

An object cannot inherit more than once from any other object, directly or indirectly. E.g., the following is illegal

object X is ...;
object Y inherits from X and X;

as is the following

object Top is ...;
object Middle is ...;
objct Bottom inherits from Top and Middle;

Page 45

22mar02

See the "(22mar02 injection)" under the 14ded00 entry below.

4dec01 -- Aux Functions as Vaporwear

In thinking about parsing, it seems to me that I might rather not write the aux functions to do this, but instead spec them
out. Thisleads to the concept that one can write aux functions constructively as bodiesor analytically with pre and post
conds. Hmm,does this work? If so, let’s make sure we can explain and rationalize it.

And one more observation on parsing -- we need to figure out how the objects-as-BNF-rules scheme fits into things wrt
parsing. I.e.,can we assume that we automatically have a parser if we write the grammar for something.

The motivation for this comes from Ciera asking about parsing a day/time string into a day/time tuple object.I started
writing this up using parsing aux functions in ˜/classes/205/examples/specs/parse-day-time.rsl, and started to see how
ugly things were getting in terms of reinventing the parsing (or even just lexing) wheel.

4dec01 -- Yet More on Exists as Selector and nil <=> false

OK, in working today with Keiko Tamura on part of the specs for EClass, I had the distinct desire to be able to use exists
as an Object-valued operator. If we go back to (or just stick with) the axiom that nil === false, then we could make exists
Object-valued. Not-withstandingwhat’s said in ./if-then-else-truth-table and ˜/work/rsl/testing/implementation/accep-
tance/new-inputs/exists-as-search.rsl, I’m pretty comfortable at this point with saying that nil === false.

9nov01 -- More Real Formal Stuff

See the discussion in new-inputs/exists-as-search.rsl

We should define formally that the type of nil is Object.Then we need to read everything we’ve said about the equiv-
alence of nil and false, and make sure things are consistent. In particular, with remarks to the effect of "I don’t know if
I’m happy with the notion that (false = nil) = true". Get this ironed out ASAP!

28sep01 -- Type Any, Yet Again

In recent thinking, e.g., retention-and-no-junk.rsl, q.v., we’ve been considering using the Javaesque identifyer "Object "
to be the top of the RSL type lattice. While this does have some appeal, particularly in that it helps students and others
famiilar with Java relate, I’m at the very moment leaning back to calling the top type "any ". Thereason is that we have a
potential conceptual problem with where atomic types fit in the type hierarchy. Java in fact has this same problem, in that
the atomic types don’t inherit fromObject . Giv en these observations, I think it might in fact be misleading to use a
capitalized typename as the top of the lattice, rather than a keyword or at least keyword-like identifier such asany .

Whatever we call it, there is the seemingly ever-unresolved issue of what operators are applicable toany . I think the
retention-and-junk.rsl provides at least one clearly legal op that can be applied toany , viz., in , as in o i n
out_list , whereo is of typeany andout_list is of typeany* .

So, if we fully enumerate the ops that are applicable toany , and explain how it serves asthe top of the inheritance
hiearchy, and in some sense the archetype opaque type, then the ever-unresolvedness will be resolved, and life will be
wonderful. You what to do, boy.

27jul01 -- Real-Life Example to Press Understanding of Where 2 Instantiation" 2

The reason the instantiatingwhere type needs to be a subtype of what it’s replacing is to avoid type-breaking mutation.
This is because the where clause is always used in the context of inheritance, which means that if we let an instantiating
type arbitrarily change an inherited component, then ref to that component when a value is in a parent-type var could be
bogus. E.g.,

Page 46

obj Parent = o1:O1 and o2:O2;
func Foo(p:Parent)->string = p.o1.s;
obj O1 = i:integer and s:string;
obj O2;
obj Child < Parent

where: O1 = O3; -- ERROR: this must be prevented per latest
-- semantics that say instantiating type must
-- be subtype of type it replaces

end;
obj O3 = i:integer and s:O1;
func Foo2(c:Child)->string = c.o1.s; -- This egregiously breaks typing

-- since if the bogus where clause
-- actually worked c.o1.s is no longer
-- a string, but rather an O1

-- We be in trouble here, since both the preceding and next lines should not
-- be working. I.e., we can’t have it both ways -- c.o1.s is either a string
-- or an O1, but not both. Somethings wrong somewhere, either because we
-- haven’t finished type checking the return type of a function body, or the
-- where clause instantiation is bogus, or some of both.
func Foo3(c:Child)->string = c.o1.s.s;

func Foo4(c:Child)->string = c.o1.s.s.s; -- Sanity check -- this is in
-- fact an error, as it should be

func Foo5(c:Child)->string = c; -- OK, it looks like the problem
-- that the type checking of func bods
-- against return types is not done
-- yet. Never-the-less, the above
-- bogosity observations still hold and
-- need to be fixed.

-- OK, the preceding misses the point that we’re trying to get at. Here it is.
func Foo6(c:Child)->string = Foo(c); -- Breaks types if where instantiation

-- worked as it appears it should.

-- The deal with Foo6 is that its call to Foo with c as an arg breaks types
-- inside Foo, since c is sent in as a Parent, but when it gets there, its
-- mutated o1.s component ends up mascarading as a string when its really
-- another O1. This be the reason that where instantiators must be subtypes of
-- what the sub for.

The "real-life" place where this has just arrisen is in the discovery that recurring info needs to be different in Meetings
versus MeetingRequests in the Cal Tool specs. Hopefully you get the idea well enough in terms of what needs to be done
about this, both in the Cal Tool spec and RSL type checker. Get the fuck to it, dickhead.

8jun01 -- Why I t’ s OK to Use Type Name in a Tag Expression

Since or’d components must be distinct, it would be OK to use the type name as the 2nd operand of ’?’.This is way-old
stuff, but it keeps coming back.The rule could go like this: "If an or’d component has an ident type name, then that type
name can be used as the right operand of a ’?’".

1mar01 -- Yet More on the Inverted Pyramid Issue

We want/need a way to create a function out of pre/postcond logic.There’s mention of this in the book formal-spec chap-
ter, but it’s a bit equivocating. Thedeal is that we need syntax of the form

Page 47

OpX.:post(...)

where the ... are all of the inputs (? and outputs?) to OpX. The deal is that the pre and post attributes are defined func-
tions from any to boolean, where the any-valued input signature specializes to arity (?and coarity?) of each op.

The question marks here have to do with not yet understanding how we inv oke a function in a postcond and then say that
function’s postcond is true.In particular, does the function denoted byOpX.:post(...) actually runOpX, or do we
need to runOpXfirst, e.g., in alet clause , then callOpX.:post with the same inputs as we ranOpXwith, plus it’s
returned outputs? Hmm, functionally, it seems at the moment that the former case can’t work, given that it would involve
some kind of call-by-var semantics we don’t hav e. What we need is a notation that’s not dreadfully unwieldy, but still
fuctional. THISNEEDS TO BE WORKED OUT. (Sorry, but I’m not really dropping off here, I just need to get home
and wait until a bit later to figure this out.)

8jul02 update: Let’s do this for sure. The javaization of the notation should allow ".pre " and ".post " as suffixes to a
class’ methods. This syntax is fine, since it doesn’t conflict with an existing Java use of ‘. ’, I’m pretty sure.

16sep02 update: I’m not really sure what I was getting in the paragraphs a couple back, i.e., with the question mark biz-
nis. Thedeal is, it seems to me, that the functionzied postcond is a boolean-valued function in its own right, to be used in
the postcond of some other function as a convenience. So,the call-by-var semantics is not really an issue. I.e., here’s
what goes on: In op B’s postcond we want to say that op A’s postcond is true.But in order to say this, B must produce
some or all of the same outputs as A. Therefore, the way we use the A.post function is to pass it the outputs of B so that
they are validated as they would be for A. That is, what is true of A’s outputs is true of B’s. Thereason, I think, that ras-
ing the call-by-var issue is really a non-issue is functionally, the only way that B can have the same effect as A is for it to
produce the same output(s).

But hey, why do we need A.post at all then?Why don’t we just equate which ever of B’s outputs we care about to the
return value(s) of A? While this means that B’s postcond "calls" A, why should this be a problem as long as the call is in
the context of a boolean expression? Hmm,have we really misunderstood things this badly for so long? I.e., has there
never been a need for a functionized postcond at all?? Fuck, this needs to be worked out by examining all of the contexts
in which I thought that functionized postconds were necessary, wherever the fuck they are. Perthe above note, we should
start with the mentioned text chapter.

15dec00 -- Semi-Epiphany

OK, in pondering the 14dec00 TODO LOG entry for typechk.c, I think I’m onto the idea of tagged values at runtime,
basically as we’ve always been onto it, but with an I think new embellishment based on spelling-based type checking.
The embellishment is that values with discernable named types will be tagged with that type name, otherwise they’re
tagged with the structured type.

Well, in writing down the preceding paragraph, I realized that there’s nothing really new there at all.Viz., we’ll have
tagged values at runtime that are tagged with a type struct that can be an ident type or not.Now, what needs to be clari-
fied is exactly when values get tagged with ident types. The answer is under the following circumstances:

a. whenbound to a particular op arg of a named type;

b. when built by the built-in constructor for an obj;

c. perhapsother ways, but none that I can think of right now.

The tagged value will let

Now, the other thing to talk about today is why it’s OK for ’<’ to be fully overloaded for all types, including opaque
types. Thereason is that we’ll do structural typing for everything, unless there’s an explicit overload of ’<’ for some
type(s) that want it. In this way, it seems that we get the best of both worlds in terms of both full structural comparisons
on values that are tagged with unnamed types, versus specialized comparisons on values that are tagged with ident types
for which an overload of one or more comparison ops has been defined.

I think that’s all there is to it, and so at this point, I’m not quite sure just how epiphanous it was, but it does seem that
there were some things said explicitly that have not been so said up to now.

Page 48

14dec00 -- Nearing Conclusion on 7dec98 BIG BUG

OK, from what I can tell, wedowant to say the following:

a. foralltype T, opaque type OT, T < OT

We’v e now added this as a (currently the last) type compat rule in

The deal is that since an opaque type has no structure at all, it can have no ops that do anything structural to it, and hence
any op that takes any opaque type as an input can have any other type sent to it, since there’s nothing the op can do to the
opaque type that could be illegal to do to any non-opaque type sent to it.

It would appear that the preceding paragraph effectively answers "Yes" to the question of whether an opaque type is the
same thing as a type var. It is the same thing by the very reasoning in the preceding paragraph.

(22mar02 injection -- Look fucker, an opaque typeis notthe same as a type var in the ML sense, since there’s no guaran-
tee that two args of the same opaque type will be dynamically the same. See, e.g., new-inputs/type-var-test.rsl. Also,the
deal that an opaque type has "no structure at all" and is therefore OK as the parent of any other type is bullshit given
structural equality. The deal is that structural equality must know the structure of two types, and given the subtype com-
pat defs we’ve allowed, all the built-in relational ops must be defined in terms of dynamic types. This is pretty fucking
depressing right at the moment, given the type correctness of the "x < y" line in the new type-var-test.rsl file. Again, what
this means is that the deal with ML’s equlity type stuff is biting us again. I was thinking there may be some way to
strengthen static type checking by doing some kind of dynamic binding. Also, I’m questioning right now the idea that we
need to say something as strong as X < OT, forall X, OT. Why not just X < OT when that’s the way it’s explicitly
declared? Fuck,this is getting really annoying going around in fucking circles seemingly endlessly here.One final piss-
off tonight -- do the spelling rules really mean that X* < Object*, forall X?We need to work this out, since we just added
this to typechk.c, where we let the basetypes of two arrays use assmntCompat instead of compat.)

We might ask at this point what good an opaque type is if they’re all really the same structurally. Well, the answer has to
be in the name itself, and hence there can only be a meaningful distinction between opaque types where the name itself
makes a difference. Thisappears to be precisely the case when we’re instantiating a where clause, since we’re using the
name in the where clause syntax. This seems therefore to obviate the need for any additional ’<’ or ’<=’ synatx in a
where in addition to the normal ’=’ syntax. The deal in this regard is that, again, since all types are compat an opaque
type, we don’t need the ’<’ or ’<=’ syntaxes for where clause substitution.

Now, another thot is that the ’<’ in the above quantifier expression is strictly ’<’, not ’<=’.By the current type compat
rule, it seems that ’<’ is strict in the sense that it implies compatibility, not equivalence. Thisneeds (a bit) more thought.

If all this is true, it fixes the big BIG BUG problem, and it should be implemented, as soon as we do the last bit of think-
ing about it. So, get the fuck to the thinking, and thence implementation.

10dec00 -- Quick Reminder about DD Generator

In ref man revision, don’t forget to describe how html tags can be used entity descriptions to improve formatting in DD.
Very cool javadoc-like stuff, this.

3dec00 -- Some Quick Thoughts on RSL Manual Updates and Related Topics

In the manual, include an appendix of the current standard libaries.

It’s pretty clear that we’re going to have an RSL library of common forms. This will require that we finish the implemen-
tation of multiple inheritance and the new module import/include forms. Candidates for libraryhood currently include the
following:

object OrderedCollection, with ops to sort, etc.
function SumList (see new-inputs/sum-list.rsl)
function AddWithRetentionAndNoJunk
object Color
object Text

Page 49

Upon looking at the AddWithRetentionAndNoJunk function, this seems to be like a very nice way to allow reuse of logic
without having to go the (multiple) inheritance route.We should describe both ways (i.e., reusiong with inheritance ver-
sus aux functions) and be clear about why inheritance sucks.(Or then maybe it doesn’t, give most recent musings in
sum-list*.rsl about the seeming similarity if not equivalence of the OBJ theory/view concept with the Java interface con-
cept.)

Here’s some verbiage in the manual about how to clearly explain the should-be simple concept of enumerations:

In a number of progamming languages, including C and C++, there is the concept of anenumeration. Here is a
typical example:

enum DaysOfTheWeek = {Monday, ..., Friday}

[Hmm, maybe we should just not worry about PLs (too much), and just explain enumerations directly in the sev-
eral rsl forms. OK, here comes.]

A very typical use ofor composition is to define what are typically refered to asenumeration typesin programming lan-
guages. Hereis an example:

enum DaysOfTheWeek = {Monday, ..., Friday}

Fr om here we describe thatMonday, etc. are the enum list, and then describe how to represent them as either strings or
symbolic literals.

Here’s some verbiage for the ref man about the difference between strings and symbolic literals:

The difference between double-quoted strings versus single-quoted symbolic literals is subtle but significant.First
off, if you don’t want to worry about the difference, you can get along just fine in RSL by using strings every-
where that you might otherwise use a symbolic literal, and just forget about symbolic literals entirely. If you care,
read on.

Now go on to describe how symbolic lits are more abstract; that the string/symbolic-lit distinction is precisely the
same as the string/symbolic-atomic distinction in Lisp; that when modelling views or other objects that have
abstractly atomic but concretely non-atomic structure, symbolic lits are a more accurate model (albeit subtly so);
also when that when modeling grammars, symbolic literals provide the means to define abstract versus concrete
syntax.

And fuck me if that doesn’t all make some pretty good sense.

3dec00 -- Some Details on the New import/include/export Scheme

To get the effect of nested modules, we do like this

module Outer;
export *;
include Inner1, Inner2, Inner3;

end Outer;

module Inner1;
export X;
obj X;

end Inner1

As in Java, we don’t physically next module inside of each other, but create a form of "virtual" nesting via include.Now,
it seems to me that the only reason we need nesting is for namespace control, which Java does by qualifying the name of
the package that a file’s worth of stuff is in. For us, we get the same effect by a definition of the Outer form above, since
we can say

module User;
import Outer;

op Use(x:Outer.Inner1.X) = ...;

Page 50

The point here is that if we assume that the names "Inner1" and "X" are both potentially widely-used symbols, then we
want not qualification of "X" but of "Inner1" as well. If we didn’t care about this, then we’d write User like this:

module User;
import Inner1, Inner2, Inner3;

op Use(x:Inner1.X) = ...;

We should note that export makes available not only the entities directly listed, but the transitive closure of the compo-
nents of the entities for those who use the ’*’ form of importation.

In summary, we hav ethe following consistent and orthognal semantics:

a. "import"and "include" both make exported symbols visible in module.

b. The (only) difference between the two is is that "import" is qualified and "include" is unqualified.

c. The’*’ form means do a transitive closure on all components.We need to be careful and fully clear here about
what happens when we transitively close through a series of nested modules. It shouldn’t be a problem, we just
have to make things completely clear. We may want to go back to the Mod-2 definitions where this was spelled
out, including what I recall was a difference between version 1 and version 3, or something like that, as well as the
idea of import/export of a record working transitively on the record fields.

30nov00 -- More Ideas on Executability

Problems and issues include:

• Implementing unbounded quantification by quantifying over all allocated object values, where allocation takes place
by invocation of a constructive op. Theproblem here is that if we execute via only validation invocation, we don’t
really construct objects.Obviously, we need to think about this. Oh, I guess I have thought about it -- it’s down in
the next section under I had a flash today

• How to show, or distinguish, validation invocation in a DFD.A thought is to specify an overall mode for DFD (and
postcond) invocation, rather than a special form as shown below. Howev er, such global modes don’t seem particu-
larly appealing. Anyway, we need to think about this some more.

14nov00 -- Ideas on Executability

One form can be providing input/output pairs and having the pre and postconds evaluated. I’d like to hav efirst-class RSL
invocation syntax for this form of "validation invocation", which might look something like this:

op Foo(i:integer, s:string)->(i’:integer, s’:string)
pre: i > 0;
post: (i’ = 10) and (s’ = "abc");

op Test() =
begin

Foo(1,"xyz")?->(10,"abc"); (* Produces value {true, true} *)
Foo(1,"xyz")?->(9,"abc"); (* Produces value {true, false} *)
Foo(0,"xyz")?->(10,"abc"); (* Produces value {false, nil} *)

end

The idea is that the invocation form

op-name(value, ...)?->(value, ...)

alwaysproduces a tuple of typeboolean and boolean. This looks awefully sweet to me at this point.

Note that when the precond evals to false, the postcondmusteval to nil.

Dealing with quantifier eval will of course be an issue.I had a flash today that we could deal with unbounded quantifiers
by saying we quantifier over all the concrete objects of a given type that have been instantiated over the course of a test,
where instantiation means that an object has been created and bound to a currently live location (i.e., in a live var directly

Page 51

or within a composite value that’s bound to a live var). Inthis way, if we wanted to have a large pool of active values of a
particular type over which to quantify, where the pool holds what we consider to be arepresentativecollection of values,
we could do something like this:

obj IntAndString is integer and string;
op GenInstancesOfIntAndString(i:integer,s:string)->IntAndString* = (

if i>10000
then []
else [i, string(i)] + GenInstancesOfIntAndString(i+1, "")

);

op Test() =
begin

var int_and_string_pool:IntAndString*;

...

Another way to do things might be to quantify over all values of a given typeever created. In this way, we wouldn’t need
to stick the values in a list, though we could if we wanted. Thisis sort of MLish, in the sense that values live forever.
And I think we have a firm handle on "created" -- value creation happens whenever an op that outputs a particular type of
object is successfully executed.

This hints at the idea that we could define some sort ofquantifier-generatorfunction that defines over which specific val-
ues of a given type we quantify. We could define such a function as a set of constraints over all values within a given
type. Thissounds interesting, and definitely worthy of further thought.

19oct00 -- Making it up as we go along, some more

Hmm, it just occured to me that we may want to make quantification of types use name equivalence. We need to think
(probably hard) about this.

19oct00 -- Making it up as we go along

Well, we’ve now decided, I hope correctly, that a forall with a failing quantification clause, e.g. forall (x in []), returns
true. Therationale is, threefold. First, it seems by far more convenient and intuitive than returning false. Also,it’s con-
sistent with the truth table for implication, which returns true for true => false. Finally, if we look closely at the supposed
redcution translation of the "in" form of forall, the implication truth table business seems to be supported.

16nov01 update. Here’s the "look closely" part in the last sentence of the previous paragraph. Consider that

forall (x:O | p1(x)) p2(x) <=> forall (x:O) if p1(x) then p2(x)

Now, if p1(x) is never true, this means that "if p1(x) then p2(x)" is always true, which means that the quantifier succeeds.
What this means intuitively is that if the quantifier variable clause yields no values at all, the forall quantifier is (vacuosly)
true. I.e.,anything is true about nothing.This last statement has the same counterintuitive feel that logical implication
has, viz., false implies true. Be that as it may, things do indeed work out here the way they’re formulated, where "work
out" means being sound wrt standard predicate logic, most particularly the truth table for implication, as funky as we
sometimes think it is.

Complete discussion of this needs to go into the ref man.

19oct00 -- Making if-then-else formal

Though I don’t think I’ve openly acknowledged it excplcitly before, the problem with if-then-else is when it is used as
something other than a bool-valued function.We really do need to clear this up formally. I.e., is if-then really equiv to
implies, or do we need to define it in Lisp logic terms?

Page 52

As of 15nov01, the answer to this is in ./if-the-else-truth-table.

19oct00 -- Clarifying Condition Inheritance in Ops

I actually don’t remember the exact rules for op inheritance in the O-O sense. It occurred to me that it might be a very
nice feature to say that an overloaded op only inherits pre- and postconds where the specifier explicitly requests such
inheritance. We could do this by constraining the conditions underwhicheffectiveops are generated via inheritance.
Viz., the effective op generation takes place only for ops that are listed explicitly in the operations clause of a parent class.
In this way, one can allow logic not to be inherited, in the case that an effective op didn’t want the inheritance.

We need a good example of this. The cruxt of what we’re saying here is that an inheritance-generated effective op would
not want some or all of the input constraints that were defined for the parent-object op.Again, I can’t think of a good
example right now, but it is worth investigating, and I think worth including as a feature to allow more specification flexi-
bilty.

I’m not entirely sure about the last point (i.e., that flexibility is always necessarily a good thing), so the issue definitely
requires more thought.

21sep00 -- Dumping Coarity-Only Overloading

Per the 7jul00 LOG entry, it’s time to dump coarity-only overloading, for the reasons listed there.Implementationwise,
there’s not much to dump, since we’re far from a complete implementation. What we need to get rid of in the implemen-
tation are the current quick hack that allows co-arity overloading for a very specific case, plus all the hooks that were put
in to support the future full implementation of coarity-only overloading.

Conceptually, the decision is now final. Viz., there is no coarity-only overloading in RSL.

5jul00 -- Resurecting Formal Dataflow Defs

This is pretty bizzare, but I thought this was written down. Anyway, here’s the idea.Oh fuck, I just found it (the example
I was thinking about) in se-book/semi-formal-spec. Anyway, again, here’s some more pertinent discussion.

We probably want to disallow anthing but AND’d op components. Ifnot, then we need to specify the semantics of OR
and STAR’d components. Therehas been some thinking (in the pretty dark past) about defining these as non-determi-
nancy and unfolded loops, respectively. Howev er, with OR we’d hav eto reconcile with the connections to make sense of
it. Similarly, it would seem, for STARs. Anyway, I think we’ll do best just to disallow anything but AND’s and say that
some future version of RSL may lift this restriction. One argument against never allowing ORs is that non-determinism
sucks pretty much (at least for my meager brain at this point, and probably forever).

2jun00

In the new semantics, we need to be clear in the ref man about the following:

obj TheStringXYZ is "xyz";
val TheValueXYZ = " xyz";
val TheStringABC:TheStringXYZ = "abc"; -- ERROR: the LHS type is

-- "the string xyz"
-- but the RHS type is
-- "the string abc", which aren’t
-- compat by the normal type rules

OK, forget about it in just the ref man, we need to be clear about it period. Question: "What’s the type of
TheStringXYZ and what is it compat with?". Ans: The type is "the string xyz" and as a type its compat (but not equiv)
with string. The tricky bit we’re getting at here is the following: A value-constrainted type cannot have unconstrained
values assigned to it. I.e., an ident of typeTheStringXYZ cannot have any string other than"xyz" assigned to it.

This value-constrained type-definition rule does not apply to value definitions (well now it does -- see "But wait" below).
I.e., when a value identifier I is assigned a literal L that denotes a specific value of some type T, I is defined to be of type

Page 53

T, not (the T V) (actually not -- see again the "But wait" below). E.g.,TheValueXYZ defined just above is of type
string , not the string xyz . But since values are constants, they can never by rebound, so there’s no issue of
what it would mean to (re)assign some value other than "xyz " to TheValueXYZ . This effectively means thatThe-
ValueXYZ acts just like a variable of typeTheStringXYZ , even though technically they’re of differenct types.The
point is by compat rules,TheStringXYZ is compat (but not equiv) withstring , and TheValueXYZ is is equiv to
string, but since it’s a constant it cannot be rebound.

But wait! I think we want to fix the small anomoly in the preceding paragraph by saying that a valueis in factof a value-
constrained type. Since value-constrined types are upward compat with their "parent" types, this won’t put any damper
on how value can be used.E.g., TheValueXYZ is in fact of typethe string xyz , not of the more general type
string . This does not constrain how TheValueXYZ can be used, and seems to allow for a more straightforward
implementation where all constant literals are formally defined (and implemented) to be of value-constrained types,
which means that the implementation of a value declaration just copies the value-constrained type of the constant into the
type of of the constant ident.

Now, what we don’t hav eto worry about now that obj’s and val’s are distinct, is that TheStringXYZ is a value -- it’s not.
Therefore it cannot be bound to any ident, which means we don’t hav eto worry about what it’s compat with in any bind-
ing context. Well, this isn’t exactly (if at all) right, but there’s still not a problem.Viz., an ident of type TheStringXYZ
can be bound to an ident of type string, per the normal type rules. I.e., TheStringXYZ is compat with string. So fine.

Now here’s an interesting question -- does a var of a purely value-restricted type ever need to be, or can it even be,
bound? E.g.,what’s up with a var decl of the following form?

var the_string_xyz:TheStringXYZ;

We might say that since it can only hold one (non-nil) value, that that value is automatically bound to it when it’s
declared. WhatI don’t like about this is that it makes an exception to the rule that there’s no auto-binding (except per-
haps to nil) of vars. Whatthis means is that the_string_xyz could in fact have the value nil, until it’s bound to "xyz".
And the reason this seems a bit funky is that we have to assign a value explicitly.

And here’s (perhaps) a bit more funkiness. When we declare a tuple field to be a specific value, should that tuple field as
a var be automatically bound to that value? Ithink the confusion I’m verging on can be resolved with the following
example:

obj AnIntAndAnXYZ is i:integer and the_string_xyz:"xyz";
obj AnIntAndAnXYZ is i:integer and the_string_xyz:TheStringXYZ;

Hmm, maybe this example can’t quite resolve things (later note: but read on, because it can). The question is are these
two types equiv? It looks like the spelling rules say yes. In either case, the deal is that we want a value of this tuple type
to have constant value in the second element. But if we declare an ident of this tuple type, it has to be explicitly bound
just like any ident, with the restriction that the second field can only be bound to the value "xyz". So it looks like there
isn’t any diff between the var and tuple case. Either way, a type with one or more value-constrained components is still
just a type, not a value. If it’ s a degenerate case of all pure-valued components, so be it.The fact that we call it "degener-
ate" means that its behavior can be (a bit) funky. The funkiness in this case is that it still needs to be explicitly bound to a
value, even though there’s only one non-nil value it can possibly have.

Now, it appears that a union op turns a pure-valued type into a variable type, in the sense that more than one value can be
bound to it. E.g., compare

obj OneAndTwo is 1 and 2;
obj OneOrTwo is 1 or 2;

The first can only be bound to one non-nil value, whereas the second can be bound to two. I’m not sure if we need to say
anything more about this, other than to be clear that union types create a form of value multiplicity (even) when the union
components are pure values.

Now, whither the concept of "constant"?Well, I think we can say definitively that avalue is synonymous with "con-
stant". Butas the preceding discussion (hopefully) makes clear, an object (aka, type) is not (can never be) a constant,
since an object (aka, type) is never a value.

Page 54

Now for the ref man explanation. Whenan obj definition is a specific value, we’ve created a type of object that can only
hold the single specific value that it is defined to be. On the other hand, when we create a value of a specific literal-
denoted type, the literal in general denotes a broader type than its specific value. It’s only when that type is bound to a
value-restricted ident that the type becomes less general. Some further examples here would almost certainly be in order.

One of the examples can make completely clear why the ERROR comment above is true. E.g.,the value "abc" can be
bound to a string, because by type rule (b) "the string abc", which is the type of the value "abc", is compat with "string".
However, there is no rule that makes "the string abc" compat with "the string xyz". QED.

And finally, let’s probably give a ref man example such as the following

obj ABC_Type is "abc";
var abc:ABC_Type := "abc"; -- holds the value "abc"

val ABC = "abc"; -- denotes the value "abc"
val strictly_ABC:ABC_Type = "abc" -- denotes "abc", but in a stupid way

which illustrates that declaring an object to be of a single value is just a round-about way of declaring a constant value,
where the "round about" part is that one must also declare and assign a variable of that type in order to have a usable
value on hand. The only (rather useless) distinction between the variableabc and the valueABCis that the variable can
hold the valuenil but the constant will never denotenil .

And finally finally, we should probably have an example that illustrates that a fully contant tuple type isn’t any more use-
ful than value-constrained scalar type, in that itcan only hold values of one type for all of its components, but that as a
type itdoes not"contain" values at all, and therefore a variable (or constant) of the type must be declared.

Yet Further Analysis Related to 19oct99 Note (31may00)

This item, i.e., all of the discussion under this 31may00 heading, appears to draw a pretty definitive conclusion about sub-
typing and compatibility. As we’ll see, the discussion here has led to an update of the spelling-based formal type rules,
and succeeds (I’m pretty sure correctly) in demystifying the lingering unclarity about subtyping versus subsetting.

So, let’s start by reconsidering the example presented in the "More Analysis" item just below:

obj OneOrTwo is 1 or 2;
op main(oot:OneOrTwo, i:integer) = begin

oot = 1; (* Fine *)
oot = 2; (* Fine also *)
oot = 3; (* Clearly not fine *)
i = o ot; (* NOT fine *)
oot = i; (* Not fine, perhaps not so clearly *)

end;

The change here is that the assignment "i = o ot " is now considered NOT fine, because we can reason by the
(pre-31may00) spelling-based formal type rules that it doesn’t work. Here’s the reasoning:

a. Thetype spelling ofoot is "union of (the integer 1), (the integer 2)".

b. The type spelling ofi is "integer".

c. By application of the spelling-based compat rules, "union of (the integer 1), (the integer 2)" is not compat with
"integer". Whatthe potentially applicable rules do say is:

i. "the integer 1" is compat with integer (by compat rule b)

ii. "the integer 2" is compat with integer (again by compat rule b)

iii. "the integer 1" is compat with OneOrTwo (by compat rule c)

iv. "the integer 2" is compat with OneOrTwo (again by compat rule c)

d. I.e.,we can stick a "the integer X" into an integer or into a OneOrTwo. But just because we can do this does not
mean that we can stick a OneOrTwo into an integer, or vice versa.

Page 55

Now, here’s an interesting slip I originally made at point c in the above reasoning:
...

a. Thismeans thatoot is compatwith i, but not equiv.
I.e., a value of the type spelled "the integer X", for any X, can be bound to an identifier of the type spelled
"integer".

i. However, a value of the type spelled "integer" cannotbe bound to an identifier of the type spelled "the integer
X", for anyX.

This reasoning is stupid and in fact totally going around in circles (based on the pre-31may00 type rules, which
are about to be amended).It’s stupid because the subpoints i and ii don’t really support the superpoint c.In
order for this to happen, one of the subpoints would have to say ‘‘A value spelled "union of (the integer 1), (the
integer2)" is compat with "integer"’’, which is not true by the current (pre-31may00) formal type rules. The rea-
soning is going around in circles since it’s the (kind of) reasoning that was (apparently) used to think originally
(i.e., in and around 19oct99) that "i = o ot " was OK. (Hmm, or even fuck!)

Anyway, let’s inv estigate what it would take to get OneOrTwo to be compat with integer. It looks like we’d hav eto have
a (new) type rule of the form:

a union type is compat with type X if all components of the union type are compat with X

What’s going on here is that we’re considering a union type in which all elements have a common compat-parent, but
none is directly compat with each other. This appears to be essentially the subtyping rule for compatibility. I.e., each ele-
ment of common-compat-parent union acts like subtypes in the sense that none is compat with each other but they all
share a parent with which they are compat. (This is just rethinking of the basic oo rule that subtypes are compat with par-
ent types).

Now, another way to look at things is that what we’ve got going here are two ways for a type to be compat with another:
(1) via being an element of union, which makes the element type compat with the union type, which by the union-based
definition of inheritance is the same as subtyping; (2) via being a type of the form "the X Y", which makes the "the X Y"
type compat with X (which I guess can be called the "subsetting" rule (and see the conclusion of this note item below).

Next consider that it’s silly to have an explicitly-declared union of types that have a common inherited parent, because
that union type would be completely redundant with the automatically-generated inherited parent type. (Recall again that
with the union-based definition of inheritance, a parent type is in fact a union of its subtypes.)

Consider, howev er, that unlike with subtypes that are explicitly declared, there is no explicit set of (infinite) declarations
that say a type X is defined as the (infinite) set of all types of the the form "the X Y".So, it does make sense to have an
explicitly-declared union of value-style (i.e, of the form "the X Y") types that share a common compat parent.And, since
there are only two ways to be compat (as opposed to equiv), the kind of union we’re talking about must be value-style.
And it looks like what we’ve uncovered here is another way to define a collection of types with a common parent.Viz.,
the set of all types of the form "the X Y" have the common (compat-)parent "X".Given this, it seems reaonable to add
the above new compat rule, since it provides a measure of uniformity for things.What’s a little funky is the idea that it’s
silly to have a union of types that all inherit from the same type, but that’s what we get for having the automatic rule that
maps inheritance to subtyping.

To make everything crystal clear here, I think we must also consider the relationship between automtically-defined par-
ent-class union types and the new type rule. An automatically-defined parent-class union type is of the form

"union of (tuple oforiginal components), (tuple oforiginal components, child 1 components), ..., (tuple oforiginal
components, child n components)".

Now, by the new type rule, what is this auto-gen’d type comapt with, if anything? I.e.,does there exist a typeT with
which each of the auto-gen’d components is compat?Well, except in the degenerate case when all child types are exactly
the same type, it appears that the answer is "no".This is because each component type is at type-level an explicit tuple,
so the new rule cannot be (recursively) applied to any of the component types to get a compatible type.And unless each
child type is the same, there will exist some component of one of the tuples that is distinct from the others, hence preclud-
ing the exisitence of a common parent-compat typeT.

Page 56

So, now that we’ve reasoned that such a new type rule would be OK, the question is do we want to bother with it?I.e.,
does it really buy us anything useful?Well, by our reasoning, the only kind of union types we’re dealing with to which
the new rule would usefully apply are those with value-style components.For these types, is it a big deal (or even much
of a deal at all) to be able to do the kind of bindings that the new rule would allow? Consideragain the example we’ve
been working with

obj OneOrTwo is 1 or 2;
op main(oot:OneOrTwo, i:integer) = begin

(* ... *)
i = o ot; (* NOT fine *)
(* ... *)

end;

Is it useful to make this type of assignment (and type-comparable parm bindings) legal? Well, if we don’t make them
legal, what would we have to do to make them happen?I.e., how (if at all) can we assign a value of the OneOrTwo to a
var of type integer? Well, it looks like we cannot do such a whole-variable assignment, but rather must do explicit projec-
tion of the component elements. And to do this in the current structure of the language, it looks like we must give each
component a name. So, e.g., what we’re trying to do would look like this:

obj OneOrTwo is one:1 or two:2;
op main(oot:OneOrTwo, i:integer) = begin

(* ... *)
i = o ot.one;
i = o ot.two;
if oot?one then i = 1 else i = 2;
(* ... *)

end;

But this looks pretty brain damaged conveniencewise. However, what’s all this accomplishing any way? I.e.,why do we
want to assign a restricted integer value to an unrestricted integer? It’s akin to, if not essentially the same as, being able
to assign an enumeration literal to an integer, which in a nicely strongly typed language need or ought be allowed. The
point is the following. By creating a type to be one of a restricted set of of constant values, why not just require that we
deal with it in a little island of restricted value manipulation that includes only explicit references to the constant values?

Well, a good answer to the last question is not in binding, but in conditional logic. E.g., consider the following example:

obj OneOrTwo is 1 or 2;
op main(oot:OneOrTwo, i:integer) = begin

i = S omeIntFunction(...);

if (i = oot) then
(* ... *)

else
(* ... *);

end;

Without the new rule, it seems we’d hav eto do the following:

obj OneOrTwo is 1 or 2;
op main(oot:OneOrTwo, i:integer) = begin

i = S omeIntFunction(...);

if ((i = 1) and (oot = 1)) or ((i = 2) and (oot = 2)) then
(* ... *)

else if (
(* ... *);

end;

which looks pretty painful.

So, I’ve done it. I’ ve added the new rule in the formal-type-rules file. It seems a bit hokey, giv en the power of the other
rules versus the relative special-caseness of the new rule, but I think we can live with it. To mitigate things in this regard

Page 57

a bit, the only reason that compat rule c is all that powerful is because of the unionization of subtyping, without which
we’d hav esome more rules about subtype compat.Anyway, it’s done (at least for now) and let’s liv e with it (at least for
now). Don’t forget that we still have to implement all of the formal type rules!!

So now, I think we canat last, once and for FUCKING ALL, defuckingmystify the issue of subtyping not being subset-
ting. Thedemystification, it appears, has been in the spelling-based formal type rules all along. Here’s the deal:

a. We hav ethe following twodistincttype compat rules:

i. a type spelled "the X Y" is compat with X;

ii. the type X is compat with any union type of which X is a component;

b. Rule i addresses the subsetting part of the issue whereas ruleii address the sutyping part of the issue. The reason
that ii addresses subtyping is, again, due to the unionization of inheritance.

c. Thedeal is, subtyping and subsetting are not the same thing, but by these rules they do individually imply the
same thing.

d. Instrctly logical terms:

i. let st be the propsition subtyping

ii. let ss be the propsition subsetting

iii. let c be the propsition compatibility

iv. The compat rules say effectively the following:

(st => c) and (ss => c)

v. But this logic certainly does not imply that st <=> ss, or even a one-way implication between st and ss.

The point is that we’ve apparently been suffering in some anti-logical fog about all of this, thinking that there’s some kind
of relationship betweenssandst, but not being completely (if even nearly) clear on what it is.Well, it now appears clear
the the relationship is that they both imply compatibility, which in logical terms leaves them otherwise unrelated. Cool (I
think and I hope).

The ‘‘Mor e Analysis’’ Called for at the End of 19oct99 Note

One of the things we need to get straight in terms of type safety is that a type with specific enumerated values of, say,
type int, isNOTcompat with type int. E.g.,

obj OneOrTwo is 1 or 2;
op main(oot:OneOrTwo, i:integer) = begin

oot = 1; (* Fine *)
oot = 2; (* Fine also *)
oot = 3; (* Clearly not fine *)
i = o ot; (* Fine *)
oot = i; (* Not fine, perhaps not so clearly *)

end;

What we have going here appears to be inheritance-oriented subtyping in reverse, at least in terms of the cardinality of the
types. E.g.,when T1 < T2, #T1 > #T2.).What’s curious about this, which in fact has been a very long-standing curios-
ity, is that subtype isIS NOTsubsetting, since the cardinalities are reversed.

Here We Go Again (19oct99)

(3dec00 addendum to the addendum -- I already know I’m a stupid dickhead. See the 31may00 item above.)

(3dec00 addendum -- This was already figured out earlier, stupid dickhead. So, the "I’m not sure" heading is irrelevant.
Viz., it is the case that the latest spelling-based semantics allow values to be part of types.)

Page 58

I’m not sure if the latest semantics (defined below and in be defined as a specific set of values. Thiswill let us get back to
the old way of doing enum literals like

object Sex = Male or Female;
value Male = "Male";
value Female = "Female";

What seems to have been considered problematic before was to have this definition of type Sex be "string or string".As
observed below, this isn’t a good idea, since a union of the same types isn’t all that sensible. But really, Sex should not be
considered of type "string or string", but rather of type "value "Male" or value "Female"", which may or may not be a
subtype of string or string, but is decidedly not equal to type string or string.

What still remains problematic is a syntax that would allow unnamed constants to appear directly in type defs, as in the
following version of the above

object Sex = "Male" or "Female";

I believe the seat of the syntactic problem here is the redundancy of the "and" and "or" operators in comp exprs and value
exprs. Hence,we can’t hav ethe fully general syntax we’d like of allowing any value expr as a component of a type.
However, we can have numeric and string literals as syntactically allowable components, which renders the immediately
preceding definition syntactically legal. (This syntax has been tested in a version of the parser, but is currently com-
mented out since it causes type checking problems. See newtests/string-and-num-lits-as-components.rsl.)

There is a small potential problem of having an ident designate both a type and a value. Probablythe easiest and most
sensible way to avoid this problem is to simply disallow it. I.e.,an ident cannot designate both a type and a value in the
same scope. This may be inconsistent with some part of the current wanna-be formal type semantics, but I don’t think
it’s a fundamental problem at all.I.e., the current semantics can be easily reconciled with the idea that type and value
name spaces must be disjoint in a given scope.

What’s nice about this thinking is that we’ve come full circle to some extent, in that we’ll now allow the old notion of
strings as enum literals.What may also be nice is to do away with symbolic literals entirely, if possible, since they really
are excess baggage to a certain (if not large) extent. Theold thinking in this regard was always to have strings be a single
concept of actual string data as well as enumeration literals.We may be able to get back to this original RSL concept.

And here’s one last little nugget in this topic area.Question: should a type like "value "Male" or value "Female"" be
(automatically, definitionally, formally) a subtype of "string"?If so, by what formal rule?Similarly, should the type
"value 1 and value 2" be a subtype of "int and int"? Again, by what rule.

An initial crack at a rule like this might go something like this:

a. anor’d value set of values of the same type is a subtype of that type

b. an or’d value of a set of values of different types is a subtype of an or of those types

c. anand’d value set is a subtype of an and of the value types

This does require some more formal analysis to make sure it really works.

(And another 3dec00 Metanote: you’re a still a double (if not triple) stupid fucking dick head, because the 31may00 item
above totally says, and better so, what’s in the next 3dec00 parenthetical remark.)

(Another 3dec00 Note: I think you’re a stupid dickhead.I’m pretty sure that a careful reading of the (long) extant
spelling based compat rules naturally allow what we’re gettin at here. Specifically, the following compat rules

• a type spelled "the X Y" is compat with X (but very importantly,not vice versa)

• a type X is compat with any union type of which X is a component (but again, pretty obviously, not vice versa)

handle the (exactly) the case we’re talking about here, given that the spelling rule type "the X Y" is the same thing as
we’re above as "value X".

Page 59

I’m pretty sure that the conclusion here is "wake the fuck up, the spelling-based type rules really are what we want". So,
among other things, stop calling things "subtypes" when you shouldn’t be.)

Mor e Syntactic Cleanup

In addition to the stuff aboutvalue keyword ... damn my eyes -- I fell off here again.

Answer to the 7dec98 ’BIG BUG’ LOG Entry

The observation about a major conceptual bug in the 7dec98 LOG entry is evidently correct.The immediate answer, after
some thought, is that rather than require that an instantiating type be a subtype of the generic type, we should require that
all generic types be opaque. This makes sense from at least one major standpoint, viz., the basic structure of thewhere
clause. Whenwe say "X = Y" in thewhere clause, the intuitive interpretation is that of full substitution. In this sense,
saying that Y must be subtype of X, the more sensible where clause notation would be "X > Y", which (perhaps flash),
we might actually add. But let’s discuss some more basics first.

The reason that requiring all generic types to be opaque makes sense is that when we do the where instantiation, we are
intuitively substituting one type,in total , for another. Hence, that a generic type has any component properties at all
seems stupid from this perspective, since any such properties are completely wiped out by the instantiation.

Now, we hav eapparently had in mind that instantiation is not really of the "wipe out" variety, but more of the "specializa-
tion" variety, wherein any properties that the generic type has arespecializedby rather than replaced by the instantiating
type. Andthis seems to make some sense, though this may be the first time that we’ve actually written it down in this
way.

Now, what may be possible, either notationally, or via further clarification/extension of opaque type semantics, is to have
it both ways. Viz., we will effectively, if not explicitly say the following: "If a generic type is opaque, then it can be
instantiated withany type; if a generic type is not opaque, then the instantiating type must be a subtype of the generic
type".

Now here comes the potentially cool part.Suppose we say that any type is in fact a subtype of any opaque type. In this
way, we wouldn’t hav eto state the instantiation rule conditionally (!).

So now what we need to do is to investigate if the rule that all types are (automatically) subtypes of an opaque type makes
sense. We’ll do this in the next item or two.

Type Definition and Subtyping at the Margins

OK, en route to our goal of all types being subtypes of opaque types, let’s do a little lemma-like reasoning, probably
again, on the nature of opaque types. If we’ve not said so already, it seems reasonable to say that an opaque type is a
zero-tuple. (Itturns out that grepping for {0,zero}-tuple turns it up only once in typechk.c, where the comment is to
revert objs that turn out to be 0-tuples back to opaque types.This comment is apparently consistent with what we’re say-
ing now, viz., that we formally regard opaque types as 0-tuples.)

Anyway, this being the case, here’s an interesting postulate:

obj X is T

and

obj X < T

are the same definition. In the first case, X is a one-tuple of T. In the second case, X is a zero-tuple that inherits from T,
which turns it into a one-tuple of T. OK, so this really isn’t too startling.

So, what we’re saying here is that at the margins, a one-tuple is-a opaque obj that inherits from one type that is-a identity
for the defining/inherited-from type. And I don’t think this is new at all in the fundamental semantics as currently defined
in the typechecker, documentation, and our heads.

Page 60

Back to the Latest ’Fundamental’ Question

So, are we OK to say that an any opaque type is automatically a parent type of any (non-)opaque type? Here are some
more questions in this regard that we’ll need to answer:

a. Dowe need the "(non-)" just above; i.e., can opaque type be a subtype of another opaque type, including hence itself?
I’m leaning "no" initially on this.

b. Should we soften this idea to say that an opaque type is automaticallyallowedto be the parent type of any non-opaque
type? Inthis way we’re talking about the potentiality of being a parent type, which may possibly be better (if it is in
fact any different formally).

c. Shouldwe add a "<" (or, per the change in syntax recommended below, "<=") form to the where clause, that explicitly
specifies inheriting rather than replacing instantiation semantics. It seems that this would be cumbersome and poten-
tially confusing notationally.

d. Will this rule for opaque types mix OK with the probably-not-yet-fully-articulated idea that an opaque type is a form
of type variable?

e. Oh,and one last somewhat related, and I think still nagging question: does it make any sense to inherit from an atomic
type?

I’m pretty happy for now to stop here, think about it some more, and come back to finish things up. I’ll be back.

OK, I’m back now, with the following thoughts (and hopefully a conclusion).

As usual, I was the total fucking that I am, and did not conclude things here.The latest thinking, which is pretty close to
a conclusion, is in the 14dec00 entry way above.

Possible Syntactic Superflash

OK, if we go ahead as stated below and put invalue as a keyword, the "obj =" form of definition is now deprecated.
How about if we now use "=" in place of "is" and loose "is"altogether from the syntax.The benefit is that we won’t be
dealing with the loaded English word "is" anymore, which has all the "is-a" inheritance baggage.

So, what we’ll be left with are "=" and "<" for the two shorthand definition forms, or we might even want to use "<="
instead of "=". So, we’ll have

obj X = A and B and C

and

obj X < Z = A and B and C

Some more examples, to feel things out:

obj PersonRecord = Name and ID and Age;
obj SalariedEmployee < PersonRecord = Salary and Step;

Having both short forms together does look a little hard to follow, but we can say that the user can always go to long
form. We might want to throw in a semi-colon, as in

obj X < Z; = A and B and C
obj SalariedEmployee < PersonRecord; = Salary and Step;

but I’m not sure this helps much.Bottom line, I think the long-form notation is plenty fine to alleviate the possibly con-
fusing look of using both "<" and "=" in the same short form definition.

An initial reaction here is that the only (probably slight) drawbacks are we loose the someone nice-feeling "is" for the
most early introduction to formal specs, and we change the semantics of "=" compared to earlier versions of RSL.The
first I expect we can live with just file, by saying "Hey, look, we’re starting to get formal here, so we’re OK using the
slightly more ’formal looking’ is A and B".Plus, the major win here is we loose the potentially misleading use of "is" as
what amounts to "has". What we’re saying is that we’ll loose both "is" and "has" entirely, to avoid altogether the whole

Page 61

confusing pseudo-English definitional mess.

The second drawback is a bit more serious, but hey, probably not that many people (e.g., mostly Dan) ever used the "="
form of object defs anyway, so we’ll be OK. Plus we’ll write him a nice Emacs script to go through and change all of his
RSL examples. Plushe’ll probably agree with the idea of eliminating the confusion around the (mis)use of "is" in RSL.
Another mitigating factor regarding the semantic change of the older "obj =" definition form is that we seem to have com-
mitted to the value keyword syntax, which totally replaces the old meaning "obj =" anyway. So it appears that we in fact
have serendipity here with do together the change to the value form and the new meaning of "obj =".

Regarding using "<=" instead of "<", upon looking at it in the above examples, I think plain "<" looks better. Plus, "<="
when used together with "=" connotes a potentially confusing semantics.Admittedly, "<" by itself connotes a potentially
misleading semantics, since if there are no specializing components, "<" does in fact mean "<=".However, on the whole,
I think "<" wins over "<=", at least that’s the current thinking.

So, the final bottom line is that we should do this, in conjunction with adding thevalue keyword.

Yet, Yet, ... Yet More on Types versus Values

Today’s mindset: it seems pretty foolish not to syntactically distinguish between objects and values, given that they are
semantically separate things. This separation, is after all, quite fundamental, since types are statically defined and elabo-
rated whereas values are dynamically defined and evaluated. Therefore,I suggest, most humbly, that we just do it once
and for all -- introduce avalue keyword. Thisnew keyword need not precluded partially instantiated types, necessarily,
but the discussion on type spellings in

While we’re at the new value keyword, let’s just go whole hog with definition for consistency and say that the currently
unnamed entities -- axioms and theorems, now get names. Hence, we’ll have the following complete set of entity cate-
gories:

object name ...
operation name ...
value name ...
var name ...
axiom name ...
theorem name ...

Reminder

See below about changing the keyword pair "instance of" to the pair "inherits from". It’s a good and important idea.

Caution Re. Structural Equiv and Axioms

It seems that structural equiv shouldnotbe used in the case of axioms that quantify over types. E.g.,consider

obj MonthlyDate is integer;
axiom forall (md:MonthlyData) (md >= 1) and (md <= 31);

In this case, the hoped for meaning seems clearly to be that the axiom applies only to values of type MonthlyDate, not to
all integers. Thinkclearly about this.

Long-Missing Discussion of Auto-Generation of Op Types

I believe that we’ve discussed this problem, but I do not find it explicitly explained in these notes. The problem is that the
automatic generation of an obj from and op is made messy by op overloading. Viz., with two or more overloads of an op,
we get overloaded objs, which cannot work exactly.

The problem with the thinking thus far in this area has been that the duality should and probably cannot be complete in
this area. The statement of this would-be duality is

For any obj named "X", there is an (automatically-generated) op named "X" that is its constructor AND for any op
named "X" there is an (automatically-generated) obj named "X" that is its op type.

Page 62

The problem, I now believe, is with the second conjoin in this statement, viz. the auto-gen of an op typenamed"X". The
problem is that this two-way naming cannot really work. What’s confused here is that we have three semantic concepts
going on here when we need two for the duality. I.e., we have one semantic concept too many. The concepts are

a. Every obj has a dual op of the same name called its constructor, the signature of which is the obj’s type.

b. Every op that has the same name as an obj and signature that matches the obj’s type is the constructor for that obj.

c. Every op has a type which is its type as an op type

What we’re saying here is that the last of these three concepts has to go when it comes to same naming. I.e., the op-type
obj for an op should not (cannot) have the same exact name as the op.We’l l talk some more about this below, but a good
candidate name for this op type is the mangled name, with some kind of "Op" prefix or suffix, the prefix or suffix being
necessary for opaque types where the mangled name and actual name of an op are identical.

To further clarify the matter, here are some points the complements of which arenot true (that’s twisted, eh?):

a. Notev ery op is the constructor for some obj.

b. Not every obj is the op type of some op.

So, what about the naming convention for auto-gen’d op types? How about

Op<op-namee><op-inputs>to<op-inputs>

E.g., for the op definition (t op Foo(X,Y,Z)->(X,Y)

The auto-gen’d op type name is "OpFooXandYandZtoXandY ". Somewhat ugly, but (a) quite consistent
with intuitive type spellings of signatures; (b) fine given how infrequently users are likely to use auto-gen’d op
type names; and (c) fine because this form of auto-gen’d name is unlikely to coincidently match the name of a
user-defined type, particularly if normal RSL conventions are used, which disallow the use of lowercase "and"
as a name word separator.

Generalizing Relational Definitions

What have we learned from studying UML?That the RSL treatment of relations can be generalized and sanitized as fol-
lows:

a. Ingeneral, we should now sanitize things so that the syntax (and semantics) of an attribute are defined as either a
value-valued expression or type-valued expression. Theformer can be calledvalue attributes, the latterrela-
tional attributes.

b. Giv en this, we define the syntax (and semantics) of a relational attribute to be a composition expression, period.
This allows both of the current cases of object name or comment, plus all of the general power of composition
expressions. Thisadmits much of the semantics of adornments that UML allows; and generally strengthens the
relational semantics of RSL.

c. All current attributes should have a built-in attribute name, inheritance and function value in particular. The
TODO list suggests "implementation" for the former, but this sucks.Also, inheritance is problematic because I
can’t think of a good single-word name for the attribute. "inheritsfrom", "instance of", "subclass of" are candi-
dates. "inherits"as a single-word name is a possibility. "instance of" should probably be ruled out given the
connotation of "instance" that has taken hold.Viz., "instance" means concrete value, not subtype.Let’s try
"inheritance"and"expression"for single-word names.There’s more discussion below. BTW, the rationale for
"inheritance" is that it’s a noun, which is consistent with the current naming of a built-in attributes. Ifwe go with
something like "inherits from" we’ve moved into verb phrases, which is not necessarily bad, but is inconsistent
with current nomenclature style.

d. We should also allow the size of a list to be specified in a comp expression, using the normal syntax of list index-
ing, including ranges. E.g.,

obj X is Y[2] and Z[5..10];

Page 63

which means that X is a tuple of 2 Y’s and between 5 and 10 Z’s.

e. As Porcelli noted, there now appears to be an unnecessary redundancy between the name/value notation of
attributes versus the very similar-looking name/value notation within compositional exprs. Thiscan be nicely (I
think) rationalized by saying that name/value attribute pairs are meta-components, whereas name/value tuple ele-
ments are structural-components.

f. OK, so here’s a pretty sanitary rule for how to determine whether an attribute is type-valued or value-valued: if
there is a ’:’ used in the attribute definition then it’s value-valued, otherwise it is not.

g. Given this, we should be able to (actually, we must be able to) define the class of all of the built-in attributes.
Here’s a shot at it:

i. components:type valued

ii. inputsand outputs: type valued

iii. ops: (restricted) type valued (where commands are used as tuple operators, and the tuple elements are op
types)

iv. precond and postcond: op(any)->boolean

v. where: (restricted) boolean-valued

OK, let’s look at a revised nomenclature for built-in obj and op attributes:

object X inherits from Y and Z is A and B and C;

is the short form of

object X
inheritance: Y and Z;
components: A and B and C;

end X;

Here is a long form showing all of the built-in object attributes:

object X
inheritance: Y and Z;
components: a:A and b:B and c:C;
operations: P and Q and R;
equations: P(x) == Q(y);
actions: a.a1 = z.a1;
description: (* ... *);
where: D = E;

end X;

Note here that we’ve dropped the "is" in the long form.Note also that a "value" attribute can be used in place of the com-
ponents attribute for a fully concrete object.

Yet M ore on Concrete Values

Yet another possibility for solving the abstract versus concrete value dilemma is to allow only constant values in object
value expressions, where constant values do not include (some) expression operators. This makes sense in general, given
strong typing. Here are some more thoughts, rapidly.

We’v e always liked the ideas of partially concrete types, where, e.g., components could be something like "integer and 2
and integer". I.e.,one or more components can be concrete values. Ifwe go with only allowing constant values syntacti-
cally as values, we can probably go back to the syntax that allows composition expressions to be mixed types and values.
Recall that then problem with this syntax is that operators like "and" are ambiguous in a composition expression that
allows both value and type expression operators.

The notion of afully concrete object is that all of its components are values, not types. This is consistent with the nomen-
clature used in the type spelling rules where we say that the spelling of a value is "the ...".

Page 64

BOTTOM LINE for this discussion: It appears that the current solution of allowing valueidentifiersin type expressions is
probably the best one.However reasonable it may seem to disallow boolean operators in constant expressions, this really
is an arbitrary restriction. After all, we cannot disallow all expression operators in value expressions, since this would
prevent constructing concrete composite values with list and tuple operators.Given that we must admitsomeexpression
operators in concrete value defs, it can only be arbitrary what ones to eliminate after that. When we think about it, it
really is just a syntactic coincidence that "and" has two meanings in type versus value expressions.

So I think things are just fine if we stick with the current syntax that allows value identifiers in type expressions, but does
not otherwise allow mixing and matching of type and value expressions.

I believe it’s also OK to continue with the short form "is" versus "=" notations.The former is for any form of abstract
object, including partially concrete ones.The latter notation is reserved only for fully concrete objects. Syntactically, this
is what allows us to segregate type and value expressions.

As hinted above, we might now consider dropping the "is" from the long form of definition. This will leave "is" strictly
as short form syntax.I think I like this.

Given the graceful transition from abstract to concrete values, the components attribute should be usable for both the type
and value parts of an object.Here’s the ground rule for this:An object identifier denotes either a type or a value, never

both.1 Hence, the components attribute can be used to hold an object’s type or value, since an object will never hav eboth
at the same time. There is a potentially annoying syntactic problem with this, which has actually been around almost for-
ev er. Viz., the plural noun "components" seems an inappropriate name to used for the single value of an object, just as it
does for a single type. E.g., if we define type X as identically type integer, the usage "components: integer": has always
been strained. Similarly, if we define X as identically the integer 10, the use of "components: 10" again seems strained.

To some extent, at least formally anyway, we’ve alleviated the "components" as singular attribute problem by defining a
one-tuple type to be the same as component type itself. This solves the problem for values as well.However, for some-
thing as fundamental as this, it seems hokey to hav esuch a severe nomenclature problem.

Since we have worked out the semantics satisfactorily, we should be able to work out some accompanying notation.How
about this: (1) we’ll allow both the singular "component" as well as the plural "components" as a nod to objects that have
exactly one component; we could even hav ethe checker check for this; (2) we’ll allow "value" to be substituted for "com-
ponent(s)" when an object is a fully concrete value; the checker should in fact check for this, since we’ll be evaluating the
attribute differently in the two cases (i.e., type versus value expression). Iwas just about to say that I’m not even sure
about the "value" attribute, since "component: 10;" would be as good as "value: 10;".However, we must recall the ambi-
guity between type and value exprs, hence the necessity for "value" as a separate attribute name. After all of this is done,
if the user still has some doubt about the nomenclatural clarity of specifying type identity with a "component", we can
sugar up the "one tuple of X = X" argument and take care of things pretty well.

We hav etoyed with the idea of adefaultvalue for an object, which could be present in addition to components.I’d rather
not build such a thing in.Rather, we’ll just specify anInitialize operation that creates objects and specifies certain
concrete values objects must have for starters. See the next item for some further interesting discussion about this.

FLASH on Specifying Read-Only Objects

To make an object read-only, with a given concrete value throughout execution, specify it with an axiom as follows:

obj X is ...;
obj DefaultXVal = ...;
axiom forall (x:X) (x = DefaultXVal);

Hmm, this is pretty cute.

1 As noted on 24nov97 in ../ref-man/formal-type-rules.me, this ground rule needs to be reconciled with the current write up of the
formal type rules.

Page 65

(Final) Decisions for Version 4

In light of preceding discussion, this item is bogus.

Oh, please, say this is really the last word on the subject.We now will goto a separate value keyword, instead of the ’is’
versus ’=’ object notation. Here’s how we’ll explain it.

There are two main kinds of entities --objectsandoperations. Objects denote data types and operations denote func-
tions. Inaddition, there are the following ancillary kinds of entities:

• values, which denote constant object values of some type

• variables, which denote global state variables of some type

• axioms, which denote definitional predicates that are globally true

• theorems, which denote postulated predicates that should be proved true with respect to axioms

• attribute definitions, which are meta-definitions used to define new entity attributes

Here is some further discussion/explanation to rationalize the keyword syntax, in particular. In V4, let’s hav e’is’ and ’=’
be synonyms. Thissounds pretty good, even though it isn’t quite in keeping with the so-calledis-a versushas-adistinc-
tion. We can easily, I think, rationalize this with the "hey, we’re in the specification language, not programming language
business" argument. Given this, in V4 here’s a revised bit of syntax table:

keyword equivalent symbol meaning

is is defined as; aka, is composed of
instance of < inherits from

This seems pretty clean syntactically, since it allows defs of the form
obj X < Y = A and B and C;

obj Y instance of Z is D and E and F;
Further rationalization goes like this. Thereason we use the keyword "value" instead of "constant" is again because
we’re a specification language, not a programming language.This seems to be shades of ML, which is fine.(Global)
variables break the functional semantics, but are considered necessary in order to specify certain state-based semantics,
including concurrency based on shared variables.

Well, We Gotta Keep Doin’ Better

In thinking about how to resolve op inheritance, it occurs that we are not doing obj inheritance properly. In particular, in
order to be able to do struct equiv properly, we need to do the following:

• Define the order in which parent components are snatched.

• Allow duplicates, except of the same name.

Things to See in Test Files

See:

• rsl/alpha/newtests/one-tuple-niceties.rsl

• rsl/alpha/newtests/generic-sort-function.rsl

Yet M ore on ‘‘obj X = ...’’ V ersus ‘‘value X = ...’’

Farg -- all of the crap below is yet another circle.Try this. Adefinition of the following form

obj X = "abc";

Page 66

definesboth a value and a type. Contrary to what we may have been thinking, however, the type of X isNOT string.
Rather, its type is X, which is a unique opaque type with is a subtype of string.It seems that we may have had this idea
before, but were unable to make it work (except maybe in the "THE, Ultimate" discussion below). I think the reason is
we didn’t hav eone-tuple-of-X = X type equiv rule in place at the time.

To unify things completely, it might be nice to go back to the old, old idea that values can be first-class operands in com-
ponents exprs. However, this leads to very serious overloading problems, as in:

obj x is a and b;

wherein we cannot tell if obj x should be a tuple type or a boolean type.I.e., one interpretation of "a and b" takes "and"
to be tuple construction, whereas the expression interpretation of "a and b" takes "and" to be boolean conjunction.This
wont do. Therefore, I think we need to live with the slightly hokey

f(s:Sex)->boolean = s = "male";

OK, so we go with "value =" instead of "object =" -- what really do we buy? Seemsto me that if we don’t really solve
any big problem, might want to stick with "object =" simply for backward compat and notational orthogonality. So, the
question remains, do we solve any big problem simply by subbing "value" for "object"? As I speak, I’m getting the feel-
ing that the answer is no.Essentially, what we’re coming to is that an "obj =" definition does not in fact define a type at
all, but rather a (const) variable. Hence,the stuff about "restricted" type need not exist. Sowhat we’re left with is simply
a keyword thing. Viz., should be use "obj =" or "value ="? Is this really all there is to it?Let’s play with the implemen-
tation and see, since we now need to fix the problem with rsl3/tests/dan-lawyers-and-judges.rsl.

OK, now we’ve implemented a bit.To be clear, what we’ve just implemented is that the "obj X = ..." form now defines X
as of class C_Var, not C_Obj. This makes things pretty darn clear cut semantically, but has lead to some new issues. One
consequence of leaving the "obj =" form instead of the semantically potentially more descriptive "val =" f orm are the
error messages that say "Components of objects must be objects (X is not)". This error message will happen if X is a
concrete value, which is quite confusing to the hapless user. Hence, for now, we’ve dealt with the problem by changing
the text of this error message "Components of objects must be *abstract* objects (X is not)".A l ittle hokey, but maybe
we can live with it.

Another potentially more troublesome consequence of the new C_Var implementation is what’s happened to the
tests/bnf.rsl example. Recallthat this example is cited below in the nicely concluded discussion of symbolic literals.
What’s happened now is that bnf.rsl has gone bad (again?). Specifically,

obj Operator is PlusSign | MinusSign | TimesSign | DivideSign;

obj PlusSign = ’+’;
obj MinusSign = ’-’;
obj TimesSign = ’*’;
obj DivideSign = ’/’;

now produces four error messages since PlusSign, etc. are now concrete objs (a.k.a. vars), which are not legal in comp
exprs. Atthe same time, bnf-v2.rsl is (still) OK. It contains just

obj Operator is ’+’ | ’-’ | ’*’ | ’/’;

The seemingly ugly part here is that "equals-for-equals" semantics appears to have broken down, at least superficially.
Viz., ’+’ is OK in directly in a comp expression, but not indirectly via having been defined as the value of a concrete
object. Ibelieve that the semantics are still sound here, in that the symbolic literal notation is define clearly as a special
form of designation that is theonly notation that designateseithera type or value, depending on context. Given this, the
declaration "obj PlusSign = declaration, PlusSign has now become a concrete value only, and since idents do not have the
special dual designation property of sym lits, the use of such a concrete object ident such as PlusSign will (and should) be
illegal in a comp expression. Allof this reasoning not withstanding, I’m starting to think at this point, after this latest
round of implementation, the that "value =" notation might now be better, since it clearly denotes when something is a
value and not, therefore, an abstract object. Hmm., need to cogitate some more.

Page 67

Decisions, Decisions

Once and for all, let’s do the following:

1. Throw out the syntactic form "obj X = ...", replacing it with "value X = ...".(Well, as can seen above, we’re
still thinking about this one.)

2. Implementthe short-hand usage if ’E’ lists in comp exprs.

3. Implementfull struct type equiv and the equivalence of obj exprs and ins and outs. (As a practical matter, we
may never get to this; rather we’ll just implement as much of it as necessary to get auto decl of constructor
ops, and whatever other nice effects we need.We’re still thinking about it as of now.)

4. Implementthe "top" opaque type any, from which all types implicitly inherit.This will obviate the need to
implement ’*’ as a type, I think. The only op defined on any will be ’=’, which is always false for function
types. (Still thinking about this one too. Some recent work with opaque types as vars (in particular in
newtests/master-list.rsl) may obviate the need for a true top type.)

Concrete Values, Rere...revisited

It seems to me that about the only reason we’ve been clinging to the "obj is" versus "obj =" notation, instead of an explicit
value keyword, is for enum literals as strings.It seems further that the idea of enum literals as strings has pretty much
gone away. Therefore, I don’t think we need to mess with the idea of a "restricted" type as we were below, since I recall
that this stemmed from the whole enums as strings mess.

Therefore, if we do stick with "obj = ..." instead of "value = ..." it’s for notational orthogonality, not because we want to
stick with restricted types or strings as enum literals. See discussion about the latter to follow.

The (Long-Standing) Trouble with Enum Lits

In PLs, there is are generally two separate constructs for enums versus unions. In RSL, there is the singleor for both.
This, it seems, has led to us going around in circles for so long about how exactly to represent enum lits.Let’s see if we
have a clarifying summary of where we’ve come to at this point, which is hopefully a sound solution to the problem of
how to represent enum lits.

First off, enum lits are NOT strings and NOT integers. Actually, enum lits have two identities -- as types and as values.
As a type, an enum lit is an opaque type.As a value, an enum lit is a constructed value of an opaque type, which is fun-
damentally denoted as E(), for opaque type E.Since enum lits are an oft-used construct, the syntactic sugaring of ’E’ is
provided.

Conceptually, the following rule may seem in order:

An opaque type E is a type, NOT a value; an enum lit ’E’ is a value, NOT a type.

This leads to the more general rule that

No single denotation can represent both a type and a value.

A, perhaps the only remaining, problem with this is exemplified by the bnf-v2.rsl file, where enum lit values are used as
type names. The problem with this bit of notational trickery is that it violates the preceding general rule, and leads back
to the idea of restricted types, which we’ve nev er fully formalized properly. (But see bottom line below.)

A conclusion could be that we could probably live with the preceding rule, if it gives us a simple and sound semantics,
ev en if we don’t get quite as nice a bnf notation.Since BNFs in RSL are presumably not that common, this probably
isn’t a major problem.

However, if we want to allow the convenience of the notation in examples like bnf-v2.rsl, a (the?) fundamental question
is:

Can we devise a sound semantics that will support enum lit designations being used as both types and values?

Here’s a crack at how we might implement the type checking of such:

Page 68

a. Whenever a ’E’ lit appears in a type expression, enter an opaque type of that name ("E") in the Level 0 symtab
if one does not already exist.

b. Complain clearly if the enum lit is already def’d as a non-opaque type.

c. Whenever ’E’ appears in a value expression, it denotes a value of type E.

d. Besure to clarify in the users manual that ’E’ is never = "E".

Actually, this may be a pretty sweet little solution to the enum lit thorn in the side.Viz. the following works fine now:

obj Sex is ’Male’ or ’Female’;

and doesn’t even look half bad. Also, it looks like it can be explained pretty easily. Hmm., maybe we’ve fixed things
finally.

Also, bottom lineishly, except for idents ’E’ lits, no denotation is both b type and a value.

Why 0-ary Constructors for Non-Opaque Types are NOT Senseless

WRONG REASONING: Because such a constructor would always have to create a nil value, but given that nil is totally
overloaded anyway, one might as well just use nil in the first place.

CORRECT REASONING: Because such a constructor will NOT always create a nil value, but rather for tuples will cre-
ate a tuple value with potentially initialized fields, per the object definition.See note below about nice duality between
obj’s and op’s vis a vis init’d name/type pairs.

On Generic Instantiation

See the very important discussion in newtests/one-tuple-niceties.rsl.

On Subtyping Atomic Types

If we’ve not already, we need to decide if this is allowed. Apparentlythe 3.1 type checker thinks it’s OK, since it passes
tests/subtype-poly-tst.rsl, q.v.

On One-Tuples

As noted under the "POSSIBLE FLASH" heading below, we can hopefully implement the following rule: there is no dis-
tinction between a one-tuple of type T and type T itself.We’l l talk more about this, and its lovely consequences, soon.

On Generic Functions

Consider

function IsSorted(l:*)
forall (i,j: integer |

(i in [1..#l]) and (j in [1..#l]) and (i<j))
l[i].id < l[j].id;

The idea is that allowing ’*’ by itself to be a type designator, we’re writing a generic function that can be applied to any
list. Now, what happens if we overload this?Well, I think the same basic "lowest" rule for overload resolution can apply
is with subtype polymorphism.Viz., such fully generic list functions are the "highest" in the chain, and will be overrid-
den by any other functions of the same name that take more specific forms of lists.

We might even consider that any list object is automatically a subclass of generic type list, which means that it inherits
things that are true for all lists.We could make something conceptually nice and uniform out of this, if we could get the
different forms of instantiation done straight.

On the practical side, here’s a sketch of the (seemingly ML-like) way that such generic (list) functions would have to be
type checked:

Page 69

1. Whenwe type check the generic itself, the base type of the list will have to be some type var, which checks like
type Any (i.e., compat with everything, except maybe function types, but we’ll have to see about this).

2. At any call to the function, we’ll have to (re)instantiate the function’s body, with the appropriate generic instan-
tiation.

3. We need to give much better error messages that ML does, obviously. Something like the following would be
nice:

Generic function invocation fails because of the following type problems:
...

after which we simply proceed to list the error messages that normal type checking on the instantiated body
produces, probably with line numbers for the cite of the generic definition.

Conceptual Drift

NEW DISCUSSION:

The argument under "OLD DISCUSSION" below is evidently wrong, or at least confused.Contrary to what’s said there,
it seems that itis OK to use opaque types as type vars, particularly if we use the rule that {T} and T are the same type.
Here’s the deal.

Where the discussion below goes wrong is in the following statement:

The earlier position was to treat opaque types as type vars,such that any type could bind to an opaque type, mod-
ulo varname use in a signature.

In particular, it’s the italicized part that’s wrong. Viz., we do not let any type bind to an opaque type, only explicitly
declared subtypes can so bind.And this is precisely the normal subtype polymorphism rule -- that any type T1 can bind
to any type T2, iff T1 <= T2.

Hence, we’re OK with considering opaque types to be aform of type var, but not the fully general form of type var, as in
ML.

OLD DISCUSSION:

It seems from the discussions below that we’ve switched positions diametrically with respect to the equivalence rule for
opaque types.Viz.,

• The current position is that each distinct opaque object represents a distinct type, not equivalent to any other type.
This is in fact what the type checker enforces.The earlier position was to treat opaque types as type vars, such that
any type could bind to an opaque type, modulo varname use in a signature.

Type latticewise, the current position has opaque types on the bottom of the lattice, whereas the earlier position has them
at the top.

What this means at present is that we should stick with the current position, but add a syntactic notation for type vars, if
necessary. We discuss the type var issue below.

Type Vars Revisited

So, the question is, do we need type vars, and if so for what? While we’re at it, we need to fix all of the generic instantia-
tion crap that’s in the ref man. In particular, when thinking about type vars in generics we probably don’t want to have
where clause substitution types to have to be subtypes of what they substitute for (see the ref man).

The point of confusion is to exactly what extent the seemingly true statement "inheritance" is not "generics" is true, par-
ticularly in RSL. Let’s look that the following very familiar example, the current where-clause way:

obj Stack is Elem*
ops: Push, Pop, Top;

end Stack;

Page 70

obj IntStack < Stack
where: Elem = integer;

end IntStack;

Let’s try a more conventional parameterized type way:

obj Stack(Elem?) is Elem?*
ops: Push, Pop, Top;

end Stack;

obj IntStack is Stack(integer);

A key problem we’re suffering with is the nature of inheritance as tuple creation.Even if a subobject does not add new
components, itautomaticallybecomes a tuple.I think this needs to be reconsidered.

A promising-looking idea would be to eliminate the immediate conversion of a subtype to a tuple.Rather, wait until the
second inherited or defined component is found before converting to a tuple.

POSSIBLE FLASH (see full discussion above): make no semantic distinction between a one-tuple and a non-tuple.E.g.,
an object of type integer is the same as an object of type {integer}. Onenice benefit of this approach is that the existing
anomaly of not being able to access a single-tuple elem via ’.’ i ts name would go away. The rule would be that a one-
tuple could be accessed with or without a field name selector. Hmm, this seems pretty-darn nice so far.

Another mess we’ve gotten ourselves into is not knowing the difference between generic instantiation via ’<’ versus ’is’.
Consider the following example (excerpted from tests/stack.rsl):

obj Stack(<<Elem>>) is <<Elem>>*;
obj IntStack is Stack(integer); (* BIG QUESTION: what’s the diff *)
obj InsStack < Stack(integer); (* between these two?? *)

Lest we think where-clause notation might fix things here, it doesn’t. I.e.,we can have a where clause with either ’<’ or
’is’.

Here are some pertinent questions related to this issue:

1. Shouldboth forms of instantiation be allowed?

2. If we use the parm’d types notation, should an instantiation form be allowed anywhere that a type is allowed, or
should we allow it only in a parts_spec? FORGET THIS: this wont make any diff if op sigs are now the the
same as parts_specs.

Mor e on Op Args

In an effort to define automatic constructor ops, we need yet again to address precisely how to declare op args. We hav e
discussed at length that we would like to allow a fully general parts_spec in the input and output fields of an op.To do
this, we need to clarify if we have the ML-like single-arg model, or if not, exactly what we do have. Let’s try the follow-
ing:

• A full-on parts_spec can in fact be given for op ins and outs.

• Eachtop-leveland operand is treated as a separate arg.

• If the parts_spec is a single list, then the function is n-ary.

• If the parts_spec is anor’d expr, then the function has exactly one arg of theor’d type.

• Syntactically, we’ll fully unify parts_spec and ins(outs)_parts_spec.Probably the easiest way to do this is to use
parts_spec everywhere, with the addition of using init_name_type_pair in place of name_type_opt_pair. This has a
seemingly nice duality effect, in that we can interpret an initializer in a obj expr to mean that whenever a concrete
value of the type is created, the initialized field(s) will have the given value(s). Thisdoes seem to have a serendipi-
tous duality effect, in that we are blending objects and ops quite nicely now.

Page 71

Casting by Constructor

The following discussion is historical only in that we have decided to be happy with ’<’ as the instance-of operation.
We’l l also add subclass (of) for some additional syntactic sugaring.

We’d l ike to use ’:’ as the instance-of operator. This leads to an syntactic ambiguity with uses of ’:’ to declare type in a
concrete obj decl. This, somewhat serendipitously, suggests that we should eliminate the latter use of concrete object of a
particular named type. This leads to the idea of an automatically defined overload of object constructor that takes an
argument of the structured type of its components. Ah, but we probably already have this.

A motivating example for this is the biggie burger food menu, which in the past we have declared something like this:

obj DefaultMenu:FoodMenu = [["Burger", 1.89, [...]], ...];

If we eliminate this use of ’:’, we get the following:

obj DefaultMenu =
FoodMenu(MenuSection("Burger", 1.89, Acessories(...)), ...);

which probably looks better mnemonically anyway.

There seems to be really little problem with eliminating this use of ’:’, since it’s only of consequence in concrete obj
decls. Inother binding contexts, we’ll have a declared formal (LHS) to determine the type, and in effect do the casting
for us. The "casting" to which we refer here is that of casting a structured value specified with the generic bracket con-
structors into a specific named type.

All of this is related, yet further, to the next heading on concrete values.

Concrete Values, for the Umpteenth Time

I thinking again that we should add the keyword "value" to the language. Ah shucks, I wish I could make up my mind
about this! Maybe we can make "let" be a top-level (i.e., module-level) construct, so that values can be created that way.
E.g., now we hav e:

module Foo;
object X = 10;

end Foo;

With a value keyword, we’d hav e:

module Foo;
val X = 10;

end Foo;

Allowing top-level let, we’d hav emodule Foo;
let X = 10; end Foo;

I kinda like that last one (the let). Let’s think about it (pun partially intended).

New, Improved Import/Export Rules

Summary:

• Leg al syntactic forms:
ο import M, for module named M
ο import X, for export X
ο import M.X, for module M, export X
ο export X, for defined symbol X
ο export all, for "all" a keyword

• old forms now axed:
ο from M import X

• import M, for M a module name, imports all exports from module M

• import x, for some export x, imports x from the first (only) module that exports it; see below for error cases (i.e, if 0

Page 72

or >1 modules export x)

• export all has the obvious meaning

• import M.x should be a legal form, with obvious meaning

• the qualification/redundancy/insufficiency business should be handled as follows:
ο All imports should be unqualified by default whenever possible; i.e., reference to any import should automatically

be allowed in unqualified form, as long as the imported ident is not already defined in the importing scope.
ο If an imported ident is the same as an existing ident, then the checker issues a warning indicating that qualification

will be required for that ident.
ο If > 1 module defines an import, then the checker issues a warning listing each of the modules that exports the

ident, and indicates that each version will be available in qualified form only.
ο Note that a warning or error is not issued at the time of export for a module that exports an ident for the second

time or beyond. Rather, the warning is used at the time of import.This is because multiple export is not really an
error at all, since it can be dealt with by explicit qualification, either at each use or at import.

• If 0 modules define an import, then the checker issues an error to that effect.

RSL-lik e syntax for DEMO interface modules

Given below is an adaptation of the following DISL code:

INTERFACE DummyName{
Obj1 := DrawRect(342, 110, 472, 142);
Obj0 := DrawRect(88, 112, 218, 144);

MAPPINGS Obj0:
LEFTDOWN: op0;

OPERATION op0(s : Selection; l : integer; b : integer) {
STIMULUS MoveSelection(s, l, b);
RESPONSE {

MoveSelection(Obj1, integer(3.250000 * real(l)),
integer(1.600000 * real(b)));

}
}

}

Here’s the RSL-like equivalent (see ../../rsl/alpha/newtests/sample-demo-code.rsl):

(* interface *) module DummyName;

from Demo import Selection;

define object attribute leftdown;
define operation attribute stimulus, response;

object Obj1 = DrawRect(342, 110, 472, 142)
leftdown: op0;

end Obj1;

object Obj0 = DrawRect(88, 112, 218, 144);

operation op0(s:Selection, l:integer, b:integer) < DemoOp
stimulus:

MoveSelection(s, l, b);
response:

MoveSelection(Obj1, integer(3.250000 * real(l)),
integer(1.600000 * real(b)));

end op0;

Page 73

end DummyName;

where module Demo is:

module Demo;
export Selection;

object DemoWorld;
object Selection;
operation DemoOp(DemoWorld)->DemoWorld;

end Demo;

Note that this requires that we expand RSL syntax to allow attribute values to be exprs, which we’ve done. This,BTW,
lead to the new reduce/reduce error, which we’ve determined to be OK.

Yet Yet More on Func Call Type Checking

The latest idea is that we may be able to have MLish parm bundling and unbundling, as long as we do it at the top-level
of parm nesting only. Consider the following familiar-looking defs:
.(t
obj X is A, B, C; op F1(X)->(X); op F1(X)->(A, B, C) op F2(A, B, C)->(X) op F3(A, B, C)->(A, B, C);

NEED TO EXPAND THIS, looking carefully at what’s already been said below.

There are also some important, seemingly deeper thots on subtype poly vis a vis constructed types, e.g., with "[" ... "]"
and "{" ... "}". If it’ s not completely clear in what’s said below, these constructors construct types that are structurally
compat with list and tuple types, but NOT subtype compat withANY types. Thisis because these constructors build
anonymous types, which cannot, by definition, be subtype compat.It seems like what could be emerging here is a ver-
sion of name type equiv that relates to subtyping. I.e., we have a structural equiv rule at the level of straight types, but
structural equiv does not extend into subtypes. Probably should get off butt and see what research there is about this out
there. Itseems likely that this kind of rule already exists, maybe from some time ago.

Type Any, One More Time

Thot: provide pre-def’d type vars "any", and "anyn", for all n, with the intent that any1, e.g., used in a signature is (must
be) the same type in all signature occurrences, but is not necessarily the same as, e.g,, type any2. Drawback here is using
up ident names, but this may not be a problem. Need to think about it.Alternative, used in scattered examples, is to use
’?’ an ident prefix or suffix to denote a type var. Prob with this is lexical/syntactic confusion with ’?’ as the infix tag
selection operator.

On the Ultimate Generalization of Type Checking

It may just be possible to have it all, viz., to have full subtype polymorphism; structural equivalence; complete compati-
bility between comp exprs and op sigs; and overloading. Hereare some observations and rules in this regard, which need
further discussion,

1. A la ML, we can in theory consider all funcs to be of a single arg.

2. Consider, therefore, using (,...,) the generic tuple constructor; [,...,] might still be the generic list constructor, but
we might even want to go for (,...,) for list construction as well. This, it seems, will help unify the concept of
comp exprs and signatures being the same thing. Note that we might also want to leave { ... } and [...] in, and
just have some less-than-perfect rules for how they can be omitted in the context of an op call. E.g.,

op Op(integer and string)->integer;
op main() = (

Op(1, "abc"); (* OK *)

Page 74

Op({1, "abc"}); (* Also OK, and equiv to the preceding. *)

Note that things get funky in cases such as the following, wherein we’ll need some clear disambiguating rules:

obj ThreeInts is integer and integer and integer;
op Op(integer and integer and integer and ThreeInts integer*);
op main() = (

Op(1,2,3, 4,5,6, 7,8,9,10)
);

3. To avoid absurdly difficult, if not impossible inference, an object constructed with the generic tuple or list con-
structor operators,CAN NEVER BEconsidered to be of a subtype, since there’s no name associated with it.
Hence, to enable subtype inferencing in parm binding, a named constructor op must be used. E.g.,

obj X is string;
obj Y < X is integer and integer;
op DoX(X)->X;
var y:Y;
axiom ... and DoX("abc",1,2) and ... ;

(* ˆˆˆˆˆˆˆˆ This wont work since ("abc",1,2) is in fact compat with
* t ype Y, however it cannot easily be inferred to be a Y in this
* c ontext, and hence a subtype poly match of DoX wont happen. *)

axiom ... and DoX(Y("abc",1,2)) and ... ;
(* ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ This *will* work since Y("abc",1,2) is directly

* d iscernible as a Y, and hence the subtype poly match can be
* f ound. *)

Single-Tuple’s Revisited

Despite observations to the contrary, we may well want to allow single-elem tuples to be equiv (say, structurally) to types
of the elem type. The reason is a good one, when one considers the existing examples of generic list-structured objects,
such as the ref man generic DB example. Consider:

obj GenericList is Elem*;
obj IntList < GenericList

where: Elem = integer;
end IntList;

op f(l:IntList, i:integer)->boolean =
l[1] = i; (* !! Wont work, because IntList is of type (integer* and)

* NOT of type integer*. Oops -- this ain’t so nice. *)

The reason, I believe, that we were clinging to non-equiv of single-elem tuples and the elem type is to cling to name type
equiv, which in turn was, among other possible reasons, to allow op ordering dependencies to be specified by unique
types. We probably want to avoid this anyway, but if it’s really necessary, say in a comm protocol specification, we can
do it via unique opaque types, since these are always unique.I think we’ll be hosed pretty badly if we say that all opaque
types are equiv, so we can rely on their uniqueness. While this may make the spec of sequential control dependency a bit
uglier than it might otherwise be, we can live with this since we want to frown on control dependencies anyway.

Mor e on Op Inheritance

The stuff below about reintroducing direc op inheritance still seems good.We need to make the following refinement.
An op definition will define a type all right, but a value-constrained type.The subtle problem we need to deal with is an
invocation of subop, bound to a var of a parent type. E.g., in the example below we hav e:

op class GenericGraphicsOp(Canvas)->Canvas;
op Move(SelectClassPaZOrms) < GenericGraphicsOp;

Page 75

op Scale(ScaleClassParms) < GenericGraphicsOp;

op ExecuteSelectClass(gop:GenericGraphicsOp, parms:GenericGraphicsOpParms) =
gop.<Move(parms.<SelectClassParms);

op main() = (
let s = Selection(...);
ExecuteSelectClass(Move, SelectClassParms(s, 10, 20));

The callgop.<Move(parms.<SelectClassParms) is just fine in this context, sincegop is bound to opMove.
Suppose, however, that the body ofExecuteSelectClassOp was

gop(parms);

The deal here is that we can’t know that gop is bound toMove, yet at runtime we must be able to run something.So,
we’ll have somebehaviorinheritance. Whatthis means is than subops inherit thebodyof their parent op. It seems that
the runtime rule can be that any subop will inherit the body(ies) of all parent ops, an analogous manner to how subobjs
inherit fields. Then, in situations such as the above, when a subop instance is hanging out in a parent-type variable, the
inherited parent op body can be executed by extracting it from the subop. Cool.

In general, the concept of behavior inheritance shouldalwaysbe on, to be precisely the dual of structural inheritance.To
be precise, behavior inheritance will work akin to constructor behavior inheritance in C++.!BUT WOA HERE -- this
can’t work in a functional setting, since we seem to have no way to capture the return value of parent execution. So,
maybe what has to go on here is to execute only parent behavior in cases such as the above where we have a subop value
hanging out in a parent var. !NO BUT WOA AGAIN -- maybe we do in fact have a way to get at the return value of the
parent. Viz., it’s in the output parm(s) of the parent. E.g., adding parm names to the op defs above:

op class GenericGraphicsOp(c:Canvas)->(c’:Canvas);
op Move(scp:SelectClassParms) < GenericGraphicsOp;
op Scale(scp:ScaleClassParms) < GenericGraphicsOp;

Given this, we can refer to the output of GenericGraphicsOp as a parent op from within the definition of one of its chil-
dren, say Move, as in:

op Move(scp:SelectClassParms) < GenericGraphicsOp =
c’;

which simply means that Move returns just the c’ that its parent GenericGraphicsOp returned.(This could bewaycool, if
it pans out.)Move could do more if it chose, including not referring to c’ at all, in which case c’’s return value from
Move would be whatever its parent computed it to be. If Move wants to do more with c’, then it can, as in

op Move(scp:SelectClassParms) < GenericGraphicsOp =
f(c’);

for some function f.

THE, Ultimate, For Sure, Absolutely Final Ruling on Union Types (Maybe)

OK, let’s see if we can define some type checking rules that will make sense out of all of the possible ways that unions
can be used, probably most particularly as enumeration types.

Rule 1: If all of the components of a union type are unique types, then the checker can infer the necessary injection in
binding contexts.

Rule 2: If all of the components of a union type are the same type, then the checker can infer the necessary injection in
binding contexts, which type is simply the component type.This rule will make the old-style enumerations work as
expected.

Rule 3: If component types of a union are neither unique nor the same, then no injection inference is possible.PER-
HAPSwe want to disallow this case altogether.

Page 76

To make all of this work, how bout if we define concrete obj defs to mean the following.

obj x = val

<==>

obj x < typeof(val);
obj ’val’ < typeof(val);

where val must be a const expression. E.g.,

obj x = "xyz"

<==>

obj x < string;
obj ’xyz’ < string;

Do think about this some more.

Hmm, Really Great Looking Polymorphism May Not Be that Easy

OK, from the real demo.rsl example, here’s what we’d like to do:

(*
* P rimitive Graphic Operations
*)

op Select(Canvas, Selection, Location)->Canvas;
op Move(Canvas, Selection, Location)->c’:Canvas;
op Scale(Canvas, Selection, ScaleFactor)->Canvas;
(* Etc., ... *)

obj Location is Coord and Coord;
obj Coord is integer;

(*
* Generic Graphic Op Parm Classes
*)

obj class GenericGraphicOpParms is Canvas;
obj SelectClassParms < GenericGraphicOpParms is Selection and Location;
obj ScaleClassParms < GenericGraphicOpParms is Selection ScaleFactor;

(*
* T he Generic Type of All Graphic Ops
*)

obj GraphicsOperation is op(GenericGraphicOpParms)->(Canvas);

Given such defs, can we reasonably expect the following form of application to work?

op ExecuteSelectClass(gop:GraphicsOperation, c:Canvas,
s:Selection, x:Coord, y:Coord) =

gop(c, s, x, y);

op main() = (
let s = Selection(...);
ExecuteSelectClass(Move, s, 10, 20);

);

The key questions/points here are:

i. Is the type of operation Move, as it is defined, compat with type GraphicsOperation? If so, can we define a
sound bundling/unbundling scheme that will let us do what we hope for?

ii. If so, what kind of bundling/unbundling deal have we done, and how might it adversely affect overloading, in

Page 77

particular by increasing the amount of work we have to do to check for equivalent bundled versus unbundled
proc defs during op definition checking?

Let’s look a little closer at how things might work out here:

type of GraphicsOperation = op(GenericGraphicsParms)
>op(Canvas, Selection, Coord, Coord)
=op(Canvas, Selection, Location)

type of Move = op(Canvas, Selection, Location)

The hard part here seems to be the ">" inference step. Another way to look at things is that from a vanilla definition like

op Move(Canvas, Selection, Location)->c’:Canvas;

we can’t necessarily infer

op Move(GenericGraphicParms)->c’:Canvas;

While we probably don’t need to infer this at op definition time, we do at binding, which may still be troublesome, if not
impossible.

Another issue is that whatever resolution algorithm is used to check bindings will also need to be used to check redundant
overloadings.

We might try to ameliorate the situation be defining

op Select(SelectClassParms)->Canvas;

as an overload of Select, i.e., leaving the original definition of Select in place. However, in order to have the kind of
bundling we need to make the other stuff work, this should probably be a redundant over load of the extant, i.e., of

op Select(Canvas, Selection, Location)->Canvas;

Hmm, things dont look real promising at this juncture.

We could brute force it as follows:

op ExecuteSelectClass(gop:GraphicsOperation, c:Canvas,
s:Selection, x:Coord, y:Coord) =

gop.<SelectClassOp(c, s, x, y);

but we don’t hav ea SelectClassOp. Also,ev en if we did, is this too gross and is it type safe?

OK, let’s just try it in a more doable way and see if even that works:

(*
* P rimitive Graphic Operations
*)

op Select(SelectClassParms)->Canvas;
op Move(SelectClassParms)->Canvas;
op Scale(ScaleClassParms)->Canvas;
(* Etc., ... *)

obj Location is Coord and Coord;
obj Coord is integer;

(*
* Generic Graphic Op Parm Classes
*)

obj class GenericGraphicsOpParms is Canvas;
obj SelectClassParms < GenericGraphicsOpParms is Selection and Location;
obj ScaleClassParms < GenericGraphicsOpParms is Selection and ScaleFactor;

(*
* T he Generic Types of Graphic Ops

Page 78

*)
obj GenericGraphicsOp is op(GenericGraphicOpParms)->(Canvas);
obj SelectClassOp < GenericGraphicsOp;
obj ScaleClassOp < GenericGraphicsOp;

op ExecuteSelectClass(gop:GenericGraphicsOp, parms:GenericGraphicsOpParms) =
gop.<SelectClassOp(parms.<SelectClassParms);

op main() = (
let s = Selection(...);
ExecuteSelectClass(Move, SelectClassParms(s, 10, 20));

);

Hmm, we still seem to have a fundamental problem here. The cruxt of the problem is that given the following defs

obj O1;
obj O2 < O1;
obj OpType is op(O1);

op F(O2);

it seems that it cannot be the case that F (as a value) is compat with type OpType, even though the signature of F is (sub-
type) compat with the signature of OpType. Thislack of compatibility seems to pretty well nix the kind of generic op
creation we’re attempting above. For some concrete data in this area, see the C++ attempt at doing this, in ˜/c++/demo-
rsl.c. It appears that this is a genuine problem area, since we get the following extremely interesting at the point where
we try to bind Move (the function value) to a parm of type GenericGraphicsOp:

warning: contravariance violation for method types ignored

Fascinating.

Here’s a flash. Perhapswe want to go back to the idea of operation subclassing, with an interpretation that args are anded
into subclasses. This seems like it might be the key to the idea of an op type that allows more args in its subtypes.E.g.,
try this:

op class GenericGraphicsOp(Canvas)->Canvas;
op Move(SelectClassParms) < GenericGraphicsOp;
op Scale(ScaleClassParms) < GenericGraphicsOp;

op ExecuteSelectClass(gop:GenericGraphicsOp, parms:GenericGraphicsOpParms) =
gop.<Move(parms.<SelectClassParms);

op main() = (
let s = Selection(...);
ExecuteSelectClass(Move, SelectClassParms(s, 10, 20));

Hey, I think this, at last, has some promise. What we may well be opening the door to is that an op def automatically
defines a type, in a dual way to an obj automatically defining a (constructor) op. E.g., check this out:

op X(integer, integer)->integer;

automatically defines the type

obj X is op(integer, integer)->integer;

Woe, this is getting a little scary, but maybe really cool.Given the remarks above about ops defining values, evidently, it
appears that an op definition defines allthreekinds of entities -- type, value, and op. Hopefully we can use context to sort
out the name overloading. Hmm,this is getting quite interesting indeed. [But as we’ve discovered in the future, it can’t
work just like this; see discussion above about auto-gen of op types.]

Page 79

Here’s Maybe a Cute Idea

Instead of inventing yet another imperative language, allow op decls of the form

op(...)->(...) = {
/* Normal C code, not including data type decls */

}

Note the use of curly braces to enclose the block, signaling C code is contained therein.We could even enforce large-
grain functionalism, but disallowing global vars and pointers, which is pretty natural to do anyway.

Yet Again on Types versus Values

Is it in fact possible to stick with the idea that types and values are the same thing?Specifically, can we meaningfully
reconcile the "obj is ..." construction (aka, abstract objects) with the "obj = ..." construction (aka, concrete objects)?

The closest we’ve seemed to be able to get to it is to think of concrete objects as arestrictedtype. E.g.,with

obj Male = "male"

The type of Male is string, restricted to the specific value "male". At type checking time, this means that Male is treated
exactly as if declared to be string. At runtime, it means that the only "male" can be bound to it.If an attempt is made to
bind another string value to a variable of type Male, the variable will be set to nil.

On Injection Inference

It seems that this is possible when the elements of a union are unique, named types, otherwise it’s not. Ratherthan
restrict union elems arbitrarily/artificially to be named types, we’ll just have the checker do its work silently, making
injection inferences when it can, and complaining, possibly not explicitly to the point, when it cannot.For a bit of sup-
portive human kindness, see Tennent page 215.

Extremely Hot News Flash (1 Dec 94)

That T2 is a subtype of T1 most emphatically doesNOTmean that the value set of T2 is a subset of the value set of T1.
In fact, it means the opposite. This concept is counter-intuitive when we consider the notion of subtyping integers and
reals. E.g.,with

obj subint < integer;

it is not the case that type subint is a subrange of integers. Rather, subint is a single-elem tuple type, the element of
which is an integer.

More could definitely be said here, and it should be.

Back to Subtype Polymorphism, Yet Again

OK, maybe it’s OK. (Make up your mind, clown!)

Screw Name Type Equiv

We don’t need it any more. Forget mangling; we’ll type check overloading by checking each def alternative.

Summary of Op Call Type Checking

This is a summary of the discussion below on type checking op calls.

• Foreach op of given name, check for parm match.

• Parm match defined as:
ο If atype is same name as ftype, then OK
ο If ftype is opaque,

Page 80

Farg -- the above seems to be leading back to subtype polymorphism, which we think is bad.Let’s try a purely equa-
tional definition to see what’s up with all of this:

obj Thingy;

obj ThingyList
ops:

Insert(ThingyList,Thingy)->ThingyList;
FindNth(ThingyList,integer)->Thingy;

end;

Now, is the following call possible?

Insert(1, Insert(2.5, Insert("xyz", null)));

Well, it just might be, and it might be type-safe as well, for the following reason. While the list can contain a bunch of
different typed things, there’s nothing that can be done with them unless we define some more ops on type Thingy.

OK then, let’s try this:

obj Thingy
ops:

"_*_"(Thingy,Thingy)->Thingy;
end;

I.e., we’ve added a requirement to the definition of Thingy. Now, can we do the following?

FindNth(Insert(1, Insert(2.5, Insert("xyz", null))), 1) *
FindNth(Insert(1, Insert(2.5, Insert("xyz", null))), 3)

!!!!!!!!This question must be answered!!!!!!!!We’l l do so at our next meeting. Or at least try to do so.

Here’s a crack a (partial) answer now -- the solution may lie in thevariable nature of opaque types in an op signature.
Viz., if there is > 1 opaque type in a signature, then as soon as the first parm of that type is bound, itfixesall other occur-
rences of that opaque type in the signature to be the initially-bound type.

OK, here is, I believe, the definitive answer on this subject.Viz., there is NO subtype polymorphism allowed, and, in fact,
no genuine polymorphism at all.Rather, apparently polymorphic functions are obtained via the generic instantiation
mechanism. Seersl3/tests/generic-list.rsl, about which more should be written here.

Overloading and Vararg Ops

Is it possible to combine overloading and the ML-style single-arg functions? Let’s see. Considerthe following defini-
tions:

var x:X, y:Y;
obj X is int,real,boolean;
obj Y is string,boolean;
op F1(X)->(Y);
op F2(int,real,boolean)->(Y);
op F3(X)->(string,boolean);
op F4(int,real,boolean)->(string,boolean);

Are F1 through F4 all the same function type? More precisely, do all of the following calls type check?

Page 81

F1(x,y);
F2(x,y);
F3(x,y);
F4(x,y);
F1(1,2.5,true);
F2(1,2.5,true);
F3(1,2.5,true);
F4(1,2.5,true);

Emerging rule: a function of a single arg can be called with unbundled actuals, but not vice versa. I.e.,a function of mul-
tiple args cannot be called with a single arg. I.i.e,actuals will be bundled automatically when necessary, but not unbun-
dled. Now we need to define the unbundling precisely. Also, we need to explain why this unbundling strategy has been
chosen. And,it better be a good explanation. I.e.,this strategy should only be chosen if it avoids some actual ambiguity
or if it saves a significant about of conceptual and/or implementation difficulty.

obj class Any;
obj FullyGenericFunc is op(Any)->(Any);

Classes as Unions

They are. Use"?<" op to check for membership. But this is an old idea, now out of date. Say what in that last sen-
tence??!? Ido believe that "?<" and its ilk are alive and well.

Name Type Equivalence and Type Variables

In order to support type vars with name type equiv, the following rule seems reasonable:

Are opaque types are distinct, unequivalent to any other type.

Precisely how this rule actually affects things needs still to be worked out. See the next section for further, hopefully
clarifying discussion.

The Low-Down on Polymorphism and Name Type Equivalence

OK, let’s try the following simple example:

obj Any is any;
obj AI instance of Any is integer;
obj AR instance of Any is real;

op w(a:Any)->() =
WriteReal(a); (* Should not type check. *)

op e(a1:Any, a2:Any)

op AddRecord(gdb:GenericDB, gr:GenericRecord)->(gdb’:GenericDB);
(* *)

obj PRecord instance of GenericRecord;
obj SRecord instance of GenericRecord;

var gdb:GenericDB;
pr: PRecord;
sr: SRecord;

OK, try this rule on for size:

An opaque type represents, among other things, a type variable.

Page 82

Let us consider carefully the ramifications of this rule, particularly in comparison to the concept of representing type vars
lexically, as in ML, with some notation such as a leading or trailing question mark. The disadvantage of opaque types as
type vars is that it creates sort of a special case for type checking proc calls, in that the type of an actual corresponding to
a type var can be any type for which equality is defined. This is really no different than an ML type var, except I’m still a
bit uneasy about it somewhat.

The advantage of opaque types as type vars is its general orthogonality. In particular, constraints can be placed by the
normal operations and equations attributes rather than by some special-purpose notation. E.g.,

op F(x:X?, y:Y?)
where: exists G(X?,X?)->Y?;

versus

obj X
ops:

G(X,X)->Y;
end;

Now consider:

obj Some;

obj SomeAndSome is s1:Some and s2:Some;

obj SomeList is Some*

What exactly can be done with/to these objects, and what is the nature of the polymorphism enabled by considering obj
Some to be a type var? E.g.,is Selects1(SomeAndSome)->(Some) a polymorphic function for any type Some?Seems
that things are OK, since SomeAndSome needs to be thrown in to any call.

Let’s consider some operations:

op SomeOp(s1:Some, s2:Some)->(s1’:Some, s2’:Some);
op SomeOp(s1:integer, s2:Some)->(s1’:Some, s2’:Some);

Both of these ops can be invoked with a pair of ints. But, let us say, that the 2nd will cover the first, since it is more spe-
cific. I think this is a viable rule.

Let’s see if we can (begin to) articulate the parm binding type checking rule:

1. If the function desig is a name, get the list of signatures available for that name.

2. If the function design is not a name, type check it to obtain the single signature designated.

3. Determinethe types of each of the actuals, and look first for an exact match, probably via mangled name
lookup.

4. Thenlook for a polymorphic match.

5. Finally, look for an exact or polymorphic match via bundling.

Somewhere in there we need to handle the chameleon functions -- those overloaded based on need. The best built-in
example is [...] (but see revision below). It seems that this class may include in general functions overloaded on coarity
only.

Chameleon Operations

For starters, see tests/deriving-types-from-obj-exprs.rsl for an example and a bit of discussion. Botton line of this test file
is that the type of expr [c1,...,cn] is T* if typeof(ci) = T for all i, else the type is typeof(c1) and it could be interpreted as
former if necessary in a given context.

Page 83

In general, I believe that the definition of a "chameleon" expression is one which can be of two or more types, depending
on the context. Froma purely functional foundation, such chameleons derive solely from chameleon functions, which are
defined as functions overloaded on coarity.

Unoverloading [...]

Major news -- let’s nuke {...} as a comment delimiter and use it instead as ando constructor. This is largely in keeping
with extant PLs, such as C.It also means that [...] is no longer a chameleon, which will no doubt simplify things. It also
opens the door to an interim version 3 that does not allow user-defined chameleons.

On the Top-Level M odule Context

Try this one on for size. In the past, we have considered hopping back and forth between modules at the top level in
order to change contexts. Asan alternative to this we could say that there is exactly on top-level scope, conceptually the
module Main. The effect of switching scopes can be accomplished by opening and closing files, using the Open and
Close environment ops, explained shortly.

On Modestly Intelligent Import/Export

Import/export rule summary:

a. Default for any module is to export all of its symbols, thereby making all of its symbols available for import.

b. If a module contains an explicit export declaration, then only those symbols exported are available for
export. (Thisis a bit odd, but seems to fit best with the "say-the-least, get-the-most-expected" principle.)

c. "importx", where x is not a module, imports x unqualified if

i. x is an export of exactly one opened module

ii. x is not defined in the importing scope

d. "importx", where x is not a module, imports x qualified if

i. x is an export of exactly one opened module

ii. x is defined in the importing scope

iii. (a warning is issued upon qualified import)

e. "importx", where x is not a module, fails with message if x is export of no module or more than one mod-
ule.

f. "import m", where m is a module name, imports all of the exports of m, per the individual "x" import rules
defined above.

g. Thereis an Open function that opens a file, and imports all of its exports into the current scope.

h. Thereis a Close function that unimports all the exports of a file.

Before any module can be imported from, in must be opened. Opening happens when a file containing one or more
modules appears as a command-line arg, or when a module name is given as an argument to the Open environment
function.

i. Only module, object, and operation names may appear in import/export decls.

j. Exportsmay not be third party. I.e., a module may not export any of its imports.

k. Importnames may be qual idents, indicating from which module an import should come. Qual ident imports fol-
low the same import rules defined above. In particular, an import as a qual ident does not automatically need to be
qualified in its usages.

l. Given the two-pass nature of importing described below, imports will be processedafter all defined module enti-
ties. Therefore,an entity definition will never be processed after an import, so that an error of the form "obj already
def ’d as import" will never occur.

Page 84

Note that one of the effects of the behavior of Open is that all command-line files containing modules are opened and
have their exports put in the Main scope.This means that when the environment starts up, the top-level contains all
exports of all modules.

This seems to be pretty good. It means that the normal expectation of complete visibility happens automatically at the
top level. At the same time, modules themselves do not automatically gain access to other modules symbols without
explicitly importing those symbols.

Another effect of the preceding rules is import at the top level is basically meaningless, or at best redundant. This is the
case because command-line files are automatically opened and opening in turn automatically imports into the current
scope. To counter this, we might say that Open only makes symbols "available" for importing into the top-level, rather
than automatically importing them.However, this seems like a bit of a nuisance, since the (vast) majority of the time,
users will want to open and then import at the same time. The only possible advantage of not importing on open is that
we could avoid conflicts by creating a top-level "pool" of modules with symbols available for import. Then by selective
symbol import, we could grab things into the top level. This seems far less likely to happen, particularly since we’re try-
ing to deemphasize information hiding altogether at the specification level.

A low-level implementation observation is that import/export must (should) be accomplished in the second pass.Viz.,
the first pass will parse all modules, thereby making each of their exports available for import. The second pass will
process all imports (which must lexically precede all other module decls), so that:

a. thereis no forward ref problem with importing

b. imported symbols in a particular module will be processed at the beginning of the second pass, after which
module type checking will precede.

