Page 1

Notes on Validation | nvocations

Introduction

The purpose of a "validationviacation" is to support incremental testing of a specification, and subsequently an
implementation. Wh a normal inocation, an operation is supplied input values, and thec@tion produces output
values. Ina validation irvocation, an operation is suppliedthinput and output values, and th&anation produces
boolean values that indicate if the operaigméconditions and postconditions are satisfied.

Heres an &le:

op Foo(i:integer, s:string)->(i’':integer, s’ :string)
pre: i > 0;
post: (i’ = 10) and (s’ = "abc");

end;

op Test() =(
Foo(1, "xyz")?->(10, "abc"); (* Produces value {true, true} *)
Foo(1,"xyz")?->(9, "abc"); (* Produces value {true, false} *)
Foo(0, "xyz")?->(10, "abc"); (* Produces value {false, nil} *)

)
In the discussion that follows, the term "validation" will be used as a shorthand for "validatioation".
In general, a validation of the form

op- nane(val ue, ...)?->(value, ...)

produces a tuple of typeool ean and bool ean. The first tuple element is the value of the precondition
expression; the second tuple element is thleer of the postconditiorxpression. Whethe value of the precondi-
tion isf al se, the value of the postcondition willvedys beni | .

The precondition and postcondition expressions sakiaed with the suppliedalues for the input and output
parameters of the operation. Since preconditions and postconditions can only reference paasiaidts, the
evduations will alvays be possible.

A validation is similar to a test case in unit test plan. Such test cases are defined as a list of input values and a list
expected outputalues. E€st plans are typically in a tabular form, such as the following:

Unit Test Plan for Operation Foo:

CaseNo. Inputs Expected Outputs Remarks
1 i=1, s="xyz" i’=10, s’ ="abc" Simple test case that should succeed.
2 i =0, s="xyz" nil Output isni | because precondition fails

The execution of a test case goesdithis:
1. bindthe supplied input values to the operatiinput parameters
2. evauate the body of the operation
3. comparéghe actual output values of the operation with the expected values
The test case succeeds if the actual output values match the expatsd Wfails otherwise.

In comparison to a normal test cast, tkecation of a validation goes kkthis:
1. bindthe supplied input values to the operatiinput parameter&ame as for the test case)
2. evauate the operatiog’precondition and postconditiqas opposed to evaluating the operation body)

3. returna boolean two-tuple, containing the values of the precondition and postcon@isiapposed to per
forming a comparison of expected and actual outputs)

Page 2

The eecution of a test case and a validation sireilar, but have dfferent intents.The purpose of a test case is to
determine if the implementation of an operation produces the correct olitpupurpose of a validation is to deter
mine the validity of the preconditions and postconditions farramplementedperation.

Test cases can be thought of as a way to incrementally debug an implementation. When a test case fails, it means
either the expected outputs wetewhat thg were supposed to be, or more often, that the expected outputs were
correct but the implementation failed to produce them when it showdd hathis case, one looks at the implemen-

tation to figure out what went wrong.

Validations can be thought of away to incrementally debug a specification. In particuenren the booleanalue
of the validated postcondition is false, it means that either tlea gitputs werert’what the were supposed to be,
or or more often, that the postcondition does not accurately define the correct output cohditios.case, one
looks at the condition logic to figure out wisatrong.

Need to supply a couple examples to illustrate concretely how validatiensetd to debg postconditions Also,
we’'ll discuss the fact that verified validations can be 100% reused as implementation-level test cases.

Running Validations

Based on the preceding description, running a validatiasivies the eauation of the precondition and postcondi-
tion expressions. Exceffibr quantifiers, thisweluation is straightforward -- &'the same as normal booleatpees-
sion evaluation.

For conditions that contain quantifiers, the trick faaleation is to determine thealue set to use. This is still
straightforvard for closed-form quantifications, i.e., oneslwing the i n’ form inf sl . For example, thewalu-
ation of the following quantified expression

forall (x inl) x >=0

entails the eduation of#l sub-epressions, withx successiely bound to each value of |, in werder The \alue
of the entiref or al | expression is the booleand of all the subexpressions.

The only "trick" in quantifier ealuation is for the unbounded forms. Consider this example,
obj UserRecord = nane:string and id:integer and ...
forall (ur: UserRecord) ur.name != nil
The question here is for what particuldser Recor d values should the quantifier beatuated? Therare these
approaches:
1. usesome heuristics to determine a "reasonable" set of values to use; such heuristicveardroeriwell-
known techniques for automated test case generation
2. useactual values oblser Recor d variables that hee keen bound during preceding validations of the opera-
tion in which the quantified expression appears
3. useactual values oblser Recor d variables that hee keen bound during an entire interaetsession, for all
validated operations
4. useactual values oblser Recor d variables that hee been bound during an entire intersetiession, for all
validated and ivoked operations
These approaches are not entirely mutually exeusi

What follows is a sketch of some further details, to be expanded upon in the coming weeks.

For your thesis, dealing with the first approach shouwdlire asmall subset of known heuristics, as a proof of con-
cept. Inlieu of detailed wrk with these heuristics, you could implement a GUI that allowslalgers to enter sam-
ple values manuallyn the form of tabular test plans.

Dealing with approaches 2-4 uses the same basic mechanism -- cadh@gywhen operations are validated, and if
necessaryinvoked. Cachingin this cont&t simply means recording a set of input values for each operation, and
using that set as the current means to boupdjaantifier ealuation.

Page 3

