A Formal Specification Primer --
A Companion Document to the SpecL Reference Manual

Version 4, September 2006

Contents
I [(oo ¥ Tox 1 o] o TSR 3
0 T /T Y= 110 o RSN 3
2 N [] = 1o o 3
1.3. SCOPE Of tNE PIIMEI ..ot r e e e e e e s e e e e e e e s e e e e e e e e e aannnes 3
1.4. What Is a “Requirement”, What Is a “Specificatiin’.............ccccoei 4
2. TheRolodeX USEr INTEITACEcooeeeiiiiiiiiee e 4
3. DefiningODbjects and OPEIAtIONScccoiiiiiiiiiiiiiiieiiiiiiir e e e eeeeeeaas 6
TRt I 11 = g = Vot TN o [T 1= 4o 6
3.2. HeUrIStIC APPIICALION ..ottt e e e e e e e e e e e e e e e a b r e e e e e e e e e nreeeeas 7
IR T 11 L= = T =T V=T o PP 8
4. Formal Specification with Preconditions and Postconditions.............cccccceeveevveiiiiiieeeeeenns 10
4.1, NOtAtIONAI SUMIMAIY ...oeiiiiiiie ittt e e e e e e s e e e e e e e s s e e e e e e e s e asbb e reeeeeenaannes 10
4.2. Formal Specification MaXimSooooiiiiiiiiii 11
4.3. BasiC ROIOAEDESINITIONSccoeiieiieee e 12
4.4, BasiCc User-LEE REQUIFEMENTSi ittt et e e e e et e et eeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeaaaaeees 15
o I [0 B B W] o] [oF= 1 L= ST TP TP 15
o T o101 Y= 1O TN @ o T=Tod (] o TP PPPRTTPT 16
4.4.3. Ordering Of MUILI-Card LISIS ..ottt ettt e e e e e e e e e e bbbt e e e e e e e e e e e e e s e s aannbbeneeeaaaaaeas 17
4.4.4. Unbounded QUANLTICALIONuiiiii i e a e ——————— 18
4.4.5. USING AUXIIAIY FUNCHIONS ...ttt ettt et et e e e e e e e e bbb et e e e e e ae e e e e e aannnbebaeeeaaaaaaaaeas 19
5. UserLevel Refinements and ENNANCEMENTS........cooiiiiiiiiiiiiiiiiiiiiii e 19
5.1, Pattern-Based SEarCh ...ttt sttt ettt s st et et et eneeeeeeeeeees 20
I o 153 (o [>T I D I = 1 oo - SRR 22
TR T O o T o] Q01 11 o SR 23
S 1 T o OSSPSR 24
SRS U | PP PPOPPPPRPPP 24
6. ROIOUEXFIIE OPEIALIONSuueiiiiieieeeee ettt e e e e e e e e e e e et eeaaababa e e e e e e e e eaeeaaeeeeeeesnnnes 25
6.1. ADSIract File OPEIALIONSooiiiiiiiiiiiiieei ettt e aaaeens 25
6.2. More ConCrete File OPEIatiONSiiiiiieieeieae et aaeeeeeeaeeaeeeeeeeeeeeeeeeseesssesseeessssssessnnsseesennnees 27
6.3. Considering a ROIOBESYSIEM VOIKSPACE vuiiieiiiiiiiiiiiiieieeeee ettt e e e et e e e e e e e e e e e e e e e e eeeees 29
7. ConsideringOther INterface StYIES ... 30

1. Introduction

This primer presents a detailed example of formal software specification. The example is a simple electronic
Rolode system that stores and retrés information records.The system performs functions that are common to a
variety of other information processing applications. Hence, the specification techniques usedxaniple are
applicable in general to other software applications.

The example begins with the definition of a concrete user actrf Theelements of the interface are used in the

first step of the formal specification process -- the identification of the sgstbjatts and operations. Once the
objects and operations are defined, the specification is formalized by adding mathematical logic that precisely
defines system requirements and constraints.

1.1. Motivation

The major purpose of this primer is to portray formal specificationpaacdical tool. Far too mag software engi-

neers viev formal mathematics as tedious and largely iva@leto their actiities. Thisis a rather unusual vie

when one compares sofive engineering to other science and engineering disciplines. In almost all such disci-
plines, mathematical reasoning is &ergday practice.

One may argue that software engineering is moe dilonstruction project than science or "real" engineering.
Even if this were the case, the use of mathematizgdwbe no less important. No construction firm would dream of
undertaking a major building task without complete specifications, including the necessary engineering calculations.
Such calculations rely heavily on mathematical analysis.

The branch of mathematics that is mostvaieto softvare engineering igic. Both the specification and imple-
mentation of software can be defined in logical terms. Hence, mastery of mathematical logic should be as important
to the software engineer as mastery of mathematical analysis is to the civil engineer.

One cause for lack of mathematical rigor in software engineering is that mathematicsheath When gven the

chance, human nature will steer ugag from hard tasksFor example, the @il engineer might well prefer to dra

some simple pictures and perform some informal analysis when designing a bridge. Such would be the kind of anal-
ysis that is frequently considered adequate for software engineering préjetttsiately the competent civil engi-

neer knows that informal analysis is not sufficient, and that the bridge may well collapse if a careful mathematical
analysis is not performed. Thevitiengineer learns this as part of basic training, and the practice of civil engineer

ing requires that mathematical analysis is an integral part of the job.

Like the civil engineerthe softvare engineer must learn that careful mathematical reasoning is necesszep to k
programs from collapsingUnfortunately mary software engineers are not trained thieywnor does the practice of

software engineering require the samgrde of mathematical rigor as is required for other branches of engineering.

As software engineering matures into a genuine engineering discipline, the acceptance and use of formal mathemat-
ics will be an important part of its maturation.

1.2. Notation

The example in this primer isvgnh in a formal specification language called Spedlhis primer does not present a
full definition of SpecL.Rather necessary notation is introduced as the Rolatample eolves. Completeletails
of SpecL are presented in the SpecL Reference Manual, Version 4.22, August 2006.

This primer also does not provide an introduction to the fundamentals of mathematicalogiith the notation
of SpecL, the notations of predicate logic are introduced as needed kathple Thdogic used in the primer is
typically covered in a standard first course on discrete mathematics, such as CSC 245.

1.3. Scopef the Primer

The primary focus of this primer &pecification and the secondary focus lisquirements analysisRequirements
analysis entalils:

* determining what end users want and need from a computer system;

« devdoping a prototype user interface and scenarios of system usage, to help elucidate end-user require-
ments;

* devdoping usetlevel documentation that describes system functionality and requirements in terms under
standable to the end user (e.g., a users manual).

Specification entails

« defining system functionality in a formal language;
* encoding requirements in formal logic;

* iterating with the requirements analysis process as necessary to ensure thatlével vsaw and formal
specification are consistent.

In the overall context of software engineering, the interaction between requirements analysis and formal specifica-
tion is quite important. As the specification is formalized, the specifier will typicallyw@iscbanges that must be

made to the user interface in order maintain consigteBomplementarily userinitiated changes to requirements

will drive dhanges in the specification. In thigyuser-level analysis and formal specification proceed in tandem,
resulting @entually in a complete and consistent definition of a system.

In this primer the interaction between requirements analysis and specification igsiatduén order to expedite the
presentation of formal specificatiomn practice, such abbreviation should notetgdace. Thorougtconsultation
with end users shouldvadlys be an integral part of specificatiorvelepment.

1.4. Whatls a “Requirement”, What Is a “Specification”?

There are nearly as madefinitions of the terms "requirement” and "specification" as there are authors who use
them. Acommon misconception is that a requirement is an informal statement of user need and a specification is a
(more) formal statement of system functionality.

In order for a system to be formally specified, both requirements and specifications need to be formally defined.
Furthermore, in order for a system to be understandable to an enbotiseequirements and specifications need to

be presented in informal, user-accessible terms. Hence, a complete requirements/specification document consists of
two views -- a formal system wvie and an informal user we

Given these observations, the terms in question can be defined precisely as follows:

» A specificationdefines the functionality of a system, in terms of the objects and operations of which the
system is composed.

* A requirements a verifiable statement of fact made about an object or operation.

This primer uses the term "requirements specification" to refer coflgdid both parts of this definition.

2. TheRolodex User Interface

The top-leel user interfce to the sample Roladsystem is shown in Figure 1. It is a familiar menu-style iaieef
common to may types of application programThe File menu contains commands to create & R®lode file,
open an existing file, 8a the current working file, s& the current working file under aweame, print the current
working file, and git. The Edit menu contains commands to undo/redo theipus command, and cut/cgpaste
text. Finally, the Rolodex menus has commands to add & matry into the Rolodex, delete an entchange an
entry, or find an entry.

In a typical scenario of use, the user will openwa Relodex and proceed to add neentries. Subsequentlgntries
will be changed, deleted, and searched for as necedsamrysponse to each of tilodex menu commands, an
appropriate data-entry dialog box is display&dr example, a sample dialog for tlh&ld command is shown in Fig-
ure 2. In this dialog, the user types the required information and completéddhaperation by pressing thekK

Rol odex Tool

File Edi t Rol odex Hel p
New Undo Add ...

Open ... Redo Delete ...

Save Cut Find ...

Save As ... Copy Change ...

Print ... Past e

Exit

Figure I Top-Level Rolodex Interface.

button. TheClear button clears all of the typed information, leaving the dialog emphe Cancel button cancels
the Add operation, and renves the dialog from the display.

For the initial version of the interface, we will assume that Rola@eds are accessed by nanfecordingly, the
commands to delete, change, and find a card use the dialogs shown in Fiforegh of these commands, the

user initially enters a name, to which the system responds with a further command-specific dialog. The system
response t®elete is a dialog that indicates whether a card of thverghame is found, and asks for confirmation to
delete it. The response @hange is the same data-entry dialog used Aald (Figure 2). Lastly, the response to

Find is a display of the card if one of thevgi name is found, or a "not found" message otherwise.

With this basic interface description, we will proceed to formalize the specific&i@m though there are a number
of userlevel requirements that remain to be addresseéd. example, should duplicate cards be allowed in the
Rolode? If so, hav should the access commands respoi®eloping an initial formal representation will help us
address such requirements preciseffter the basic requirementsvgabeen coered, we will consider system
enhancements andwdhe enhancements can be precisely specified.

Enter Information for a Rol odex Card:

Narre: | Fi sher, Gene |
d: | 563928591 |

Age: | 47 |
Sex: | M|
Address: | 900 Bear Canyon Lane|

(X)(Clear)((:ancel)

Figure 2 Dialog for Adding a RolodeCard.

3. DefiningObjects and Operations

The initial step in formalizing a specification is to identify tigectsandoperationsof the system. Almost all Soft-

ware Engineering tebooks discuss this process in one form or anothiés sometimes called "domain analysis" or
"domain modeling".In general, the terms "object" and "operation" are quite commonly used in the same sense as
they are used here.

Textbooks describe a number of methods for object and operation identificBtiagraming techniques, such as
dataflav and entity-relationship modeling are populanother general approach is to apply heuristics that trans-
form a prose description of the system into a more formal notation. This approach begins by deriving objects from
nouns or noun phrases and operations from verbs or verb phrases.

The method used in this primer is to geritbjects and operations from a prototype user iaterf Thistechnique

has the advantage of using a necessanaertdf the requirements analysis process, without requiring extra dia-
grams or prose descriptions to bedeped. Anotheadwantage is that it provides the basis for automatically gener
ating portions of a specification from an ing&xd, and for verifying that the interface is consistent with the specifica-
tion.

3.1. InterfaceHeuristics
The following heuristics can be used to dern initial set of objects and operations from a graphical user acterf

1. Functionbuttons and menu items generally correspond to operations.
2. Data-entryscreens and output screens generally correspond to objects.

3. More specifically data-entry dialogs that appear in response ¥oking an operation generally corre-
spond to the input object(s) for theritked operation.

4. Outputreporting screens that appear in response to confirming an input dialog (e.g., with anutioK)' b
generally correspond to the output object(s) for the confirmed operation.

5. Interfice elements that alloentry of a single numbeltring, or boolean value correspond to atomic
objects.

6. Thehierarchical structure of objects is generally displayed in the amteitby nested or cascading win-
dows and boxes, with atomic elements at the lowest d nesting.

Enter Nane of Card to Del ete:

Enter Nane of Card to Change:

Enter Name to Search For:

Figure 3 Dialogs for Finding, Changing, or Deleting a Card.

3.2. Heuristic Application

Applying these heuristics to the preceding interface example, we valopléhe objects and operations for the
Rolodex system. Inparticular by the first heuristic we can identify the foling operations from th&olodex
menu in Figure 1:

operation Add;

operation Del ete;

oper ati on Change;

operation Find;

For the moment, we will focus on these operations fromRbldex menu and not yet consider the operations on

the File menu. TheRolodex operations are more central to the specific functionality of the Rqoledeereas the
File operations are more general operations that are common yoothan applications.

From the second heuristic and Figure 2 of the interface, we can identify the following object:
obj ect Card;

These basic object and operation definitions are the initial step in the formal specifitaeprare already speci-
fied in SpecL formal notation, in whiatbj ect andoper ati on are leywords, names are formal identifiers, and
the semi-colon is used as punctuation in much the same way as in a Pascal-class programming language.

The next step is to refine the initial definitiorpecifically for the operations we need to define the inputs and out-
puts. InSpecL, operation inputs and outputs angagb the names of defined objectObject refinement entails
defining the composite structure of the object, if necessary.

Applying heuristics 3 through 6, we can refine the initial object and operation definitions as follows (see Figure 4):
operation Add(Card,...)->(...);
operation Delete(Nane,...)->(...);
oper ation Change(Nane, Card,...)->(...);
operation Find(Nane,...)->(...);

object Card = Nane and Id and Age and Sex and Address;

Enter Information for a Rol odex Card:

Nane: | Fi sher, Cene |
1d: | 563928501 |
Components of
Age: | a7 | object Card
Sex: | M |
Address:l 900 Bear Canyon Lanel

(XK) (d ear) (Cancel)

| \

Confirms Add Clearj Card Cancels Add
operation object values operation

Figure 4 Identifying Object Components from the Interface.

obj ect Nane = string;
object Id = nunber;

obj ect Age = nunber;
obj ect Sex = Male or Fenal e;
obj ect Ml e;

obj ect Fenal e;

obj ect Address = string;
Here we hge introduced SpecL notations to specify operation inputs/outputs and object compdienteneral
formats of these notations are the following:

operation nanme(inputs)->(outputs)

obj ect nane is conponent-expression

The ellipses in the operation definitions indicate that there are more inputs and outputs to be \Wefiwdddis-

cuss these shortlyNote that the three-dot ellipsis symbol is syntacticalidlan SpecL, and may be usedyavhere

that an identifier is gd. Theellipsis symbol is useful to specify that something is formally missing, with the inten-
tion that it is to be expanded in the future.

As discussed in the SpeclL reference manual, component expressions can be constructed from four atomic types and
five composition operatorsTable 1 summarizes these. The composition operators should be reasonable intuiti

and are typically easy to recognize in an irsteef Thetable notes common interface forms for each of the basic
object types. See the SpeclL reference manual for more detailed discussion of object composition.

3.3. Further Refinement

To this point, we hee gplied heuristics in a straightforward mannslow we must address some technical details.

In particular we nmust consider the fact that SpecL iguactional languge What this means is that an operation

can only operate upon objects that are specified explicitly as inputs and odtperts.are no global data in a func-

tional specification. Programmers who are unfamiliar with functional languages may need some time to become
comfortable with functional reasoning\s a concrete example, let us complete the input/output specification for the
Add operation, and discuss precisely what it means.

oper ati on Add(Rol odex, Card)->Rol odex;

This specifief\dd with two inputs consisting of a Rolod@nd a Card, and a single Roled®r output. Most note-
worthy is the introduction of the meobject named Rolode We doviously need to discuss its origin.

SpecL Type | Meaning Common Interface Form

integer inteyer string editor for numbers; numeric slider bar or dial
real real same as integer

string string string editor or combo box

boolean truedlse string editor for true/false value; orffaditton

and tuple box containing other types

or union radio buttons or string editor with restricted values
* zero or more| scrollable list

-> function push button or menu item

Table 1: Basic SpecL Types.

Any system that specifies databasesligperations must v@ m object that is the database itseatabase-like
operations are precisely those that weehekfined for the Rolodesystem: Add, Delete, Change, Finérom a
functional perspectg, these operations need a database object on which to operate. The structure of such an object
is generally a collection of zero or more entries, which is represented in SpecL using the "* composition. operator
Hence, the formal definition of the Rolodis

obj ect Rol odex is Card*;
This specifies that Rolodés a mllection of zero or more Cards.

Generally large collections do not appear in toto ory anterface screenFor example, we do not expect the the
entire contents of the Roloxléo be dsplayed on the screen at ondRather the point of the system is to store items
and retrige them individually by nameGiven this, there is no olious user interface heuristic to help identify data-
base-lile dojects. Ratheme can postulate a systemvh heuristic for this purposeViz., in a system that has data-
base-lile gperations, a database object must be defined.

Given the Rolode& object, and the requirement that operations must be functional, here are the complete signatures
for the remaining Rolodeoperations:

oper ation Del et e(Rol odex, Nane) - >Rol odex;

oper ati on Change(Rol odex, Nane, Car d) - >Rol odex;

oper ation Fi nd(Rol odex, Nane) - >Car d;

Let us focus a bit more closely on the nature of a functional operafiom.most important aspect is that a func-
tional operation isside efect flee This means that an operation cannot use doject unless that object is an
explicit input. Furtheran geration may effect change only through an explicit output.

The notion that operatioreffect dhangerather than modify objects is also an important aspect of functional defini-
tion. Anoperation does not modify objects to produce output obj&tasher a fully functional operation can only
create ngv objects.

Consider the Add definition abbe When this operation performs its function, it accepts Card and Roksde
inputs. Whatit outputs is anew copy of the input Rolodex, with aew copy of the input card added into the data-
base. Inprogramming language terms, functional specification® ma global variables, no global files, and no
call-by-reference parameterk this sense, SpecL functional definitions are similar to definitions in functional pro-
gramming languages such as pure LISP and ML.

The fully functional specification of operations is sometimes coumtgitive, particularly in the case of Ige

objects in a transaction-oriented systefRor example, one might consider the explicit input and output ofgelar
database to be unnecessary and/ofigiefit. Itis necessary since in order to construct a result that containg a ne
record, the original database must be input. It cannot be assumed that the operation will read from some stored data-
base file or other external storage structure.

With regards to implementation f€iengy, this matter is strictly not of concern in an abstract specificatlbis
almost certainly not the case that an implementationldvcopy entire databases from input to outpudowever,
such implementation concerns are beyond the scope of the specifiddtmspecification states in functional terms
what an operation does, including all inputs and outputs that it Assghsequent implementation can use whate
efficient techniques arevalable, as long as the implementation meets the abstract specification.

While there is some debate as to the utility of functional programming languages, there is little debate for specifica-
tion languagesThere is wide agreement that a formal specification language needs to be functional. This property
is necessary to ensure that specifications are formally soundedfidble. Inparticular the predicatie gyle of

L A signatureis the specification of the input and output types of an operation.

2 This is not to say that efficient system performance is to be ignored in a requirements specifittatierer, perfor-
mance constraints should be specified in uset4erms, not by algorithmic specification.

specification presented in the next section of the primer relies fundamentally on the functional property of opera-
tions.

4. Formal Specification with Preconditions and Postconditions

Having completed the initial phase of specification, we are ready to formalize the object and operation definitions
fully. The formal technique used in the primer is based on opegatgonditionsandpostconditions A precondi-

tion is a predicate (i.e., boolean-valueghression) that is true before an operatigecates. Apostcondition is a
predicate that is true upon completion of an operat®ince pre- and postconditions are predicates, this style-of for
mal specification often callgutedicative

The pre- and postconditions are used to specify fully what the system does, includinglallelisegquirements for
the system. In practice, formal specification is part of theradl process of requirements specification, which
entails:

cathering user-lkeel requirements via interface storyboards and usage scenarios;

identifyingobjects and operations;

formalizingwith pre- and postconditions;

refininguser-level requirements

S S

refiningobject and operation definitions
6. iteratingsteps 3-5 until done.

The "until done" step rolves two levds of validation. Firstwe must alidate that the specified system is complete
and consistent from the end usegerspectie. That is, the system meets all end-user needs and does sain a w
that is wholly satisfactory to the end us&his is accomplished by continued consultation with the end inskrd-

ing user interaction with the system prototype.

The second lel of validation irvolves completeness and consistefiom a formal perspeet. This can be
accomplished in a number ofays. Inthe case of mechanized specification languages, such as SpecL, some com-
pleteness and consistgnthecking is done using a computer-based analyxeother valuable validation technique

is peer reiew via formal walkthroughs. Alsothere are techniques for formal specification testing, including the
postulation and proof qfutative theaems Such theorems define properties of the system thakpeceto be true,

and which can be pved true formally with respect to thevgh system specification.

The formal specification examples presented in the primer #been run through the SpecL checkand are
therefore complete to the extent guaranteed by that tool. Other forms of formal testingoakthe scope of the
primer.

4.1. NotationalSummary

The specification examples to follause the SpecL variant of formal logiévailable operations include predicate

logic, arithmetic, lists, tuples, unions, and strings. These operations are summarizddeir2. TFor complete

details, the reader should consult the SpecL reference mahuallogic of SpecL is comparable to other formal
specification language9A slight difference between SpecL and a number of contemporary languages is the use in
SpeclL of lists instead of setBormally, both lists and sets can be fully axiomatized, so there no lack of formality in
the use of lists.Overall, the use of lists instead of sets results in little difference in a specification. Set notation
malkes certain lov-level specification easier than with lists, such as operations that can be modeled with set union
and diference. Orthe other hand, list notation makes other forms of specification easier than with sets, such as
specification of ordering constraints.

Predicate Logic:

Operator Description

and logicaland

or logicalor

not logicalnot

= logicalimplication

<=> logical equialence
if-then-else conditionathoice

forall universal quantification
exists &istential quantification
Arithmetic:

Operator Description

+ addition

- subtraction

/ division

* multiplication

length

Lists:

Operator Description

[el,....en] constructiofelementwise)
[el..en] construction (inclug range)
L[n] selection(nth, from 1)
L[m:n] selection(mth - nth)

+ concatenation

- deletion

in membership

length

Tuples:
Operator Description
{el,....en} construction
selection
Unions:
Operator Description
. selection
? tag interrogation
Strings:
Operator Description
"Xxx" construction
L[n] selection (nth)
L[m:n] selection (mth - nth)
+ concatenation
in membership
length
explode comert to list
implode conert from list
Relational:
Operator Description
= equal
I= notequal
< less than
> greater than
<= lessthan or equal to
>= greater than or equal to

Table 2: SpecL Notation Summary.

4.2. Formal Specification Maxims

In developing ary formal software specification, it is useful to obsehe following two maxims:

1. Nothingis obvious.

2. Never trust the programmer.

The first maxim relates primarily to udewel requirements. lis often easy to think that a requirement idfisuf
ciently obvious that it need not be stated formallize problem with this thinking is that one persoadvious is not
always the same as anotterTo ensure that a specification is sufficiently precise, stating the "obvious" is necessary

The second maxim is necessaryvoid nasty surprises in an implementation. In gnaases, we might consider an
application to be siitiently simple that we can trust the programmer to get it right. In general, such trust is a bad
idea. ltis better for the specifier to maintain a respectfully adversarial relationship with the implementor.

10

4.3. BasicRolodex Definitions

We ae naw ready to define the basic formal specifications for the Relsgem. Asa matter of style, we will first
state a predicate semi-formally in English, and then refine it to formal I®bie.English version can be retained as
a omment, to aid in the human understanding of the specification. Let us begin with thexRalddzperation:
operation Add(r: Rol odex, c: Card)->(r’: Rol odex)
precondition: (* None *);
postcondition: (* The given card is in the output Rolodex. *);
end Add;

Some n&/ SpecL notation has been introduced here. First is xpareled syntax for an operation definition, the
general format of which is the following:
operation nane(i nputs)->(outputs)
attri butes;
end [nane]

The attributesspecify properties of the operation, which can be system- and/edefseed. Thepr econdi ti on
andpost condi ti on attributes are system-defined.

Other nev notation is the addition of names for the inputs and outplitiull operation signature has the follimg
general format:

oper ation operation-nane(i nput-nane:type,...)->(output-nane:type,...)

As described in the SpecL reference manual, objects define fiymaglin the same sense as in strongly-typed pro-
gramming languagesGiven this, an SpecL operation definition is analogous to a procedure (or function) definition,
such as the following Pascalese version of the Add operation:

procedur e Add(Rol odex; Card) : Rol odex;

Such a definition is sufficient to define the type signature of the procddaveaver, in a mmplete procedure decla-
ration, the parameters must beeagi names so thecan be referenced in the procedure bodgnce, a full declara-
tion for the abwe pocedure is

procedure Add(r: Rol odex; c: Card): Rol odex;

In an SpecL operation definition, the input and output objects must be referenced in the pre- and postcondition predi-
cates. Henceparameter names in an operation definition esesgentially the same purpose as in a programming
language procedure definitioWiz., they provide the means to identify specific input and output objects by name.

There are tw major syntactic differences between an SpecL operation signature and a comparable procedure decla-
ration in a Pascal-class languadénlike nost programming languages, the single apostrophe charactgdimle

an SpeclL identifier By corvention, if an operation uses the same type as both an input and output, the name of the
output is the same as the input with an apostrophe appended, and the apostrophe is read "prime". The other syntac-
tic difference is the explicit naming of output objects. Most programming languages do not supporalonedti-v
functions, and the output of a function is specified operationally withtair n statement. lran SpecL specifica-

tion, the formal specification does not contain an operational "return”, so the output object(s) mumicity e

named for reference purposds.addition, SpecL supports multi-valued operations, which require outputs to be dis-
tinguished by separate names.

The final piece of ne notation is the syntax for SpecL commenihey are enclosed in the bracketé*" and
n*) n'

Having covered notation, we can return to the main focus of formal specification. The English comment for the Add
postcondition specifies the most fundamental property of an Add operation -- upon completion of the operation, the
given Card is in the output Rolode Formally,
operation Add(r: Rol odex, c:Card)->(r’: Rol odex)
precondition: (* None *);
post condi ti on:

cinr’ (* The given card is in the output Rolodex. *);
end Add;

11

Thei n operator is built-in list membershipts operands are an object and a list of that objentthis case the op-
erands are a Card and a Card* (a Rolodex).

Having no precondition is equilent to a precondition of true. In general true preconditions are reasonabte, gi

that there is no specific condition that must be met before the operagjims.bénthe case of the RologeAdd
operation, a true precondition is probably not strong enough, particularly if we need to impose a requirement that
disallows duplicate entries in the RoladéMe will address this requirement a little later.

One of the fundamental questions that must be asked of pre- and postconditiony & dtreng enough In gen-
eral, adding additional predicate clauses will strengthen the condiffang&xample, the true precondition for Add
is relatively weaker than one that specifies that the input card is not already in the input Rolodex.

In general, there are tnams to strengthening a specification.

1. Ensuringhat all user-leel requirements are met (cf. Maxim 1 abp
2. Ensuringhat a system implementation works properly (cf Maxim 2).

The former is accomplished via continued consultation with the end Tisedatter requires an experienced analyst,
who understands the kinds of problems that may arise in a system implementation.

In the case of the Rolodand similar database applications, an area of potential implementation error is the intro-
duction of spurious entries into the database and/or the spurious deletion of dutréesid such spurious opera-
tions, the specification of Add can be strengthened as follows:
operation Add(r: Rol odex, c: Card)->(r’:Rol odex)
precondition: (* None *);
post condi ti on:

(* The given input card is in the output Rolodex. *)
cinr’

and

(* Any other card is in the output Rol odex
* only if it is in the input Rol odex *)
forall (c':Card | ¢’ !=¢c)
if (¢’ inr)
then (¢’ inr’)
else not (¢ inr’);
end Add;
This specification introduces the use of thevensial quantification operatafor al | . Universal quantification in
SpecL has the same meaning as in standard (typed) predicate logic. The general format is the following:

forall (x:t) predicate

This is read "for all aluesx of typet, predicateis true" wherex must appear somewhere predicate There are
also two extended forms of or al | , shown in Table 3. In general, urérsal quantification is used frequently when
specifying predicates on list objects, as upcoming examples illustrate.

While this example is a good illustration of specification strengthening, there are emsetovspecify the same
meaning in SpecLFor example, the postcondition logic can be simplified to the following:
operation Add(r: Rol odex, c: Card)->(r’:Rol odex)
post condi ti on:
forall (c’:Card)
(c’ inr’) iff ((c¢ inr) or (¢ =1¢));

3 Thei n operator is verloaded to accept vist operands, as well.

12

Extended Form Reading Equivalent To

forall (x:t | pl) p2 | Foral xof typet, such that | forall (x:t) if pl then p2
plis true,p2is true.

forall (x inl) p For all xinl, pis true. forall (x:basetype(l)) if x in | then p

Table 3: Extended forms of umérsal quantification..

end Add;
In general, predicate simplification is beneficial when it helps clarify the specification.

Another way to simplify this specification is to use a constradist operataras bllows:

operation Add(r: Rol odex, c: Card)->(r’: Rol odex)
post condi ti on:
r =r +c;

end Add;
where '+’ in this context is the list append operatAs a natter of style, this primer presergralytic rather than
constructivespecifications. Generally onstructve Pecification is one that describes the output of an operation
using a construate goeration on the inputs, whereas an analytic specification describes output without using con-
structve qperations. IrSpecL, the construe® qerations are those described as "construction” in Tabld&re is
debate among software engineers as to thevwelatrits of constructie vasus non-construete Pecification, it
further discussion of this topic isyaend the scope of the primein this primer dl specification examples are ana-
Iytic.

Given the deelopment of Add thusa, we @an provide a comparablevig of formal specification for the other three
Rolodex operations. Irorder to do so, we obserthat the remaining operations each takes a card name as Toput.
formalize these operations, we must be able to refer tdathe component of a card. This leads to a very common
occurrence in the process of formalizing a specificatidamely we reed to update the definition of axisting
object, based on the need to specify a requirement preciHedyupdate required here is to yice names for the
components of the Card object, so that the components can wduatly referenced. Here is the updated defini-
tion:

object Card is nane: Nane and id:1d and age: Age and sex: Sex and addr: Addr ess;

This definition uses name/type pairs in the same manner as in a full operation signature. In a predicate, the named
fields of a Card can be referenced using theperator which has a comparable meaning to its use in a program-
ming language.That is, an SpecL tuple defined wihd composition is essentially the same as a record structure

in a programming language. & this, the ".is used to select a field of the tuple.

With this update to the Card object, here are the initial formal specifications for the Delete and Change operations.
These specifications include "no spurious data" requirements.

op Del ete(r: Rol odex, n:Name)->(r’: Rol odex)
pre: ;
post :
(* Cards in the output Rol odex consist of those
* in the input Rol odex, except for those with
* the sane name as the given input nane. *)
forall (c’:Card)
(¢’ inr’) iff ((c¢ inr) and (c’'.name !'=n));
end;

op Change(r: Rol odex, n:Name, c:Card)->(r’:Rol odex)
pre: ;

13

post :
(* The given card is in the output Rol odex *)
(cinr’)

and

(* No other cards of the sane name are in the Rol odex *)
forall (c':Card | ¢’ !=¢c)
(¢’ inr’) iff ((c¢ inr) and (c’'.name !'=n));
end;

Careful examination of the Change specificatioreats a behdor that may not be appropriate at the usgelle
Specifically the Change operation takes a name andaacaed, and replacesll cards of the gien name with the
given card. Resolutiorof this potential problem imlves deciding whether or not imor more cards of the same
name may be present in a Roledé&\e aldress this in the next section of primer.

Note that we hae ot yet specified the Find operation. This requires some additionaleuskanalysis, which we
Now pursue.

4.4. BasicUser-Level Requirements

To this point, we hee formalized the most basic specifications of the Rolaperations. lis nov appropriate to
consider the formal definition of basic uderel requirements. @ gart, there are a humber of "obvious" ukeel
requirements, including the following:

1. Duplicateentries are not allowed in the Rolodex

2. Inputvalues are checked for validity.

3. If the Find operation outputs more than one card, the output should be sorted in some appropriate order.
An historical note is of interest withgards to such requirements. In the not-so-distance past, the process of formal-

izing a specification entailed formalizing the English with which the specification was dtategkample, the first
of the abwe requirements could be stated "formally" as follows:

A Rolodex shall not contain duplicate entries.

While this may not seem to be a substantial imgreent to the original statement of the requirement, it represents a
seriously-proposed approach to formalizatiéiith this approach, a number of possible forms of natural language
are standardized with a restrictedcabulary For example, all formal requirements angeessed using "shall”
instead of other comparable Englisbrds such as "should", "ought to", or "allowed to". This idea of formalizing
English is noteorthy because it has been widely used in practice, and significant documesnteéa "formalized"

in this manner While such rules can indeed help with the formalization processfahavell short of a fully for

mal basis for requirements specification.

4.4.1. NoDuplicates

Analysis of the no duplicates requirement provides fine support for the "nothing-is-obvious" maxim. While we may
expect reasonable people to understand what "no duplicates" means, theracetra imunber of plausible interpre-
tations. Thresuch interpretations are the following:

1. Notwo cards in a Rolodehaveexactly the same values for all card fields.

2. Notwo cards in a Rolodehavethe same name.

3. Notwo cards in the Rolodehavethe same uniqueegly; such as the Id field of the card.

Which of these interpretations to choose is gatieally not a matter for a programmer to decidRather it should
be decided at the user specificatioreleby the analyst in consultation with the end usé¥e muld even grant that
most programmers are reasonably smart, so in this case we might safely assume that a programmeedoeld mak
correct decision, or kmo enough to consult with the user to resoline problem. Suppose, Wever, we were

14

specifying data records in a much more complicated application domain, such as aerohatitissdomain we

might hare a dita object such as an anomaly list, with record fields BileFlight, Taxi, InFlight, Approach, and
Landing. Whadoes it mean to disalloduplicates in an anomalies databad&Rich field, if ary, could be used as

a wique ley? The point is that such questions need to be answered by end users and/or applicationxgentsin e

Such questions should most certainly not be left unanswered when the programmer begins work, since the program-
mer may well not kne how to answer them.

Let us assume for ouxample that we hee cecided on the third of the alternagiinterpretations ab@. This means
that cards in the Rologdeneed only differ in the Idalue. Inparticular there may be multiple cards with the same
name. Thisfact has a significant impact on the operations tha¢ talkbme as input. These operations use the
Name as a searcle¥k which may not refer to a unique card/e will address the effects of this as we continue to
refine the specification.

The basic strategy for disallowing duplicates is to define a precondition on Add that checks for an entry of the same
Id as the card being added. Here is the refined specification forFaddrevity, the postcondition is omitted:
operation Add(r: Rol odex, c: Card)->(r’: Rol odex)
precondi tion:
(* There is no card in the input Rolodex with the sane Id
* as the given input card. *)
not (exists (¢’ inr) c .id =c.id);

postcondition: (* Sane as above *);
end Add;

Here we hee introduced the second form of quantification in Speclxistential. T|ble 4 summarizes the formats.

A discussion of the exact nature ofygmrecondition is in orderBy definition, failure of a precondition means that
the operation is puvented from &ecuting. Moreprecisely precondition failure means that the operation fails and
produces a value of nil. The nil value in SpecL is defined for all object types, and is a datiadrom ag other
value of a gven type.

The abstract meaning of precondition failure does not defimedperation failure is percegd by the end user
Generally the end-user should see an appropriate error message when an opatatiorhédetails of such error
messages are typically abstracted out of the formal specification.

4.4.2. InputValue Checking

There are a number of possibilities for input value checking. As a basic example, consider whegfalfmated
version of Add, where the input value constraints are defined formally with accompanying comments.

Form Reading Equivalent To

exists (x:t) p There gists x of typet such
that predicate is true.

exists (x:t | pl) p2 There aistsx of typet, such | exists (x:t) pl and p2
thatplis true andp2is true.

exists (x inl) p There aistsxin| such thap | exists (x:basetype(s)) (x ins) and p
is true.

Table 4: Forms of existential quantification..

15

operation Add(r: Rol odex, c:Card)->(r’:Rol odex)
precondi tion:
(#(c.name) <= 30) (* The length of the nane is <= 30 characters *)

and

(#(c.id) =9) (* The length (i.e, nunber of digits) of theidis 9 *)
and

((c.age >= 0) and (c.age <= 200)) (* Age is a reasonable range *)
and

(#(c.addr) < 40) (* The length of the address is <= 40 chars *)
and not (exists (¢’ inr) ¢ .id =c.id); (* No dups condition from above *)

postcondition: (* Sane as above *);
end;

The SpecL '# operator is the built-in length operator for lists, strings, and integers (fyggrsnie computes the
number of digits). Later when we consider inded enhancements, additional input value checking will be speci-
fied.

4.4.3. Orderingof Multi-Card Lists

Given that more than one card of the same name can be in a Rolbde~ind operation should produce a list of
outputs rather than a single Card. Hence, the initial signature of Find needs to be uptatdd.an gample
where a clarification of userde requirements leads to a fundamental refinement of the formal specification.

With the original Find signature, a formal specification would look somethiadhiik

op Find(r:Rol odex, n:Nane)->(c: Card)
pre:
(* There is a card in the given Rol odex
* with the given nane. *)
exists (¢’ inr) ¢ .nanme = n;
post:
(* The output card is in the given Rol odex
* and has the given nane. *)
(cinr) and (c.nanme = n);
end;
The problem here is that specification does not indicate which of possible multiple cards of the same name is found.
An updated formal specification for Find is:
op Find(r:Rol odex, n:Name)->(cl: CardLi st)
post :
(* Cards in the output I|ist consist of those
* in the input Rolodex with the given nane *)
forall (c:Card)
(cincl) iff ((cinr) and (c.nane = n));
end;

obj CardList = Card*;

An important question to consider is the order of the card list output. The list structure in SpecL does not guarantee

ary content orderin§y Hence, in the immediately preceding specification of Find, no order for the CardList output
can be assumed. Ordering of outputs from an operation such as Fxethjdaey of a requirement that is easy to

4 A list is an indeed oollection, such that the nth item can be locateldwever, no content ordering can be assumed in a
list, unless explicitly specified.

16

overlook. Aswith other requirements, we should not trust that a programmer will do the right thing in the absence
of a formal statementin this case, the programmer may ne¢rethink that there is problem if an output list is dis-
played in some internal ordexich as the order cards were stored in a hash table.

In order to specify card list ordering, we must strengthen the Find postcondition. In consultation with oux Rolode
users, suppose wevacdetermined that a list of cards with the same name should be ordered by Id. That is, we are
specifying that the output of Find is sorted by the Id field of a card. The formal specification of sorting is a more
advanced application of logic than wevbaen thus farHere it is, in the context of the Find definition:
op Find(r:Rolodex, n:Nane)->(cl: CardLi st)
post:

(* Cards in the output list consist of those in the input Rolodex with
* the given nane. *)
forall (c:Card)

(cincl) iff ((cinr) and (c.name = n))

and

(* The output card list is sorted in ascending order by card id. *)
forall (i:integer | (i >= 1) and (i < #cl))
cl[i].id < cl[i+1].id;
end;
An English translation of this forall logic is the following:

For each position i in the output list, such that i is between the first and the second to the last positions in the
list, the ith element of the list is less than the i+1st element of the list.

The reader should study this logic to be satisfied that it specifies sorting satisfactorily.

There are tw further points of discussion to be addressed wiglards to the specification of sorting: unbounded
guantification and the use of auxiliary functions in Spethese are amred in the next te subsections of the
primer.

4.4.4. UnboundedQuantification

What would happen to the meaning of the sorting predicate if the restrictions on the range of i were not present?
l.e., if the sorting logic in the postcondition were changed to the following:
forall (i: integer)
cl[i].id < cl[i+1].id

The meaning here is ambounded quantificationThat is, the quantifier operategepthe infinite range of all inte-
gers. Inprinciple, there is nothing wrong with unbounded quantificatiéor. example, the original anti-spurious
requirements for the Add operation were expressed using unbounded quantifi€at®might argue for range
restrictions on the grounds offiefengy, but as noted earlieefficieng of this nature is not of concern in an abstract
specification.

The potential problem with unbounded quantification is that the body of thersaliquantifier may not ka the
correct value in an unbounded range, and hence the value of the entire quaptifissien may be false when we
expect it to be true. This is the case in the unbounded quantification used in the sorting predicatesjubleabas
specifically what goes wrong in this logic:

» when i is outside of the range of [1..#cl], then the value of the expression cl[i] iBhislis the case by the
language rules of SpecL, that define the value of arxied@ession to be nil if the value of the indis
outside of the bounds of the in@d list.

* When the value of cl[i] is nil, thealue of cl[i].id goes to nil. This again is by the rules of SpecL, that
define the value of a selection expression (containing ') to be nil ifahe \of the object being selected
from is nil.

17

* This in turn leads to the following expression as the body of the forall:
nil < rfi+1].id

the value of which isdlse. Thisresult is due to the SpeclL rule that defines #ilaersof <’ to be false if
either or both of its operands is nil.

* Finally, any value of &lse in the body of the forall &8s the value of the entire forall to false, by the normal
rules of forall. Viz., the value of the forall is false ifyone or more values of the body is false.

To ome extent, thexact outcome of the unbounded quantificationvabie due to the particular semantic rules of
SpecL. Ingeneral, havever, unbounded quantification is potentially problematic undgrlagical semanticsThe

point is that one needs to be careful when using unbounded quantification to ensure that the body of the quantifier
has a well understood valueep the entire unbounded range of quantification.

4.4.5. UsingAuxiliary Functions

The postcondition in the most recent definition of Find is a little lgndth practice, predicates significantly longer
than this can appear in the specification of a coxgberation. Wherpre- or postconditions become unduly long,
it is useful to usauxiliary functiongo oganize the logic.An auxiliary function is much the same as function defi-
nition in a programming language, with the restrictions of functional semantics discussed earlier in theTpemer
purpose of an auxiliary function is modularize a piece of logi® tjia rnemonic name, and allothat logic to be
invoked in one or more places.

As an example, here is the last definition of Find usirgawxiliary functions.
op Find(r:Rol odex, n:Nanme)->(cl: CardLi st)
post :
Car dsFound(r, n, cl)
and
SortedByld(cl);
end;

functi on CardsFound(r: Rol odex, n:Nanme, cl: CardList)->bool ean =
(* Cards in the given card list consist of those in the given Rolodex with
* the given nane *)
forall (c:Card)
(cincl) iff ((cinr) and (c.name = n));

function SortedByld(cl: CardLi st)->bool ean =
(* If the the given card list has nore than one card, it is sorted in
* ascending order by card id. *)
if (#cl > 1) then
forall (i:integer | (i >= 1) and (i < #cl))
cl[i].id < cl[i+1].id;

Semanticallythere is no difference between an auxiliary function and an operdktay. both define objects of a
function type. In &ct, the kyword "operation" can be used in place of thewkord "function”. The separate
keywords are provided to suggestfdient usages within a specification. By wettion the leyword "operation”
should be used to define an operation that is directly visible to the end.eisean operation that can be traced
directly to some user intexfe element. In contrast, theykword "function" should be used for functions that are not
normally visible to the usgbut which are used solely to clarify the logic of a formal specification.

5. UserLeve Refinements and Enhancements

In this section we consider a number of refinements and enhancements to the uaee iotdlfe Rolodesystem
and haev these can be specified formally.

18

5.1. Rattern-Based Search

Suppose we would l&kto locate Rolode cards by leys aher than just the namelo be fully general, we could

allow search by patterns for grone of the kys. Atthe interface beel, the Find operation would present the same
dialog used for Add. In the case of Find, entries in the dialog box would be patterns rather than just strings or num-
bers. Ier example, Figure 5 stws a search dialog that will find all cards with age less than 40 andade. An

entry for ary one of the fie card fields can contain a single instance of one of the following patterns:

Operator | Meaning

X matches the value x (a string or number)
<X matches all values less than x

> X matches all values greater than x

X-y matches all values between x and y

For simplicity, we @sume that>act match is necessary for strings, but this requirement is probably too strict for a
practical user intedgfce. E.g.a user should be able to enter "Smith" in the name field to find all cards with "Smith"
someavhere in the name. The reader is invited to enhance the specification thas felth a feature for such partial
matching.

Given below are selected xzerpts of the formal specification for the enhanced Find operation. The specification
focuses on searching with patterns in the Age field of a daodnal specification of searching by the other card
fields (name, id, sex, and address)dsywsimilar The gist of the pattern-search specification is the definition of the
object Searchinfo and the additions to the postcondition of Rilmdationally the Specldescri pti on attribute

is used to describe the major objects and operations. The value of the description attribute is simply a comment.

obj ect Searchlinfo = np: NanePattern and idp:ldPattern and
ap: AgePattern and sp: SexPattern and adp: AddressPattern
description: (*
Each conponent of Searchinfo is a search pattern that corresponds to
one of the fields of a card.
“);

end Sear chl nf o;

Enter Search Information:

Nare: | |
| |

Age: | < 50 |
sex: | M|

Addr ess: | |

(oK) (Oear) (Cancel)

Figure 5 A Pattern Search Dialog.

19

obj NanePattern = ...;
obj ldPattern = ...;

obj ect AgePattern = | essp: AgeLessThan or gtrp: AgeG eat er Than or
rangep: AgeRange or eqp: Age
description: (*
An AgePattern allows the user to search for cards with an age val ue
Il ess than a given age, greater than a given age, between a range of
gi ven ages, equal to a specific age, or with a specific age.
*)’
end AgePattern;

obj SexPattern = ...;
obj AddressPattern = ...;

obj ect AgelLessThan = |ts:LessThanSynbol and age: Age
description: (*
This pattern specifies all ages |less than a particul ar age.
*)’
end AgelLessThan;

obj ect AgeGreaterThan = Its: G eater ThanSynbol and age: Age
description: (*
This pattern specifies all ages greater than a particul ar age.
*)’
end AgeG eat er Than;

obj ect AgeRange = agel: Age and rs: RangeSynbol and age2: Age
description: (*
This pattern specifies all ages in a range between agel and age2.
*)’
end AgeRange;

obj ect LessThanSynbol ;
obj ect Greater ThanSynbol ;
obj ect RangeSynbol ;

operation Find (r:Rol odex, si: Searchlnfo)->(cl: Card*)
pre: ... ;
post :
(*
* All cards in the output list nust be found according to the given
* search info, and the output list nmust be sorted by Card id.
*
Car dsFound(r, si, cl)
and
SortedByld(cl);
description: (*
Find zero or nore cards that match the constraints specified in the
gi ven Searchlnfo
*)’
end Fi nd;

function CardsFound(r: Rol odex, si: Searchlnfo, cl:Card*)->bool ean =
(* Cards in the given card list consist of those, and only those, in the
* given Rol odex that match the given search info. *)
forall (c:Card)
(cincl) iff ((cinr) and Match(c,si));

20

function Match(c: Card, si: Searchl nfo)->bool ean
Mat chNane(c. nane, si.np) and
Mat chl d(c.id, si.idp) and
Mat chAge(c. age, si.ap) and
Mat chSex(c. sex, si.sp) and
Mat chAddr ess(c. addr, si. adp);

functi on Mat chName(Nane, NanePattern)->bool ean e
function Matchld(ld, Idpattern)->boolean = ... ;

functi on Mat chAge(age: Age, ap: AgePattern)->bool ean =
if (ap?.lessp) then
age < ap. !l essp. age
else if (ap?.gtrp) then
age > ap.gtrp.age
else if (ap?.rangep) then
(age >= ap.rangep. agel) and (age <= ap.rangep. age2)
else if (ap?.eqgp) then
age = ap. egp. age
else if (ap = nil) then
true;

functi on Mat chSex(Sex, SexPattern)->boolean = ... ;
functi on Mat chAddr ess(Address, AddressPattern)->boolean = ...;

5.2. Historical Dialogs

It is typical in a graphical user interface that a dialog retaihseg from the last time it was displaydebr example,

when the Add dialog is displayed for the second time and beyond, it could contain the last values $ateecd.

users may find such historical dialogs undesirable, so the system could contain an option that turns the feature on or
off. With historical dialogs on, each dialog box displays the previously entehee(s). With historical dialogs df

each dialog box is empty when displayed.

Given below are selected excerpts of the formal specification for optional historical dialdgsgist of the specifi-
cation is the definition of the SystemState object and the decomposition of the mainxRpleddions into tw
operations. Br example, Add is decomposed into InitiateAdd and ConfirmAdd. From the user interface perspec-
tive, InitiateAdd is ivoked by slection ofAdd in the Rolod& menu; ConfirmAdd is imoked by slection of the

OK button in the Add dialog.

operation InitiateAdd(r: Rol odex)->(cd: CardDat a)
post:
(* If the historical dialog option is on, then output the previously
* entered card data, else output enpty card data. *)
if r.state.options.showrevdata
then cd.c r.state.l astadd
el se cd.c nil;

end;

operation ConfirmAdd(r: Rol odex, cd: CardData)->(r’: Rol odex)
pre: (* Same precondition as original Add, but replace all occurrences of
* variable ¢ with cd.c *);
post: (* Sane postcondition as original Add, with same replacenents as in
* precondition *);
end;

obj CardData = c:Card and fl ag: bool ean
description: (* See discussion below *);

21

end;

obj ect Rol odex = state: SystentState and cards: Card*;
obj ect Systenfstate = | astadd: Last Addl nput and Last Del et el nput
and Last Changel nput and Last Sear chl nput and options: Opti ons;
obj ect Last Addl nput = Card;
obj ect Last Del et el nput Nare;
obj ect Last Changel nput Name and Card
obj ect Last Sear chl nput = Sear chl nf o;
obj ect Options = showprevdat a: ShowPr evi ousData and ... ;
obj ect ShowPrevi ousData = bool ean;

It is important to note the change to the Rojodeject, which is nw a tuple. Theramifications of this change are
that all references to a Rolodeariable, for example, must be changed tcardsthroughout the specification.

The CardData object has no other purpose than to constrain a Confirm operatieniripuakom the companion

Initiate operation.The flag component of CardData has no other purpose than to ensure that Card and CardData are
distinct types. This specification borders on too operational, since its purpose to to specify an order of operations.
In general, the specification of such ordering should be done judigiausly it constrains an implementation to a
particular style of interaction.

5.3. CheckPainting

It is common for database systems, such as our Rolodexyedhgacontents of the Rolodat reqular intenals.
Such "check pointing" sas ae a service to the user in case some catastrogihicef occurs when a user has not
recently performed a manualsagperation.

Given below are selected excerpts of the formal specification for check pointing. Note the addition of a FileSpace
object, which is a model for an external (operating) system file stofHge.is used in the specification of the
RolodexFile operations, where the definition of thev&aperation is found.
op Add(r: Rol odex, fs: Fil eSpace, c: Card)->(r’: Rol odex, fs’: Fi | eSpace)
post :
(* previous postcond and *)

if r.state.options.chkpton then
if r.state.chkpt = 0 then (* Tinme to do checkpoint save *)
r’'.state.chkpt =
r.state.options. chkptinterval and

fs' = Save(fs,r)
el se (* Not tine yet, decrenent counter *)
r'.state.chkpt = r.state.chkpt - 1 and
fs' =1fs
el se
true;

end;

obj SystentState = (* previous conponents and *) chkpt: Checkpoi nt Count;
obj Options = (* previous conponents and *)
chkpt on: Checkpoi nt OnOF f and chkpti nt erval : Checkpoi nt | nterval ;
obj Checkpoi nt Count = integer;
obj Checkpointlnterval = integer;
obj Checkpoi nt OnO'f = bool ean;

Note carefully the "else true" clause in the postcondition. If-then-else is not a programming language control con-
struct, though it may seem ékne most of the timeRather if-then-else is a choicexpression that has one ofdw

values depending on the value of the if test. If the else clause is missing aaduthefithe if test is false, then the

value of the entire if-then-else is false, which is not necessarily the desiteal nthis case, for example, we do

not want theAdd operation to fail if checkpointing is off.

22

Also note that the equality operator’, is not an assignment operat@s much as it may look as such. What the
equality operator means in an expression such as

r'.state.chkpt = r.state.chkpt - 1

is notthatr’ . st at e. chkpt is assigned thealuer . st at e. chkpt - 1. Rather this is an expression that
specifies the output value of . st at e. chkpt is equal to one less than the inpatue ofr . st at e. chkpt. In
an implementation of this operation, an assignment of some form will most likelydéade, in order for the post-
condition to become true. Howa, the postcondition by itsetfoes no assignment

5.4. Undo

It is quite common for interae® /stems to hee an Undo function that neerses the effects of the most recent eper
ation. Amore advanced undo/redo capability is sometinvesadle, where a number of recent operations can be
undone or redone.

Given below are selected excerpts of the formal specification for a simple gsedledo facility. The specifications
for Add and Undo operations arevgi. A complete specification would include updates to Delete and Change,
comparable to those for Add.

obj Rol odex = state: SystentState and cards: CardList; (* Same as above *)

obj SystenfState = (* previous conmponents and *) prev: CardLi st;

obj Card = (* as usual *);

op Add(r: Rol odex, c:Card)->(r’:Rol odex)
post:
(* The following is the original postcond, with substitution
* of r.cards for r and r’'.cards for r’ *)
forall (c’':Card)
(¢’ inr’.cards) iff ((c’ in r.cards) or (¢ = c))

and

(* Save the cards of the input Rolodex as the previous card list. *)
(r’.state.prev = r.cards);

end Add
op Undo(r: Rol odex)->(r’: Rol odex)
post:
(* I'f the input Rol odex has a previous card |ist,

*
* then the cards of the output Rolodex are that |ist
* and the previous of the output is nil (so only one
* | evel of undo is possible).

* Ot herwi se, the output Rolodex is the sane as the

* input Rol odex. *)

if (r.state.prev I'=nil)
then (r’.cards = r.state.prev) and (r’.state.prev = nil)
elser’ =r;

end;

Based on this example, the reader is invited to specify a more advanced undo/redo feature that woald allo
selectable number of operations to be undone and redone.

5.5. Security

For some database systems, security is necessarhe case of our simple Rolodex, a plausible security require-
ment would be to alle only privileged users to perform the Add operatidbiven below are selected excerpts of
the formal specification for such a security scheme. The gist of the specification is to defineahl&seritaining
Userinfo records. The records are tuples of a Userld anilege Level. Eachuser is assigned a system Id

23

(potentially diferent from a card id) and a pitege level. Whena wser logs in to the system, the user id is supplied,
whereupon the prilege level is extracted from the user table. The specification Wwedoes not define the opera-
tions necessary to maintain a user table, i.e., adding and deleting user records.

obj SystenfState = (* previ ous conponents and *)
users: User Tabl e and addok: bool ean;

obj User Tabl e = User| nf o*;

obj Userinfo = uid:Userld and | evel: Level;

obj Userld = string;

obj Level = priv:Privileged or nonpriv:Nonprivil eged;

obj Privil eged;

obj Nonprivil eged;

op Login(uid:Userld, state: SystentState)->(r’: Rol odex)
post :
(* Adds are OK in the output Rolodex if the given user
* |s privileged, otherw se adds are not OK *)
if FindUser(state.users,uid).level?. priv
then r’ .state.addok = true
else r’'.state.addok = fal se

and

(* The output Rol odex has no cards. *)
(r’.cards = nil);

description: (*
The operational nodel here is that the login operation creates an
initial enpty Rolodex, with the appropriate value for the addok fl ag.
This nodel affects the specification of the File Open operation, in
that the Open will read Rolodex cards froma file, but nmaintain the
Rol odex state established by Login. *);
end;

op FindUser (ut: UserTabl e, uid: Userl d)->(ui nfo: Userl nf 0)
pre:
exists (uinfo' in ut) uinfo' .uid = uid;
post :
(uinfo in ut) and (uinfo.uid = uid);
end;

6. RolodexFile Operations

There are number of approaches for defining the file operations of the Rejstem, or other comparable system
that uses external file storage. The approaches varyiralbgiractly versus e concretely the external file storage
medium is modeled.

6.1. AbstractFile Operations

In the most abstract approach, we canwige external file storage medium as simply a collection (i.e., SpecL list)
of Rolodex objects. Wth this view, the file operations can be defined as follows:

obj FileSpace = Rol odex*;

obj Rol odex = nane: Name and cards: Car d*;
obj Card ;
obj Nane

[

string;

operation New()->r': Rol odex

24

post: r’ = nil;
end New,

operation Open(fs:FileSpace, n:Nane)->r’:Rol odex
post :
exists (r in fs) (r.name = n) and (r’ =r);
description: (*
Open is essentially a find operation, with the sane form of
postcondition as a basic find.

*)’
end Open;
operation Save(fs:FileSpace, r:Rol odex)->fs’:FileSpace
post :
(* The given rolodex is in the output filespace *)
(r infs")

and

(* No rol odexes of the same name are in the fil espace. *)
forall (r’:Rolodex | r’ I=r)
(r infs’) iff ((r’ in fs) and (r’.nane != r.nane));

description: (*
Save is essentially a change operation, with the same form of
postcondition as a basic change. There is no precondition, since a
file for the given rol odex need not already exist in the file space
*)’

end Save;

operation SaveAs(fs: FileSpace, r:Rolodex, n:Nane)->fs’:FileSpace

pre: ;
(* Note there is no precondition that prevents unintentiona
* overwiting of a rolodex of the sane name in the input fs. This
* could be added if necessary. *)

post :

(* There is a rolodex, with the sane cards as the input rol odex and the
* given name, in the output fil espace. *)
exists (r’ in fs’) (r’.name = n) and (r’.cards = r.cards)

and

(* No other rol odexes of the sane nanme are in the fil espace. *)
forall (r’:Rolodex | r’ I=r)
(r infs’) iff ((r’ in fs) and (r’.nane != r.nane));

description: (*
SaveAs differs from Save in that the name of the saved rol odex nust be
that given, rather than the original name of the input rolodex. This
difference is reflected in the first clause of the postcondition of
SaveAs vis a vis Save. The second postcondition clause is the same in
both Save and SaveAs.

*)’

end SaveAs;

operation Print(r:Rol odex)->r’:Rol odex
post: SortedByNanme(r’);

25

description: (*

Printing produces a sorted rolodex. It could be augnmented with an
Options input that woul d specify different sorting orders. Note that

this abstract view of printing does not formally specify print

formatting details. This issue is addressed in the nore concrete |evel

of file operation specification.

*)’

end Print;

This view of file operations abstracts out all details of a file system, other than the fact that it storeseRoldde
signature of the print operation is also of interest in thig.viln its most abstract form, a Print operation merely
changes the order (and presumablygatal medium) of a Rolodex, without performingyatoncrete formatting of

the card data.

6.2. More Concrete File Operations

Making the file operations more concrete is primarily a matter of defining more concrete objects. The fundamental
meaning of the operations does not changete formatting details do. Consider the following definition of a

more concrete FileSpace, and the associated file operations.

obj FileSpace = Fil e*;
obj File = type: FileType and nane: Fi |l eName and dat a: Fi | eDat a;
obj FileType = a: ASCl | Type or b:Bi naryType or rol o: Rol odexType or ... ;
obj FileNane = Nane;
obj FileData = ascii:ASCl|Data or bin:BinaryData or rol o: Rol odexData or
obj ASClIData = string*;
obj Bi naryData = nunber*;
obj Rol odexData = Rol odex;
obj ASCI | Type;
obj BinaryType;
obj Rol odexType;
obj Rol odex = nane: Name and cards: Car d*;
obj Card = ...;
obj Nane = string;
operation New()->r': Rol odex
post: r’ = nil;
end New;

operation Qpen(fs:FileSpace, n:Nane)->r’:Rol odex

post :

(*

* There is a file of the given nane in either ASCI|I or Rol odex format
* in the given file space. |If the latter, then the cards of the

* out put rol odex contain the converted ASCII data. |If the former

* (i.e., fileis in Rolodex format), then the cards of the output are
* those in the file.

*

)
exists (f in fs)

(* File and rol odex nanes are the sane *)
(r’.nane = f.nane)

and

(* File data are the sanme as rol odex cards, parsed if ASCl I
if (f.data?.ascii) then

26

r’'.cards = ParseRol odexText (f. data.ascii)
else if (f.data?.rolo) then
r’ = f.data.rolo
el se false; (* Neither ascii nor Rolodex file format *)

description: (*
Open is essentially a find operation, with the sanme underlying form of
postcondition as a basic find. This nore concrete version of Open nust
parse ASCI| text data files, if that is the format in which a rol odex
was saved.

The postcondition relies on a non-trivial auxiliary function,
Par seRol odexText, that woul d specify precisely the correspondence
bet ween the textual and abstract representations of rol odex card data.
*)’
end Open;

operation Save(fs:FileSpace, r:Rol odex, type:FileType)->fs’:FileSpace
description: (*
Save operates the sane as the nore abstract version of save, except
that it uses the FileType input to deternmine the format of the file
in the output fil espace.

)

end Save;

operation SaveAs(fs: FileSpace, r:Rolodex, n:Nane)->fs’:FileSpace
post: ... ; (* Conparable change to Save. *)

end SaveAs;

operation Print(r:Rol odex)->rp: Rol odexPri nt out
post :
exists (r’':Rolodex) (
exists (c:Card) (

((c inr’.cards) iff (c in r.cards)) and
Sort edByNane(r’ . cards) and
(rp = GeneratePrint(r’))

)

);

description: (*
Printing produces the ASCI| text for a sorted Rol odex. The
postcondition here relies on a non-trivial auxiliary function,
GeneratePrint Text, that would define textual formatting details
precisely. GCeneratePrintText is the conplenment of the earlier
Par seRol odexText functi on.

Note that the postcondition specifies sorting on the rol odex, rather
than on the printout, as would be the case with the follow ng | ogic:

forall (c inr)
(CGenerateCardPrint(c) in rp) and SortedByName(rp)

This logic for sorting a printout would be considerably nore tedious,
since it would have to performparsing to extract the name field from
the text representation of a card.

*)’

27

end Print;
obj Rol odexPrintout;

functi on ParseRol odexText (ASCl | Dat a) - >Car d*;
function GeneratePrint(Rol odex)->Rol odexPri ntout;
function SortedByName(Card*) - >bool ean;

The major ne aspect of this definition is the modeling of different file formats. This is typical of/rdata pro-
cessing applications-or example, most text processors allthe user to select between plairtttormat versus an
application-specific formatin the case of an application such as a word procebsoe may be some information
loss in the plain text format (such as font types, elit)the case of a database system, such as the rolodex, there
should be no data loss in a text formRather choosing the application-specific format of roladide is a matter of
efficieng/ versus external readability.

6.3. Consideringa Rolodex System Workspace

In the preceding file space specifications, no consideration wastgia wser workspace that contains one or more
active files. Thepurpose of defining such a workspace is to specify requirements such as a limit on the number of
rolodex files that can be open simultaneousBpnsider the following definitions:

obj FileSpace = Fil e*;
obj File = nane: Fil eNane and dat a: Fi | eDat a;
obj FileNane = Nane;

obj WorkSpace = nane: Nanme and r: Rol odex
description: (*
A wor kspace nodels the use work area, which can contain at npst one
open rol odex file.
*)s

end;

operation New()->w : Wr kSpace
post: w.nane = "Untitled" and w.r = nil;
end New;

operation Qpen(fs:FileSpace, n:Nane)->w : Wr kspace
post:
exists (f infs) (f.name = n) and (W.r = f);
description: (*
Open is essentially a find operation, with the sane form of
postcondition as a basic find.
“);
end Open;

operation Save(fs:FileSpace, w Wrkspace)->fs':Fil eSpace
post:
(* The rolodex in the given workspace is in the output filespace *)
exists (f infs') (
(f.name = w.name) and (f.data = w.r)

and
(* No files of the sane nane are in the filespace. *)

forall (f':File | f* I=1)
(f" infs’) iff ((f' in fs) and (f’.nane != w nane))

28

description: (*
Save is essentially a change operation, with the same form of
postcondition as a basic change. There is no precondition, since a
file for the given rol odex need not already exist in the file space.

NOTE: in this workspace version of Save, there is a subtle scoping
change in the postcondition conpared to the earlier versions of Save.
Specifically, the universal quantification is nested within the
existential quantification. This is because the File variable f is
defined in the scope of the exists, not as an input paraneter.

*)’

end Save;

In this model, a rolodeis a purely abstract object, withouven a reme. Theworkspace carries the name, which is
transmitted to and from files when the us&okes saveand open operations.

7. ConsideringOther Interface Styles

An important property of an abstract specification is to be as free of concretacmtdetails as possibldo illus-
trate this point, we can considerawidfferent forms of concrete user interface, both of which map to the same
abstract specification that has beeweligped in the primer.

Figure 6 shows a pushbutton-style interface to the Rrlotlés much the same as the original interface, except the
pulldovn menus hae been replaced with pushttons. Inaddition, the data entry area does not chaipgther the

user simply types in the card data fields, and selects a desired operation wheAdibti@nal dialogs will pop up

as necessary to request further inputs or display results.

The only significant difference for the specifier with this irstegf is that the both the Card and Searchinfo objects
are displayed in the same physical screen area, rather than in separate Hidlathg, it might havze been slightly
more difficult to recognize Card and Searchinfo as separate objects.

A Simple Rolodex Management System

Enter Information and Select Command:

Name: | Fi sher, Gene I
Id: | 563928591 |
Components of
Age: | 43 I object Card
or

Sex: | M | object Searchinfo

Address:l 900 Bear Canyon LaneI
(_Add_) (_Delete) (_Change) (_Find) Rolodex operations

(New) (_Open) (_sae) (SaveAs) (_ Print) —~ ___ File operations

("Clear) (" Undo) (" Redo) (_ Quit) Control/Edit operations

Figure 6 A Pushbutton-Style Ul.

29

It is worth noting that to the extent the interface is confusing to the speitifieay well be the end user as well.
The notion of "form follavs function” is an important one in software specification. That is, a system that is coher
ent and easy to specify for the analyst will be equally coherent and easy to use for the, end viserversa.

In either of the graphical interfaces for the Robodgstem, lkeyboard shortcuts could beailable for the menu
and/or pushbutton operations. Such shortcuts shoukldaolutely no effect on the formal specification.

Figure 7 shows a plain text-based Rolotigerface. Thignterface style is typical of that used with DOS or a UNIX
shell. Thesame abstract Rolodapecification applies equally well to the textual interface as it does to the other tw
graphical interfaces.

Command Arguments

a[dd] namejd, age, sex, address
dlel] name

c[hange] namegd, age, sex, address
flind] name

nlew]

o[pen] file

s[ave] [file]

[p]rint [1]

[ulndo

[rledo

[of]uit

Figure 72 A UNIX/DOS-Style ext Ul.

30

31

32

