Spec Language Overvie Page 1

Overview of the SpecL
Formal Modeling and Specification Language

1. Introduction

This document summarizes a formal modeling and specification language (Speeltaterial introduced here is
covered in additional detail in the SpecL Reference Manual and the Formal Specification Primer.

SpeclL is a Wbrid of features found in other modeling and specification languages. The basic features for specifying
objects and operations are found in a long historical line of modeling languages. These include SADT (Structured
Analysis and Designekhnique) [Ross 77], PSL (Problem Statement Languag@&hibev 77], RMF (Require-

ments Modeling Framork) [Greenspan 82], OMT (Object Modelingedhnique) [Rumbaugh 91], and most
recently UML (Unified Modeling Language) [Rumbaugh 99].

The purpose of SpecL is to describe precisely the external structure of the objects and operationsdressgseftw

tem. Whilelanguages such as UML Ve wseful features for structuring a specificationythee not fully formal.

SpeclL includes features for formal specification, as found in such languages as Larch [Guttag 85], OBJ [Goguen
88], and OCL (Object Constraint Languagén SpecL specification is typically deoped in sequences of refine-
ments, where definitions of objects and operations are gradually made more formal.

In SpeclL, a specification consists ofotparts: (1) anobject-orientedmodel, and (2) aperation-orientednodel.
Dividing a specification into these dvparts promotes the concept of multiplewseof the same system. Onewie
focuses on the system from the perspeatf the objects (i.e., data), the other from the persgedithe operations
(i.e., functions). Neither vie is the correct one -- both cery apects of the same system in differergys:
Depending on the natural orientation of the system being specified, one forw afiagebe the more natural.

Whichever is the more natural vie a requirements specification shoulavays contain both. In this &y, the two
views provide a form of cross checking on specification consigtamt completeness. Something that mayeha
been eerlooked in the object-oriented wiemay shev up naturally in the operation-oriented wieand vice \ersa.
When complete, the pair of views provide separate parts of a mutually consistent specification of a system.

2. Underlying Principles

SpecL, and similar languages such as UML, share some common underlying principles. The principles are:

1. Object/Opeation Model-- a specification is comprised fundamentally o6 tierms of entity:objectsand
operations these entities v well-defined relations to one another.

2. Hierarchy -- the primary relation between entities of the same tyeimrchy; that is, an entity is com-
posed hierarchically of components, which may in turn be further hierarchically decomposed.

3. Input/Output Relationships the primary relation between objects and operatiomspist/output specifi-
cally, operations ta& dbjects as inputs and produce objects as outputs.

4. Attribute/\&lue Rairs -- in addition to relations to other entities, an entity mayehaher generahttributes
that further describe its properties and characteristics.

5. Composition Primitives- when an entity is decomposed into components, specific forms of composition are
used; the forms in SpecL are:

. andcomposition: an entity is composed asetengeneous collectiomf components

. or composition: an entity is composed asetected one af heterogeneous collection of components

. repetitivecomposition: an entity is composed dsoanaeneous collectiof zero or more components

. functional compositionan dject is composed agfanction from input objects to output objects

. recursive-- an entity may contain itself as a component.

O O O T Q

6. Class/Subclass/Instance Compositiora secondary form of hierarchical relation is thatlaks/instance

Spec Language Overvie Page 2

an entityclassdefines a generic entity template; an ergitfpclasor instancespecializes the generic class
by adding additional attributes.

7. Object/Opeation Duality-- the composition and relational forms apply equally to both objects and opera-
tions; that is, both objects and operations can be decomposed hierarchitaligeneral attribte/value
pairs, and defined as classes.

8. Strong Typing-- all objects in a specification define a forrtygde SpecL formulas and expressions are type
checked to confirm that object names are used in type-correct contexts.

9. Functional Opeations-- all operations artully functionalandside effect e an geration may only access
explicit input objects, and may effect change only through explicit output objects.

10. Declarative Specification- a specification declares structure and function without specifying operational
details.

3. SpecifyingObjects

An object is specified in a fixed format showing its components and otheutasribl hegeneral form is as follows:
obj ect nane [=]
conponent s: conposi tion expressi on defining subobjects
[operations: |ist of applicable operations;]
[equations: formal equational specification;]
[description: comment or entity name;]
[user-defined attributes: comment or entity nane;]
end [nane];
where boldface terms areyvords, italic terms areariables, and optional terms are enclosed in squaredisack
For example,

These examples illustrate the use ofdb@ponent s anddescri pti on attributes. Examplesf the other object
attributes ¢per at i ons, equat i ons, user-defined attributes) arevgn in the SpecL Reference Manual.

4. SpecifyingOperations

An operation specification is muchdilan dject specification. The general form is as follows:

oper ation name
[conponents: composition expression defining suboperations ;]
inputs: list of objects;
outputs: list of objects;
[precondition: formal predicate on inputs;]
[postcondition: formal predicate on inputs and outputs;]
[description: coment or entity name;]
[user-defined attributes: coment or entity nane;]
end [name];

where terms enclosed in square brackets are optioakxample:

This example illustrates the use of theput s, out put s, anddescri pti on attributes. Examplesf the other
operation attributepnponent s, pr econdi ti on, post condi ti on, and user-defined attributes) areai in
the SpecL Reference Manual and Formal Specification Primer.

5. Advanced Features
5.1. Inheritance

An object or operation specifies a class from which other objects oinimet. This form of inheritance is concep-
tually the same as in object-oriented programming langudgmsxample,

This example specifies that the general class of Scheduleditem has a title, start date and &ijedégethat

Spec Language Overvie Page 3

inherit from (i.e., specialize) Scheduleditenvédhe three components of a Scheduledltem, plus additional special-
ized components of theimm. Inheritancecan be multiple keels deep. For example, more specialized forms of
meeting could be defined by inheriting from the Meeting object, as in

where these definitions would add appropriate c@nponents to a meeting.

5.2. Namesand Types

In the examples saf, the components of an entityuygabeen shown as simple names. E.g., Scheduledlitem compo-
nents are Title and StartDate and EndDa&eanore detailed &y to specify components is to use a nhame:type pair
For example,

obj ect Schedul edltem
conponents: t:Title and sd: StartDate and ed: EndDat e;

Here, the name component of the name/type pair is a local nhame by which the componew.isThemames are
t, sd, anded in this xample. Theype component is the name of a defined object, as in the original definition of
object Scheduleditem ab@ Types in this example afié t | e, St art Dat e, and EndDat e.

Component names are used to refer to object components in formal preconditions and postconditions. Examples of
these uses appear in the Reference Manual and Primer.

5.3. Modules

For large specifications, it can be eenient to oganize object and operation definitions intemdules The basic
format of an SpecL module is the following:

nmodul e nane;
[i mports]
[exports]
[attribute definitions]
[entity definitions|
[formal definitions]
end [nane];

where terms enclosed in square brackets are optiGoakxample:

This example illustrates the use of the module imports, exports, and the placement of object and operation defini-
tions. Example®of the other module declarations (user-defined attributes and formal definitionsyearénghe
SpeclL Reference Manual.

6. Tabular and Graphical Notation

Models specified in SpecL can be depicted in tabular and graphical forms. The tabular form is called a "data dictio-
nary", that lists the major attributes of objects and operatibasa dictionaries are a very well established format
that hae keen used in software engineering for gngears.

The graphical notation uses concepts from the Unified Modeling Language (UML) and some other commonly used
graphical forms. UML is the most recent in a long line of graphical modeling notations that date lzacksahé
mid-70s with SADT [Ross 77] and PSL/PSAe[dhroev 77]. Thedevelopment of UML was a collaborat dfort

of primarily commercial azanizations, led by the Rationale Corporatiorhe goal for UML has been tod#dop a
standard graphical modeling notatiddML is a consolidation of concepts used in earlier notations, in particular the
Object Modeling Technique (OMT) [Rumbaugh 91].

UML has a number of features that are not used in the notation described here. In addition, UML is missing certain
features that are ceenient for diagramming SpecL models, in particular datafiitagrams. Wherea feature is
awailable in UML, the same feature is retained haithere UML is missing a useful feature, a previousiigting
standard is used in such a way as not to conflict with UML featédss. of note are some terminology feifences

Spec Language Overvie Page 4

between the notation presented here and UMiLparticular the terms "object", "component"”, and "composition"
are used here as theelate to SpecL. These terms are used differently in standard UML.

6.1. DataDictionaries

Data dictionaries are common notation for describing objestdata dictionary shows objects, their components,
and descriptions. Figure 1 she the data dictionary format for the object definitionggias &les in Sections

2 through 5 abee. There is no semantic difference between objects defined in a data dictionary versxisidhe te
notation.

As commonly used, data dictionaries are typically a less formal notation than a complete language such as SpecL.
Therefore the details of hodata dictionaries are used in practice can vary among different authors. In some uses,
there is no separate components column, so teatthing about the object is described in the prose description col-
umn. Also,the exact notation used in components definitions raay ¥or example, some authors use "+" instead

of "and" for defining tuples.

Object Name

Components

Description

Appointment

Calendar

Scheduledltem

Meeting

StaffMeeting

UserMeeting

inherits from Scheduledltem

adds StartTime and Duration and Location
and AppointmentSecurity and Priority and
Remindinfo and Details

Scheduledltem*

Title and StartDate and EndDate

inherits from Scheduledltem

adds StartTime and Duration and Location
and MeetingSecurity and Priority and Re-
mindinfo and Attendees and Details and
Minutes

inherits from Meeting
adds ...

inherits from Meeting
adds ...

An Appointment adds a number of components to
a generic Scheduleditem. The StartTime and Du-
ration indicate when the appointment starts and
how long it lasts. The Location is where it is held.
The AppointmentSecurity indicates who can see
that the appointment is scheduled. Priority is how
important the appointment is. Remindinfo indicates
if and how the user is reminded of the appointment.
Details are free form text describing any specific
appointment details.

A calendar is composed of zero or more scheduled
items.

A Scheduledltem is the generic definition for the
types of items stored in a calendar. A Sched-
uledltem has a title, start date, and end date. Spe-
cializations of Scheduledltem are Appointments,
Meetings, Events, and Tasks, q.q.v.

Like an Appointment, a Meeting adds components
to a generic Scheduleditem. A Meeting differs from
an Appointment as follows: (1) Security for an ap-
pointment includes a private option that is not avail-
able for meetings. (2) Meetings have Attendees
and Minutes components, Appointments do not.

Figure 1. Example Data Dictionary.

Spec Language Overvie Page 5

There is a tool for SpecL specifications that automatically generates data dictionaries in HTML form. The SpecL-
to-dictionary generator is calledfecl doc". It is described in the documentation for the SpecL translation tools.

6.2. Clasiagrams

A class diagram depicts the composition and inheritance relationships among SpecL objects. It caw dls sho
operations that are associated with an object, where "associated with" means those operations listed irs an object’
oper at i ons attribute. Theelements of a class diagram are the following:
1. three-parboxes, labeled at the top with an object name
a. componenmtames appear immediately bglthe object name in the three-part box
b. gperations names follothe component names in the three-part box
2. one-parboxes, labeled inside with the object name only
ovals (or circles) labeled inside with the name of an operation
4. connectinggdges between object boxes, with three forms of augmentation:
a. ahollow triangle, depicting an inheritance relation
b. ahollow diamond, depicting a composition relation
c. a'* or an integer next to a holle diamond, indicating multiplicity of composition

w

Figure 2 shows the general structuii@vo equivalent graphical forms are shown on the left, with the corresponding
textual form on the right.

The diagram on the top left of the figure shows components and operations using the three-part box Timation.
diagram on the bottom left, labeled "AlternatiEquivalent”, shows the equalent relations using the hollodia-
mond notation.To illustrate hav modeling concepts are common in ariety of languages and notationssttal
forms are shown in ¥a and C++, as well as in SpeclAll fiv e forms in the figure (tev diagram forms, three xéual
forms) hae the same abstract meaning.

Figure 3 shwrs the basic form of multiplicity annotations, as well as-tivay containment. The diagram shows that
hj 1 has exactly Zhj 2's and thatCbj 2 has zero or morébj 1's.

The three-part notation for composition versus the hotliamond notation are twequivalent forms that hee the

same meaning. Composition can be shown in either way sepacateith the two forms combined in a single dia-
gram. Wherthe two forms are used togetheomponents should not be repeated. That is, each object component
should be shown in the second part of a three-part box or shown asvadiatttond attachment, but not shown in
both ways in the same diagrad.UML convention is to shav atomic components in the second part of a three-part
box and non-atomic components as hollow-diamond attachments. In SpecL, atomic componentgeareeabte
string, boolean, and opaque objectn opaque objechas no components at all, just a name. It is conceptually
comparable to an enumeration literal in common programming languages.

Figure 4 shows an example class diagram depicting the object definitiensagi ecL examples in Sections 2
through 5 abee.

Figure 2 General Structure of a Class Diagram.

Figure 3 Two-Way Containment in a Class Diagram.

Figure 4 Example class diagram.

Spec Language Overvie Page 6

6.3. Dataflav Diagrams

A dataflav diagram depicts the flo of objects between operations in a specification. Elements are:
1. circularor oval graph nodes, depicting operations
2. directednterconnecting edges, depicting operation inputs and outputs
3. graphlevels, depicting operation hierarchy

Figure 5 shows the general structure. Thelieg in the diagram depicts thevi of operation componentsThe
interconnection lines shoflow of data between operations, based on input/output types. In order for the digram to
be lgd, the dataflav must match the input/output declarations in the specificati@mn.example, the connection
betweerOpla andOplc is legd becausépla has an output of typBat al andQplc has an input of this type.

A dataflov diagram is only gossibledepiction of flav since the interconnections actually shmore information
than is in the abstract SpecL specification. That is, the specification defines the input and output types of each oper
ation, but does not require thatyHee interconnected as shown inygrarticular datafles diagram.

6.4. Package Diagrams

A package diagram is for large-grain modeling, showing the relationship between modules. Elements of a package
diagram are the following:

1. foldershaped rectangles, labeled inside with the name of a module

2. directednterconnection lines, abstractly depicting communication between modules
a. linelabels in regular font are object names, depicting data communication
b. line labels in italic font are operation names, depicting functional communication

Figure 6 shows the general structufehe diagram shes Modul el sending data of typ&bj 1 to Modul e2.
Modul e2 invokes Opl in Modul el. Modul el andModul e3 send data of typ€bj 2 to each other.

The interconnectioabstractlydepicts communication in that the diagram does nat/ $he details of the communi-
cation. For data communication, the package diagram indicates that one module sends data tawithotitandi-
cating the operation that produces the datéth functional communication, only the name of the operatiorvengi
without indicating the details of input and output.

7. Conclusion

SpecL is a formal and mechanically checkable language for requirements modeling and formal specification. It is
based on principles found in marequirements specification notations, both graphical atidae Independerf
syntactic details, virtually all notations share a common set of underlying principles, most notably object modeling,
operation modeling, and hierarchical model decomposition.

References

[Goguen 88] J. A. Goguen and NI. Winkler, "Introducing OBJ3", SRI International Technical RepoetioPAlto,
CA, August 1988.

[Greenspan 82] S.J. Greenspan, J. Mylopoulos, and A Borgida, "Capturing More World Knowledge in the

Figure 5 General Structure of a Dataftfdiagram.

Figure 6 General Structure of a Package Diagram.

Spec Language Overvie Page 7

Requirements SpecificationRroceedings of the Sixth International Conference on Sadtagineering
1982.

[Guttag 85] J. Guttag, J. J. Horning and J. M. Wing, "The Larch Family of Specification LanguBg#s'Soft-
ware, May 1985.

[Rumbaugh 91] J. Rumbaugh, M. Blaha, Mémerlani, FEddy, and W. Lorensen, "Object-Oriented Modeling and
Design", Prentice-Hall, 1991.
[Rumbaugh 99] Rumbaugh J., I. Jacobsen, G. Booch, "UML Reference Manual", Addisop-Wesle

[Ross 77] D. TRoss, "Structured Analysis (SA): A Language for Communicating IdéBEE Transactions on
Softwae Engineering January 1977.

[Teichroav 77] D. Teichroav and E. A. Hershglll, "PSL/PSA: A Computer-Aided Technique for Structured Docu-
mentation and Analysis of Information Processing SystelBEE Transactions on SoftwarEngineering Jan-
uary 1977.

