
Spec Language Overview Page 1

Overview of the SpecL
Formal Modeling and Specification Language

1. Intr oduction

This document summarizes a formal modeling and specification language (SpecL).The material introduced here is
covered in additional detail in the SpecL Reference Manual and the Formal Specification Primer.

SpecL is a hybrid of features found in other modeling and specification languages. The basic features for specifying
objects and operations are found in a long historical line of modeling languages. These include SADT (Structured
Analysis and Design Technique) [Ross 77], PSL (Problem Statement Language) [Teichroew 77], RMF (Require-
ments Modeling Framework) [Greenspan 82], OMT (Object Modeling Technique) [Rumbaugh 91], and most
recently UML (Unified Modeling Language) [Rumbaugh 99].

The purpose of SpecL is to describe precisely the external structure of the objects and operations in a software sys-
tem. Whilelanguages such as UML have useful features for structuring a specification, they are not fully formal.
SpecL includes features for formal specification, as found in such languages as Larch [Guttag 85], OBJ [Goguen
88], and OCL (Object Constraint Language).An SpecL specification is typically developed in sequences of refine-
ments, where definitions of objects and operations are gradually made more formal.

In SpecL, a specification consists of two parts: (1) anobject-orientedmodel, and (2) aoperation-orientedmodel.
Dividing a specification into these two parts promotes the concept of multiple views of the same system. One view
focuses on the system from the perspective of the objects (i.e., data), the other from the perspective of the operations
(i.e., functions). Neither view is the correct one -- both convey aspects of the same system in different ways.
Depending on the natural orientation of the system being specified, one form of view may be the more natural.

Whichever is the more natural view, a requirements specification should always contain both. In this way, the two
views provide a form of cross checking on specification consistency and completeness. Something that may have
been overlooked in the object-oriented view may show up naturally in the operation-oriented view, and vice versa.
When complete, the pair of views provide separate parts of a mutually consistent specification of a system.

2. Underlying Principles

SpecL, and similar languages such as UML, share some common underlying principles. The principles are:

1. Object/Operation Model-- a specification is comprised fundamentally of two forms of entity:objectsand
operations; these entities have well-defined relations to one another.

2. Hierarchy -- the primary relation between entities of the same type ishierarchy; that is, an entity is com-
posed hierarchically of components, which may in turn be further hierarchically decomposed.

3. Input/Output Relationships-- the primary relation between objects and operations isinput/output; specifi-
cally, operations take objects as inputs and produce objects as outputs.

4. Attribute/Value Pairs -- in addition to relations to other entities, an entity may have other generalattributes
that further describe its properties and characteristics.

5. Composition Primitives-- when an entity is decomposed into components, specific forms of composition are
used; the forms in SpecL are:

a. andcomposition: an entity is composed as aheterogeneous collectionof components

b. or composition: an entity is composed as aselected one ofa heterogeneous collection of components

c. repetitivecomposition: an entity is composed as ahomogeneous collectionof zero or more components

d. functional composition: an object is composed as afunction from input objects to output objects

e. recursive-- an entity may contain itself as a component.

6. Class/Subclass/Instance Composition-- a secondary form of hierarchical relation is that ofclass/instance;



Spec Language Overview Page 2

an entityclassdefines a generic entity template; an entitysubclassor instancespecializes the generic class
by adding additional attributes.

7. Object/Operation Duality -- the composition and relational forms apply equally to both objects and opera-
tions; that is, both objects and operations can be decomposed hierarchically, with general attribute/value
pairs, and defined as classes.

8. Strong Typing -- all objects in a specification define a formaltype; SpecL formulas and expressions are type
checked to confirm that object names are used in type-correct contexts.

9. Functional Operations-- all operations arefully functionalandside effect free; an operation may only access
explicit input objects, and may effect change only through explicit output objects.

10. Declarative Specification-- a specification declares structure and function without specifying operational
details.

3. SpecifyingObjects

An object is specified in a fixed format showing its components and other attributes. Thegeneral form is as follows:

object name [=]
components: composition expression defining subobjects;
[operations: list of applicable operations;]
[equations: formal equational specification;]
[description: comment or entity name;]
[user-defined attributes: comment or entity name;]

end [name];

where boldface terms are keywords, italic terms are variables, and optional terms are enclosed in square brackets.
For example,

These examples illustrate the use of thecomponents anddescription attributes. Examplesof the other object
attributes (operations, equations, user-defined attributes) are given in the SpecL Reference Manual.

4. SpecifyingOperations

An operation specification is much like an object specification. The general form is as follows:

operation name
[components: composition expression defining suboperations ;]
inputs: list of objects;
outputs: list of objects;
[precondition: formal predicate on inputs;]
[postcondition: formal predicate on inputs and outputs;]
[description: comment or entity name;]
[user-defined attributes: comment or entity name;]

end [name];

where terms enclosed in square brackets are optional.For example:

This example illustrates the use of theinputs, outputs, and description attributes. Examplesof the other
operation attributes (components, precondition, postcondition, and user-defined attributes) are given in
the SpecL Reference Manual and Formal Specification Primer.

5. Advanced Features

5.1. Inheritance

An object or operation specifies a class from which other objects or mayinherit. This form of inheritance is concep-
tually the same as in object-oriented programming languages.For example,

This example specifies that the general class of ScheduledItem has a title, start date and end date.Objects that



Spec Language Overview Page 3

inherit from (i.e., specialize) ScheduledItem have the three components of a ScheduledItem, plus additional special-
ized components of their own. Inheritancecan be multiple levels deep. For example, more specialized forms of
meeting could be defined by inheriting from the Meeting object, as in

where these definitions would add appropriate new components to a meeting.

5.2. Namesand Types

In the examples so far, the components of an entity have been shown as simple names. E.g., ScheduledItem compo-
nents are Title and StartDate and EndDate.A more detailed way to specify components is to use a name:type pair.
For example,

object ScheduledItem
components: t:Title and sd:StartDate and ed:EndDate;
...

Here, the name component of the name/type pair is a local name by which the component is known. Thenames are
t, sd, and ed in this example. Thetype component is the name of a defined object, as in the original definition of
object ScheduledItem above. Types in this example areTitle, StartDate, andEndDate.

Component names are used to refer to object components in formal preconditions and postconditions. Examples of
these uses appear in the Reference Manual and Primer.

5.3. Modules

For large specifications, it can be convenient to organize object and operation definitions intomodules. The basic
format of an SpecL module is the following:

module name;
[imports]
[exports]
[attribute definitions]
[entity definitions|
[formal definitions]

end [name];

where terms enclosed in square brackets are optional.For example:

This example illustrates the use of the module imports, exports, and the placement of object and operation defini-
tions. Examplesof the other module declarations (user-defined attributes and formal definitions) are given in the
SpecL Reference Manual.

6. Tabular and Graphical Notation

Models specified in SpecL can be depicted in tabular and graphical forms. The tabular form is called a "data dictio-
nary", that lists the major attributes of objects and operations.Data dictionaries are a very well established format
that have been used in software engineering for many years.

The graphical notation uses concepts from the Unified Modeling Language (UML) and some other commonly used
graphical forms. UML is the most recent in a long line of graphical modeling notations that date back as far as the
mid-70s with SADT [Ross 77] and PSL/PSA [Teichroew 77]. Thedevelopment of UML was a collaborative effort
of primarily commercial organizations, led by the Rationale Corporation.The goal for UML has been to develop a
standard graphical modeling notation.UML is a consolidation of concepts used in earlier notations, in particular the
Object Modeling Technique (OMT) [Rumbaugh 91].

UML has a number of features that are not used in the notation described here. In addition, UML is missing certain
features that are convenient for diagramming SpecL models, in particular dataflow diagrams. Wherea feature is
available in UML, the same feature is retained here.Where UML is missing a useful feature, a previously existing
standard is used in such a way as not to conflict with UML features.Also of note are some terminology differences



Spec Language Overview Page 4

between the notation presented here and UML.In particular, the terms "object", "component", and "composition"
are used here as they relate to SpecL. These terms are used differently in standard UML.

6.1. DataDictionaries

Data dictionaries are common notation for describing objects.A data dictionary shows objects, their components,
and descriptions. Figure 1 shows the data dictionary format for the object definitions given as examples in Sections
2 through 5 above. There is no semantic difference between objects defined in a data dictionary versus the textual
notation.

As commonly used, data dictionaries are typically a less formal notation than a complete language such as SpecL.
Therefore the details of how data dictionaries are used in practice can vary among different authors. In some uses,
there is no separate components column, so that everything about the object is described in the prose description col-
umn. Also,the exact notation used in components definitions may vary. For example, some authors use "+" instead
of "and" for defining tuples.

Object Name Components Description

Appointment inher its from ScheduledItem

adds Star tTime and Duration and Location
and AppointmentSecurity and Prior ity and
RemindInfo and Details

An Appointment adds a number of components to
a gener ic ScheduledItem. The Star tTime and Du-
ration indicate when the appointment starts and
how long it lasts. The Location is where it is held.
The AppointmentSecurity indicates who can see
that the appointment is scheduled. Pr ior ity is how
impor tant the appointment is. RemindInfo indicates
if and how the user is reminded of the appointment.
Details are free for m text describing any specific
appointment details.

Calendar ScheduledItem* A calendar is composed of zero or more scheduled
items.

ScheduledItem Title and StartDate and EndDate A ScheduledItem is the generic definition for the
types of items stored in a calendar. A Sched-
uledItem has a title, star t date, and end date. Spe-
cializations of ScheduledItem are Appointments,
Meetings, Events, and Tasks, q.q.v.

Meeting inher its from ScheduledItem

adds Star tTime and Duration and Location
and MeetingSecurity and Prior ity and Re-
mindInfo and Attendees and Details and
Minutes

Like an Appointment, a Meeting adds components
to a generic ScheduledItem. A Meeting differs from
an Appointment as follows: (1) Security for an ap-
pointment includes a private option that is not avail-
able for meetings. (2) Meetings have Attendees
and Minutes components, Appointments do not.

StaffMeeting inher its from Meeting

adds ...

UserMeeting inher its from Meeting

adds ...

Figure 1: Example Data Dictionary.



Spec Language Overview Page 5

There is a tool for SpecL specifications that automatically generates data dictionaries in HTML form. The SpecL-
to-dictionary generator is called "specldoc". It is described in the documentation for the SpecL translation tools.

6.2. ClassDiagrams

A class diagram depicts the composition and inheritance relationships among SpecL objects. It can also show the
operations that are associated with an object, where "associated with" means those operations listed in an object’s
operations attribute. Theelements of a class diagram are the following:

1. three-partboxes, labeled at the top with an object name
a. componentnames appear immediately below the object name in the three-part box
b. operations names follow the component names in the three-part box

2. one-partboxes, labeled inside with the object name only

3. ovals (or circles) labeled inside with the name of an operation

4. connectingedges between object boxes, with three forms of augmentation:
a. ahollow triangle, depicting an inheritance relation
b. ahollow diamond, depicting a composition relation
c. a’*’ or an integer next to a hollow diamond, indicating multiplicity of composition

Figure 2 shows the general structure.Tw o equivalent graphical forms are shown on the left, with the corresponding
textual form on the right.

The diagram on the top left of the figure shows components and operations using the three-part box notation.The
diagram on the bottom left, labeled "Alternative Equivalent", shows the equivalent relations using the hollow dia-
mond notation.To illustrate how modeling concepts are common in a variety of languages and notations, textual
forms are shown in Java and C++, as well as in SpecL.All fiv e forms in the figure (two diagram forms, three textual
forms) have the same abstract meaning.

Figure 3 shows the basic form of multiplicity annotations, as well as two-way containment. The diagram shows that
Obj1 has exactly 2Obj2’s and thatObj2 has zero or moreObj1’s.

The three-part notation for composition versus the hollow diamond notation are two equivalent forms that have the
same meaning. Composition can be shown in either way separately, or with the two forms combined in a single dia-
gram. Whenthe two forms are used together, components should not be repeated. That is, each object component
should be shown in the second part of a three-part box or shown as a hollow diamond attachment, but not shown in
both ways in the same diagram.A UML convention is to show atomic components in the second part of a three-part
box and non-atomic components as hollow-diamond attachments. In SpecL, atomic components are integer, real,
string, boolean, and opaque objects.An opaque objecthas no components at all, just a name. It is conceptually
comparable to an enumeration literal in common programming languages.

Figure 4 shows an example class diagram depicting the object definitions given as SpecL examples in Sections 2
through 5 above.

Figure 2: General Structure of a Class Diagram.

Figure 3: Tw o-Way Containment in a Class Diagram.

Figure 4: Example class diagram.



Spec Language Overview Page 6

6.3. Dataflow Diagrams

A dataflow diagram depicts the flow of objects between operations in a specification. Elements are:

1. circularor oval graph nodes, depicting operations

2. directedinterconnecting edges, depicting operation inputs and outputs

3. graphlevels, depicting operation hierarchy

Figure 5 shows the general structure. The leveling in the diagram depicts the level of operation components.The
interconnection lines show flow of data between operations, based on input/output types. In order for the digram to
be legal, the dataflow must match the input/output declarations in the specification.For example, the connection
betweenOp1a andOp1c is legal becauseOp1a has an output of typeData1 andOp1c has an input of this type.

A dataflow diagram is only apossibledepiction of flow since the interconnections actually show more information
than is in the abstract SpecL specification. That is, the specification defines the input and output types of each oper-
ation, but does not require that they be interconnected as shown in any particular dataflow diagram.

6.4. Package Diagrams

A package diagram is for large-grain modeling, showing the relationship between modules. Elements of a package
diagram are the following:

1. folder-shaped rectangles, labeled inside with the name of a module

2. directedinterconnection lines, abstractly depicting communication between modules
a. linelabels in regular font are object names, depicting data communication
b. line labels in italic font are operation names, depicting functional communication

Figure 6 shows the general structure.The diagram shows Module1 sending data of typeObj1 to Module2.
Module2 invokesOp1 in Module1. Module1 andModule3 send data of typeObj2 to each other.

The interconnectionabstractlydepicts communication in that the diagram does not show the details of the communi-
cation. For data communication, the package diagram indicates that one module sends data to another, without indi-
cating the operation that produces the data.With functional communication, only the name of the operation is given
without indicating the details of input and output.

7. Conclusion

SpecL is a formal and mechanically checkable language for requirements modeling and formal specification. It is
based on principles found in many requirements specification notations, both graphical and textual. Independentof
syntactic details, virtually all notations share a common set of underlying principles, most notably object modeling,
operation modeling, and hierarchical model decomposition.

References

[Goguen 88] J. A. Goguen and T. N. Winkler, "Introducing OBJ3", SRI International Technical Report, Palo Alto,
CA, August 1988.

[Greenspan 82] S.J. Greenspan, J. Mylopoulos, and A Borgida, "Capturing More World Knowledge in the

Figure 5: General Structure of a Dataflow Diagram.

Figure 6: General Structure of a Package Diagram.



Spec Language Overview Page 7

Requirements Specification",Proceedings of the Sixth International Conference on Software Engineering,
1982.

[Guttag 85] J. Guttag, J. J. Horning and J. M. Wing, "The Larch Family of Specification Languages",IEEE Soft-
ware, May 1985.

[Rumbaugh 91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, "Object-Oriented Modeling and
Design", Prentice-Hall, 1991.

[Rumbaugh 99] Rumbaugh J., I. Jacobsen, G. Booch, "UML Reference Manual", Addison-Wesley.

[Ross 77] D. T. Ross, "Structured Analysis (SA): A Language for Communicating Ideas",IEEE Transactions on
Software Engineering, January 1977.

[Teichroew 77] D. Teichroew and E. A. Hershey III, "PSL/PSA: A Computer-Aided Technique for Structured Docu-
mentation and Analysis of Information Processing Systems",IEEE Transactions on Software Engineering, Jan-
uary 1977.


