

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AST’06, May 23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

Automation of GUI Testing Using a Model-driven Approach

Marlon Vieira, Johanne Leduc, Bill Hasling, Rajesh Subramanyan, Juergen Kazmeier
Siemens Corporate Research

755 College Road East, Princeton, NJ 08540
{marlon.vieira, johanne.leduc, bill.hasling, rajesh.subramanyan, Juergen. Kazmeier }@siemens.com

ABSTRACT

This paper describes an ongoing research on test case
generation based on Unified Modeling Language (UML). The
described approach builds on and combines existing techniques
for data and graph coverage. It first uses the Category-Partition
method to introduce data into the UML model. UML Use Cases
and Activity diagrams are used to respectively describe which
functionalities should be tested and how to test them. This
combination has the potential to create a very large number of
test cases. This approach offers two ways to manage the number
of tests. First, custom annotations and guards use the Category-
Partition data which allows the designer tight control over
possible, or impossible, paths. Second, automation allows
different configurations for both the data and the graph coverage.
The process of modeling UML activity diagrams, annotating
them with test data requirements, and generating test scripts from
the models is described. The goal of this paper is to illustrate the
benefits of our model-based approach for improving automation
on software testing. The approach is demonstrated and evaluated
based on use cases developed for testing a graphical user
interface (GUI).
Categories & Subject Descriptors:

Software Engineering, testing and Debugging, Testing tools
General Terms:
 Verification, Reliability
Keywords:
 UML, Model based testing, GUI Verification

1 Introduction
With testing activities accounting for a large part of the
total effort of a software life cycle, incurred expenses are
understandable. Though advanced development processes
and tools have helped organizations reduce the time to
build products, they have not yet been able to significantly
reduce the time and effort required to test them. Clearly,
there is a need for improvement in testing support.
Development has raised the level of abstraction through the
use of models: why not do the same for testing?

Advancing this notion is the trend towards the increased
use of model-based development (UML) which will also
allow for automatic test case generation. Few existing
approaches are based on Activity diagrams. These
diagrams use only the control flow aspect of the modeled
behavior. As far we know, ours is the only approach
(research project) that generates test cases based on
Activity Diagram control flow and on data coverage.

In our approach, we proceed from modeling, to adding
testing information then choosing the configuration, and
finally generation and saving/managing test cases
(preparing for execution). This paper illustrates all those
phases through an example and argues that the approach is
useful particularly in the context of testing GUIs. Our
research looks for robust ways to address the challenges of
generating test cases from (UML) models with the right
level of abstraction for automatic verification. The work
reported here is part of a broader project on the
development of practical approaches to apply model based
testing in an industrial context.
Section 2 describes the modeling activities required by our
approach. Our automation tool is described using an n
example in section 3. Section 4 discusses the applicability
of the approach. A common GUI, “the Letter Wizard” is
the example used in this paper. This Microsoft Word™
2003 application helps users to write and modify
correspondence using a GUI.

2 Modeling Application Behavior
In this section, we describe the derivation of

application behavior and its depiction as UML diagrams.
We make use of UML Use Case diagrams to describe the
relationship among the diverse use cases specified for the
application and the actors who interact with the application
according to those use cases. UML Activity Diagrams are
used to model the logic captured by a single use case. The
set of activity diagrams represents the overall behavior
specified for the application and is the basis for testing the
different functionalities and business rules described in the
use cases specification.

The rationale for using Activity Diagrams for
describing use cases is based on the assumption that
activity diagrams express how functionalities can be
exercised in terms of workflow and consequently are well

9

suited for creating “automatic test drivers” to verify those
functionalities.

As mentioned before, modeling the application
behavior, in our approach, means to define use cases and
describe how to test those use cases with activity diagrams.
In an ideal situation, use case modeling is performed by
analysts during the requirements phase. Alternatively (or
Failing which), the models can be created afterwards for
testing. Basically, the models (i.e., use case + activity
diagrams) can be used as a representation of which
functionalities should be tested and a roadmap of how to
test them. However, requirements models typically need to
be enhanced to capture the information needed for
generating useful test cases. We can classify these
enhancements in two types. The first one is the refinement
of activities on activity diagrams. This refinement
generally leads to an improvement in the accuracy (e.g.,
decreasing the level of abstraction) of the described
functionality, and consequently facilitating the efficiency
of the test cases.

The second type of model enhancement is
characterized by annotations on the activity diagrams. Our
approach, support annotations by using custom stereotypes
in notes anchored to a particular activity in the diagram.
Those stereotypes represent additional test requirements
and are typically added by the test designer. An example of
annotation is data inputs, which are in the form of
“categories” as defined in the data coverage section
(section 2.2). These data inputs are combined with the
generated test paths and primarily influence the test
generation process in terms of the number of test cases
generated, functional coverage attained and data selected
for be used in each test case. This combination of activity
diagram and data annotation enables our approach to reach
a specific graph and data coverage during test case
generation.

2.1 Use Cases
UML Use Case Diagrams are used to represent the

functionality of the application from a top-down
perspective. We assume that for test cases generation each
use case, described in the Use Case Diagrams, has an
associated activity diagram. If the use case has included or
extended other use cases, these must be represented in the
diagram as activities of the same name.

Figure 1 shows GUI for the Microsoft “Letter
Wizard”, while Figure 2 depicts the Use Case Diagram for
our example on testing the “Letter Wizard”. The top level
use case includes four other use cases, each representing a
tab of the GUI.

Figure 1: Letter Wizard GUI / Recipient Info Tab

Figure 2: Example Use Case Diagram

2.2 Data Coverage

Underlying our UML-based testing approach is the
category-partition method, which is a long term research at
Siemens Corporate Research [6]. The category-partition
method identifies behavioral equivalence classes within the
structure of an application under test. A category or
partition is defined by specifying all possible data choices
that it can represent. Such choices can be either data
values, references to other categories, or a combination of
both. The data values become inputs to test cases and can
be elements in guard conditions on transitions. In our
approach, categories are represented by classes with the
stereotype <<Category>>. The data choices for each
category are the attributes of the class. Figure 3 shows an
excerpt of the classes for our Letter Wizard example. Most
of these categories are used in the “Specify Recipient Info”
use case. This use case will require input data: a recipient
name, a delivery address and a salutation type. For each of
these categories, the possible data choices are presented as
the attributes: three choices for the name, four for the

10

salutation type and two for the address. These must be
chosen carefully as too many data choices in a category
may result in an explosion of test cases.

Figure 3: Example Class Diagram

2.3 Activity Diagrams
As previously stated, our approach uses UML Activity

Diagrams to model the functionality workflow defined by a
use case. This type of diagram is ideal for our purposes
because we require a method to describe the test case flow.
In the test generation phase, an activity’s text will become a
test step. As is allowed in UML, activities can include or be
refined by other activity diagrams (i.e., enhance by
refinement). In these cases, the test generation will “flatten”
the diagrams. The step containing the activity text will be
replaced with the steps generated from the refined or
included diagram.

An activity is considered refined when there is a sub-
diagram associated to an activity, as permitted by the
modeling environment. Another form of refinement is when
an activity includes another use case, which has an activity
diagram of its own. This situation encourages the reuse of
diagrams: the same diagram can appear as the elaboration of
activities at many points in the model.

All data objects relevant for a use case are modeled as
test variables in the activity diagram. They are used to
express the guard conditions in branches and to specify the
data variations for test generation. The categories defined by
classes (Figure 3) provide the input data: the data choices in
a category are the possible values of the variable. During test
generation, the activity, which becomes a test step, requires
one of the data choices of the category as an input in order to
complete.

Before using test variables in branching conditions or
for data variations, they must be defined and associated to an

activity (i.e., enhanced by an annotation). A variable is
defined by a note with the stereotype <<define>>, followed
by the name of the category. The note has to be anchored to
the activity where the data of the variable emerges. This is
essential as the test generator must specify the value chosen
for the variable/category at this particular step in the
produced test cases.

Another stereotype, <<use>>, tells the generator to use a
previously defined test variable rather than create a new
instance of this variable. In other words, the same data
choice is selected if the category has been used earlier in the
path. If the variable has not been previously defined, then
“use” has the same semantics of “define”.

Once a variable has been defined, it can be used in the
guard condition of a transition. Guard conditions must
contain a comparison of a category to one of its data choices.
The syntax for describing guard condition follows the one
defined for Siemens Test Script Language (TSL), which is a
script language that supports the adoption of the category-
partition method

Basically, TSL uses the symbol “~” to assign equality
and the keywords “not”, “or” and “and” to designate
operations over those assignments. For example, let us
consider a category named “Shape” having the attributes
“Circle”, “Square” and “Rectangle”. A transition located
after this category having been defined as a variable could
contain the expression “[Shape ~ Circle]”. In the test
generation phase, the test paths containing this transition
would only have the data combinations that have selected
“Circle” as the data choice for shape.

In our approach, guard conditions of the transitions
coming out of a decision point do not need to be mutually
exclusive or even be deterministic. The lack of any guards
on the transitions (from the same decision) indicates that
each path is valid for any set of data values. If there is a
guard on just one branch, the other branches are assumed to
mean “otherwise”. For our example above, a branch out of a
decision point with the guard “[Shape ~ Circle]” implies that
the other branches from the same point have the guard “[not
(Shape ~ Circle)]”. This helps simplify diagrams a great
deal.
3 Example

In this section we present the activity diagram for the
use case “Specify Recipient Info”, depicted in Figure 4.

In the “Specify Recipient Info” tab, the graphical
interface first requires the user to either select the recipient
from an address book or to enter the name and address
manually, then choose a salutation or not.

TestName
Empty
JohnDoe
JaneSmith

<<Category>>
TestAddress
BristolWay
CollegeRoad

<<Category>>
SalutationType
Formal
Informal
Bussiness
Other

<<Category>>

SenderName
<<Category>>

RecipientName
<<Category>>

SenderAddress
<<Category>>

 DeliveryAddress
<<Category>>

11

Figure 4: Specify Recipient Info Use Case

To model this, we introduce the variable

“RecipientName” from the category of the same name
(from Figure 3). Two of the data choices are names
from the address book, which lead to the “UserAction”
activity “SelectExistingRecipientName” and the third
data choice, “Empty”, which leads the path through
the “UserAction” activities “EnterRecipientName” and
“EnterDeliveryAddress”.

The configuration options for the test generation, such
as the path coverage criterion, will affect the number of
test cases produced by this example. We discuss this
further in sections 3.2 and 3.3
3.1 Test Generation

Before proceeding with a description of the test
generation characteristics, we would like to emphasize that
our approach generates a set of functional conformance
tests. These test cases verify the compliance of what is
implemented to what was modeled. It is assumed that the
implementation behaves in a deterministic and externally
controllable way. Otherwise, the generated test cases may
be ineffective.

From the UML activity diagram and the category data,
test paths are created. To automate this, we use a tool built
here at Siemens Corporate Research, the Test Development
Environment using UML (TDE/UML). It works as a plug-
in to many modeling environments such as Rational Rose,
Borland’s Together J, Argo/UML and our own tool,
Eclipse (SCR) UML Editor. TDE/UML exports relevant
diagrams into an object representation, which allows it to
be flexible regarding the multiple modeling tools.
TDE/UML allows the user to specify many parameters of
the test case generation. We present in this paper two of
these options: the graph coverage criterion and the data
coverage criterion.

The output of the test generator is a set of XML-based
files that can be formatted for presentation as a set of
textual test procedures or executable test scripts based on
the XSLT style sheet being used.

3.2 Graph Coverage Setup
There are four different criterions that influence the

graph coverage: Round Trip Criterion, Happy Path
Criterion, All Paths Criterion and All Activities Criterion.
This setup option determines the complexity of the path
generation. The number of paths generated is only
dependent on the chosen criteria. Later in the generation,
some paths may be determined to be infeasible due to the
data inputs and guard conditions.

 For our example presented in Figure 4, the first three
graph coverage criterions will yield the same result: four
paths are generated. This is because our example is too
simple: it does not have cycles or exception paths.
However, the last criterion will produce fewer paths: only
two paths are required to cover all the activities.

3.3 Data Coverage Setup
There are four different criterions that influence the

data coverage: Sampling, Group Coverage Expression,
Choice Coverage and Exhaustive Coverage. Exhaustive
coverage, as well as undisciplined use of group coverage,
can very easily generate an enormous amount of tests.
Choice coverage ensures that each choice is present in at
least one test case. The number of test cases generated is
not only dependent on the chosen data coverage criteria,
but also on the graph coverage criterion. Changing any of
these options will have a direct effect on the number of test
cases the tool will generate.

3.4 Generating Test Cases for Sequences of Use
Cases

Test cases can be generated from each use case to
verify the described functionalities. In the “Letter Wizard”
example, this means that each tab, e.g. “Select Letter
Format”, “Specify Recipient Info”, “Describe Other
Elements” or “Describe Sender Info” can be tested in
isolation. However, it is also extremely important to verify
sequences of those functionalities. That is, to specify one
or more sequences that convey how combinations of
functionalities can archive the end user’s expectations.
Those combinations can be represented as testing
scenarios, which explicitly represent a set of use cases
performed in a particular order.

In the case of GUI verification, testing scenarios
normally starts with the user opening the GUI, continues
with performing several use cases in sequence, and ends
with system exit. Large systems typically involve
enormous number of scenarios (sequences of
functionalities). It is thus very important to wisely identify

12

important (e.g., common) scenarios for testing purpose.
One approach is to identify one or more main scenarios, or
“happy paths” and some alternative paths. These
alternative paths may be exceptions (e.g., negative tests) or
infrequently used options in the use case.

Figure 5 shows a testing scenario for the “letter
Wizard” example. This model is a description for the top
level use case (“Letter Wizard”) and it includes the four
other use cases. The depicted activity diagram captures a
“testing scenario’ which focuses on ordering the separate
GUI functionalities in order to verify a complete
interaction.

Figure 5 - Sequence of Use Cases

The discussion on the results of test case generation for the
specified testing scenario will be carried out next.
3.5 Results from test case generation

The number of test cases generated for the “Specify
Recipient Info” use case is presented in Table 1. As Choice
and Exhaustive data coverage are more commonly used,
only these are shown. Clearly, even for such a small
example, the number of test cases can vary a great deal.

Table 1: Number of Test Cases – Specify Recipient Info
 Choice Exhaustive
All Paths (4) 13 20
All Activities (2) 9 16

Table 2 represents the number of test cases generated
for the “Letter Wizard” use case (testing scenario defined
at sub-section 3.4).

Table 2: Number of Test Cases – Letter Wizard
 Choice Exhaustive
All Paths (288) 1550 41040
All Activities (10) 47 1632

It can be observed that the combination of
functionalities typically leads to a large number of test

cases. This highlights the importance of having a concise
model (using as many guards as possible) and the
consequences of the chosen test generation configuration.
Obviously, the all paths criterion combined with
exhaustive data coverage cannot be used in practice, unless
the modeled application is mission critical.

Typically, a reasonable strategy for testing GUI is to
use a stronger coverage for testing individual tabs or
frames (e.g., All paths/Exhaustive data) and then use a
weaker coverage (e.g., All activities/Choice or sampling
data) for testing the overall interaction on the GUI .

Given some time/budget factors that most of the time
is present on testing activity, a key issue is how to achieve
the best possible coverage within available resources. Our
model based approach allows testers to make that tradeoff
by proving them the necessary information. Furthermore, it
deals very well with scalability issues, since it make
available ways to constrain the generated test cases and to
chose the ones that are going to lead to the desired
coverage.

4 Discussion
The most significant and time-consuming step in our

approach is to define and annotate the UML diagrams with
test requirements. Investigations recently performed
suggest that with some training, the time necessary to
create and annotate the UML diagrams for testing a
specific application are not very different from manually
creating and validating a comprehensive set of test scripts
for testing the same application. This fact was observed in
different projects where we are currently using the
approach.

Our testing approach leaves the application testing
group focusing on the creation and refinement of the
models and the definition of data variations, instead of
manually creating test scripts. This leads to a shift on the
characteristics of the tasks performed by the test group.
Therefore, some training is needed in order to understand
the concept behind modeling and data annotations.

Another important observation is that the effort
necessary to update the test cases against a later version of
core specifications or the application implementation, is
much reduced using our approach, since the modification
involve to update the models and to regenerate the
necessary test cases.

5 Related work
The use of UML for automatically generating test

cases has been extensively studied in recent years. Many of
these papers discuss work related to the automated test
generation and execution for individual or subsystems of
components. Our approach aligns more with those
publications that discuss UML for the purposes of system

13

testing [1,2,3] and those that focus on generating tests for
GUI-based systems, for example, Beer et. al. [5] describe
the IDATG (Integrating Design and Automated Test Case
Generation) environment for GUI testing. IDATG supports
the generation of test cases based on both (1) a model
describing a specific user task and (2) a model capturing
the user interface behavior.

With respect to UML-based modeling for system
testing purposes, Fröhlich and Link [1] discuss a method to
automatically generate test cases from use cases. In their
approach, a use case textual description is transformed into
a UML statechart and then test cases are generated from
that model. However, the use of statecharts in the context
of representing system behavior is debatable – we found
that activity diagrams reflected the user action/system
response paradigm in a more natural way. Briand and Y.
Labiche [3] propose the TOTEM system test methodology,
which is based on the refinement of UML use cases into
sequence (or collaboration) diagrams. It provides a good
alternative approach to modeling with activity diagrams.
Bertolino and Gnesi [2] present a methodology to manage
the testing process of product lines. The methodology is
based on annotation of textual use cases with category
partition method information. Test cases are created based
on those annotations. Their approach is similar to ours,
since both approaches are based on category-partition
method. The differences emerge with respect to two issues:
a) we annotate the activity diagram instead of the textual
use cases, and b) we make use of more precise structures
based on TSL language, which leads to more consistent
test scripts.

6 Conclusion
In this paper, we have described an on-going research

project in application testing based on UML Models. The
major concerns in our project are to improve the
effectiveness and practicality of software testing and to
address application testing in a “real world” scale. Test
effectiveness is largely governed by the completeness,
consistency, and accuracy of the supplied information and
tester experience. Another issue is the degree of test
automation being applied to support testing in large scale.
For most organizations including Siemens, this can range
from manually creating and executing a set of textual test

steps for each regression test without any automation
whatsoever, to a fully automated test suite with hundreds
or even thousands of executable test scripts. The approach
presented in this paper is clearly a step towards a
comprehensive testing strategy.

Research is underway on some topics, but are not
discussed in this paper. For instance, we aim to improve
the test case generation with more detailed oracles. In the
approach described in this paper the notion of a test
passing (or failing) is related to the ability of the test driver
to execute all specified test case steps successfully. We are
investigating ways to improve the test cases with detailed
verification points and arbiters. Another research issue
being investigated is obtaining a more precise
measurement technique for data coverage, particularly for
improving the process of test data creation and utilization
of the data during test script execution. Lastly, generation
of executable test cases, for example, test cases in JUnit or
CppUnit is being studied.

7 References
[1] P. Fröhlich, J. Link, “Automated Test Case Generation from

Dynamic Models”. In: Bertino, E. (Ed.): Proceedings of the
ECOOP 2000 pp.472–491, 2000.

[2] A. Bertolino and S. Gnesi: “Use case-based testing of product
lines”. Proceedings of the ESEC / SIGSOFT FSE, 355-358,
2003.

[3] L. C. Briand and Y. Labiche, “A UML-Based Approach to
Application Testing”, Software and Applications Modeling,
vol. 1 (1), pp. 10-42, 2002.

[3] A. Cavarra, J. Davies, T. Jeron, L. Mournier, A. Hartman and
S. Olvovsky, ”Using UML for Automatic Test Generation”,
Proceedings of ISSTA’2002, Aug. 2002.

[4] J. Hartmann, C. Imoberdorf, and M. Meisinger, “UML-based
Integration Testing”, Proceedings of ISSTA’2000, pp. 60-
70, Aug. 2000.

[5] A. Beer, S. Mohacsi, and C. Stary: “IDATG: An Open Tool
for Automated Testing of Interactive Software”. Proceedings
of the COMPSAC '98 - 22nd International Computer
Software and Applications Conference, pages 470-475
August 19-21, 1998.

[6] T. Ostrand, Marc J. Balcer: “The Category-Partition Method
for Specifying and Generating Functional Tests”, Comm.
ACM vol.31, no.6, pp. 676-686 (1988).

14

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

