
Page 1

Notes on Validation Invocations

Introduction

The purpose of a "validation invocation" is to support incremental testing of a specification, and subsequently an
implementation. With a normal invocation, an operation is supplied input values, and the invocation produces output
values. Ina validation invocation, an operation is suppliedboth input and output values, and the invocation produces
boolean values that indicate if the operation’s preconditions and postconditions are satisfied.

Here’s an example:

op Foo(i:integer, s:string)->(i’:integer, s’:string)
pre: i > 0;
post: (i’ = 10) and (s’ = "abc");

end;

op Test() =(
Foo(1,"xyz")?->(10,"abc"); (* Produces value {true, true} *)
Foo(1,"xyz")?->(9,"abc"); (* Produces value {true, false} *)
Foo(0,"xyz")?->(10,"abc"); (* Produces value {false, nil} *)

);

In the discussion that follows, the term "validation" will be used as a shorthand for "validation invocation".

In general, a validation of the form

op-name(value, ...)?->(value, ...)

produces a tuple of typeboolean and boolean. The first tuple element is the value of the precondition
expression; the second tuple element is the value of the postcondition expression. Whenthe value of the precondi-
tion isfalse, the value of the postcondition will always benil.

The precondition and postcondition expressions are evaluated with the supplied values for the input and output
parameters of the operation. Since preconditions and postconditions can only reference parameter variables, the
evaluations will always be possible.

A validation is similar to a test case in unit test plan. Such test cases are defined as a list of input values and a list
expected output values. Test plans are typically in a tabular form, such as the following:

Unit Test Plan for Operation Foo:

Case No. Inputs Expected Outputs Remarks

1 i=1, s="xyz" i’=10, s’="abc" Simple test case that should succeed.
2 i=0, s="xyz" nil Output isnil because precondition fails.

...

The execution of a test case goes like this:

1. bindthe supplied input values to the operation’s input parameters

2. evaluate the body of the operation

3. comparethe actual output values of the operation with the expected values

The test case succeeds if the actual output values match the expected values. Itfails otherwise.

In comparison to a normal test cast, the execution of a validation goes like this:

1. bindthe supplied input values to the operation’s input parameters(same as for the test case)

2. evaluate the operation’s precondition and postcondition(as opposed to evaluating the operation body)

3. returna boolean two-tuple, containing the values of the precondition and postcondition(as opposed to per-
forming a comparison of expected and actual outputs)



Page 2

The execution of a test case and a validation aresimilar, but have different intents.The purpose of a test case is to
determine if the implementation of an operation produces the correct output.The purpose of a validation is to deter-
mine the validity of the preconditions and postconditions for anunimplementedoperation.

Test cases can be thought of as a way to incrementally debug an implementation. When a test case fails, it means
either the expected outputs weren’t what they were supposed to be, or more often, that the expected outputs were
correct but the implementation failed to produce them when it should have. In this case, one looks at the implemen-
tation to figure out what went wrong.

Validations can be thought of as away to incrementally debug a specification. In particular, when the boolean value
of the validated postcondition is false, it means that either the given outputs weren’t what they were supposed to be,
or or more often, that the postcondition does not accurately define the correct output condition.In this case, one
looks at the condition logic to figure out what’s wrong.

Need to supply a couple examples to illustrate concretely how validations are used to debug postconditions.Also,
we’ll discuss the fact that verified validations can be 100% reused as implementation-level test cases.

Running Validations

Based on the preceding description, running a validation involves the evaluation of the precondition and postcondi-
tion expressions. Exceptfor quantifiers, this evaluation is straightforward -- it’s the same as normal boolean expres-
sion evaluation.

For conditions that contain quantifiers, the trick for evaluation is to determine the value set to use. This is still
straightforward for closed-form quantifications, i.e., ones involving the ’in’ f orm infmsl. For example, the evalu-
ation of the following quantified expression

forall (x in l) x >= 0

entails the evaluation of#l sub-expressions, withx successively bound to each value of l, in any order. The value
of the entireforall expression is the booleanand of all the subexpressions.

The only "trick" in quantifier evaluation is for the unbounded forms. Consider this example,

obj UserRecord = name:string and id:integer and ...
forall (ur: UserRecord) ur.name != nil

The question here is for what particularUserRecord values should the quantifier be evaluated? Thereare these
approaches:

1. usesome heuristics to determine a "reasonable" set of values to use; such heuristics are derived from well-
known techniques for automated test case generation

2. useactual values ofUserRecord variables that have been bound during preceding validations of the opera-
tion in which the quantified expression appears

3. useactual values ofUserRecord variables that have been bound during an entire interactive session, for all
validated operations

4. useactual values ofUserRecord variables that have been bound during an entire interactive session, for all
validated and invoked operations

These approaches are not entirely mutually exclusive.

What follows is a sketch of some further details, to be expanded upon in the coming weeks.

For your thesis, dealing with the first approach should involve asmall subset of known heuristics, as a proof of con-
cept. Inlieu of detailed work with these heuristics, you could implement a GUI that allows developers to enter sam-
ple values manually, in the form of tabular test plans.

Dealing with approaches 2-4 uses the same basic mechanism -- caching values when operations are validated, and if
necessary, inv oked. Cachingin this context simply means recording a set of input values for each operation, and
using that set as the current means to bound any quantifier evaluation.



Page 3


