
COMMUNICATIONS OF THE ACM August 2004/Vol. 47, No. 8 15

“Formal methods can ... be
infiltrated into software
development activities…”
“I have suggested ways of
intruding the use of formal
notations…”

—[1] (emphasis added)

F
ormal methods have
been around for a long
time. My recollection
of the first article on

formal approaches, some-
thing on proof of correctness,
is one that appeared in the
computing literature in the
late 1960s. Formal methods
have not, during that extended
period of time (well over 30 years
by now), had any significant
impact on the practice of software
engineering. It is difficult to imag-
ine anyone who is not curious as
to the reason why that is so.

Advocates of the formal
approaches—and there are plenty
of them—say or imply it is the
ignorance and intransigence of
practitioners that explains their
lack of use of formal approaches.
Opponents of the formal
approaches—and opposition is
considerably more subtle than the

advocacy we see—say or imply it is
the impracticality of the
approaches themselves that pre-
vents their use. In this column, I
discuss the mystery of formal

methods disuse through the lens of
a particular article supporting that
use. The referential article, by John
Wordsworth, although perhaps
extreme in its advocacy, is repre-
sentative of the sometimes-shrill
verbiage of those who cannot
imagine why formal methods
remain unused on the practition-
er’s shelf [1].

The Wordsworth article

acknowledges the lack of formal
methods acceptance in practice,
saying things like “there is not
much use of formal methods for
developing substantial amounts of
software.” It also does something
particularly vital, providing a defi-
nition of what it means by formal
methods (“a formal method of

software development is a
process for developing software
that exploits the power of
mathematical notation and
mathematical proofs”). It goes
on to state that formal specifi-
cation and formal verification
are the two primary examples

of these formal methods. (The
reason this definition is vital is

that some writers on formal meth-
ods expand the subject far beyond
any manageable meaning—one
writer said “any rigorous approach”
could be considered a formal
method, for example).

The two key sections of the
article are the one on “benefits of
formal methods,” and the one on
“inhibitors to the use of formal
methods.” These two sections, in
fact, contain the reasons I read the
article initially, and which moti-
vated me to save the article for
several years.

The Mystery of Formal Methods Disuse

JA
SO

N
 S

C
H

N
EI

D
ER

Robert L. Glass

A story of zealotry and chicanery.

Practical Programmer

16 August 2004/Vol. 47, No. 8 COMMUNICATIONS OF THE ACM

What are those benefits? Almost
all of the results cited are from an
IBM CICS project that used for-
mal specification (but not formal
verification) techniques, and found
that the specifications were consid-
erably more understandable than
more informal specifications would
have been; analyst confidence was
higher that the specifications iden-
tified the key elements of the prob-
lem to be solved; fewer errors
resulted in the final product; and
ongoing maintenance of the prod-
uct cost half what it otherwise
would have.

Those benefits are certainly sig-
nificant. But there are several trou-
bling aspects about these findings.
Fundamentally, almost no advo-
cates of the formal approaches have
been able to cite any other projects
of significance where comparable,
objective results about the value of
formal methods were obtained. (I
am a student of evaluative research,
and I have been looking for them—
without success.) In addition, the
CICS project citations that I have
seen have not been published in the
mainstream computing literature
(those cited in [1] include an inter-
nal IBM report and a conference
paper); the one project citation with
which I am familiar appeared, not in

the academic literature, but in a
practitioner journal (The American
Programmer). And finally, the find-
ings of this particular study have
been questioned in the software
engineering literature on the
grounds of a weak research
approach.

Consider the benefits the
author presented: only one study
is cited, one whose research
approach has been questioned.
Nevertheless, the benefits, as stated
in this article, appear to be well
worth achieving.

Moving on to the section on
inhibitors of use, the opening
salvo of this section is that “some
of the apparent inhibitors are
merely excuses…,” an indication
of the objectivity of the author in
presenting them. The article goes
on to list these inhibitors: “soft-
ware engineers are not routinely
trained to make appropriate use of
formal methods”; they are “not
taken seriously by … teachers or
… practitioners…”; and “cus-
tomers do not like to be tied
down to function, they prefer to
keep things vague…”

I will address each of those
inhibitors in turn.

Regarding the first two, which
are about “training” and “teach-

ing,” I disagree with the author.
Look at the educational system by
means of which we produce soft-
ware engineers. Most data we have
suggests that, although software
folk emanate from a variety of aca-
demic educational programs, the
majority graduates in computer
science. But, according to my
observations, computer scientists
have been teaching those same for-
mal approaches for most of the
years since that first article on the
subject was published. Certainly,
there has been a solid 20+ years of
formal methods education world-
wide (European computer scien-
tists, for example, are even more
enthusiastic about those formal
approaches than their U.S. coun-
terparts.) That means that, far
from being ignorant of formal
approaches, most contemporary
software practitioners have been
exposed to and educated in them.

R
egarding those customers
who prefer to keep things
vague, that is a somewhat
absurd claim. It implies,

of course, that customers could do
better in specifying requirements,
but prefer not to. What in fact
most practitioners tell me about
specifications is that the needs of

Practical Programmer

What is really needed is not a rigorous/rigid specification, but one
that encompasses the problem evolution that inevitably occurs.

the customer evolve over time, as
the customer comes to learn more
about solution possibilities, and
that what is really needed is not a
rigorous/rigid specification, but
one that encompasses the problem
evolution that inevitably occurs.

Reviewing these inhibitors,
then, I would simply disagree with
those that Wordsworth identified.
There is little reason to assume
that education and educators have
failed the formal methods move-
ment, and there is of course no
reason at all to assume that cus-
tomers prefer vagueness.

Wordsworth’s article, in its final
substantive section, comes to grips
with its goals. This section is
called “a plan for infiltration.”
Here the author suggests force-fit-
ting formal methods to practice.
He advocates something he calls a
“Personal Formal Methods
Process,” basing his description on
the popular Personal Software
Process work of Watts Humphrey
(see www.sei.cmu.edu/tsp/watts-
bio.html). I will not dwell on what
the author proposes therein,
except to note a claim that because
“programmers are often given
incomplete requirements,” the
solution is to “exert tactful pres-
sure on those providing the
requirements to be more precise
about them.” I focus, instead, on
the use of two particularly interest-
ing words the author uses in this
material.

Note that in the two quotations
at the beginning of this column,
the key boldface italicized words

are “infiltrating” and “intruding.”
Those words struck me as curious
choices when I first read the arti-
cle. To see why they seemed curi-
ous, I turned to my favorite
dictionary to supplement my first
impression. “Infiltrate,” it says, “is
to penetrate surreptitiously into
enemy-held territory.” “Intrude,”
it says, is “to put or force in inap-
propriately, especially without
invitation, fitness, or permis-
sion…”.

Oh, now I understand. Formal
methods advocates, who have
failed for decades to make an
impact on practice through the
front door, are now turning to
“surreptitious” and “inappropri-
ate” “force” (in spite of the lack of
“fitness” of their concepts).

Now I think you see why I held
onto this article for such a long
time, contemplating what to do
with it. In the end, the result of
that contemplation is this column.
And the message I express here is:
“Practitioners, beware of formal
methods zealots. If they can’t make
their case on the merits, they may
well resort to chicanery.”

References
1. Wordsworth, J.B. Getting the best from for-

mal methods. Information and Software Tech-
nology 41, 14 (Nov. 1999), 1027–1032.

Robert L. Glass (rlglass@acm.org)
is editor emeritus of Elsevier’s Journal of Systems
and Software, publisher/editor of The Software
Practitioner, and a longtime member of, and
believer in, software’s practice.

© 2004 ACM 0001-0782/04/0800 $5.00

c

COMMUNICATIONS OF THE ACM August 2004/Vol. 47, No. 8 17

Corrections

The July article “Improving the
Quality of Business Object
Models Using Collaboration
Patterns” (page 81) inadvertently
repeated the opening paragraph of
the preceding article. The
“Security Watch” column (page
25) in that issue incorrectly
identifies the acronym HIPAA;
the correct definition is Health
Insurance Portability and
Accountability Act.

Communications editors regret
these errors. Corrected versions of
this material appear in the ACM
Digital Library.

