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CHAPTER I

INTRODUCTION

This chapter contains the background and objectives of this research. It

discusses the importance of specifying requirements in software developments,

importance of representing incomplete relative temporal knowledge, present

approaches to both specification languages and temporal knowledge

representation, and also execution of software requirements specifications.

Finally it provides the objectives of the research.
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1.1  Background

Software developments commence with identifying, specifying and
documenting requirements for an information system. Software requirements
specification says, what the final system  needs to perform, instead of how it
should be done[Borgida 1985]. This is the most crucial and difficult step in
information system development process. Accuracy of software requirements
specification is largely responsible for the low cost and on-schedule completion
of information system development projects[Vessey 1994].

Writing of software requirements specifications needs a requirements
specification language. A variety of software requirements specification
languages are available in the literature. They can be classified into two
categories: formal and informal requirements specification languages. Formal
requirements specifications have sound mathematical basis and use formal
notation to produce concise, clear and precise software requirements
specifications; whereas informal requirements specification languages employ
graphics and semiformal textual grammars to provide end-user comprehensible
software requirements specifications[Fraser 1991].

Intelligibility of the software requirements specification provides better
communication between end-users and developers. Communication barrier
between end-user and developer is one of the unresolved problems in
requirements engineering[Hsia 1993].

Most formal requirements specification languages do not support user
friendly representation. Hence Hall[Hall 1990] suggests that the formal
requirements specification must be accompanied by a natural language
description.  Recent requirements specification languages employ an object-
oriented approach to document requirements for an information
system[Mylopoulos 1990][Jungclaus 1996]. A study shows that the object
methodology is difficult to understand even by the novice systems
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analyst[Vessey 1994]. Hence it is obvious that the non-technical end-user will
experience more difficulties with object-oriented representations. Although
object-oriented techniques are well established in system designing and coding,
its contribution to requirements engineering is not so apparent[Hsia 1993].
However, object-oriented principles (abstraction: aggregation & specialization,
inheritance, complex objects) are helpful when dealing with complex
systems[Sigfried 1996]. Therefore, the systems analyst will benefit from an
object-oriented conceptual modeling technique.

 Representing and reasoning about temporal knowledge play an
important role in information systems developments. We need to refer to what
has happened already, what is happening now and what will happen in the
future and then to make decisions based on them[Torsun 1995]. Situation
calculus, Event calculus and First-Order Temporal logic (FTL) have been used
for these purposes[Russell 1995]. FTL has temporal operators in addition to the
logical connectives and quantifiers in first-order logic. Allen[Allen 1984]
suggests thirteen possible temporal relationships. However, all the FTL
temporal operators available in the literature[Tuzhilin 1995][Torsun
1995][Abadi 1990][Manna 1995] are not capable of representing  Allen’s[Allen
1984] temporal relationships and all of them use the current state (now) as the
origin in time line.  Torsun[Torsun 1995] says that FTL is not complete as a
first-order logic. In Templar [Tuzhilin 1995], temporal predicates can have
temporal operators  such as always_in_the_future, sometimes_in_the_future,
for_time, within_time. However relative temporal knowledge has been
represented using the clauses before, while and after. TROLL[Jungclaus 1996]
employs existing temporal operators and the predicates “before” and “after”.
TELOS[Mylopoulos 1990] uses a slightly modified version of Allen’s [Allen
1984] temporal relations to represent temporal knowledge. These show the
importance of incomplete relative temporal knowledge in software
requirements specifications.

Once the requirements specification is ready, one has to consider how to
implement the specification correctly. Therefore the program verification
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becomes very important. Temporal logic has been used for program
verifications[Manna 1995]. However, software requirements specification
languages based on temporal logic can produce an executable specification
making the verification process easier and  faster in automated program
generations since the specification language itself can be used as a
programming language[Barringer 1996]. As discussed, it is hard to find a
requirements specification language that satisfies all the criteria (end-user
understandable, executable specification which supports object-oriented
principles and is capable to represent incomplete relative temporal
information).

1.2  Objective

Since incomplete relative temporal knowledge play an important role in
information systems, the proposed language should be capable of representing
them in end user understandable form and should be flexible enough to
introduce user defined temporal relations to the language. If not, systems
analysts and end users have to use a predefined representation scheme which
restricts the expressiveness of the language. On the other hand, object-oriented
modeling techniques are capable to handle complex systems easily. Therefore
the proposed language should provide facilities for object-oriented modeling
techniques. Hence the objective of this research is to  design a specification
language which can be used for object oriented modeling and further it provides
executable, intelligible specifications.

This thesis can mainly be  divided into three parts. First part discusses
conventional approaches to represent incomplete relative temporal knowledge
and introduces new logical connective TAND. The second part describes the
development of a new temporal logic called TANDTL which employs TAND
connective to represent temporal knowledge. The final part explains the
features of new specification language called GSL which is based on the
temporal logic TANDTL. GSL is executable and end-user intelligible. As
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discussed above, the proposed specification language should be able to provide
object-oriented modeling. Therefore it is necessary to have a model of a system
and  examples to introduce the features of the language. Chapter 2 provides the
model of  a system adopted in this research and the pilot system which is going
to be used to provide example throughout this thesis. Further the specification
language GSL is designed giving special consideration to accounting
information systems. Therefore Chapter 2 discusses about accounting
information systems, its users, its subsystems and accounting language. Chapter
3 provides a detailed discussion about representing incomplete relative
temporal information. This chapter can be considered as the main chapter of
this thesis, as  it provides the basis for the remaining chapters. It discusses
about conventional temporal knowledge representation methods, problems with
them and introduces a new logical connective TAND to represent incomplete
relative temporal knowledge. Further it shows how TAND can be used to
represent temporal knowledge in information systems.

 One of the objectives of this research is to develop an executable
specification language  based on temporal logic. Chapter 4 introduces the
conventional temporal logic, their problems and proposes new temporal logic
called TANDTL which removes all the existing temporal operators and uses
only TAND connective to represent temporal knowledge. Chapter 5 discusses
the similarities between logic and the view of a system adopted in this research
and it shows how logic TANDTL can be executed. The purpose of this chapter
is to show that a specification language based on TANDTL can be executed
since  TANDTL is executable. The remaining is to introduce the specification
language GSL. Chapter 6 discusses about present specification languages and
introduces GSL in detail. Chapter 7 provides the discussion and Chapter 8
concludes the thesis. Appendices A and B provide an application of GSL to
real  problems.
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CHAPTER II

ACCOUNTING INFORMATION SYSTEMS

This chapter introduces the accounting information systems which is the
main application area of  this research. It introduces what the accounting system
is, its users, its subsystems and accounting language. Then it introduces the pilot
system which is going to be used to provide  examples. It is a kind of a
subsystem of an accounting system of a travel agent who provides air line
reservations to passengers. Then it discusses about requirements of an
information system. Finally it presents the view of a system adopted in this
research to model accounting systems and its subsystems. It further discusses
why this particular view of a system is adopted and how it can solve the
problems of other views of systems.
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2.1  Accounting systems
2.1.1  Accounting as an information system

Accounting is an information system that measures, processes and
communicates financial information about an identifiable economic
entity[Needles 1993]. Bookkeeping is not accounting but it is an important part
of accounting. Bookkeeping is the process of recording financial transactions
and keeping financial records. The modern accountant is concerned not only
with record keeping but also with a whole range of activities that involve
planning and problem solving; control and attention directing; and evaluation,
review, and auditing.  Accounting is generally known as the “language of
business”[Eisen 1994]. According to the definition accounting has three major
functions:

1.  It measures business activities by recording data for future use.
2.  The data are stored until needed and then processed to become useful

information.
3.  The information is communicated, through reports, to the decision

makers.
Figure 2.1 shows the process of a typical accounting information system. With
the widespread use of the computers today, many of the information needs are
being organized into a management information system (MIS). Accounting
systems is the financial hub of the management information system. The
management information systems consist of many inter connected subsystems
including accounting system. Therefore accounting systems interact with many
non-financial systems in order to provide the required information. These non-
financial systems are represented in business activities in Figure 2.1.
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2.1.2  Users of an accounting system

The users of an accounting system can be divided into three:
1.  Those who manage a business,
2.  Outside business enterprises who have a direct financial interest in the

business, and
3.  People, organizations, and agencies that have an indirect financial

interest in the business.
These groups are shown in Figure 2.2. Behavior of these user groups are
affected to the overall management information system.

Management
Management is the group of people who have overall responsibility for

operating a business and for meeting the company’s goals. Success and survival
in a competitive business environment require that management concentrate
much of its effort on two important goals: profitability and liquidity. Managers
must decide what to do, how to do it, and  whether the results match their
original plans. These decisions are based on analysis of accounting information.
Therefore management is one of the most important users of accounting

Business
Activities

data
Measurement Processing Communications

Decision Makers

Information
Information
Needs

Action

Figure 2.1 Accounting as an information system

Accounting
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information. Their decisions may include modifications to the accounting
systems.

Users with direct financial interests
  Investors and potential investors are interested in the past performance of
the company. Potential investors need accounting information before they invest
on the business while those who already invested are interested to know about
the success of the business. Many companies borrow money from other
organizations. Creditors, those who lend money or deliver goods or services to
company on credit basis are mainly interested to know whether the company is
in a position to pay back their credits. Potential creditors evaluate financial
stability of the company before they lend money or services. Modifications to
the existing accounting system may be required to incorporate the creditors
decisions.

Users with indirect financial interests

Society as a whole (such as government and public groups) is the most
important user of accounting information. Government policy changes will
effect an accounting system. Labor unions, employees are also important user
groups. Their behavior will bring modifications to the system. These changes
will come with short notice. Sometimes it may be few days or few hours.
Therefore an accounting system should be flexible enough to deal with sudden
changes to the system.

2.1.3  Accounting systems and its subsystems

An accounting system itself has several subsystems. Components of
typical accounting system are given in Figure 2.3. The concept of subsystems is
applied through various special purpose journals and subsidiary ledgers. For
example, there can be Sales Journal, Purchase Journal,
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Cash Receipts Journal, Cash Payment Journal and General Journal etc. in the
accounting system of a company. Each journal can be considered as a subsystem
of  the accounting information system.  Special purpose journals are designed to
record particular kind of transactions. Thus, all transactions in a special purpose
journal result in debits and credits to the same account. Each special purpose
journal has relevant subsidiary ledger to post the transactions. Finally at the end
of the accounting period, as an example,  at the end of the month, total of the
transactions will be posted to the main ledger called general ledger. In a

Users

Management

Owners
Partners
Directors
Officers
Managers
Dept. Heads
Supervisors

Those with direct
financial interest

Investors
Creditors

Those with indirect
financial interest

Municipals
Other Agencies
Economic Planners
Government
Employees
Labor Unions
Customers

Business Activities

Accounting

Activities that affect business activities

Figure 2.2 The users of an accounting system
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computerized accounting system, these special purpose journals and subsidiary
ledgers represent subsystems. All these subsystems interact with the main sub
system called general ledger sub system which produces the final accounting
information. General ledger sub system is straightforward, easy to develop and
maintain. However, since the other subsystems interact with the different user
groups, they are subject to frequent changes. For example, let us consider the
payroll subsystem of a company. When there is a demand for salary increase
from the employees, management has to increase salaries in order to fulfill the
demand.  This may introduce modifications to the payroll sub system. In this
case, the general ledger sub system is not subject to modifications since it gets
only few journal entries from the payroll subsystem. Figure 2.4 depicts this
situation. Therefore subsystems of an accounting system should be flexible
enough to accommodate the changes with short notice, sometimes within few
hours. The Pilot System, which is going to be explained in the section 2.3, is
also a subsystem of an accounting system of a travel agent.

2.2  Accounting language

Accounting is the language of business. It has well defined syntax and
semantics. Therefore manual accounting system can be considered as an
executable accounting specification.

2.2.1  Syntax

An accounting system consists of several accounts, journals, ledgers and
reports. Information is kept in journals and ledgers in account units till they are
used to generate management information.
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Sales Journal

Accounts Receivable Ledger

Accounts Receivable
Subsystem

Accounts Payable
Subsystem

Accounts Payable Ledger

Purchase Journal

Cash Payment Journal
Cash Receipts JournalGeneral Ledger

General Ledger Subsystem

General Journal

Customer
Invoices

Vendor
Invoice

Payroll Subsystem

Attendance,
Deductions

Other Transactions,
Journal Entries

Financial
Reports

Reports

Reports Reports

Figure 2.3 A typical accounting system

Cash Receipts,
Deposits

Checks
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A basic accounting language consists of
1.  Set of accounts.
2.  Set of journals (At least General Journal).
3.  Set of ledgers (At least General Ledger).
4.  Set of reports.
5.  A process called journalizing.
6.  A process called posting.
7.  A process called closing.
8.  An accounting equation : Assets = Liability + Capital.
9.  Business transactions such as receipts, payments etc.
10.  Each account consists of  at least name, date column,

description column, debit column and credit column.
11.  Accounts are grouped into three categories namely, Assets,

Liabilities and Owner accounts.
12.  Ledgers contain set of accounts.
13.  Each transaction should contain date, description, amount.
14.  Journals should have at least date column, account debited

column, account credited column and amount column.

General Ledger Subsystem

Other Subsystems
Transactions

Environment

Figure 2.4 Interaction of accounting systems with environment

Accounting
System
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2.2.2  Semantics

Recording of information in various journals and ledgers are required to
follow a well define procedure. These procedures give the necessary semantics
for the accounting language.

Semantics of a basic accounting system are as follows:
1.  Each transaction recorded in a journal should satisfy the

accounting equation.
2.  For each transactions, total debits should equal to total credits.
3.  Each transaction should at least be credited to one account and

debited to one account.
4.  Increases in assets are recorded in debit side and decreases in the

value of assets are recorded in credit side of an asset account.
5.  Increases in all liabilities and owner’s account are recorded as

credits and decreases are recorded as debits.
6.  Each transaction should be first recorded in a journal and then

posted to a ledger.
7.  All transactions should finally be posted to the general ledger.

2.3  The pilot system

This section explains the pilot system which is going to be used to explain
the features of the specification language. The pilot system is a subsystem of an
accounting system of a travel agent. This subsystem interacts with the
passengers who request flight reservations and finally transactions are generated
for the accounting system.
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2.3.1 Transactions generation system of a travel agent

Let us consider a travel agent who provides air line reservation services to
passengers. The transactions generation system has to create transactions to the
accounting system after going through various phases of air line bookings.
Requirements for the system are as follows:
1.  The system is activated when a request for a flight reservation is received

from a passenger.
2.  When a request for a reservation is made, the consultant should record the

passenger details such as name, destination, intended departure date, intended
air line and maximum cost.

3.  If passenger specifies a particular air line, then consultant should contact the
requested air line and get the reservation details such as possible departure
date, flight number, departure time, destination, reservation status and cost.
Reservation status will be one of the followings:  “Confirmed”, “Waiting” or
“Cancel”.

4.  If the passenger does not specify an air line then the consultant has to search
for a suitable air line and get the reservation details.

5.  When the consultant gets the reservation details from the air line, he should
contact the passenger and inform.

6.   If the passenger agrees with the reservation details then consultant has to
reserve the flight and generate a reservation transaction to the accounting
system.

7.  If the passenger is not satisfied about the reservation then cancel the
reservation and ask him whether the consultant should try again.

8.  If the passenger wants to try again, then the consultant has to follow the
instructions starting either from 3 or 4. If not, remove the passenger details
from the records.

9.  If the reservation status is waiting, then ask the passenger whether he is ready
to wait or not. If he is ready to wait then wait for confirmation. If not, follow
the instruction in 7.

10.  If the reservation status is cancel follow the instructions in 7.
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11.  A passenger can cancel his request for reservation while he is waiting for
confirmation without penalty.

12.  Payment should be made after the reservation is confirmed and before
departure in order to issue the ticket.

13.  A passenger can cancel a reservation before payment.
14.  If a passenger is made a cancel request after payment and 60 to 31 days

before departure then cancel the reservation and charge him 10% of the cost.
Generate the cancellation transaction to accounting system.

15.  If a passenger is made a cancel request after payment and 30 to 15 days
before departure then cancel the reservation and charge him 20% of the cost.
Generate the cancellation transaction to accounting system.

16.  If a passenger is made a cancel request after payment and 14 to 3 days
before departure then cancel the reservation and charge him 30% of the cost.
Generate the cancellation transaction to accounting system.

17.  If a passenger is made a cancel request after payment and 2 days before
departure then cancel the reservation and charge him 50% of the cost.
Generate the cancellation transaction to accounting system.

18.  If a passenger is made a cancel request after payment and on the day of
departure then cancel the reservation and charge him 100% of the cost.
Generate the cancellation transaction to accounting system.

2.4  Information systems’ requirements

Requirements of an information systems consist of three major
components.

1.  What.
2.  Who.
3.  When.

These three components can be seen in any given information system. Therefore
the specification language used to represent requirements should be capable of
representing these three components. The component  “What” considers the
what should be done by a computerized system instead of how it can be done.
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This is normally the main topic of the requirement engineering. Even though the
component “Who” is not essential for a functioning of a computerized
information system, it is more useful to know about responsible person for an
action in maintenance phase, specially when end-users and system analysts are
new to the computerized system. However, it is necessary to know about the
“When” component. Real world information systems consist of series of actions
which are chronologically ordered. Activation of a particular action is entirely
depended on actions already activated. Therefore without specifying temporal
relations between event and activities in an information systems concisely,
precisely and accurately, it is impossible to build a computerized information
system. Therefore this research pays special attention on representing
incomplete relative information.

2.5  View of a system

Building of a computer system requires a well design model for the
application. Since accounting is the main application area of this research, the
model selected should be flexible enough to represent any accounting system.
As described above, accounting systems have lots of chronologically ordered
external and internal events and activities. An event invoke one or more actions
in accounting systems. That is the temporal order of the events and activities are
very important. These actions may trigger another set of actions. On the other
way, generation of one information in accounting system will lead to generation
of several other information. The selected model should be capable to represent
these characteristics of accounting systems.

Entity-relationship models are widely used in data modeling than other
models. However, entity-relationship modeling does not support the idea of
creating new objects using one or more objects which is very important in
accounting systems. For example, a particular journal can be considered as a
collection of several similar transactions. In entity-relationship modeling,
journals cannot be considered as a collection of transactions instead considered
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as two separate objects having some relation. Entity-relationship view of a
system and another view of a system which can solve the problems with entity-
relationship approach will be discussed in next sections.

2.5.1  Entity-relationship view of a system

In entity-relationship modeling approach, it is impossible to create a new
entity with new attributes and attributes from parent entities as a result of a
relationship between entities. It simply attaches entities to relationships. The
new attributes are linked to the relationships and not to the entities [Chen
1976][Ullman 1982]. Bekke [Bekke 1992] shows that the entity-relationship
modeling is not suitable for some complex problems.  Figures 2.5 exhibits the
entity-relationship representation of a relationship between Passengers and
Flights, respectively.

2.5.2 View of a system adopted in this research

A system consists of objects which have properties as their attributes.
Objects have relationships among them. These relationships will result in:

1.  Modification to at least one attribute of the object, and/or
2.  Creation of a new object with new attributes in addition to the original

attributes.

New objects created will have relationships with other objects. However, Stefan
Sigfried’s idea is little different [Sigfried 1996] in declining with above
phenomena. He suggests complex classes contain object structures in addition to
attributes and methods. His suggestion is not adopted in this research, because
the idea of using objects as attributes in another object is supported by the
temporal logic. This will be discussed in the section 5.1 of this thesis. Therefore,
whatever the knowledge representation scheme adopted, it should be capable of
representing 1) modification to at least one attribute of the object and 2) creation
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of a new object with new attributes in addition to the original attributes.
However, the second requirement cannot be fulfilled if the well known entity-
relationship representation (Figure 2.5) is used. Therefore, view of a system
shown in Figure 2.6 which can satisfy both requirements is adopted in this
research. The system starts functioning when an external or an internal event
triggers an activity/activities under specific conditions. These activities will
trigger other activities and so on [Martin 1993]. Events, activities, rules and
conditions consist of objects and relationships. There are two types of events;
namely external events and internal events. External events occur due to
environmental changes while internal events occur due to execution of
programs.

Figure 2.5 Entity-relationship representation

ReservationPassengers Flights

Name Number Destination

Reservation Date
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Figure 2.6 Representation adopted in this research

ReservationPassengers Flights

Name Number Destination

Reservation Date
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CHAPTER III

REPRESENTING TEMPORAL KNOWLEDGE

This chapter discusses importance of incomplete relative temporal
knowledge in information systems, the present approaches to represent temporal
knowledge; Allen’s method, McDermott’s method, Vilain and Kautz’s method,
Temporal operators, Time-sensitive Boolean operators in detail. Then the
problems of present approaches to temporal knowledge representation (problems
inherited with point based and interval time models and the necessity of
complete time information of occurrence of events to represent temporal
knowledge) will be discussed. Finally it introduces the new logical connective
TAND which can solve the problems of above representation methods (because
it is not based on any time models) and shows how TAND can be used to
represent Allen’s temporal relations and existing temporal operators.
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3.  1 An incomplete temporal knowledge about events

While analyzing requirements of an information system, system analyst
has to deal with what has already happened, what is happening now, what will
happen and  has to take some sort of actions according to them. However
complete information about time of occurrence of an event may not be available.
For example, in the transactions generating system, it is understood that a
passenger will make a call for flight reservation but the exact time when he is
going to call us is not available. For another example, there will be a
cancellation after payments but the exact time when it will happen is not
available. Therefore at the requirement analysis phase system analyst has to deal
with the incomplete temporal knowledge about events rather than events with
the complete information about exact time of occurrence. But the complete
information about events may be required to answer a database query. However,
to decide whether a passenger will make a cancellation request after the
payment, it is not necessary to know the exact date of payment but it is enough
to know that the payment is already made. Therefore it is sufficient to know that
the passenger’s payment is found in the payment database. That means decisions
can be made with relative time information. In software requirements
specifications the requirements are stated with relative time information since
the exact time information are not available at this stage. These show the
importance of the incomplete relative temporal information about events in
software requirements analysis phase. Therefore software requirements
specification languages should be capable of representing incomplete relative
temporal information about events.
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3.2  Conventional methods to represent temporal
knowledge

Temporal knowledge representation models introduced so far can be
grouped into two: namely point based and interval based temporal models. Point
based time models represent time as a point in a real line while interval models
represent time by time intervals. In point based models, time interval is
represented as a set of time points which are bounded by start and end points.
The following section describes conventional approaches to represent temporal
knowledge.

3.2.1 Allen’s method

Allen [Allen 1983] has developed a temporal logic in which time intervals
are the primitives. He points out the weaknesses of point based temporal models.
Allen shows that there can be a time point in point based model where either
two events could occur at the same time or non could occur. For example,
consider the two events “Switch-On” and “Switch-Off”. Then according to
Allen, there can be a time point where both “switch-On” and “Switch-Off”
occur or none of them could occur. To solve this problem, he suggests time
interval as the primitive for temporal representations. Time intervals can meet
each other. Therefore “Switch-On” can meet “Switch-Off”. Further he suggests
thirteen possible relations between time intervals, namely “before”, “after”,
“during”, “contains”, “overlaps”, “overlapped-by”, “meets”, “met-by”, “starts”,
“started-by”, “finishes”, “finished-by” and “equals”. Figure 3.1 depicts them
graphically. Allen uses these temporal relations to define events and activities.
In his temporal logic, he applies first-order predicates to represent temporal
relations [Allen 1984].
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START(t1, t2) : time interval t1 shares the same beginning as t2, but
  ends before t2 ends;

FINISHES(t1, t2) : time interval t1 shares the same end as t2, but begins
            after t2 begins;

BEFORE(t1, t2) : time interval t1 comes before interval t2,
  and they do not overlap in any way;

OVERLAP(t1, t2) : interval t1 starts before t2, and they overlap;
MEETS(t1, t2) : interval t1 comes before interval t2, but there is no any

  interval  between them, i.e. t1 ends where t2 starts;
EQUAL(t1, t2) : t1 and t2 are the same interval.

To represent property holding over an interval T, Allen needs two other
predicates; HOLDS( p, T) and IN(t, T). HOLDS(p ,T) means that the property p
holds over an interval T and IN(t, T) means that the subinterval t is in interval T.
He defines IN as follows:
 IN(t1, t2) ⇔ (DURING(t1, t2) ∨  STARTS(t1, t2) ∨  FINISHES(t1, t2)).

His definition for HOLDS(p, T) is
HOLDS(p, T) ⇔ (∀ t. IN(t, T) � HOLDS(p, t)).

The negation of a property p is defined as
HOLDS(not(p), T) ⇔ (∀ t. IN(t, T) � ¬HOLDS(p, t)).

That means if a property p holds over an interval T, it holds over all subintervals
of T. However, Allen could not define events and actions using HOLDS
predicate. Therefore he defines another predicate OCCUR. The reason for use of
another predicate is due to his definition of HOLDS predicate. HOLDS(p , T)
says that property p holds over an interval T as well as all subinterval of T.
OCCUR(e, t) says that the event e, occurs in the time interval t. Therefore to
represent “event e1 occurs before event e2”. It is necessary to write
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     Figure 3.1 Allen’s temporal relations
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OCCUR(e1, t1) ∧  OCCUR(e2, t2) ∧  BEFORE(t1, t2).

However, Galton [Galton 1990] shows the weaknesses of Allen’s
temporal interval in representing continues changes. According to Allen’s
definition of HOLDS, to HOLDS(p, T) to be true p must be held in all
subintervals of T. If p is continuously moving with time, p cannot be held in all
subinterval at the same time. Hence if HOLDS(p, T) is true then p cannot move
but has to rest over time interval T. Galton argues that in order to overcome this
problem one must be prepared to treat time points and time intervals on an equal
footing. Therefore we can think of three kind of time models:

1.  Point based models,
2.  Interval based models, and
3.  Point-Interval based models.

3.2.2 McDermott’s method

There are two key concepts in McDermott’s temporal logic[McDermott
1982].

1.  More than one event can occur starting at a given instant.
2.  Many events do not occur discontinuously.

To capture these ideas, he defines universe as a collection of states. A state is an
instantaneous snapshot of the universe. States are partially ordered by a relation
“= <”. To represent “s1 comes before or identical to s2”, he writes (= < s1 s2).
In this method, facts type and event types are used as building blocks. State (or
time point) is used as the primitive. Mcdermott applies “Cambridge Polish”
notation for logical formulas. Every term, atomic formula, and combination is of
the form (p…), where p is a function, predicate or connective. His representation
of universal quantifier, existential quantifier, “not” operator, “if” statement,
“and” operator, “or” operator, “if and only if” statement and occurrence of
events are as follows:
Universal quantifier (forall) : (forall (-variables-) formula)
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Existential quantifier (exists) : (exists (-variables-) formula)
“not” operator : (not formula)
“if” statement : (if formula1 formula2)
“and” operator : ( formula1 formula2…)
“or” operator : (or formula1 formula2…)
“if and only if” statement  (iff) : (iff formula1 formula2)
Occurrences of events (Occ) : (Occ state1 state2 event)
“a” is an element of “x” : ( elt a x ).
Occ( state1 state2 event) says that the event “event” happens between states
“state1” and “state2”. Unbound variables are prefixed with “?”. Therefore, “?s1”
represents the unbound variable “s1”. The expression (< s1 s s2 ) represents that
the state “s” is in between states “s1” and “s2”. A CHRONICLE is a complete
possible history of the universe, a totally ordered set of states extending
infinitely in time.

Definition of CHRONICLE :
(iff (is CHRONICLE ?x) ; x is a CHRONICLE

(and ; a set of states
(forall (y) (if (elt y ?x) (is STATE y)))
; for all y, if y is an element of  x then y is a STATE
; totally ordered
(forall (s1 s2) ; for all s1, s2

(iff (and (elt s1 ?x) (elt s2 ?x))
; if and only if s1 and s2 are elements of x then

(or (< s1 s2) (> s1 s2) (= s1 s2))))
; state s1 comes before state s2, state s2 comes
; before state s1 or state s1 and state s2 are
; identical

; infinite time
(forall (t) ; for al t

(exists (s) ; there exists s such that
(and (elt s ?x) (= (d s) t))))))
; state s is an element of x and date of state s is t
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where function “d” in (d s) gives the date of state “s”. Comments begin at “;”.
Example : DAY is always followed by NIGHT and NIGHT by DAY. DAY and
NIGHT never overlap.

DAY and NIGHT are mutually exclusive (except at boundaries):
(if (and (Occ ?s1 ?s2 DAY) (Occ ?s3 ?s4 NIGHT))
; if DAY occurs between unbound states s1 and s2 and

          ; NIGHT occurs between unbound states s3 and s4
(forall (s) ; for all states s

(if (and (= < ?s1 s ?s2) ( = < ?s3 s ?s4))
; if state s is identical to unbound state s1 or s2 or
; in between unbound states s1 and s2 and
; state s is identical to unbound state s3 or s4 or
; in between unbound states s3 and s4 then
     (or (= s ?s2 ?s3)
     ; state s is identical to unbound state s2 or s3 or

         (= s ?s1 ?s4)))) )
      ; state s is identical to unbound state s1 or s4.

Each takes a nonzero amount of time :
(if (or (Occ ?s1 ?s2 DAY) (Occ ?s1 ?s2 NIGHT)
; if DAY or NIGHT occurs between unbound states s1 and s2 then
     (< ?s1 ?s2)) ; unbound state s1 comes before unbound state s2.

Each follow the other:
(follows DAY NIGHT) ; DAY follows NIGHT
(follows NIGHT DAY) ; NIGHT follows DAY
where
(iff (follows ?e1 ?e2)

          ; If and only if unbound event e1 follows unbound event e2 then
      (if (Occ ?s1 ?s2 ?e1)

                ;  unbound event e1 occurs between unbound states s1 and s2
          (forall (ch) (if (elt ?s2 ch)
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                     ; for all CHRONICLE ch, if state s2 is an element of ch
                                    (exists (s3) ; there exists s3 such that

              (and elt s2 ch) ; state s2 is an element of ch and
         (Occ ?s2 s3 ?e2)))))))

                                                  ; unbound event e2 occurs between
                                                  ; unbound states s2 and s3.

3.2.3 Vilain and Kautz’s method

In Vilain and Kautz’s point algebra or PA networks[Vilain 1986] [ Peter
1992], there are three basic relations that can hold between two points: <, =  and
>. The relative information between two points is represented as a disjunction of
the basic relations <, =, >. For example, the relation {<, =} between points A
and B is represented by (A < B) ∨  (A = B). Start and end points of a time
interval T are represented by T- and T+ . For example, “time interval T1 before
interval T2” can be expressed as follows:

T1 before T2 : (T1- < T1+) ∧  (T2- < T2+) ∧  (T1+ < T2-) .

However, all Allen’s temporal relations cannot be represented using PA algebra.
For example, “T1 meets T2” cannot be represented properly. Therefore the
subset of Allen’s temporal relations that can be represented using the relations
{<, ≤, =, >, ≥, ≠} are allowed in PA networks. Representation of Allen’s thirteen
interval relations using point algebra is shown in Figure 3.2.

3.2.4 Temporal operators

Temporal operators available in temporal logic [Kroger 1987][Barringer
1996][Manna 1995][Torsun 1995] are yet another approach to represent
temporal information. However, application of these operators are limited to
point based temporal models. Most computer science applications including
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program verifications [Manna 1995] employ these temporal operators. Standard
temporal operators are as follows:

Next  : Next A is true at time T if and only if A is true at time T+1.

Last   : Last A is true at time T if and only if A is true at time T-1.

Always in the future : Always in the future A is true at time T if and only if A is
true at all time point > T.

Always in the past : Always in the past A is true at time T if and only if A is true
all time points < T.

Sometimes in the future : Sometimes in the future A is true at time T if and only
if A is true at a time point T1 where T1 > T.

Sometimes in the past : Sometimes in the past A is true at time T if and only if A
is true at a time point T1 where T1 < T.

Until : A Until B is true at time T if and only if B is true at a time point T1 and
A is true at all the time points t where T < t < T1.

Since : A Since B is true at time T if and only if B is true at a time point T1 and
A is true at all time points t  where T1 < t < T.

However, these temporal operators are not expressible enough to represent

Allen’s temporal relations. Further they have weaknesses inherited from point

based temporal models
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Figure 3.2 Allen’s temporal relations using PA algebra
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3.2.5 Time-sensitive Boolean operators

The time-sensitive Boolean operators suggested by Bassiouni et al.
[Bassiouni 1994] are a different approach to  represent and reason about
temporal information. They argue that the standard Boolean connectives based
on the True/ False logic are not suitable for handling events/activities defined
over periods of time. For example, they say that the events p and q in ( p AND
q ) are not necessary to occur at the same time. They define a new time-sensitive
operator ANDS , ORS and NOTS to represent the concurrent occurrence of
events. Hence the events p and q in (p ANDS q) occur simultaneously. Their
definition of ANDS is as follows:

Definition:
If  S1 and S2 are two sets of time intervals, then the expression S1 ANDS

S2 returns the null set  φ if S1 and S2 do not have any overlapping intervals.
Otherwise ANDS returns the time sub-intervals that are contained in both S1 and
S2 (i.e. it returns their overlapping).

Similarly, they define time-sensitive ORS and NOTS.

Definition:
The time-sensitive unary operator NOTS returns the set of intervals which

is the complement of its operand with respect to the universal interval <0,
NOW>. Notice  therefore that if S is a set of time intervals, then the expression
NOTS (S) returns φ only if the union of the intervals of S is the universal
interval.

Definition:
If S1 and S2 are two sets of time intervals, then the expression S1 ORS S2

returns φ only if both S1 and S2 are null sets. Otherwise, it returns the union of
the intervals of S1 and S2.
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Time intervals are defined over integer time points. Further they show that the
time-sensitive Boolean operators satisfy the properties of standard Boolean
connectives.

3.2.6 Problems with the above methods

All temporal knowledge representation methods discussed above except
temporal operators, require complete time information to represent the temporal
information about events. They need exact time of occurrence of events.
However, as described in the section 3.1, information systems consist of
incomplete relative temporal knowledge rather than having complete time
information of occurrence of events. Therefore these methods can not be used
in software specifications to represent incomplete relative temporal knowledge.
The temporal operators available in the literature are not expressible enough to
represent temporal relations suggested by J. F. Allen [Allen 1983]. On the other
hand, temporal operators inherit the weaknesses of point based models.
Temporal operators are more suitable in program verifications rather than
software requirement specifications. Although Allen’s temporal relations
require complete time information of events, software requirements
specifications require them only to represent the temporal information.
However, Allen’s temporal intervals have weaknesses in representing continues
changes. Therefore a temporal knowledge representation  method which can
represent Allen’s relative temporal relations with incomplete time information
of occurrence of events is required. This thesis suggests a new method to
represent incomplete relative temporal knowledge [Wijayarathna 1997] which
can overcome these problems.
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3.3 The AND_THEN (TAND) connective

3.3.1 The standard logical connective AND

Logical connective AND ( ∧  ) does not discriminate the temporal order of
events. Even though two events occur in different time zones, as far as the
standard logical connective AND is concerned, they occur in the same time
zone. Hence it treats the events as concurrent events. The whole time line is a
single time zone for the AND connective. The “time zone” represents  both
time points and time intervals. Therefore the standard logical connective AND
is not suitable for applications where the temporal order of events play an
important role. As describe in the previous section, Bassiouni et al.[Bassiouni
1994] argues that events p and q in “p ∧   q” are not necessary to occur
simultaneously. However, “p ∧  ¬p = false” is  one of the universally accepted
properties of the standard AND connective ( Idempotent law ). Whenever p is
true, ¬p becomes false and when p is false, ¬p becomes true. Therefore in both
cases “( p ∧  ¬p ) = ( true ∧  false )= ( false ∧  true )” is false. According to their
argument p and ¬p are not required to occur simultaneously; i.e. it is not
required for “p ∧  ¬p” to be false. Because p can be true at one time and ¬p can
be true at another time giving “ true ∧  true = true”. This contradicts with the
universally accepted property  “p ∧  ¬p = false”. However the standard logical
connective AND considers events p and q in “p ∧  q”  as having occurred
simultaneously, even though they really occur in two different time zones.
Hence it is more realistic and logical to restrict standard logical connective
AND to represent simultaneous events and to introduce the new temporal
logical connective to represent other cases.
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3.3.2 The TAND ( ∏ ) logical connective

For any given two events p and q, the truth state at any  time “t” will be one of
the following:

1.  Only p occurs,
2.  Only  q occurs,
3.  Both p and q occur:

3.1  Both p and q occur simultaneously,
3.2  p and q occur sequentially,

4.  Neither p nor q occur.
Figure 3.3 shows these situations graphically.
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That is at any given time t,
1.  p = true ,
2.  q  =  true,
3.1  ( p ∧  q ) = true,
3.2  ??? (cannot represent using existing connectives) or
4. ( ¬p ∧  ¬q ) = true .

Here ∧  represents concurrent events. Therefore we can represent any relative
temporal relation using these four truth states provided that we have a method
to represent the sequential occurrence of events. For example to represent “p
meet q” , we have to express that there exists a state where “p  = true ” and
then another state where “q = true ”. That is “p meet q” is true, iff { p  = true
and then  q = true} is true. In this representation one state is followed by
another state. As discussed in the section 3.3.1, the standard logical connective
AND does not distinguish whether p and q occur simultaneously or not. Hence
what is required is a logical connective to represent and then in such a way that
“true and then true” is equal to true. The and then  is defined as TAND logical
connective and is represented by ∏ in this thesis.

Definition:
If p and q are true in time zones T1 and T2 respectively. Then (p  ∏  q )

is true if and only if

a)  q is true immediately after p is true.
b)   Both p and q are not true at the same time.
c)  At any given time, either p or q is true.

Axioms
Now  three important axioms about TAND ( ∏ ) can be defined.

A1. ( p  ∏ q ) � ( ( p ∨  q ) ∧  ¬( p ∧  q) )
A2. ( p  ∏ q ) ≠ ( q  ∏ p )
A3. Time zone T2 follows time zone T1.
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Therefore at any given time t, if ( p  ∏ q ) is true then either p or q must be true.
However both p and q cannot be true or false simultaneously.

Properties of AND and TAND

1.  Idempotent Law

p ∧  ¬p = false   ; either p is true or false.
p  ∏ ¬p = false ; p is true and then p is true.

   p is false and then p is true.
   p is false and then p is false.

p  ∏ ¬p = true ;  p is true and then p is false.

Therefore TAND does not obey the Idempotent law as AND does.

2.  Commutative law
p ∧  q = q ∧  p
p  ∏ q  ≠  q ∏  p

Since p  ∏  q means that p is true and then q is true while  q  ∏  p means that q
is true and then p is true. Two things can be ascertained from  p ∏  q.  First, p
and q do not occur at the same time and second, if T1 and T2 are sets of time
zones where q and p occur respectively then ∀ t1∈ T1  >  ∀ t2∈ T2. Therefore
TAND does not obey the commutative law as AND does. However both “p ∧
q” and “q ∧  p” express that p and q occur at the same time. Therefore the order
of  events is insignificant.

3.  Distributive law

p ∧  ( q ∨  s ) =  ( p ∧   q ) ∨  ( p ∧  s)
p ∨  ( q ∧  s ) = ( p ∨  q ) ∧  ( p ∨  s )
p  ∏  ( q ∨  s ) =  (p  ∏  q ) ∨  ( p ∏ s)  (table 1)
p  ∏  ( q ∧  s ) =  (p  ∏  q ) ∧  ( p ∏  s)  (table 2)
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(q and s occur in time zone T2 and p occurs in time zone T1 ; T1 follows T2 )

TAND obeys the distributive law as AND does. The truth tables,  Table 1 and
Table 2 show this in detail.

4.  Associative law

p ∧  ( q  ∧   s ) =  ( p ∧  q ) ∧   s
p ∏ ( q  ∏  s ) =  ( p ∏ q ) ∏ s

TAND obeys the associative law as AND does because associative law does
not change the order of the occurrence of events.
5.  DeMorgan’s law

 ¬( p  ∧   q ) =  ¬p  ∨  ¬q
 ¬( p ∏  q ) ≠  ¬p ∨   ¬q

If TAND obeys DeMorgan’s law then  ¬( p ∏  q ) =  ¬p ∨   ¬q. Since the
conventional logical connective ∧  obeys the DeMorgan’s law, ¬p  ∨  ¬q = ¬( p
∧   q ). However, by the definition, ( p ∏  q ) should be false when ( p  ∧   q ) is
true. Therefore, TAND does not obey DeMorgan’s law.
As shown above TAND obeys distributive and associative laws as AND does
but not other laws.

p q s ( q ∨  s ) ( p ∏ q) ( p ∏ s) p ∏ ( q∨  s )  ( p ∏  q )∨   ( p ∏  s )
T T T T T T T T
T T F T T F T T
T F T T F T T T
T F F F F F F F
F T T T F F F F
F T F T F F F F
F F T T F F F F
F F F F F F F F

Table 1 Truth table for distributive law (OR)
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p q s ( q ∧ s ) ( p ∏ q) ( p ∏ s) p ∏ ( q∧  s )  ( p ∏ q ) ∧   ( p ∏  s )
T T T T T T T T
T T F F T F F F
T F T F F T F F
T F F F F F F F
F T T T F F F F
F T F F F F F F
F F T F F F F F
F F F F F F F F

Table 2 Truth table for distributive law (AND)

Case 1.
Suppose ( p TAND q ) is true and p is true. Now for axiom A1 to be true,

right hand side of axiom A1 must be  true, since the left  hand side is true. ( A
� B is true iff  B is true or A is false.) That is,
( p TAND q ) � ( q ∧  ¬p ) ∨   ( p ∧  ¬q )
� ( q ∧  ¬p ) ∨   ( p ∧  ¬q ) = T (since ( p TAND q ) = T)
� ( q ∧  F ) ∨   ( T ∧  ¬q ) = T (since ( p = T) )
� F ∨   ¬q  = T (since ( q ∧  F) = F and ( T ∧  ¬q ) = ¬q )
� ¬q  = T           (since  F ∨   ¬q  = ¬q )
� q = F
 Starting with both ( p TAND q ) and p are true, it is inferred that q is false.
Therefore it proves that  if ( p TAND q ) is true and p is true then q must be
false.
 

Case 2.
Now let us assume that ( p TAND q ) is true and q is true. Then applying

the same logic it can be shown that always p must be false.

Case 3.
Let us say that ( p TAND q ) is true and p is false.

Then, ( p TAND q ) � ( q ∧  ¬p ) ∨   ( p ∧  ¬q )
� ( q ∧  ¬p ) ∨   ( p ∧  ¬q ) = T (since ( p TAND q ) = T)
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� ( q ∧  T ) ∨   ( F ∧  ¬q ) = T (since ( p = F) )
� q ∨   F  = T           (since ( q ∧  T ) = q and ( F ∧  ¬q ) = F )
� q  = T (since  q ∨   F = q )
This means whenever ( p TAND q ) is true and p is false, q must be true.

Case 4.
Now let us say that ( p TAND q ) is true and q is false. Then it can be

shown that p must be true.

Case 5.
In contrast to the other cases, suppose that (p TAND q), p and q are true.

( p TAND q ) � ( q ∧  ¬p ) ∨   ( p ∧  ¬q )
� ( q ∧  ¬p ) ∨   ( p ∧  ¬q ) = T (since ( p TAND q ) = T)
� ( T ∧  F ) ∨   ( T ∧  F ) = T (since ( p = q = T) )
� F ∨   F  = T
� F = T 

That is a contradiction. Therefore both p and q cannot be true at the same
time when (p TAND q) is true.

Case 6.
Now let us assume that (p TAND q) is true and both  p and q are false.

( p TAND q ) � ( q ∧  ¬p ) ∨   ( p ∧  ¬q )
� ( q ∧  ¬p ) ∨   ( p ∧  ¬q ) = T (since ( p TAND q ) = T)
� ( F ∧  T ) ∨   ( F ∧  T ) = T (since ( p = q = F) )
� F ∨   F  = T
� F  = T

This shows that both p and q cannot be false at the same time when (p
TAND q) is true.

Therefore considering above cases 1, 2, 3, 4, 5 and 6 it can be concluded
that whenever ( p TAND q ) is true, either p or q should be true. However both
p and q cannot be true or false simultaneously. This is a significant result as it
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proves that TAND can solve the problem that occur in point based temporal
models. Allen[Allen 1983] says that there exists a time point in point based
models where either ( p ∧  q ) is true or  ( ¬p ∧ ¬q) is true. This means that the
truth state of any given time t in point based temporal models can be one of the
following: only p is true, only q is true,  ( p ∧  q ) is true or  ( ¬p ∧ ¬q) is true.
However it is proved that there are only two truth states when ( p TAND q ) is
true ( only p is true or only q is true ). This is Allen’s[Allen 1983] (p meets q)
temporal relation. Since TAND is not based on any time models, it can be used
to represent point based applications, interval based application as well as
point-interval based applications.

3.3.3 Representation of Allen’s temporal relations using
TAND

The important factor to remember when representing temporal relations
with TAND is that the events p and q should be mutually exclusive. That is to
say always ( p AND q ) should be false. Events p and q can contain more than
one event. In this situation p and q can be considered as composite events. In
this thesis events represent single events as well as composite events. Since it is
already shown how to represent ( p meets q ) using ∏, in this section,
representation of other temporal relations using TAND will be shown.

First let us consider the case of ( A ∏ B ∏  C ) where A, B, and C are
three mutually exclusive events. By definition of TAND,

a)  ( A ∧  B ∧  C) should be false.
b)  Time of occurrence of A< time of occurrence of B < time of

occurrence of C.

The ( A ∏ B ∏ C ) is equal to ( A ∏ B ) ∏ C because TAND obeys associative
law. Therefore expressions having more than two mutually exclusive events can
be decomposed into sub expressions having at most two events keeping the
meaning of the expression unchanged.
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Then by axiom A1,
( A ∏ B ) � ( A ∨  B ) ∧   ¬( A ∧  B ).
If ( A ∏ B ) is D, then ( A ∏ B ∏  C ) = ( D ∏ C ).
Applying axiom A1 again we have
( D ∏ C ) � ( D ∨  C ) ∧   ¬ ( D ∧  C ).
Then
( A ∏ B ∏  C ) = ( D ∏ C )� (D∨ C) ∧ ¬ (D∧ C) = (D∧ ¬C )∨  (¬D∧ C)
� [(( A ∧  ¬B )∨  ( ¬A ∧  B )) ∧ ¬C ] ∨  [ ¬(( A ∨   B ) ∧  ¬( A ∧  B )) ∧  C ]
� ( A ∧  ¬B ∧  ¬C ) ∨  ( ¬A ∧  B ∧  ¬C ) ∨  (B ∧  A ∧  C ) ∨  (¬A ∧  ¬B ∧  C )

Since A, B and C are mutually exclusive events, (B ∧  A ∧  C ) is false.

� ( A ∧  ¬B ∧  ¬C ) ∨  ( ¬A ∧  B ∧  ¬C ) ∨  (¬A ∧  ¬B ∧  C ) ( F1 )
� ( A=T, B=F, C=F ) or ( A=F, B=T, C=F ) or (A=F, B=F, C=T )
� Only one of A, B and C can occur at any given time t

Therefore it is enough to show that (X ∧  Y ∧  Z ) is false to prove the accuracy
of any given temporal representation ( X ∏ Y ∏ Z ).

p before q    = p ∏ ( ¬p ∧  ¬q) ∏  q

p before q is true, iff  only p is true and then ( ¬p ∧  ¬q) is true and then
only q  is true. Since (p ∧  ¬p ∧  ¬q ∧  q ) is always false, at any given time t,
only p can occur, only q can occur or both p and q cannot occur. In addition to
this TAND gives the chronological order of the events. Therefore the
representation of ( p before q ) is sound. If A= p, B = ( ¬p ∧  ¬q), C = q then
applying F1
p before q
�  [ p ∧ ¬(¬p ∧ ¬q) ∧ ¬q ]∨ [¬p ∧  (¬p∧ ¬q) ∧ ¬q ] ∨  [¬p ∧ ¬( ¬p ∧  ¬q) ∧  q ]

( p before q )  � [ p ∧  ¬(¬p∧ ¬q)∧ ¬q ] ∨  [¬p∧ ¬q ] ∨  [¬p∧ ¬(¬p∧ ¬q) ∧  q ]
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If ( p before q ) = T and  p = T then,
( p before q )  � [T∧ ¬( F∧ ¬q)∧ ¬q ]∨  [F∧ ¬q ]∨  [F ∧  ¬( F ∧  ¬q) ∧  q ] = T
� [ T ∧  ¬F ∧  ¬q ]  ∨  F ∨  F]  = T
� [ T ∧  T ∧  ¬q ]  ∨  F ∨  F]  = T
� [¬q ∨  F]  = T
� ¬q  = T
�  q = F

If ( p before q ) = T and  p = F then,

( p before q ) � [ F∧  ¬( T∧ ¬q) ∧ ¬q ]∨  [T∧ ¬q ]∨  [T ∧  ¬( T∧ ¬q) ∧  q ] = T
� [ F∧  ¬(¬q) ∧ ¬q ]∨  [T∧ ¬q ]∨  [T ∧  ¬(¬q) ∧  q ] = T
� [ F∧  q ∧ ¬q ]∨  [¬q ]∨  [q ∧  q ] = T
� [ F ∨  ¬q  ∨  (q ∧  q) ] = T
� [ ¬q  ∨  q ] = T
�  q = F or q = T

If ( p before q ) = T and q = T then,

( p before q ) �[p ∧ ¬( ¬p∧  F)∧  F ]∨  [¬p ∧  F ]∨  [¬p ∧ ¬(¬p ∧  F)∧  T ] = T
�[p ∧ ¬(F)∧  F ]∨  [¬p ∧  F ]∨  [¬p ∧ ¬(F)∧  T ] = T
�[p ∧ T∧  F ]∨  [¬p ∧  F ]∨  [¬p ∧ T∧  T ] = T
� [F ∨   F ∨  ¬p ] = T
�  ¬p = T
�  p = F

If ( p before q ) = T and  q = F then,

( p before q )� [ p ∧ ¬(¬p ∧  T) ∧  T ]∨  [¬p ∧  T ]∨  [¬p ∧ ¬(¬p ∧  T)∧ F] = T
� [ p ∧  ¬( ¬p ∧  T) ∧  T ]  ∨  [¬p ∧  T ]  ∨  [¬p ∧  ¬( ¬p ∧  T) ∧  F ] = T
� [ p ∧  ¬( ¬p) ∧  T ]  ∨  [¬p ∧  T ]  ∨  [¬p ∧  ¬( ¬p) ∧  F ] = T
� [ p ∧  p ∧  T ]  ∨  [¬p ∧  T ]  ∨  [¬p ∧  p ∧  F ] = T



44

� [ p ]  ∨  [¬p]  ∨  [F ] = T
� p = T or p = F

If (p before q) = T and p = q = T, then
( p before q )
� [ p ∧  ¬(¬p∧ ¬q)∧ ¬q ] ∨  [¬p∧ ¬q ] ∨  [¬p∧ ¬(¬p∧ ¬q) ∧  q ] = T
� [ T ∧  ¬(F∧ F)∧ F ] ∨  [F∧ F ] ∨  [F∧ ¬(F∧ F) ∧  F ] = T
� [ F ∨  F ∨  F ] = T
� F  = T

This means that both p and q cannot be true at the same time when (p
before q) is true.

If (p before q) = T and p = q = F, then
( p before q )
� [ p ∧  ¬(¬p∧ ¬q)∧ ¬q ] ∨  [¬p∧ ¬q ] ∨  [¬p∧ ¬(¬p∧ ¬q) ∧  q ] = T
� [ F ∧  ¬(T∧ T)∧ T ] ∨  [T∧ T ] ∨  [T∧ ¬(T∧ T) ∧  F ] = T
� [ F ∨  T ∨  F ] = T
� T = T

This means that both p and q can be false at the same time when (p
before q) is true.

This shows that at any given time t, only p occurs or only q occurs but
both cannot occur. That is the combination of events required to occur  ( p
before q ) or ( q after p ). TAND connects them so as to give the required
chronological order.
p overlaps q  =  ( p ∧  ¬q)  ∏  ( p ∧  q )  ∏  ( q ∧  ¬p )

p overlaps q is true, iff  p is true and then ( p ∧  q ) is true and then q is
true. If the expression  “overlaps” is accurate, it would be able to show that for
any given time t, only p occurs, only q occurs or both p and q occur. Since [ ( p
∧  ¬q) ∧  ( p ∧  q ) ∧  ( q ∧  ¬p ) ] is false, the representation of (p overlaps q) is
accurate.
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Let us say A =  ( p ∧  ¬q), B = ( p ∧  q ) and C = ( q ∧  ¬p ). Then from F1,
( p overlaps q) = (A∏B∏ C )�(A∧ ¬B∧ ¬C )∨  (¬A ∧ B∧ ¬C)∨ (¬A∧ ¬B∧ C)
�((p∧ ¬q)∧ ¬(p∧ q)∧ ¬(q∧ ¬p))∨  (¬(p∧ ¬q)∧ (p∧ q)∧ ¬(q∧ ¬p))∨  (¬(p∧ ¬q)∧
¬(p∧ q)∧  (q∧ ¬p)).

If ( p overlaps q ) = T and p = T, then

( p overlaps q ) = T
�  ((p∧ ¬q)∧ ¬(p∧ q)∧ ¬(q∧ ¬p))∨ (¬(p∧ ¬q)∧ (p∧ q)∧ ¬(q∧ ¬p)) ∨  (¬(p∧ ¬q)∧
¬(p∧ q)∧  (q∧ ¬p)) =T
� ((T∧ ¬q)∧ ¬(T∧ q)∧ ¬(q∧ F))∨ (¬(T∧ ¬q)∧ (T∧ q)∧ ¬(q∧ F)) ∨  (¬(T∧ ¬q)∧
¬(T∧ q)∧  (q∧ F)) =T
� ((¬q)∧ ¬(q)∧ ¬(F))∨ (¬(¬q)∧ (q)∧ ¬(F)) ∨  (¬(¬q)∧  ¬(q)∧  (F)) =T
� (¬q∧ ¬q∧ T) ∨  (q ∧  q ∧  T) ∨  (q ∧ ¬q∧  F) =T
�(¬q ∨   q ∨  F) =T
�q = T or q = F

If ( p overlaps q ) = T and p = F, then

( p overlaps q ) = T
�  ((p∧ ¬q)∧ ¬(p∧ q)∧ ¬(q∧ ¬p))∨ (¬(p∧ ¬q)∧ (p∧ q)∧ ¬(q∧ ¬p)) ∨  (¬(p∧ ¬q)∧
¬(p∧ q)∧  (q∧ ¬p)) =T
�((F∧ ¬q)∧ ¬(F∧ q)∧ ¬(q∧ T))∨ (¬(F∧ ¬q)∧ (F∧ q)∧ ¬(q∧ T)) ∨  (¬(F∧ ¬q)∧
¬(F∧ q)∧  (q∧ T)) =T
�(F ∧ ¬(F)∧ ¬(q)) ∨  (¬(F)∧ (F)∧ ¬(q))  ∨   (¬(F)∧  ¬(F)∧  (q)) =T
�(F ∨  F  ∨   (T ∧  T ∧  q) =T
� ( F ∨  F ∨  q ) =T  �  q =T
If ( p overlaps q ) = T and q = T, then

( p overlaps q ) = T
�((p∧ F)∧ ¬(p∧ T)∧ ¬(T∧ ¬p))∨ (¬(p∧ F)∧ (p∧ T)∧ ¬(T∧ ¬p)) ∨  (¬(p∧ F)∧  ¬(p∧ T)∧
(T∧ ¬p)) =T
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�(F∧ ¬p∧ p) ∨  (¬F∧ p∧ p) ∨  (¬F∧  ¬p∧  ¬p) =T
�( F ∨  p ∨  ¬p) =T
�  p = T or p = F

If ( p overlaps q ) = T and q = F, then

( p overlaps q ) = T
�((p∧ T)∧ ¬(p∧ F)∧ ¬(F∧ ¬p))∨ (¬(p∧ T)∧ (p∧ F)∧ ¬(F∧ ¬p)) ∨  (¬(p∧ T)∧  ¬(p∧ F)∧
(F∧ ¬p)) =T
�((p)∧ ¬(F)∧ ¬(F))∨ (¬(p)∧ (F)∧ ¬(F)) ∨  (¬(p)∧  ¬(F)∧  (F)) =T
�(p∧ T∧ T) ∨  (¬p∧ F∧ T) ∨   (¬p∧  T∧  F) =T
�(p ∨  F ∨  F) =T
� p = T

If (p overlaps q) = T and p = q = T, then

( p overlaps q ) = T
�  ((p∧ ¬q)∧ ¬(p∧ q)∧ ¬(q∧ ¬p))∨ (¬(p∧ ¬q)∧ (p∧ q)∧ ¬(q∧ ¬p)) ∨  (¬(p∧ ¬q)∧
¬(p∧ q)∧  (q∧ ¬p)) =T
�((T∧ F)∧ ¬(T∧ T)∧ ¬(T∧ F))∨ (¬(T∧ F)∧ (T∧ T)∧ ¬(T∧ F))∨ (¬(T∧ F)∧  ¬(T∧ T)∧
(T∧ F)) =T
�(F∧ F∧ T)∨ (T∧ T∧ T)∨ (T∧  F∧  F) =T
� F∨  T ∨  F =T
� T =T

That is, both p and q can be true at the same time when (p overlaps q) is
true.

If (p overlaps q) = T and p = q = F, then

( p overlaps q ) = T
�  ((p∧ ¬q)∧ ¬(p∧ q)∧ ¬(q∧ ¬p))∨ (¬(p∧ ¬q)∧ (p∧ q)∧ ¬(q∧ ¬p)) ∨  (¬(p∧ ¬q)∧
¬(p∧ q)∧  (q∧ ¬p)) =T
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�((F∧ T)∧ ¬(F∧ F)∧ ¬(F∧ T))∨ (¬(F∧ T)∧ (F∧ F)∧ ¬(F∧ T))∨ (¬(F∧ T)∧  ¬(F∧ F)∧
(F∧ T)) =T
�(F∧ T∧ T)∨ (T∧ F∧ T)∨ (T∧  T∧  F) =T
� F∨  F ∨  F =T
� F =T

That is, both p and q cannot be true at the same time when (p overlaps q)
is true.

This indicates that at any given time t only p occurs, both p and q occur
or only q occurs. That is the situation where ( p overlaps q ) or ( q overlapped-
by p ) occur. Proper chronological order represented by TAND connective
gives the required representations for ( p overlaps q ) or ( q overlapped-by p ).

p starts q  =  ( p ∧  q )  ∏  (q ∧  ¬p)

(p starts q ) is true, iff  ( p ∧  q ) is true and then q is true. Hence at any
time, either ( p ∧  q )  or (q ∧  ¬p) should be true. From axiom A1,
( p starts q)  �  [ ( p ∧  q ) ∨  (q ∧  ¬p) ] ∧  ¬[ ( p ∧  q ) ∧  (q ∧  ¬p) ]
�[ ( p ∧  q ) ∨  (q ∧  ¬p) ]  ∧   ¬[ F ]  �  [ ( p ∧  q ) ∨  (q ∧  ¬p) ]

If ( p starts q) = T and p = T, then
  
( p starts q)  �  [ ( p ∧  q ) ∨  (q ∧  ¬p) ] ∧  ¬[ ( p ∧  q ) ∧  (q ∧  ¬p) ] = T
�[ ( T ∧  q ) ∨  (q ∧  F) ] = T
�  q  = T

If ( p starts q) = T and p = F, then

( p starts q)  �  [ ( p ∧  q ) ∨  (q ∧  ¬p) ] = T
�  [ ( F ∧  q ) ∨  (q ∧  T) ] = T
� q = T
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If ( p starts q) = T and q = T, then

( p starts q)  �  [ ( p ∧  q ) ∨  (q ∧  ¬p) ] = T
�  [ ( p ∧  T ) ∨  (T ∧  ¬p) ] = T
� [ ( p ∧  T ) ∨  (T ∧  ¬p) ] = T
�  [ p ∨  ¬p ] = T
�  p = T or p = F

If ( p starts q) = T and q = F, then

( p starts q) �[ ( p ∧  q ) ∨  (q ∧  ¬p) ] = T
�  [ ( p ∧  F ) ∨  (F ∧  ¬p) ] = T
� F ∨  F = T

This cannot happen. That is our assumption q = F is wrong. Hence if ( p
starts q ) is true, always q should be true.

If ( p starts q) = T and p = q = T, then

( p starts q) �[ ( p ∧  q ) ∨  (q ∧  ¬p) ] = T
�  [ ( T ∧  T ) ∨  (T ∧  F) ] = T
� T = T

That is, both p and q can be true at the same time when (p starts q) is
true.
If ( p starts q) = T and p = q = F, then

( p starts q) �[ ( p ∧  q ) ∨  (q ∧  ¬p) ] = T
�  [ ( F ∧  F ) ∨  (F ∧  T) ] = T
� F = T

That is, both p and q cannot be true at the same time when (p starts q) is
true.
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These show that there can only be two possible occurrences of events
when ( p starts q ) is true: p and q both occur or only q occurs. These are the
required truth states for ( p starts q ) or ( p ends q ) to occur. TAND connects
these events in chronological order. Depending on the order of the occurrences
either ( p starts q ) or ( p ends q ) will occur.

p during q  =  (q ∧  ¬p)  ∏  ( p ∧  q )  ∏  (q ∧  ¬p)

( p during q )  is true iff  (q ∧  ¬p)  is true and then ( p ∧  q ) is true and
then (q ∧  ¬p)  is true. The temporal relation ( p during q ) can be represented as
(q ∧  ¬p)  ∏ ( p ∧  q ) ∏ ( p ∧  q ) ∏  (q ∧  ¬p). Because ( p ∧  q ) ∏  (p ∧  q)
equals ( p ∧  q ). Let ( p ∧  q ) occur during time zone TL. The TL can be divided
into two time zones: TL1 and TL2 such that TL1 + TL2 equals TL and TL1
follows TL2. Then ( p ∧  q ) occur in time zone TL1 and then occur in time zone
TL2. Therefore ( p ∧  q ) can be expressed as ( p ∧  q ) ∏ ( p ∧  q ) without
making any errors.

Then
(p during q ) = (q ∧  ¬p)  ∏ ( p ∧  q ) ∏ ( p ∧  q ) ∏ (q ∧  ¬p)
 = [(q ∧  ¬p)  ∏ ( p ∧  q )] ∏ [( p ∧  q ) ∏  (q ∧  ¬p)]  = X  ∏ Y
 if  [(q ∧  ¬p)  ∏ ( p ∧  q )] = X and  [( p ∧  q ) ∏ (q ∧  ¬p)] = Y.

Then  X = (q ∧  ¬p)  ∏ ( p ∧  q )
�  [(q ∧  ¬p)  ∨  ( p ∧  q )] ∧  ¬[ (q ∧  ¬p)  ∧  ( p ∧  q )]
� (q ∧  ¬p)  ∨  ( p ∧  q )                                                   and
Y =   ( p ∧  q ) ∏ (q ∧  ¬p)
�  [ ( p ∧  q )∨  (q ∧  ¬p) ] ∧  ¬[  ( p ∧  q ) ∧  (q ∧  ¬p)]
�( p ∧  q )∨ (q ∧  ¬p) = (q ∧  ¬p)  ∨  ( p ∧  q ) .

This means, it is sufficient to consider either only X or Y. X represents
( p ends q ) and Y represents( p starts q ). So( p during q ) can be represented as
a combination of ( p ends q ) and ( p starts q). That is ( p during q ) = ( p ends
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q) TAND ( p starts q). It is shown in the earlier section that only q occurs and
then both p and q occur are the required events for ( p ends q) to occur. The
reverse sequence of events, that is both p and q occur first and then only q
occur are the necessary order of events for the event ( p starts q ) to occur.
Therefore it can be concluded that the required order of events  ( p during q ) to
occur is, first only q occurs and then both p and q occur and then only q occurs.

p equals q  = (p ∧  q)

( p equals q ) is true, iff p and q are both true at the same time. Since
standard logical connective AND is redefined to represent only concurrent
situations the required representation is (p ∧  q). Throughout this section it is
proved that TAND can be used to represent  temporal relations suggested by J.
F. Allen[Allen 1983] uniquely and properly. Figure 3.4 shows them
graphically.

3.3.4 Representation of temporal operators using TAND

The logical temporal connective TAND is capable of representing other
temporal operators available in temporal logic. Even though there are several
temporal operators such as sometimes in the past, always in the past,
sometimes in the future, always in the future, next, last, until and since
available in the literature, Barringer et al. [Barringer 1996] show that all
temporal operators can be represented using Until and Since operators.
Therefore this section presents how TAND can be used to represent Until and
Since operators.

Let us first consider what M, i ├ p is. It means that formula p will be
interpreted in model M at the state with index i [Torsun 1995][Barringer 1996].
In other words, it says that formula p holds in model M at state i or  p is true at
state i in model M. States are defined over the discrete linear time model.
Detailed explanation about this can be found in the next chapter.  This section
simply employs the definition of M, i ├ p.
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p Until q = True ∏ (¬q � ( p ∏ q))

Proof

Case 1.
M, I ├ p Until q iff there is some k > i  such that  M, k ├ q and for every j, if i <
j < k then M, j ├ p ( By the definition of Until ). That is,
M, i ├ p Until q  � there is some k>i  such that  M, k ├ q and for every j, if i <
j < k then M, j ├ p.
�[ M, i+1 ├ q or
     M, i+1├ p and M, i+2 ├ q or
     M, i+1├ p and M, i+2 ├ p and M, i+3 ├ q or
     ….
     ….
     M, i+1├ p and M, i+2 ├ p and ………. and M, k-1├ p and M, k ├ q].
� [ M, i+1 ├ q or
       M, i+1 ├ (p ∏ q) or
       M, i+1 ├ (p ∏ p ∏ q) or
       ….
       ….
       M, i+1 ├ (p ∏ p ∏……………………..  ∏ p  ∏ q)].
� [ M, i+1 ├ q or
       M, i+1 ├ (p ∏ q) or
       M, i+1 ├ (p ∏ q) or
       ….
       ….
     M, i+1 ├ (p ∏ q)]; Since p  ∏  p = p.
� M, i+1 ├ q or
     M, i+1 ├ [ (p ∏ q) ∨  (p ∏ q) ∨  ……………∨  (p ∏ q) ].
� M, i+1 ├ q or  M, i+1 ├ (p ∏ q).
� M, i+1 ├ [ q ∨  (p ∏ q)].
� M, i+1 ├ [ ¬q � (p ∏ q)].
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� M, i ├ True  and  M, i+1 ├ [ ¬q � (p ∏ q)].
� M, i ├ True  ∏ [ ¬q � (p ∏ q)].
� True  ∏ [ ¬q � (p ∏ q)].

Case 2.
M, i ├ True  ∏ [ ¬q � (p ∏ q)]
�  M, i ├ True and M, i+1 ├[ ¬q � (p ∏ q)].
�  M, i+1 ├ [ ¬q � (p ∏ q)].
�  M, i+1 ├ [ q ∨  (p ∏ q)].
�  M, i+1 ├ q or  M, i+1 ├ (p ∏ q).
�  M, i+1 ├ q or
      M, i+1 ├ [ (p ∏ q) ∨  (p ∏ q) ∨  ……………∨  (p ∏ q) ].
� [M, i+1 ├ q or
      M, i+1 ├ (p ∏ q) or
      M, i+1 ├ (p ∏ q) or
       ….
       ….
      M, i+1 ├ (p ∏ q)].
� [M, i+1 ├ q or
      M, i+1 ├ (p ∏ q) or
     M, i+1 ├ (p ∏ p ∏ q) or
       ….
       ….
     M, i+1 ├ (p ∏ p ∏…………………..  ∏ p  ∏ q)]; Since  p = p  ∏  p.
�(M, i+1 ├ q or
     M, i+1├ p and M, i+2 ├ q or
     M, i+1├ p and M, i+2 ├ p and M, i+3 ├ q or
     ….
     ….
     M, i+1├ p and M, i+2 ├ p and ………. and M, k-1├ p and M, k ├ q).
� there is some k > i  such that  M, k├ q and for every j, if i<j<k then M, j├ p.
� p Until q.
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p Since q =    (¬q � q ∏ p ) ∏ True

Proof

Case 1.
M, i ├ p Since q iff there is some k < i  such that  M, k ├ q and for every j, if k
< j < i then M, j ├ p. That is,
M, i ├ p Since q  �  there is some k < i  such that  M, k ├ q and for every j, if k
< j < i then M, j ├ p.
�(M, i-1 ├ q or
     M, i-1├ p and M, i-2 ├ q or
     M, i-1├ p and M, i-2 ├ p and M, i-3 ├ q or
     ….
     ….
     M, i-1├ p and M, i-2 ├ p and ………. and M, k+1├ p and M, k ├ q).
�[M, i-1 ├ q or
     M, i-1 ├ (q ∏ p) or
     M, i-1 ├ (q ∏ p ∏ p) or
     ….
     ….
     M, i-1 ├ (q ∏ p ∏……………………..  ∏ p  ∏ p)].
�[M, i-1 ├ q or
     M, i-1 ├ (q ∏ p) or
     M, i-1 ├ (q ∏ p) or
     ….
     ….
     M, i-1 ├ (q ∏ p)]; Since p  ∏  p = p.
� M, i-1 ├ q or
     M, i-1 ├ [ (q ∏ p) ∨  (q ∏ p) ∨  ……………∨  (q ∏ p) ].
� M, i-1 ├ q or  M, i-1 ├ (q ∏ p).
� M, i-1 ├ [ q ∨  (q ∏ p)].
� M, i-1 ├ [ ¬q � (q ∏ p)].
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� M, i ├ True and M, i-1 ├[ ¬q � (q ∏ p)].
� M, i ├   [ ¬q � (q ∏ p)] ∏ True.
� [ ¬q � (q ∏ p)] ∏ True.
Case 2.
M, i ├   [ ¬q � (q ∏  p)]  ∏  True
� M, i ├ True and M, i-1 ├[ ¬q � (q ∏  p)].
� M, i-1 ├ [ ¬q � (q ∏  p)].
� M, i-1 ├ [ q ∨  (q ∏  p)].
� M, i-1 ├ q or  M, i-1 � (q ∏  p).
� M, i-1 ├ q or
     M, i-1 ├ [ (q ∏  p) ∨  (q ∏  p) ∨  ……………∨  (q ∏  p) ].
�[M, i-1 ├ q or
     M, i-1 ├ (q ∏  p) or
     M, i-1 ├ (q ∏  p) or
     ….
     ….
     M, i-1 ├ (q ∏  p)].
�[M, i-1 ├ q or
     M, i-1 ├ (q ∏  p) or
     M, i-1 ├ (q ∏  p ∏  p) or
     ….
     ….
     M, i-1 ├ (q ∏  p ∏ ………………….   p  ∏  p)]; Since  p = p  ∏   p.
�(M, i-1 ├ q or
     M, i-1├ p and M, i-2 ├ q or
     M, i-1├ p and M, i-2 ├ p and M, i-3 ├ q or
     ….
     ….
     M, i-1├ p and M, i-2 ├ p and …………. and M, k+1├ p and M, k ├ q).
� there is some k < i  such that  M, k ├ q and for every j, if k < j < i then M, j
├ p.
� p Since q.
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 Since Until and Since operators can be defined using TAND and all other
temporal operators can be represented using Until and Since operators as shown
by Barringer et al.[Barringer 1996], all the point based temporal operators can
be defined using TAND.

Sometimes in the future A = True ∏ [¬A � (True ∏ A)]

Proof
Sometimes in the future A
= True Until A ; by the definition [Barringer 1996].
= True ∏ [¬A � (True ∏ A)]; replacing p by True and q by A

         in (p Until q).

Always in the future A  = ¬[True ∏  (A � (True ∏ ¬A))]

Proof
Always in the future A
= ¬(Sometimes in the future ¬A) ; by the definition[Barringer 1996].
= ¬( True Until ¬A ) ; by the definition[Barringer 1996].
= ¬[True ∏  (A � (True ∏ ¬A))] ; replacing p by True and q by ¬A in

      (p Until q).

Next A = True ∏ (¬A � ( false ∏ A))

Proof
Next A = False Until A ; by the definition[Barringer 1996].

= True ∏ (¬A � ( false ∏ A)) ; replacing p by False and
 q by A in (p Until q).

Sometimes in the past A = (¬A � A ∏ True ) ∏ True
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Proof
Sometimes in the past A
= True Since A ; by the definition[Barringer 1996].
= (¬A � A ∏ True ) ∏ True ; replacing p by True and q by A

        in (p Since q).

Always in the past A = ¬[(A � ¬A ∏ True ) ∏ True]

Proof
Always in the past A
= ¬( True Since ¬A ) ; by the definition[Barringer 1996].
=  ¬[(A � ¬A ∏ True ) ∏ True] ; replacing p by True and q by ¬A

    in (p Since q).

Last A = (¬A � A ∏ False ) ∏ True

Proof
Last A = False Since A ; by the definition[Barringer 1996].
           = (¬A � A ∏ False ) ∏ True ; replacing p by False and q by A
                                                            in (p Since q).

As shown above TAND logical temporal connective is capable of
representing all existing temporal operators as well as all relative temporal
relations suggested by J. F . Allen [ Allen 1983]. Since TAND is not based on
any time models, it can rectify  the weaknesses of both point based and interval
based temporal models. It is simple and easy to use. Further it can be used with
any time model; purely point based, purely interval based or point-interval based
time models. Application of TAND is not limited to temporal logic but it can be
used where the standard logical connective AND is used. Since all the temporal
operators and relations can be defined using TAND, now we can think about a
new temporal logic which employs TAND instead of standard temporal
operators or relations to represent temporal information.
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Figure 3.4 TAND versions of Allen’s temporal relations
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CHAPTER IV

TEMPORAL LOGIC

This chapter discusses about the first-order temporal logic(FTL), the
temporal logic USF and the temporal logic of actions (TLA) which are used in
knowledge based specifications, and their problems. The last section introduces
the new temporal logic TANDTL. The temporal logic TANDTL employs
TAND connective to represent temporal knowledge. Therefore TANDTL does
not have any temporal operators or temporal relations instead it has TAND
connective in addition to standard logical connectives.
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4.1  Conventional temporal logic

Representing and reasoning about time play a critical role in many areas
of studies. In computer science, temporal logic[Kroger 1987][Manna
1995][Torsun 1995][Barringer 1996] has been used in concurrent systems, real-
time systems, specifications, program verification, temporal database, planning
expert systems and natural languages. Temporal logic has shown to be a
powerful and flexible formalism, capable of representing and reasoning in these
areas. In this section, conventional temporal logic, its weakness in software
requirements specifications and proposed temporal logic will be discussed.

4.1.1  First-order temporal logic

First order temporal logic can be considered as a extension of  first order
logic with temporal operators.

Syntax
A language of first order temporal logic consists of the following set of symbols:

1.  A set P of predicate symbols.
2.  A set F of function symbols.
3.  The equality symbol =.
4.  A set V of variable symbols.
5.  A set C of constant symbols.
6.  A set Q of propositions.
7.  The set of logical connectives (¬, ∧ , ∨ , �, ⇔).
8.  The set of temporal operators (Ο, �, �,U, W, ● ,  ■ ,  ◆ , S, Z).
9.  The set of quantifiers (∀ , ∃ ).

These sets are disjoint. Given a first order temporal language, formulae of the
language are constructed using the following rules:
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1.  All variable symbols are terms.
2.  If f is a function symbol of arity, k, k ≥0 and t1, …, tk are terms, then

f(t1,…..,tk) is a term, f() is a constant.
3.  If p is a predicate symbol of arity,  k, k ≥0 and t1, …, tk are terms, then

p(t1, ……, tk) is an atomic formula. If k=0 then p() is a proportional
constant.

4.  If t1 and t2 are terms, then t1=t2 is an atomic formula.
The formation rules for FTL are

1.  All atomic formula are formulae.
2.  Formulae are constructed from other formulae by application of

connectives and temporal operators.
3.  If x is a variable symbol and A is a formula, then ∀ xA, ∃ xA are

formulae.

Semantics
A formal semantics is described in terms of Kripke’s possible worlds

[Torsun 1995][Fisher 1995]. The possible worlds are set of states S in times
which are temporally related via the accessibility relation R. More formally a
frame is defined by as a pair <S, R> where S is a non-empty set of possible
states and R is a binary relation over R ⊆ S x S, called the accessibility relation.
Given a first order temporal language L, a model M is a tuple M = (S, R, D,
∏,ν) where

•  (S,R) is a linear temporal frame where S is a non-empty set of possible
states; R is a binary relation over R ⊆  S x S, called the accessibility
relation.

•  D is a non-empty set, called the interpretation domain. Domain D is
constant.

•  ∏ is an interpretation function for variables, which maps each variable
x ∈  V (a set of variables) to an element ∏(x) ∈  D.

•  ν is a valuation function for constants, which maps:
each function symbol f ∈  F(a set of functions) of arity n to a
relation ν(f) from Dn into D;



61

each predicate symbol p ∈  P ( a set of predicate symbols) of arity m
to a relation ν(p) from Dm into the set {T, F};
each constant  c ∈  C ( a set of constants) to an element ν( c ) ∈  D;
each proposition q ∈  Q ( a set of propositions) to a truth value ν(q)
∈  {T,F}.

Given a temporal interpretation M = (S, R, D, ∏,ν) and state s ∈  S (index i
indicates state i, future times are larger than i, past times are less than i), the
following rules associate a truth value with each formula A, and associate an
element of D with each term t.

An interpretation for the logic is defined as a pair <M,i>, where M is the
model and i is the index of the state at which the temporal statement is to be
interpreted. <M, i> ├ A means that “A is true in the model M at the state i”.

•  For terms:
<M, x> = ∏(x)  for x ∈  V ; says that the interpretation of

   each variable x in the model M
    at a given state s is ∏(x).

<M, c> = ν(c)  for c ∈  C.
<M, f(t1,….,tn)> = ν(f)(<M,t1>,…..,<M,tn>) for f ∈  F and t1,….,tn

are terms.
Interpretation for well-formed formulae is defined in terms of the satisfaction
relation F between models and formulae.

•  For atomic formulae:
 <M, i> ├ p(t1, …..,tm) iff ν<i,p>(<M,t1>,……,<M,tm>)=T,

<M, i> ├ t1=t2 iff <M,t1> = <M,t2>.
If d1,….dn are elements of D, then Mo<x1←d1,…..xn←dn> denotes the model
obtained from M by modifying its assignment function to map the variable
symbols x1,……,xn to d1,….dn respectively.

Given a first order temporal language FTL, a model structure M = (S, R,
D, α, I), evaluation functions ρ and ∏, the interpretation rules for FTL are as
follows.

•  For terms:
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ρ(M, x) = α(x),
ρ(M, f(t1,….,tn)) = I(s,f) (ρ(M, t1),…..ρ(M,tn)).

•  For atomic formulae:
<M, ρ, ∏, si> ├ p(t1,….tn) iff  I(s,f) <(ρ(M, t1),….ρ(M,tn)) ∈  ∏(si),
<M, ρ, ∏, si> ├ t1=t2 iff   ρ(M, t1) = ρ(M,t2).

•  For connective: If A and B are formulae then
¬A, (A ∧  B), (A ∨  B), (A  � B) and (A ⇔ B)are interpreted as
follows:
<M, i> ├ T
<M, i> ├ ¬A iff not <M, i> ├ A
<M, i> ├ A ∧  B iff <M, i> ├ A and <M, i> ├ B
<M, i> ├ A ∨  B iff <M, i> ├ A or <M, i> ├ B.
The semantics for � and ⇔ defined in terms of ¬ and ∨ .

•  For temporal operators: If A and B are formulae then
 ΟA (Next A), �A (Always in the future A), �A (Sometimes in the
future A), AUB (A until B), ● A (Last A),  ■ A (Always in the
past A),  ◆ A (Sometimes in  the past A), ASB (A since b) are
interpreted as follows:

 <M, i> ├ ΟA iff  <M, i+1> ├ A
<M, i> ├ �A iff ∀ j ≥ i <M, j> ├ A
<M, i> ├ �A iff ∃ j ≥ i <M, j> ├ A
<M, i> ├ AUB iff ∃ j ≥ i <M, j> ├ B and

     ∀ k  if (i ≤ k < j) then <M, k> ├ A
<M, i> ├ ● A iff  i = 0 or <M, i-1> ├ A
<M, i> ├ ■ A iff ∀ j  0≤ j < i,  <M, j> ├ A
<M, i> ├ ◆ A iff ∃ j  0≤ j < i,  <M, j> ├ A
<M, i> ├ ASB iff  ∃ j  0≤ j < i, <M, j> ├ A and

                    ∀ k  if (i < k < j) then <M, k> ├ A
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•  For quantifiers:
<M, i> ├ ∀ x.A iff all d ∈  D[Mo<x←d>, i ├ A],
<M, i> ├ ∃ x.A iff some d ∈  D[Mo<x←d>, i ├ A].

4.1.2  The logic USF

This logic [Barringer 1996] uses temporal operators since (S-) and
until (U+) together with a fixed point operator Ψ. All the other temporal
operators are defined using since (S-) and until (U+) operators. There are four
types of well formed formulae: pure past formulae (talking only about the strict
past), pure present formulae (talking only about the present), pure future
formulae (talking only about strict future) and mixed formulae (talking about the
entire flow of time).

Syntax
Let Q be a sufficiently large set of atoms. Let  ¬, ∧ , ∨ , �, true, false be

the usual classical connectives and let S- and U+ be the temporal connectives and
Ψ be the fixed point operator.

1.  An atomic q ∈  Q is in wff0 (pure present wff) and in wff (well formed
formula). Its set of atoms in {q}.

2.  Assume A and B are wffs with atoms {q1,……,qm} and {r1,…..rm}
respectively. Then A ∧  B, A ∨  B, A � B, B U+ A and B S- A are all
wffs with atoms {q1,….qn,r1,…..rm}.

a.  If both A and B are in wff0 or wff+( pure future wff) then  B U+

A is in wff+.
b.  If both A and B are in wff0 or wff- (pure past wff), then B S- A

is in wff-.
c.  If both A and B are in wff*, then so are A ∧  B, A ∨  B, A � B,

where wff* is one of wff+, wff-, wff0.
3.  ¬A is also a wff and it is of the same type as A with the same atoms

as A.
4.  True (Truth) and false (Falsity) are wffs in wff0 with no atoms.
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5.  If A is a wff in wff- with atoms {q,q1,…..,qn} then (Ψq)A is a wff-

with the atoms {q1,….,qn}.
Semantics

Let D be a non-empty set, called the domain, and g be a function
assigning the following:

1.  For each m-place function symbol f and each n ∈  N a function g(n,f) :
Dm � D.

2.  For each variable x and each n ∈  N, an element g(n, x)  ∈  D.
3.  For each m-place function symbol Q and each n ∈  N a function g(n,

Q): Dm � {0, 1}.
The function g can be extended to a function g(n, A), giving a value in {0, 1} for
each wff A(x1,…..xn) of the predicate USF [Barringer 1996] as follows:

1.  g(n, f(t1,….,tm)) = g(n, f)(g(n, t1),……,g(n, tm)).
2.  g(n, Q(t1,….,tm)) = g(n, Q)(g(n, t1),……,g(n, tm)).
3.  g(n, A ∧  B ) = 1 iff g(n, A) = 1 and g(n, B) = 1.
4.  g(n, A ∨  B ) = 1 iff either g(n, A) = 1 or g(n, B) = 1 or both.
5.  g(n, A �B ) = 1 iff either g(n, A) = 0 or g(n, B) = 1 or both.
6.  g(n, ¬A) = 1 iff  g(n, A) = 0.
7.  g(n, true ) = 1 and g(n, false) = 0 for all n.
8.  g(n, B U+ A ) = 1 iff for some m > n, g(m, A) = 1 and for all n < k < m,

g(k, B) = 1.
9.  g(n, B S- A ) = 1 iff for some m < n, g(m, A) = 1 and for all m < k < n,

g(k, B) = 1.
10.  g(n, ∀ x A(x) ) = 1 for a variable x iff for all g’ such that g’ gives the

same values as g to all function symbols and all predicate symbols and
all variables different from x, we have g’(n, A(x)) = 1.

11.  g(n, ∃ x A(x) ) = 1 for a variable x iff for some g’ such that g’ gives the
same values as g to all function symbols and all predicate symbols and
all variables different from x, we have g’(n, A(x)) = 1.

12.  Let (Ψq) A(q, q1,…….,qm) be a pure past formula of USF, and let Bi ∈
wffV*i for i = 1,…..,m. To define g(n, A’) where A’ = (Ψq) A(q,
B1,…….,Bm), first choose an assignment h such that h(qi) = {n ∈  N |
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g(n,Bi) = 1}. Then define g(n, A’) = 1 iff n ∈  h((Ψq) A(q,
q1,…….,qm)).

4.1.3  The Temporal Logic of Actions

 The temporal logic of actions (TLA) is a logic for specifying and
reasoning about concurrent systems introduced by Leslie Lamport [Lamport
1994]. It combines two logics : a logic of actions and conventional temporal
logic. The logic of actions consists of values, variables, states, state functions,
predicates and actions while conventional temporal logic consists standard
logical connectives and point based temporal operators. The temporal logic of
actions is obtained by letting the elementary temporal formula in conventional
temporal logic be actions in logic of actions.

 

Values               : data items (“true” and “false” are not included).
Variables           : unprimed variables (refer to old state ) and

                                      primed variables (refer to new state).
States                : assignment of values to variables.
State functions  : non Boolean expressions built from variables and

      constant symbols ( Example : x2 + y - 3 ).
Predicates         : Boolean expression built from variables

                                     and constant symbols ( Example :  x2 = y - 3 ).
Actions      : Boolean- valued expressions formed from variables,

         prime variables and constant symbols.
                                    ( Example : x’ + 1 = y where y is a variable and x’ is
                                    a primed variable ).

Example : Representing a simple program using TLA [Lamport 1994].
A simple program, written in a conventional language:

var natural x, y = 0;
do < true → x := x + 1>
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     < true → y := y + 1>    od
This program is written in a conventional language, using Dijkstra’s do
construct, with angle brackets enclosing operations that are assumed to be
atomic. An execution of this program begins with x and y both zero, and
repeatedly increments either x or y ( in a single operation ), choosing non
deterministically between them [Lamport 1994].

TLA formula φ describing above program:

Initφ        ( x = 0 ) ∧  ( y = 0)
                    M1         (x’ = x + 1 ) ∧  ( y’ = y )
                    M2          ( y’ = y +1 ) ∧  ( x’ = x )

          M            M1 ∨   M2
                           
                       φ         Initφ  ∧   M
(   The symbol       means equal by definition)
The execution of the program is represented by φ = true. The predicate Initφ

asserts the initial conditions, that x and y are both zero. The semantic meaning
of action M1 is a relation between states asserting that the value of x in the new
state is one greater than its value in the old state, and the value of y is the same
in the old and new states. Thus a M1 step represents an execution of the
program’s atomic operation of incrementing x. Similarly, a M2 step represents
an execution of the program’s other atomic operation, which increments y. The
action M is defined to be the disjunction of M1 and M2, so a M step represents
an execution of one program operation. φ asserts that the initial condition is true
initially, and that every step of the behavior represents the execution of an
atomic operation of the program [ Lamport 1994].

4.1.4 Problems with conventional temporal logic

Temporal operators namely ΟA (Next A), �A (Always in the future
A), �A (Sometimes in the future A), AUB (A until B), ● A (Last A),  ■ A
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(Always in the past A),  ◆ A (Sometimes in  the past A), ASB (A since b) are
available in conventional temporal logic. These temporal operators employ point
based time model to represent and reason about temporal knowledge. Therefore
conventional temporal logic inherits the problems discussed in section 3.2.6.

4.2  TANDTL temporal logic

This research proposes a new temporal logic TANDTL by removing
existing temporal operators from the first-order temporal logic [Kroger
1987][Manna 1995][Torsun 1995][Barringer 1996] and including TAND logical
connective to represent temporal information . Further, the standard AND
connective is redefined to represent concurrent events[Wijayarathna 1997]. This
section describes the temporal logic TANDTL which can solve the above
discussed problems of conventional temporal logic. The temporal logic
TANDTL will be used as the formal basis for software requirements
specifications language GSL and its execution.

Syntax
1.  Symbols

•  The truth symbols T and F.
•  The equality symbol =.
•  The possessions  symbol ∈ .
•  A set C of constant symbols a, b, c, ….
•  A set V of  variable symbols u, v, w, x, y, z,  …..
•  A set F of function symbols f, g, h, ….. Each function symbol

has an a positive integer called, its arity, indicating number of
arguments.

•  A set P of predicate symbols p, q, r, ….. Each predicate symbols
also has an arity.

•  A set Q of propositions.
•  The set of standard logical connectives (¬, ∧ , ∨ , �, ⇔ ).
•  The temporal logical connective ∏.
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•  The set of quantifiers (∀ , ∃  ).

The constants and variables will represent objects, and the functions and
predicates will represent functions and relations in those objects.

2.  Terms
The terms are the objects of the logic. They are  built up according

to following rules;
•  The constants a, b, c are terms.
•  The variables x, y, z are terms.
•  If t1, t2, …….tn are terms (n ≥ 1) then f(t1, t2, …..,tn) is also a

term. Function f is a n-arity function.
3.  Atomic formulae or atoms

Atoms represents the relation between objects and are constructed
according to following rules;

•  The truth symbols T (true) and F (false) are atoms.
•  If t1, t2, …….tn are terms (n ≥ 1) then P(t1, t2, …..,tn) is an

atom. Predicate P  is a n-arity predicate.

4.  Formulae or sentences
The sentences of the logic are built from atoms according to the

following rules;
•  Every atom is a sentence.
•  If A and B are sentences then so are ¬A, A ∧  B, A ∨  B, A � B,

A ⇔B and A ∏ B.
•  If x is a variable, then ∀ x (A) and  ∃ x (A) are sentences.

 

5.  Priority order of the connectives
The connectives are listed from highest to lowest.
•  ¬, ∀ , ∃
•  ∨
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•  ∧
•  ∏
•  �, ⇔
 

6.  Expressions
An expression is either a term or a formula. Thus x, f(x) and p(x)

are expressions.

7.  Sub-term, Sub-formula and sub-expression
•  Sub-term is a intermediate term which is used to build a

term or a formula.
•  Sub-formula is also a intermediate formula which is build

a term or a formula.
•  Sub-terms and sub-formulas are called sub-expressions.

8.  Free and bound variables
The occurrence of a variable x in an expression is bounded if x is

within the scope of quantifiers ∀ x  and ∃ x. Otherwise it is free.

Semantics

Let us assume that A and B are formulae. Then
•  T is always true.
•  F is always false.
•  ¬A is true if and only if A is false.
•  A ∧  B is true if and only if both A and B are true at the same time.

That is A and B are true simultaneously.
•  A ∨  B is true if and only if A is true or B is true, and false otherwise (if

both A and B are false at the same time).
•  A ∏ B is true if and only if  A ∧  B is false (that is A and B cannot be

true simultaneously) and A is true and then B is true.
•  A � B is true if and only if A is false or B is true.
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•  A ⇔ B is true if and only if both A and B have same logical truth
value.

•  The expression X ∈  A express that X belongs to A. If  X ∈  A and
A∈ B then it implies that X ∈  B. That is (X∈ A)∧ (A∈ B)�(X∈ B).

Note that TANDTL temporal logic is not based on any fixed time model. Instead
all temporal aspects are represented using relative time. That is to say whether
two events A and B occur concurrently or not. If not, one event should follow
the other. However, if we need, point based version of TANDTL temporal logic
can be defined using Kripke’s possible worlds[Kripke 1959].

Semantics of point based version of TANDTL

•  T is true at any given time t.
•  F is false at any given time t.
•  ¬A is true at any given time t if and only if A is false at time t.
•  A ∧  B is true at any given time t if and only if both A and B are true at

time t. That is A and B are true simultaneously.
•  A ∨  B is true at any given time t if and only if A is true at time t or B is

true at time t, and false otherwise that (if both A and B are false at time
t).

•  A ∏ B is true if and only if A is true at time t and B is true at time t+1.
The informal meaning of  A ∏ B will be “A next B”. In the same way
if B is true at time t and A is true at time t-1, then A ∏ B is true at time
t.

•  A � B is true if and only if A is false or B is true.
•  A ⇔ B is true if and only if both A and B have same logical truth

value.
Therefore temporal logic TANDTL can be used with both point based and
interval based time models. In interval based models, A ∏ B means “A meets
B” while in point based models it means “A next B”. Figure 4.1 shows these
temporal relations graphically. Therefore we will be able to execute a
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specifications based on TANDTL in a point based computer while providing the
expressive power to represent the incomplete relative temporal knowledge.

4.3 Inconsistency proofs based on resolution

Temporal logic has been used in various applications such as program
verification, specification, synthesis of concurrent systems, synthesis of robot
plans, verification of hardware devices and verification of reactive systems
[Abadi 1990][Manna 1995][Torsun 1995][Tuzhilin 1995]. Some of these
applications require proofs within temporal logic[Abadi 1990].

A B

A B

Time interval
T1

Time interval
T2

Time t Time t+1 Time

Time

A meets B
A ∏ B

A next B
A ∏ B

Figure 4.1 TAND with point based and interval based time models

Point based time model

Interval based time model
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4.3.1 Classical resolution

Resolution is a simple proof technique used in classical logic to prove the
inconsistency of logical formulae [Torsun 1995]. The use of the resolution rule
for proving inconsistency is restricted to formulae in conjunctive normal form.
A proposition A is in conjunctive normal form if it is a conjunction (C1

∧ ….∧ Cm) of disjunction of Ci = Bi,1 ∨ …….∨  Bi,n where each Bij is a literal, that
is a propositional symbol or the negation of a propositional symbol. The empty
clause is the only inconsistent clause; it is represented by F [Torsun 1995]. The
inconsistency of the set S can be checked by generating  logical consequences of
S ending up with F. A very simple reasoning scheme will be used to generate
logical consequences. Let A, B and C be formulae. Let us suppose that both
formulae (A ∨  C ) and (B ∨  ¬C) are true. If C is also true, then B is obviously
true; otherwise, if C is false, then A is true. In both cases, (A ∨  B) is true. This
leads to the rule

{ A ∨  C, B ∨  ¬C } ├ A ∨  B,
which can also be written as

{ ¬C� A , C �B } ├ A ∨  B.
In the special case where C is a single proposition and where A and B are
clauses, this rule is called the resolution rule [Torsun 1995]. Let S1 and S2 be
two clauses belonging to the normal form S and let L be a literal. If L ∈  S1 and
¬L ∈  S2, then the inconsistency of  the set S of clauses can be proved by the
following algorithm:

While F ∉  S,
select L, S1, S2 such that L ∈  S1 and ¬L ∈  S2;
compute resolvent R;
replace S by S ∪  {R}.

Resolvent R is obtained by { S1- L } ∪  {S2 - ¬L}.
Example : Let us prove the set of clauses S = { P ∨  Q, P∨  R, ¬Q∨  ¬R, ¬P} is
inconsistent.
It is convenient to number the clauses.
(1)  P ∨  Q
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(2)  P∨  R
(3)  ¬Q∨  ¬R
(4)  ¬P
Then applying the above algorithm,
(5)  Q (1,4) ; S1 = P ∨  Q, S2 = ¬P, L = P.
(6)  R (2,4)
(7)  ¬Q (3,6)
(8)  F (5,7)
Since F is obtained at the end of the process, the set of clauses S is inconsistent.

4.3.2 Non-clausal resolution for propositional logic

Transforming a formula into normal form can be a lengthy process and
the use of the resolution principle for proving inconsistency is restricted to
formulae in conjunctive normal form. Non-clausal resolution technique allows
us to extend the resolution proof machinery to arbitrary formulae. This allows
one to use the resolution method as a proof technique, based on the deduction
principle, even if the hypotheses and the negation of the conclusions are not
clauses.

Deduction principle:
The formula C is a logical consequences of the finite set S if and only if S

∪  {¬C} is inconsistent. A set is inconsistent if and only if F (false) is a logical
consequence of it. Formally the deduction principle is expressed as
{H1,……., Hn} ├ C ⇔ {H1,…..,Hn, ¬C} ├ F (false)  [Torsun 1995].

Notation : ⊥ P(A1, A2) = A1P├F ∨   A2 
P├T where A1

P├ Q  denotes the formula
obtained by replacing each occurrences of P by Q in A.
Example : {A1 : ( P ∧  R) ∨  ( Q ∧  ¬R), A2 : (¬P ∧  R)  ∨  (¬Q ∧  ¬R)}
(1) ( P ∧  R) ∨  ( Q ∧  ¬R) A1

(2) (¬P ∧  R)  ∨  (¬Q ∧  ¬R) A2

(3) ( Q ∧  ¬R) ∨    (¬Q ∧  ¬R) ⊥ P(1, 2)
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(4) ( P ∧  R) ∨  (¬P ∧  R) ⊥ Q(1, 2)
(5)  F (false) ⊥ R(4, 3)
That is logical formulae A1 and A2 are inconsistent.

4.3.3  Non-clausal resolution for first-order temporal logic

This section presents the non-clausal resolution method for first-order
temporal logic introduced by Abadi and Manna [Abadi 1990] [Torsun 1995].

The non-clausal resolution rule for classical propositional logic can be
stated as A<u,…,u>, B<u,….u>        A<true> ∨  B<false>
where formulae A<u,…,u> and B<u,….u> have common sub formula u and the
resolvent can be obtained by substituting true for one or more occurrences of u
in A<u,…,u> and false for one or more occurrences of u in B<u,….u> and then
taking the disjunction of their results. The expression A<true> ∨  B<false> is
called the resolvent of A and B. The deduction rules have the form

u1,…..um                           v

can be applied to the formula Si if the formulae u1,…um occur as conjuncts in Si.
Then, in order to obtain si+1, the derived formula v is added to the conjunction.

This rule cannot be used in propositional or first-order temporal logic
since the occurrence of u may refer to different instants of time.
Example : Consider the formula u in the formulae ¬u and �u
If the classical resolution rule is applied,
(1)  ¬u
(2)  �u
(3)  ¬true ∨  �false ⊥ u(2, 1)

However, u in �u can be true at a time and false at another time. Hence , we
cannot deduce that the resolvent ¬true ∨  �false is always false. Therefore Abadi
and Manna [Abadi 1990] extend the classical non-clausal resolution method
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introducing several modality rules so that it can be used in propositional and
first-order temporal logic.

Extended non-clausal resolution rule
A<u,…,u>, B<u,….u>        A<true> ∨  B<false>

where the occurrences of u in A and B are replaced with true and false,
respectively, are all in the scope of the same number of Ο (Next operator) ‘s and
are not in the scope of any other temporal operator in either A or B.

Example : Consider the formulae Ο¬Ο(�p ∨  q) ∧  ��p  and ΟΟ�p Ο�p.
(1)  Ο¬Ο(�p ∨  q) ∧  ��p
(2)  ΟΟ�p Ο�p
(3)  [Ο¬Ο(true ∨  q) ∧  ��p ] ∨  [ ΟΟfalse Ο�p ] ⊥ �p(2, 1)
In this case, occurrences of �p in the scope of two Ο’s are replaced with true and
false. However, �p in ��p and Ο�p cannot be replaced with either true or false
because the occurrences of �p are in the scope of � and Ο temporal operators.

Abadi and Manna [Abadi 1990] introduce six essential modality rules to
substitute the Ο’s versions for other temporal operators.
Modality Rules:
ΟΟ rule : Οu, Οv           Ο( u ∧  v)
� rule : �u          u ∧  Ο�u
� rule : �u           u ∨   Ο�u
u rule : u u v           u ∨   ( u ∧  Ο( u u v )) ;  u : Until operator
s rule : u s v           ¬v ∧  ( u ∨   Ο(u s v )) ; s : Since operator

In classical logic, all quantifiers can be removed from formulae by application
of skolemization rules [Abadi 1990] [Torsun 1995]. However, in first-order
logic, quantifiers can be removed only in certain cases. Abadi and Manna
propose temporal skolemization rules for first-order temporal logic [Abadi
1990].
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The classical skolemization rules

 Suppose that A and B are formulae. Q1,….Qn are quantifiers, x, x1,…,xn

are variables, x’ is a new variable, and the occurrences of Q∀ x.B[x] and
Q∃ x.B[x] under consideration are not in the scope of any quantifiers in A.
Classical Skolemization may be described as a two-stage process:

(1)  Quantifiers move :
Q1x1…..QnxnA<Q∀ x.B[x]> is rewritten to Q1x1…..Qnxn∀ x’.A<B[x’]> and
Q1x1…..QnxnA<Q∃ x.B[x]> is rewritten to Q1x1…..Qnxn∃ x’.A<B[x’]>

(2)  Then Skolem terms replace existentially quantified variables:
∀ x1…..∀ xn∃ x.A[x] is rewritten to ∀ x1…..∀ xnA[f(x1,…….xn)],
where f is a new Skolem function symbol. Universal quantifiers stay in place.

4.3.4 Non-clausal resolution for TANDTL logic

As discussed in section 4.2, TANDTL temporal logic does not have any
temporal operators. Therefore, modality rules cannot be used for non-clausal
resolution in TANDTL. However, a formula u may refer to different time
instants as in conventional temporal logic.
Example : Consider the following inconsistent formulae u and v ∏ u. Scope of u
is different in two formulae. Therefore sub formula u cannot be replaced with
true and false in these formulae.
(1)  u
(2)  v ∏ u
(3)  [(true) ∨  ( v  ∏ false)]⊥ u(2, 1) ; This is not valid.
However, we can show that
u ∏ v = (u ∧  ¬v) ∏ v (F2).

This can be established using the truth table 3.
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T1 T2 Time Zone T1 Follows Time Zone T2
u v v u ∏ v (u ∧  ¬v) ∏ v

1 F F F F F
2 F F T F F
3 F T F F F
4 F T T F F
5 T F F F F
6 T F T T T
7 T T F F F
8 T T T F F

Therefore, equation F2 can be used to rearrange the formulae having TAND
connective before applying non-clausal resolution. Now in the above example,
the formula  (v ∏ u) can be re-written as (v ∧  ¬u) ∏ u .
Then applying non-clausal resolution,
(1) u
(2)  (v ∧  ¬u) ∏ u
(3)  {(false) ∨  [(v ∧  ¬true) ∏ u ]} ⊥ u(1, 2)
(4)  false

Example : Let us prove that “p before q” and “p after q” are inconsistent.
p before q = p ∏ ( ¬p ∧  ¬q) ∏  q =  [p ∏ ( ¬p ∧  ¬q)] ∏  q
Applying F2,
p before q = {[p ∏ ( ¬p ∧  ¬q)] ∧  ¬q} ∏  q

= { (p ∧  ¬q) ∏ ( ¬p ∧  ¬q) ∧  ¬q} ∏  q ; using distributive law
= (p ∧  ¬q) ∏ (( ¬p ∧  ¬q) ∧  ¬q) ∏  q
= (p ∧  ¬q) ∏ ( ¬p ∧  ¬q) ∏  q

p after q  = q ∏ ( ¬p ∧  ¬q) ∏  p
     = (q∧ ¬p)∏(¬p∧ ¬q) ∏ (p∧ ¬q); applying F2 and distributive law

Then applying non-clausal resolution method,
(1) (p ∧  ¬q)∏ ( ¬p ∧  ¬q) ∏  q
(2) (q ∧  ¬p)∏ ( ¬p ∧  ¬q) ∏  p
(3) [ (false ∧  ¬q)∏ ( ¬p ∧  ¬q) ∏ q] ∨  [  (q ∧  ¬true)∏ ( ¬p ∧  ¬q) ∏ p] ;⊥ p(1, 2)
(4)  false

Table 3 Truth table for u ∏ v = (u ∧  ¬v) ∏ v
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That is the set of formulae { “p before q” and “p after q”} is inconsistent.

Example : Let us consider a simple inventory system which has number of
items in stocks. There are two external events in this system : “Sales” and
“Purchases”. The event “Sales” decreases stock level while the event
“Purchases” increases the stock level of an item. System will function properly
if these two events occur sequentially, but inconsistency will occur if two
events appear concurrently.  This example shows how non-clausal resolution
technique can be used to identify the occurrence of inconsistency before the
execution. The TANDTL logical statements for the system specifications will
be as follows:

S1. Sales � Increase(Item_Quantity, Sales_Quantity)
S2. Purchases � Decrease(Item_Quantity, Purchase_Quantity)
We have to inform the system that both actions “Increase(Item_Quantity,
Sales_Quantity)” and “Decrease(Item_Quantity, Purchase_Quantity)” cannot
occur concurrently. We can do that by introducing a model rule
S3. ¬[ Increase(Item_Quantity, Sales_Quantity) ∧  Decrease(Item_Quantity,
Purchase_Quantity) ]
Let Item_Quantity be IQ, Sales_Quantity be SQ and Purchase_Quantity be PQ.
Then the above logical statements can be rewritten as:

S1.  ¬Sales ∨  Increase(IQ, SQ)
S2.  ¬Purchases ∨  Decrease(IQ, PQ)
S3. ¬Increase(IQ, SQ)  ∨  ¬Decrease(IQ, PQ)

Applying non-clausal resolution technique:
S4. ¬Sales ∨   ¬Decrease(IQ, PQ)  ; ⊥ Increase(IQ, SQ) (1, 3)
S5. ¬Purchases ∨  ¬Increase(IQ, SQ) ; ⊥ Decrease(IQ, SQ) (2, 3)
S6. Increase(IQ, SQ)  ; ⊥ Sales (4, 1)
S7. ¬Increase(IQ, SQ)  ; ⊥ Purchases (2, 5)
S8. F ; ⊥ Increase(IQ, SQ) (6, 7)
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That is, the set of logical statements are inconsistent. Therefore we can identify
the occurrence of inconsistency and inform the user before the execution of
logical statements. However,  without the model rule S4, non-clausal resolution
technique cannot identify the inconsistency among the above logical
statements. Therefore model rule play an important role here.

As shown, non-clausal resolution technique can be used in TANDTL
logic to prove the inconsistency of set of temporal formulae (i.e. formulae with
∏ connective).

However, TANDTL logic requires a method to remove the quantifiers in
order to apply non-clausal resolution for inconsistency proofs. The
skolemization rules are employed in first-order logic. These skolemization rules
will be reconsidered in the following section and modified so that they can be
used in the TANDTL logic. Finally non-clausal resolution technique in first-
order logic will be extended to TANDTL logic.
  
Prenex normal form

Every first-order logical formula has a normal form called prenex normal
form. The reason for considering the prenex normal form of a formula is to
simplify the proof procedure[Torsun 1995].

Definition [Torsun 1995]
A formula is in prenex form iff either it contains no quantifiers, or it is of

the form Q1x1,…..QnxnB, where B is a formula with no quantifiers (quantifier-
free), x1,…..,xn (not necessarily distinct) variables, and Qi ∈  { ∀ , ∃ }, for
i=1,……,n. B is sometimes called the matrix.

The following lemma is used to show the every formula is equivalent to a
prenex formula.

Lemma [Torsun 1995]
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The following formulae are valid.
 ( a ) ∀ x ( A � B ) � ( ∀ x A � ∀ x B).
 ( b ) ∃ x ( A � B ) ⇔ ( ∃ x A � ∃ x B).

Definition (Bound and free variables)
Let x be a variable. E be an expression (i.e. a formula or a term) of

predicate logic, and x occurs in E. The occurrence of x is bound in E if it is
within the scope of a quantifier ∀ x or ∃ x.

Theorem [Torsun 1995]
For every formula in first order form, there exists an equivalent prenex

form.
Proof.

There is a simple algorithm to transform a formula into an equivalent
prenex form.

(1)  The connectives  � and ⇔ are eliminated using the following rewriting
rules:

( A ⇔ B ) replaced by ( A � B) ∧  ( B � A)
( A � B) replaced by ( ¬A ∨  B )

(2)  Bound variables are renamed (if necessary) in such a way that free and
bound variables do not share common names. This is required not only for
the whole formula, but also for every sub formula.

(3)  A quantification whose scope does not contain any occurrence of the
quantified variable is suppressed.

(4)  All occurrences of the negation are transformed immediately before the
atoms, by the use of the following rewriting rules:

¬∀ xA ≈ ∃ x¬A.
¬∃ xA  ≈ ∀ x¬A.
¬(A ∧  B) ≈ (¬A  ∨  ¬B ).
¬(A ∨  B) ≈ (¬A  ∧   ¬B ).
       ¬¬A ≈ A.
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(5)  All quantifications are transferred in front of the formula, with the help of
appropriate rewriting rules. The rules concerning the conjunctions are given
below, those concerning the disjunction are obtained by the duality principle.

( ∀ xA ∧  ∀ x B)  ≈ ∀ x (A ∧  B).
( ∀ xA ∧ B)  ≈ ∀ x (A ∧  B) if B does not contain x.
( A ∧∀ xB)  ≈ ∀ x (A ∧  B) if A does not contain x.
( ∃ xA ∧ B)  ≈ ∃ x (A ∧  B) if B does not contain x.
( A ∧∃ xB)  ≈ ∃ x (A ∧  B) if A does not contain x.

In order to make this set of rules complete, one has to allow the renaming of
bound variables.

Example : ∃ xp(x) ∧∀ xq(x) will first be rewritten as  ∃ xp(x) ∧∀ yq(y) before
applying above rules.

Above theorem can be extended to TANDTL logic by introducing rules (4a) and
(5a).

Rule (4a)
¬(A ∏ B) ≈ (A∧ B)∨ (¬A ∧ ¬B )∨ (B ∏ A)

Rule (5a)
( ∀ xA ∏ ∀ x B)  ≈ ∀ x (A ∏ B).
( ∀ xA ∏B)  ≈ ∀ x (A ∏ B) if B does not contain x.
( A ∏∀ xB)  ≈ ∀ x (A ∏ B) if A does not contain x.
( ∃ xA ∏B)  ≈ ∃ x (A ∏ B) if B does not contain x.
( A ∏∃ xB)  ≈ ∃ x (A ∏ B) if A does not contain x.

As shown above every formula in TANDTL logic can be transformed to prenex
normal form. Classical skolemization rules require the formulae in prenex
normal form. Therefore classical non-clausal resolution technique can be
extended to TANDTL logic. Hence the inconsistency of set of formulae in
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TANDTL logic can be determined using extended non-clausal resolution
method.
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CHAPTER V

EXECUTION OF TEMPORAL LOGIC

This chapter discusses the similarities between logic and the view of the
system adopted in this research. Then it shows how the temporal logic TANDTL
can be executed. Finally it compares the execution of temporal logic USF with
the TANDTL. The purpose of this chapter is to show that the view of a system
employed  in this research can be implemented using temporal logic TANDTL.
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5.1 Logic and the view of a system

Terms in temporal logic are objects while predicates represent relations
between objects. Let us have a closer look at syntax 7 in TANDTL. It says that a
term can be constructed using another terms, formulae or expressions.
Expressions are either terms or formulae. Formulae consist of objects and
relations between objects. Since term is an object, according to syntax 7 the
following objects can be defined:

1.  Atom objects,
2.  Sentence objects.

Atoms are relations between objects, such as P(x, y, z) where P is the relation
while x, y, z are objects. Therefore P is a relation object. If Q and R are atoms
then ¬Q, Q ∧  R, Q ∨  R, Q � R, Q ⇔R and Q ∏ R are sentences. Now consider
the sentence Q � R. It can be considered as a rule as it says that if Q holds then
do R. Since syntax 7 allows us to assign this sentence to a object we can have
rule objects. On the other way it can be used to create another object
encapsulating rules into the object in addition to attribute and methods.
Practitioners and researchers have identified the weaknesses in representing
business rules in conventional object-oriented systems analysis and design
methods. They suggest two solutions;

•   One to represent rules as objects [Taylor 1995][Graham 1994][Zaho
1994] and

•   Other to encapsulate business rules in to a class[Wu 1995].
These show that the logic can be applied not only with conventional object
technologies but also with future object technologies. Finally syntax 7 says that
an object can be created as a result of interaction between objects. The view of a
system adopted in this research also says that the interaction between objects can
either modify an attribute in an object/objects or create new object having new
attributes as well as attributes inherited from the parent objects. Hence the view
of a system is supported by the TANDTL logic.
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Composite rules

Since the logical connectives can be used to connect sentences having the
form Q � R, there can be a sentence in a form [(Q1�R1)∧ (Q2�R2)]. If  Q1
� R1 is defined as rule 1 and Q2 � R2 as rule 2, our sentence will appear as
[ Rule 1  ∧  Rule 2]. This is a composite rule. Therefore logic allow us to write
composite rules. Of course, as described in the previous section, this composite
rule can be considered as a new object.

Composite events/ activities

A sentence in the form Q ∏ R is already a composite event/ activity as it
commands to do Q and then do R. The events Q and R are grouped together as
composite events. As described in the above section, it is possible to create a
new object to represent this composite event/ activity.

As explained above, the temporal logic TANDTL is capable of
1.  Solving problems appeared in point based and interval based time

models,
2.  Creating rule objects,
3.  Encapsulating rules into an object,
4.  Building composite rules and
5.  Building composite events/ activities.

Recall that the syntax and semantics of TANDTL is the same as the first - order
temporal logic except temporal expressions. Syntax and Semantics of temporal
expressions is redefined using TAND logical connective.
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5.2 Execution of TANDTL

Logical view of a software requirements specifications

As already discussed, a software requirements specifications states what
actions to be invoked when the specified conditions become true. Conditions can
be either temporal conditions or non-temporal conditions. Temporal conditions
express the chronological order of events/ actions while non-temporal conditions
states only the actions to be taken. There are two types of rules: rules which
interact with the environment and rules which confine to the internal system. In
TANDTL logic all these rules can be expressed by sentences in the form C � A
where C is a set of conditions and A is set of actions to be invoked. The set of
conditions C can be further divided into two subsets CT and CNT which stand
for temporal conditions and non-temporal conditions respectively. Hence
sentences C � A can be represented as ( CT ∧  CNT)  � A. Events/ Actions in
specifications are relations between objects.  Therefore events/ actions can be
represented as R(O1, O2,……,On) in logic where R is a relation and O1,
O2,……,On are objects.

In addition to the set of rules, a software requirements specification may
contain attributes of objects, composite rules and composite events/ activities.
Logical representation of them are already discussed.

Execution

Software requirements specification is a set of rules which states actions
to be taken when conditions are held. That is

Hold the conditions � Do the actions.
Therefore the following steps are necessary to execute a specification:

1.  Check whether the condition is held
2.  If the condition is held then activate the actions specified.
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Checking the conditions

Checking of non temporal conditions is easy since all the attribute values
are available. However, checking of a temporal condition may not be easy.
Since TANDTL represents all temporal conditions using TAND logical
connective, if we have a methods to check whether A ∏ B is true then we can
check the truth value of any given temporal condition. Application of temporal
database can solve the problem since temporal databases can store records in
chronological order and they are capable to answer a query which inquire the
chronological order of events A and B. Hence, once an event is executed, we
have to create a record with event identifier in the temporal database. The record
format would be (E, T) where E is the event identifier and T is the time.
Therefore our temporal database will look like (E1, T1), (E2, T2), (E3, T3),
…….,(En, Tn).
E1 ∏ E2 is true

1.  If and only if E1 and E2 are found in the temporal database and
2.  T2 comes just after T1.

E1 ∏ E2 is false
1.  One of  E1 or E2 are not found in the temporal database or
2.  T2 does not follow T1.

Executing actions

Let us define predicate Exec(A) to represent execution of event A.
Execution rule are as follows:

1.  Exec(T) = True.
2.  Exec(F) = False.
3.  Exec( A � B) = Query the temporal database for truth value of A and

if it is true execute B. That is Exec(B). If not, do not do anything.
4.  Exec( A ∧  B) = Exec(A) ∧  Exec(B).
5.  Exec( A ∨  B) = Exec(A) ∨  Exec(B).
6.  Exec( A ∏ B) = Exec(A) ∏ Exec(B).
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Logically, “Exec(A) ∨  Exec(B)” is true either A is executed or B is executed.
However, in this execution method, execution will be carried out from left to
right. Therefore, A will executed first. If A cannot be executed then B will be
executed. If both A and B cannot be executed, then the expression “Exec(A) ∨
Exec(B)” is false. Since we can write all the temporal knowledge with TAND
logical connective, rule 6 provides the basis for execution of temporal events.
As mentioned in the previous section, we have to create a record in the temporal
database for each execution of events.

Comparison of TANDTL executions with USF executions

This section presents the comparison of TANDTL executions with logic
USF [Barringer 1996]. The USF logic employs Until and Since temporal
operators to represent all  other future and past temporal operators.  In USF,
specification is considered as a collection of “If past then execute future” rules.
That is

hold C in the past � execute B now.
As expressed above, in USF rules, C is always specified using past temporal
operators while B is specified using future temporal operators. However, in
TANDTL, no past or future temporal operators are available instead all of them
are represented using TAND logical connective.
 Execution rules of logic USF.

1.  Exec(true, m) = true.
2.  Exec(false, m) = false.
3.  Exec(A ∨  B, m) = Exec(A, m) ∨  Exec(B, m).
4.  Exec(A ∧  B, m) = Exec(A, m) ∧  Exec(B, m).
5.  Exec(B Since A, 0) = false.
6.  Exec(B Since A, m+1) = Exec(A, m) ∨

     [Exec( B, m) ∧  Exec( B Since A, m)].
7. Exec(B Until A, m) = Exec(A, m+1) ∨

        [Exec( B, m+1) ∧  Exec( B Since A, m+1)].
 Where m is a time point.
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 Even though the logic USF has logical approach to execute
specifications, execution of rules 6 and 7 are not logical but procedural.
According to the rule 6, to execute B Since A at time m+1, we have to execute
A at time m and only if we can not execute A at time m then execute B at time
m together with the B Since A. However, logically both (A ∨  B) and ( B ∨  A )
are same. This shows that the execution of rule 6 is not logical but procedural.
Rule 7 has the same weakness. Since TANDTL represents all temporal events
using TAND connective and TAND itself possesses the execution  order,
TANDTL can be executed easily and logically.

The objective of this research is to develop end-user intelligible and
executable software requirements language. Now it is clear that a specifications
language based on TANDTL is executable but the statements in TANDTL are
not understandable to non-technical end-users. The chapter 6 of this thesis
explains the language called GSL based on TANDTL and show its
intelligibility. Therefore GSL can be considered as the End-user intelligible
version of TANDTL. Syntax and semantics of TANDTL are also applied to
GSL.
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CHAPTER VI

SPECIFICATIONS LANGUAGES

This chapter discusses about present specifications languages and finally
introduces new software requirements specification language GSL which is
based on temporal logic TANDTL. Since TANDTL is executable, the
specifications written in GSL are also executable. Further GSL provides end-
user intelligible specifications. Temporal knowledge is represented in GSL using
And_Then relation which represents TAND connective in TANDTL. Examples
have been provided using the pilot system.
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6.1  Conventional specifications languages
 

 This section briefly discusses conventional approaches to software requirements
specifications languages and representation of temporal knowledge. The
discussion mainly concerns about the end-user intelligibility of the
specifications written in these languages and their attempt to represent
incomplete relative temporal knowledge.  Finally the proposed specifications
language GSL (General-purpose Specification Language) will be introduced.

   

6.1.1  TELOS

Telos[Mylopoulos 1990] is one of latest specifications language
developed to represent temporal knowledge in information systems. It employs
modified versions of Allen’s[Allen 1983] temporal relations (equals, meets,
before, overlaps, during, starts and ends). Therefore it inherited the weaknesses
of interval based time model. However, Telos was designed to represent
incomplete temporal information. For example, infinite time interval is
represented as (1986/10/25..*). Let us consider the following Telos
specification.

TELL TOKEN martin IN paper (at 1986/10..*);
author

firstAuthor : Stanly (at 1986/10..*);
: LaSalle (at 1987/1..*);
: Wong (before 1987/5)

title
: ‘The MARTIN system’

END
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This operation introduces the token martin in the knowledge base. The IN clause
makes martin as an instance of the class paper for an unbounded time interval
starting October 1986. Similarly, the WITH clause asserts that Stanley is the
first author of martin during the interval 1986/10..*, LaSalle is an author during
the interval 1987/1,..* while Wong was an author for some time before MAY
1987. Integrity constraints and deductive rules are resented as follows:

TELL CLASS Paper IN SimlpeClass WITH
integrityConstraint

:$ (∀ y/Person)
    ( y ∈  this.author � ¬(∃ t/Time)y ∈  this.referee[at t]) $

deductiveRule
:$ (∀ x/Paper) (∀ z/Address)
     ( z ∈  author.address �  z ∈  x.replyAddress) $ (at Alltime)

END
The infinite interval “Alltime” and the special interval “Now” represent the
current system time. These show how Telos specifications are rigid.
Specifications written in Telos are not always in end-user understandable form.
Still end-user has to get some assistance from the system analysts. It is not so
easy to use.  Users cannot define their own temporal relations. Further, Telos
specifications are not executable. Telos dose not support the view of a system
adopted in this research.

6.1.2  Templar

The Templar specifications language[Tuzhilin 1995] provides user
friendliness to a certain extent, still the end-user needs  some assistance from the
systems analyst to understand the software requirements specifications.
However there is no guarantee that the sentences in Templar specifications are
always in end-user intelligible form. It solely depends on the capabilities of the
systems analyst. On the other hand, Templar does not employ object-oriented
principles directly in its specifications, instead claims that Templar
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specifications can be converted to object-oriented specifications.
Tuzhilin[Tuzhilin 1995] provides a discussion about other specifications
languages. Templar specifications language was designed to provide:

1.  Powerful and user friendly specifications to system analysts
2.  End user understandable specifications
3.  Temporal knowledge representation.

 Templar uses When clause to represent events, If -Then to represent rules,
Then_Do to represent actions. Temporal knowledge is represented by While,
Before and After clauses. Sample Templar specification is stated below.

When arrives(customer, branch)
While close(branch)
If has_atm(branch)
Then_Do use_atm(customer, branch)

Since first-order predicates are used in Templar specifications, they are not
always understandable to end users. Therefore end user has to get some
assistance from system analysts to understand the specifications. On the other
hand, temporal knowledge is sometimes distributed over clauses in the language
and sometimes included in the predicates. Even though Templar provide user
defined temporal constructs, it is not easy for users to develop them. For
example, to define B Since C one has to write

if C then X
if B and Not C and previous X then X
if B and not C and not previous X then not X
if not B and not C then not X.

This shows how difficult to define temporal constructs by users. Templar’s uses
point based temporal operators in predicates and employs while, before and after
clauses to represent interval based temporal knowledge. Since Templar is based
on first-order temporal logic, it cannot use interval based temporal relations in
predicates but as clauses in the language. Templar does not support the view of a
system adopted in this research.
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6.2 GSL specifications language

This section introduces the new software specifications language
proposed in this thesis. GSL is based on TANDTL temporal logic. Therefore it
can provide wide range of temporal relations in end user understandable form.
The specifications written in GSL is not always grammatically correct but
understandable to end users as well as system analysts. Since it is based on
executable TANDTL, GSL specifications are also executable.

6.2.1  Structure of GSL

Facts
The basic unit of knowledge representation in GSL is the “Fact”. Facts are

common to all knowledge representation methods but they are represented  and
grouped in different ways.  Semantic networks, rules, frames, objects and logics
have their unique ways to represent and group facts into a body of
knowledge[Torsun 1995]. Facts in GSL have O1RO2 (Object1 Relationship
Object2) or OR (object Relationship) form. These forms resemble SVO or SV
form in elementary English sentences and can be easily transformed to R(O1,O2)
or R(O) in TANDTL temporal logic. Some researchers[Agusa 1984] model
requirements as R(X,Y) where R is the relationship and X,Y are the entities.
This approach will inherit problems of the Entity-relationship model. In GSL, a
fact by itself can be an object. This new object in conjunction with another
object and a relationship can form a new fact and so on. Therefore we model a
requirement as a series of objects and relationships.

 Fact (F) = OR                 or
            O1RO2  or

                                               O1R1O2[RkOk+1; k=2,n].
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These facts can be transformed to TANDTL atoms very easily. Therefore facts
in GSL will be represented in TANDGL as R(O), R(O1, O2) or R1(O1, R2(O2,
R3(O3, O4))).

Relationships

In GSL, there are two types of relationships; namely Major and Minor
relationships ( Rmajor and Rminor ). All  facts must have one major relationship but
they may or may not have minor relationships. Minor relationships cannot
appear in a fact without a major relationship. We use unary and binary
relationships. Tertiary and higher order relationships can be replaced with binary
relationships[Torsun 1995]. We replace higher order relationships with one
major relationship and one or more minor relationships. The main verb in an
elementary English sentence represents a major relationship. That is, a fact does
not have a meaning without a major relationship. Therefore a fact (F) can be
represented as follows:

Fact (F) = ORmajor   or
     O1RmajorO2 or
     O1RmajorO2[Rminor(k)Ok+1;k=2,n]

BNF grammar [Russel 1995] for facts in GSL as follows:
Fact  → Fact

   | Object
             | Object Connective Object

   | Object Connective Fact
                       | Fact Connective Fact

   | ( Fact )
                       | Object Major-relation
                       | Object Major-relation Object
                       | Object Major-relation Object Minor-relation Object….
    |  Fact GSL-Relation Fact
                       | Fact User-Define-Relation Fact
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User-Define-Relation → If Fact User-Define-Relation Fact Then Fact
Object → Object

                           | Fact
Connective → And | Or | And_Then | Not | Of

Role of Rmajor in a fact

The relationship Rmajor creates either the most stable or the most unstable
fact or the object in a fact. This most stable fact or the object contains complete
information while the most unstable fact or the object has incomplete
information.

 Role of Rminor in a fact

The most stable fact or the object created by Rmajor does not require any
Rminor links with any other object. It is in the most stable state and  represents
complete information. A fact in the most stable state can have minor
relationships with other facts/objects to provide additional information.
However, the most unstable fact or the object needs minor
relationship/relationships to link with other object/objects to change the most
unstable state to the most stable state where complete information is available.
Figure 6.1 shows these concepts graphically. Minor relationships are used only
to increase the readability and the intelligibility of the specifications while major
relationship represents the real actions. All minor relationships can be ignored
when a fact is transformed to a TANDTL expression.

Since we consider only elementary English sentences, systems analysts
should transform the user statements into elementary sentences that contain only
one main verb as suggested by Chen[Chen 1983][Burg 1996].  Present modeling
techniques  do not represent minor relationships between objects but only major
relationships.
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Figure 6.1 Role of major and minor relationships in a fact

Example :  the fact “A passenger requests for reservation of a flight from Narita
to Hongkong ” will be represented in Templar[Tuzhilin 1995] as:
  

Request(Passenger, Flight, Narita, Hongkong)
  

where “Request” is the major relationship which is the main verb in the
statement. As shown in Figure 6.1, this represents  incomplete information.
However, it will be represented in GSL as:

 Passenger request flight from Narita to Hongkong

from
(Minor relationship)

to
(Minor relationship)

(Mr. Tanaka reserve flight-CX505 ), Narita , Hongkong, 1997.8.28

reserve
(Major relationship)

(Mr. Tanaka reserve flight-CX505 from Narita), Hongkong, 1997.8.28

Mr. Tanaka, Flight-CX505,
Narita, Hongkong, 1997.8.28

(Mr. Tanaka reserve flight-CX505 from Narita to Hongkong on 1997.8.28)

Complete information

Incomplete information

(Mr. Tanaka reserve flight-CX505 from Narita to Hongkong), 1997.8.28

on
(Minor relationship)
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where “request” is the major relationship while “from” and “to” are minor
relationships. This form can easily be transformed into the following:

1.  request(Passenger, flight, Narita, Hongkong)
2.  To( From( request(Passenger, flight ), Narita) , Hongkong).

The second form represents the syntax of the fact and it provides complete
information. The requirements in the first form are partially complete because it
does not give all the information about how terms in a sentence relate to each
other. Instead it gives the main verb of statements leaving reader to think the
other possible relationships. Therefore representing requirements in the first
form, we show fewer information to end-users than what we can get from them.
When the number of terms in the sentence is increased, the information loss will
also increase. This will lead to a misunderstanding.

The representation method used in GSL will be very useful when
additional information needs to be associated with tertiary or higher order
relationships.

Example : let us consider the statement “A passenger requests for reservation of
a flight from Narita to Hongkong ”. This can be represented by the sentence,

“request(Passenger, flight, Narita, Hongkong)”.

When we want to express the statement “A passenger requests for reservation of
a flight from Narita to Hongkong on 1997.8.28”, it is necessary to modify the
structure of the sentence as,

“request(Passenger, flight, Narita, Hongkong, 1997.8.28)”.

This requires changes to “request(Passenger, flight, Narita, Hongkong)”
wherever it appears. However, in our representation the first statement,

“ Passenger request flight from Narita to Hongkong”
can be extended to
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“ Passenger request flight from Narita to Hongkong on 1997.8.28”

to include the additional information without modifying

“ Passenger request flight from Narita to Hongkong” .
                
Requirements represented in GSL are not always grammatically correct

but intelligible to end-users and also the representation scheme is easy to use by
systems analysts. Such requirements representation scheme could not be seen in
other requirements specifications languages.

Statements

The statements in GSL have the form
S = CiFi or CiOi

where Ci = i th clause  and Fi = i th fact , Oi = i th object, i=1,n.

BNF grammar for GSL statement is
Statement → Clause Fact Clause
Clause → When | If | Then | Then_Do | Define | End_Define
Connective → And | Or | Not | And_Then
GSL-Relation → Forall | Exists | As | Is_A | Of | + | - | * | / | %

As shown above User-Define-Relation should always accompany with If-Then
rule to the language.

6.2.2  Features of GSL

Logical Connectives

The connectives available in GSL [Wijayarathna 1998] are
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And,
Or,
Not and
And_Then.

Truth values True and False are also available. If F1 and F2 are facts then so
are

F1 And F2,
F1 Or F2 and
F1 And_Then F2.

  
However, the connective Not should be attached to a major relationship or fact
but not to a minor relationship. Because minor relationships are used only to
improve the intelligibility of the specifications. When transforming GSL facts
into TANDTL atoms, minor relationships are going to be ignored. Therefore, we
define,

if R is a relationship and F is a fact then Not R is also a relationship and Not F is
also a fact.

Highlighted words in GSL specifications are GSL reserve words. Names of
objects start with a capital letter. Italics words are major relations while simple
letter words are minor relations.

Example 3: let us consider the statement
“A passenger does not request for a reservation” .

This is represented in GSL as,
  

“Passenger Not request Reservation”.

In this representation, the Not connective is attached to the major relationship
“request”. The requirement,

“Tanaka requested a reservation, but the destination is not Colombo”,
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is represented in GSL as

“Tanaka request Reservation to Not Colombo”.

In this case the minor relationship “to” is not connected to Not. This will be
represented in Templar[Tuzhilin 1995] as “request(Tanaka, reservation,
¬Colombo)”.

Temporal operators and relations

And_Then (TAND) connective and redefined And connective overcome
the weaknesses of temporal logic in representing relative temporal knowledge
[Wijayarathna 1997]. Therefore in GSL, And connective represents concurrent
events while And_Then ( ∏ ) connective represents sequential events. Classical
logic with And_Then connective is strong enough to represent temporal
knowledge. Users can define their own temporal relations or operators using
And_Then connective. This makes the GSL software requirements
specifications language simple but powerful tool in expressing temporal
information. GSL establishes a priority order of the connectives and user defined
temporal relations/ operators.

Not has the higher priority than And and Or
And and Or have the same priority
And and Or have the higher priority than And_Then.

All user defined temporal relations can be replaced by Not, And, Or and
And_Then connectives.

Example : Let us define the temporal relations Before, After, While, Until,
At_the_start_of and At_the_end_of using And_Then Connective

If p Before q
Then p And_Then not p and not q And_Then q
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If p After q
Then q And_Then not q and not p And_Then p

If p While q
Then q And Not p And_Then  p and q And_Then q And Not p

If p Until q
Then True And_Then q Or (p And_Then q)

If p At_the_start_of q
Then p And q And_Then q And Not p

If p At_the_end_of q
Then q And Not p And_Then p And q

As shown in the above examples,  users can define their own temporal relation
or a temporal operator by adding a simple rule to the language. Therefore users
are not restricted to the pre-defined temporal relations. These user defined
temporal relations will be transformed to TANDTL sentences as follows:

 (p Before q ) � p ∏ (¬p ∧  ¬q)  ∏ q.
 (p After q ) � q ∏ (¬q ∧  ¬p)  ∏ p.
 (p While q) �  (q ∧ ¬p)  ∏ (p ∧  q) ∏ (q ∧ ¬p).
 (p Until q ) �  True  ∏ ( ¬q �  (p  ∏ q)).
 (p At_the_start_of q ) �  (p ∧  q)  ∏ (q ∧ ¬p).
 (p At_the_end_of q ) �  (¬p ∧  q)  ∏ (q ∧ p).

BNF grammar for If-Then statement:
If-Then statement → If Fact Then Fact

Events (Temporal Conditions)
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According to the view of a system adopted in this research (section 2.5.2),
system starts functioning when an external or an internal event triggers an
action(s) under specific condition. Hence GSL specifications should be capable
of representing this view of system. When clause in GSL does this.

BNF grammar for When statement :
When  statement → When Fact Then_Do Fact

 | When Fact If Fact Then_Do

This statement can be rewritten as:

WhenEvent
If Condition
Then_Do Action

Using When statement, GSL can represent the view of a system adopted in this
research. Recall events, conditions and actions are facts.

Example : Now let us consider the requirement number 2 in our pilot system. It
says “When the request for reservation is made the consultant should record the
passenger details such as name, destination, intended departure date, intended
air line and maximum cost”. This will be represented in GSL as:

When        Consultant  receive Reservation_request from Passenger
Then_Do Consultant record  (Name Of Passenger And Destination Of

Passenger And Departure_date Of Passenger And Airline Of
Passenger And Max_cost Of Passenger) in Request_register

The same requirement will be represented in Templar[Tuzhilin 1995] as:

Whenreceive(Consultant, Reservation_request, Passenger)
Then_Do record( Consultant, Name, Destination, Departure_date, Airline,

Max_cost, Request_register)
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Major relations in GSL are represented as predicates in Templar. Names of
objects become terms in formulae in Templar. A fact in GSL is the expanded
version of  formulae in Templar with semantic relations. This improves the
intelligibility of the specifications. The event in the above GSL specification is

“Consultant  receive Reservation_request from Passenger”.

The same event appears in Templar as

“receive(Consultant, Reservation_request, Passenger)”
  
In the above example, Of relationship represents possession. That is, it stands
for the “part-of” relationships in data modeling. The major relationship is
“receive” while “from” and “in” are minor relationship. The others are objects.

Activities

According to the view of a system adopted, events trigger actions
(activities) under specific conditions. As shown above, When clause in GSL
represents events. The corresponding actions for the events stated in When
clause are available in Then_Do clause. While is a temporal relation which can
be defined using And_Then connective in GSL. However, While is a clause in
Templar because they employ Event-Action-Condition-Action (EACA) model
as the view of a system.  If F1 and F2 are facts, then

 F1 While F2
is also a fact and it is true if and only if F2 is true for some time interval t1 to t2
and F1 is true for some time t3 where t1 ≤ t3 ≤ t2. This fact can appear in When
clause in GSL. That is an activity can appear in When clause in GSL. Therefore
it is better to name events in GSL as “temporal conditions”. However Templar
distinguishes events and actions separately. Hence When statement can be
represented as:
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When Temporal Condition
If Non-temporal Condition
Then_Do Action.

There are no temporal operators available in Non-temporal condition.
Example : the requirement number 11 says that “A passenger can cancel his
request for reservation while he is waiting for confirmation without penalty”,
This will be states in GSL as:

When Passenger request Cancellation While
Passenger waiting_for Confirmation

Then_Do Consultant cancel Reservation_request And
Consultant Not charge Penalty from Passenger

The corresponding Templar specification is:
Whenrequest(Passenger, Cancellation)
While waiting_for(Passenger, Confirmation)
Then_Do cancel(Consultant, Reservation_request)

¬charge(Consultant, Penalty, Passenger).

One may not be able to distinguish the difference of appearance of While in two
specifications. However, “Passenger request Cancellation While Passenger
waiting_for Confirmation” is a single fact in GSL. In the meantime, Templar
represents it as two formulae.

The GSL specification can be transformed to TANDTL as :

request(Passenger, Cancellation) While
waiting_for(Passenger, Confirmation) �
cancel(Consultant, Reservation_request) ∧
¬charge(Consultant, Penalty, Passenger).
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Since While is a user defined temporal relation in GSL and can be represented
using TAND connective in TANDTL, the above formula can be rewritten with
TAND connective. For example, suppose that While temporal relation is
defined as

 (p While q) �  (q ∧ ¬p)  ∏ (p ∧  q) ∏ (q ∧ ¬p).

Then the above formula can be rewritten as:

{request(Passenger, Cancellation)∧ ¬waiting_for(Passenger, confirmation)) ∏
(request(Passenger, Cancellation) ∧
waiting_for(Passenger, Confirmation)) ∏(request(Passenger, Cancellation) ∧
¬waiting_for(Passenger, Confirmation)}  �
cancel(Consultant, Reservation_request) ∧
¬charge(Consultant, Penalty, Passenger).

When executing above TANDTL logical formula, system will check whether
the condition in left hand side of  “�” is true. If it is true,  then it will execute
both actions cancel(Consultant, Reservation_request) and ¬charge(Consultant,
Penalty, Passenger).

In the same way, if F1 and F2 are facts then,

F1 Before F2,  F1 After F2, F1 Until F2, F1 At_the_start_of F2 and F1
At_the_end_of F2 are also facts.

Example : “If a passenger cancels his reservation request before the reservation
is confirmed then no penalty for the passenger” is stated in GSL as:

WhenPassenger request Cancellation Before
Reservation is Confirm

Then_Do Consultant Not charge Penalty from Passenger
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Example : “If the passenger does not pay after the reservation is confirmed then
the consultant does not issue the ticket” can be represented in GSL as:

WhenPassenger Not pay Payment  After
Reservation is confirm

Then_Do Consultant Not issue Ticket.

Example : Requirement 9 in our pilot system says that “If the reservation status
is waiting, then consultant asks the passenger whether he is ready to wait. If he
is ready to wait then wait for confirmation”. This will be stated in GSL as:

  
WhenReservation is Waiting And Passenger want Waiting
Then_Do    Passenger wait Until Reservation is Confirm.

When executing the specification, first the condition in When clause is
evaluated. If it is true, then the actions in Then_Do clause will be executed.
That is the action “ Passenger wait” will be executed until the action
“Reservation is Confirm” is executed.   Hence, repetitive actions can be stated in
GSL requirements specifications.

Example : “If a reservation is confirmed then consultant bill the passenger and
create the transaction for accounting” is represented in GSL as:

WhenReservation is Confirm
Then_Do Consultant bill Passenger And

Consultant create Transaction for Account.

The And connective in TANDTL and GSL represents events occurs
simultaneously. Therefore GSL can represent parallel activities with the And
logical connective.
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Example : “Validation is the first step in the transaction recording process.” is
represented as:

WhenAccount_clerk receive Transaction
Then_Do Validation At_the_start_of Journalizing And_Then

Journalizing

In the above example, the actions in Then_Do clause are “Validation” and
“Journalizing”. These are objects. The view of a system adopted in this research
allows creation of new objects with new attributes in addition to the original
objects. “Validation” and “Journalizing” are new objects created by some other
objects and relations. Suppose that “Journalizing” refers to the following fact.

Clerk record Transaction in Journal.

In this fact, Clerk, Transaction and Journal are objects. “record” is the major
relation and “in” is the minor relation. Then, “Journalizing” is the new object
created by Clerk object, Transaction object, Journal object, “record” relation
and “is” relation. Therefore GSL is capable of representing different level of
abstraction. “Journalizing” is a representation of higher level of abstraction
while the fact “Clerk record Transaction in Journal” represents more detail level
of abstraction. In other words, “Journalizing” hides the implementation
information. That is a main concept of object orientation. Hence using GSL
specification language users can write different level of specifications, more
abstract once and more detail ones. That is GSL is scaleable.

Define clause

Define clause is a feature in GSL which is not available in Templar
[Tuzhilin 1995] or other specifications languages. It implements the concept of
abstraction in object-oriented principles [Sigfried 1996] [Martin 1993]. The
view of a system adopted in this research cannot be implemented only by When
statement described in the previous section. For example, creation of a new
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object with new attributes in addition to the original attributes cannot be
implemented by When statement. The role of Define clause is to implement
that. The syntax of the Define clause is either

Define < object | fact > As < fact >  End_Define or
Define < object  > Is_A < object >  End_Define or

          Define < object >  As < other construct>  End_Define

BNF grammar for Define statement :

Define statement → Define Fact As Fact End_Define
 | Define Object As Fact End_Define
 | Define Object As Object End_Define
 | Define Object As If -Then statement

Case 1: Define < object > As < fact >  End_Define

  In this case, the fact is renamed as an object. This form can be used
either to give a name to a fact or to assign a fact/ group of facts to an object.

Example : Let us say that the process of recording a passenger details in the
registry is called “passenger_recording” is represented as:

Define Passenger_recording As Passenger record_to  Register End_Define

In this example, the fact “Passenger record_to  Register” is assigned to the
object “Passenger_recording”. That is, new object “Passenger_recording” is
created by objects Passenger and Register and the major relation “record_to”.
This helps systems analysts to use single word “Passenger_recording” instead of
“Passenger record_to  Register” whenever he needs to refer to the recording
process. That is, systems analysts will be able to specify requirements in a
abstract level and later they can specify the detail implementation of the
requirements using GSL specification language. Since “Passenger_recording” is
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an object by the definition, it can be used as an object in the design and
implementation phases, if systems analyst would wish to do so.  The
corresponding TANDTL statement will be “passenger_recording =
record_to(passenger, register)”. Therefore whenever “passenger_recording” is
called it will replace “record_to(passenger, register)”.

Case 2: Define < fact > As < group of fact > End_Define

 This is how GSL creates composite facts. It can be either a composite
event or a composite activity.

Example : “To record passenger details in the register copy name, destination,
departure date, air line, and maximum cost of passenger into register” is
represented as :

Define Passenger record_to Register  As
Name Of Passenger copy_to Register And
Destination Of Passenger copy_to Register And
Departure_date Of Passenger copy_to Register And
Airline Of Passenger copy_to Register And
Max_cost Of Passenger copy_to Register

End_Define

Case 3:  Define < object > Is_A < object > End_Define

Example : “A JAL is an air line” is represented as:

Define JAL Is_A Airline End_Define

This is used to implement the “is-a” relationship in data modeling.
Inheritance in GSL is based on the Is_A hierarchy.  The object JAL in this
example is declared as an Airline. Therefore, object JAL can have attributes of
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the object Airline. The corresponding TANDTL statement will be the
“Is_A(JAL, Airline)”.

Case 4: Define < object > As < other construct > End_Define
 This creates rules  or condition objects.

Example : Let us define the rule for penalty charges in rule 14.

Define Penalty10% As
If Departure_date - Cancel_date > 31 And

Departure_date - Cancel_date < 60
Then 10 % Payment
End_Define.
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CHAPTER VII

DISCUSSION

This chapter provides a discussion about TAND connective, temporal
logic TANDTL and the specifications language GSL.
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When specifying software requirements using GSL specification
language, users are allowed to define their own temporal relation. All temporal
relations can be defined using And_Then connective.  For example one can
combine Allen’s[Allen 1983] (p before q ) and (p meets q ) together to
represent a temporal relation called “on-or-before”. The required representation
is,

If ( p on-or-before q)
Then  [p And_Then ( Not p And Not q) And_Then  q ] Or

 [p And_Then  q ].

Yet another example, let us assume that one wants to define a temporal relation
“odd-relation” to represent “only p occurs and then only q occurs and then both
p and q occur and then only q occurs and then only p occurs”. Then,

If ( p odd-relation q)
Then  ( p And  Not q ) And_Then  ( Not p And q ) And_Then

 ( p And q ) And_Then ( Not p And q ) And_Then ( p And Not q).

The And_Then connective can be used to define existing temporal
operators in conventional logic. This will increase the expressive power of
temporal logic as well as GSL. For example let us consider how to represent the
necessary computational steps of a software module to compute the factorial of
a given integer “n”. The possible steps would be :

1)  let z = 1
2)   let z =  z * n
3)   reduce n by 1
4)   repeat steps 2 and 3 until n equals 1
5)   return z.

Then we can represent this module as,
 factorial(n) = (let z=1) ∏ [ ((let z = z* n) ∏ (reduce n by 1)) until (n=1)] ∏
(return z).
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In this representation, And_Then is combined with existing temporal operator
“until”.

As discussed in this thesis, GSL provides end-user understandable
software requirements specifications using object-oriented principles. Even
though the statements in GSL are not always grammatically correct, end-user
will be able to understand the specifications. Systems analysts will enjoy the
application of object-oriented technique in conceptual modeling. GSL can be
used not only in object-oriented conceptual modeling but also in structured
systems analysis and design. Structured systems analysis and designing
methods[Hoffer 1996] are still used ubiquitously while the object-oriented
methods[Martin 1993] are becoming popular.

 Researchers and practitioners[Taylor 1995][Graham 1994][Zhao
1994][Wu 1995] have identified weaknesses in representing business rules in
object-oriented systems analysis and designing methods. They suggest two
solutions: one to encapsulate business rules into a class and the other to
represent rules as rules objects. GSL specifications can be used for both methods
since it defines rules as objects and rule objects as attributes of other objects.
Therefore GSL is in position to satisfy both present and future conceptual
modeling requirements.

Speech interfaces are becoming a reality now[Smith 1994][Zue 1994][Zue
1995]. Systems analysts will also benefit with natural spoken language
interfaces in requirements acquisition. They will be able to acquire requirements
through natural language spoken interface while they engage in the real working
environment. This requires some sort of resemblance between the specifications
language and the natural spoken language. GSL can be used with a speech
interface since its statements resemble that of English language.

GSL has built-in sequence, condition and repetition constructs. Therefore
automated program generation will also be possible with GSL specifications.
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Since GSL represents temporal knowledge in facts, reasoning about temporal
knowledge is possible. Events in When clause will accompany While, Before
and After  temporal relations, in contrast to When clause in Templar[Tuzhilin
1995]. Therefore the implementation in the two models is apparently different.

GSL uses Fact as a modeling construct.  Facts in GSL is a grammatically
incorrect basic English statements which consist only one main verb and the
statements are in active form. Therefore GSL statement can represent three
major information components of requirements of information systems; What,
Who and When. Since a Fact is in active form, it always starts with the
responsible person that is “Who”. A Fact itself represent “What” component.
Temporal relations in GSL represents “When” component.
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CHAPTER VIII

CONCLUSIONS

This chapter concludes this thesis and points out importance of this
research. The software requirement specifications language GSL is developed to
provide executable, end-user intelligible specifications. Further GSL can
represent incomplete relative temporal knowledge with TAND connective. The
existing temporal knowledge representation methods need complete time
information about occurrences of events which cannot be found in information
systems. However, new logical connective TAND does not require complete
time information. It can represent incomplete relative temporal knowledge
without any difficulty. The executable temporal knowledge TANDTL is
developed using TAND connective to execute GSL specifications. Therefore
TANDTL has only TAND connective in addition to standard logical
connectives. This simplifies the both logic and the execution process. Since GSL
is based on TANDTL temporal logic, GSL specifications are executable. Hence,
GSL can solve the problems with accounting systems computerization.
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The software requirements specifications language GSL (General-purpose
Specification Language) is designed to satisfy following requirements:

1.  End-user Intelligible, executable software requirements specifications
2.  Application of object-oriented principles in requirements specifications
3.  Representation of relative temporal knowledge.

Requirements specifications written in GSL are easily understandable to end-
users than specifications written in other specifications languages. Also systems
analysts will be able to use object-oriented concepts in conceptual modeling.
Programs which satisfy the requirements specifications can be generated quickly
from the executable software requirements specifications.

GSL is based on temporal logic TANDGL. The temporal logic TANDGL
is developed removing all existing temporal operators and relations and using
TAND connective. Therefore TANDTL consists of TAND logical connective in
addition to standard logical connective.

The logical connective TAND is proposed to represent temporal
knowledge because the existing temporal operators and temporal relations
require complete time information to represent temporal knowledge. However,
introduction of TAND connective simplifies the representation scheme and it is
capable of representing incomplete relative temporal information which can be
found in any given information system.

Since TANDTL is executable and GSL is based on it, the GSL
specifications is also executable. Again TANDTL simplifies the execution
process because it applies only TAND connective to represent temporal
knowledge. Therefore execution of temporal actions can be done by executing
TAND.

Finally, this thesis proposes a new logical connective TAND to represent
incomplete relative temporal knowledge, a new temporal logic TANDTL using
TAND connective and a new software specifications language GSL based on
TANDTL. GSL specifications are executable and intelligible to end-users.
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When writing GSL specifications for example system, it was found that
the translation of requirements from source document to GSL specifications is
easy. However, in some cases, it was required to identify events in order to write
the specifications since the source document itself does not provide them.
Therefore a source document written in natural language may require some
modifications before translating to GSL specifications.
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APPENDIX (A)

AN EXAMPLE SYSTEM :

CASE STUDY

This appendix shows an application of GSL specification language for a
real problem. This assignment case appears in appendix A in “Accounting
Information systems: Essential Concepts and Applications”[Wilkinson 1993].
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Datacruncher Officer Equipment, Inc.

Statement

Datacruncher Office Equipment, Inc. of Dallas, Texas, is a manufacturer
of varied machines and devices for the modern office. Among its products are
desk calculators, terminals, printer units, key-to-tape units, micro film reader,
word processing systems, time stamping machines, and addressing devices. The
firm distribute its products nationwide through 150 franchised dealers who also
handle the product of competitors. In addition, the firm sells direct to large and
medium-size business firms and other organizations having substantial data
processing requirements. The firm also provides services to its customers. About
600 customers receive statements at the end of a typical month of sales or
service.

Datacruncher was started in the late 1970s. The founders were four
employees - two sales persons and two engineers - from a long established office
machines manufacturer. They foresaw the growing importance of the office in
the modern firm. Their vision has been amply rewarded, since their firm has
enjoyed an explosive growth. Of course, vision alone was not sufficient to
generate this growth. A sound knowledge of the office equipment market and
skillful designed products were the essential ingredients.

The firm’s growth is reflected by several measures. Sales have reached
$70 million during this year just ended; this amount represents a 20 percent
increase over last year’s sales. The number of managers and employees has
climbed to almost 1100 as of this year end. Approximately 500 suppliers provide
materials and parts for the 120 products that the firm manufactures. The physical
facilities consist of the home office building and production plant, located just
off an express parkway in Dallas, plus three regional sites in San Francisco, St.
Louis, and Philadelphia. Each regional site contains a sales office and a
warehouse. A finished-goods warehouse is attached to the plant in Dallas.
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Besides growth in sales the firm’s founders have emphasized the need to
increase the firm’s share of the office equipment market and the return on total
assets. To achieve these objectives, they have stressed aggressive salesmanship,
new-product development, prompt deliveries of ordered products, minimized
production and inventory cost, and prudent cash management.
Organization

Datacruncher is organized as a corporation and has 2500 stockholders.
The board of directors consists of the four founders plus four outside directors.
The four founders occupy top positions in the firm: Bill Dixon is the president,
Bert Sanders is the vice president of marketing, Judy Hollis is the vice president
of engineering, and Jim Marshall is the vice president of production. The first
two were formerly salespersons; the last two were engineers. Other high-level
managers include Harry Myler, vice president of administration; Charles Dauten,
vice president of finance; Barbara Fulton, controller; and Tim Baker, director of
information systems.

Financial status

The income statement for the last two years (as shown in Figure A.1)
reflect the sales growth mentioned earlier. They also show, however, that net
income has grown less rapidly than net sales. In fact, net income for this year
has declined from last year’s net income. There are indications that this decline
stems from two factors: (1) rising costs in production, inventory, and other
areas; and (2) necessary reductions in the prices of certain products to combat
the new products of competitors.

The balance sheets for the last two years, (shown in Figure A.2) indicate
that the firm’s financial position is basically sound. However, there are certain
adverse signs, such as a shrinking cash balance.

Procedures
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 Four broad activities at the operational level can be identified as the
revenue cycle, the production cycle, the expenditure cycle, and inventory
management. Other activities include engineering design, market research,
personnel and payroll, cash management, and general ledger accounting.
Processing of transactions pertaining to the first four preceding activities, plus
payroll and general ledger accounting, is aided by two computers. One of these
computers is located within the accounting function, the other within the
production function. Magnetic disks are employed for on-line storage of files.
The following sections describe briefly the current processing, including key
documents, outputs, and files. (In addition, Figure A.3 contains measures of
activity relating to the following procedures.)
Revenue Cycle

 Salespersons periodically visit the dealers and prospective business firms
and other organizations in their sales regions. As they obtain orders, they may
mail or phone in the orders to their regional sales offices. Each sales office then
records the orders on a register and prepares formal sales orders in quadruplicate.
The original of each order is mailed to the customer, whereas the last copy is
filed by customer name. At the end of each day the batch of orders (consisting of
the middle two copies of all orders prepared that day) is mailed to the home
office.

When received in the sales order department, the orders are reviewed for
completeness and accuracy by sales order clerks and numbers are assigned. The
orders are then forwarded to the credit department for credit check. When credit
is approved for the amount of the orders, one copy of each order is sent to the
inventory control department and the other copy to the billing department.

By reference to computer printouts of product status, inventory control
clerks determine whether or not sufficient inventory is available to fill each
order. If sufficient inventory is available at the warehouse in the region where
the customer resides, one copy of the order is mailed there. If sufficient
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inventory is not available in the regional warehouse but is available in the main
finished-goods warehouse in Dallas, the copy of the order is routed there instead.
In either case the goods are picked and readied for shipment, based on the order.
A shipping report and bill of landing are prepared and the order is shipped. A
copy of the shipping report is enclosed with the shipment as a packing slip, and
another copy is returned to the billing department. If sufficient inventory is not
available to fill the order in its entirety, the inventory control clerk prepares a
backorder, which he or she routes to the production planning and control
department.

On the receipt of a shipping report, a billing clerk pulls the department’s
copy of the sales order from a file, verifies that the product numbers and
quantities match, and notes the shipping date and prices on the order copy. Next
he or she sends the order copy (together with the other orders processed that day)
to the data preparation section in the accounting data processing department. The
orders then are keyed onto magnetic tapes, edited, sorted, and processed against
the accounts receivable and finished-goods inventory (product) master files.
Sales invoices are generated as outputs from this processing, together with an
open sales invoice file on magnetic disk. Two copies of each sales invoice are
mailed to a customer, two other copies are sent to the sales order department and
the appropriate regional sales office, and a fifth copy is filed alphabetically.

All cash receipts from customers are received in the mailroom  at the
home office. There they are opened and listed on a special form. Then the
cheques are routed to the cashier, together with a copy of the list. The cashier
prepares a bank deposit slip in duplicate, endorse the cheques, and delivers the
deposit to the bank the next morning. A copy of the deposit slip is returned to a
file in her office. Another copy of the listed receipts is sent to the credit
department, where a clerk enters the customer numbers that corresponds to the
listed names and address. The clerk forwards the list to the data preparation
section, which keys the receipts data onto magnetic tape. The transaction data
are then sorted and processed against the accounts receivable master file once
each day. At the end of the month the accounts receivable master file is
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processed to produce an accounts receivable aging schedule, which is sent to the
credit manager, and statements, which are mailed to customers.

Production Cycle

Products are manufactured either for inventory or to fill backorders. The
overall production level generally is based on a sales forecast made by the
marketing function. However, backorders occur because of out-of-stock
conditions, and must be fitted into the schedule. In fact, backorders are given
priority in order to pacify unhappy customers.

Production operations are triggered when the production planning and
control department receives production authorizations or backorders. The
production authorizations are prepared by comparing forecasted sales levels with
current levels of finished-goods-inventory on hand and are issued jointly by the
production superintended and the inventory control manager. Backorders are
prepared as described earlier, on the basis of orders that cannot be filled. The
production planning and control department then obtain the bills of material
from the engineering function and explores the production requirements to
determine materials and parts requirements. With the materials and parts
requirements in hand, a production planning clerk checks a computer printout of
materials and parts inventory on hand. If the materials and parts on hand are
adequate for a particular product, the clerk schedules a production run (based on
available labor and machines). As each scheduled date nears, the clerk sends the
affected production authorizations and backorders to the data preparation section
of the production data processing department. There the production requirements
data are keyed onto magnetic tape, sorted by product number, and processed to
produce numbered production orders, materials requisitions, and move ticket.
Files used in this processing run (all on magnetic disk) are the bill-of-materials
file, the operations list file, the open production order file, and the work-in-
process inventory master file.
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Copies of the materials requisitions are sent to the materials storeroom,
which then delivers materials and parts to the designated production
departments. Copies of the production orders and the move tickets are sent to the
first production department involved in the manufacturing process (usually the
fabrication department). Copies of production orders are also sent to the cost
accounting department, and copies of materials requisitions are kept in the data
processing department for inventory processing. As work is completed on an
order in a department, a move ticket is returned to the production planning and
control department. At the end of each day, all returned move tickets are batched
and forwarded to the data preparation section. There the move ticket data are
keyed onto a magnetic tape, sorted by production order number, and processed
to produce a daily production status report. The open production order file is
updated during the processing.

In separate daily processing steps, the materials requisitions are batched,
keyed onto a magnetic tape, sorted by material-part number, and processed to
update the raw-materials inventory master file. Then the materials requisitions
are resorted by production order number and processed (together with labor job-
time tickets forwarded from work centers and sorted in a like manner on a
separate magnetic tape) to update the work-in-process inventory master file.

When a production order has progresses through the fabrication and
assembly departments, the units of completed products are inspected. Those
units that pass inspection are released to the finished-goods warehouse, and
copies of the order release are sent to the production planning and control
department and the cost accounting department. From the central warehouse the
finished products are shipped, via stock transfer notices, to the three remote
warehouses as needed to replenish stocks. The production planning and control
department records the completion and then sends the releases to the data
preparation section. There they are keyed onto a magnetic tape, sorted by
product number, and processed against the finished-goods and work-in-process
inventory master file, as well as the open production orders file. A completed
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production orders report is also printed; it includes the costs charged to each
order.

When the materials and parts needed to manufacture particular products
are not available, the production planning and control clerk prepares purchase
requisitions. These requisitions are sent to the purchasing department.

Expenditure Cycle

A wide variety of expenditures, ranging from utilities to insurance, are
necessary. Expenditures for raw materials and parts, as well as subassemblies,
are particularly significant, since the products manufactured by the firm require a
high level of precision. Thus, the procedure pertaining to the purchases of such
items and the disbursements for them is another of the critical transaction cycles
within Datacruncher.

Purchases are initiated by either production planning and control clerks or
inventory control clerks. The former clerks issue purchase requisitions when
they note that materials and parts are not adequate for upcoming production runs,
whereas the later clerks issue similar documents when their experience suggests
that the on-hand quantities of particular items have declined to reorderable
levels. On the basis of these purchase requisitions, buyers in the purchasing
department select suppliers who are known to be reliable and enter their codes
on the requisitions, together with acceptable price for the items to be ordered.
The requisitions are then forwarded to the data preparation section in the
production data processing department. There they are keyed onto magnetic
tape, sorted by supplier number, and processed to produce purchase orders.
During subsequent runs, the raw-materials inventory master file and the open
purchase order file are updated. The purchase orders are then signed by the
purchasing manager and mailed to the suppliers. Copies of the purchase orders
are forwarded to the receiving department and the accounts payable department,
and a fourth copy is filed by supplier name in the purchasing department.
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When ordered materials and parts arrive at the receiving dock, receiving
clerks pull the purchase order copies from their file. Then they count or weigh
the items and prepare receiving reports. The items are next transferred to the
materials storeroom and the initialed copies of the receiving reports are sent on
to the accounts payable department and filed. Another copy of receiving report is
sent to the data preparation section of the data processing department, and a third
copy is filed numerically in the receiving department. In the data preparation
section, the receiving reports are keyed onto a magnetic tape, sorted by material-
part number, processed to update the raw-materials inventory master file,
resorted by purchase order number, and processed to update the open purchase
order file.

When suppliers’ invoices arrive in the accounts payable department, clerk
pull the receiving reports and purchase orders from the file and compare the
documents. After completing their vouching of the invoices, they prepare
disbursement vouchers, record them in a voucher register, and file all the
documents together by payment due date.

Each day other clerks pull the vouchers due for payment that day and send
them to the data processing department. There the payment data are keyed onto
magnetic tape, sorted by supplier account number, and processed to produce
cheque vouchers and a cheque register. The accounts payable master file is also
updated during this run; in effect, each affected supplier’s account is credited to
reflect the obligation and debited to reflect the payment.

Inventory Management

Three inventory files are maintained by the firm. The raw-materials
inventory master file is updated to reflect orders for materials and parts, as well
as receipts from suppliers and issues into production. The finished-goods
inventory master file is updated to reflect the newly manufactured products and
the sales of products to customers. The work-in-process inventory master file is
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updated to reflect the start in production of each production order, the issues of
materials into production, the charges of labor (from job-time records) into
production, the application of over-head to production, and the completion of
production.
Problems

A number of specific problems have become apparent. Some of these
problems relate to the procedures described earlier, whereas other problems arise
from weaknesses in the organizational structure and in financial planning. Many
of these problems stem from the fact that the founders have focused on selling
and engineering. They have not given as much attention to the areas of
accounting, finance, production, and inventory management. Most of the
problems also arise from rapid growth in sales.

Some of the significant problems, in addition to those noted earlier, should
be mentioned. Interest costs are relatively high, as are costs in production and
distribution. Backorders are fairly numerous, even though inventory levels have
been rising. Promised delivery dates on customers’ orders are often missed, even
though lead times of two weeks or more often are allowed. Processing backlogs
are sustained in several of the accounting department. These backlogs lead to a
variety of ill effects; for instance, purchase discounts are frequently lost and
numerous errors are introduced into the transaction data. The percentage of
products that do not pass inspection is rather high, perhaps at least in part
because of fairly obsolete production equipment and a high labor turnover.
Production schedules are difficult to keep up to date, and production jobs often
fall behind their schedules. In fact, production clerks keep extremely busy
“pushing” jobs, monitoring their progress, and answering phone calls from
concerned customers and salespersons. Also, production rates tend to fluctuate,
so that production employees are idled at other times and required to work
overtime at other times. This problem stem in part from rush backorders;
however, it also arises from sales forecasts that prove to be quite inaccurate and
from planning procedures that are relatively weak. For instance, the budget
process is fairly rudimentary. Budgets are not tied to carefully established cost
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standards, are not developed in detailed formats, and are not revised to reflect
changed conditions. Finally, the reports provided to managers are rather
inadequate; most are of the status variety, such as the weekly materials-and-parts
status report, the daily product-status report, and the monthly report of budgeted
costs versus actual costs.

Initiation of Systems Development

These problems, and their effects on the firm’s financial status, have been
of concern to the founders for some time. Their view is that at least some of the
problems are aggravated by an inadequate accounting information system.
Recently, in fact, they created the position called director of information systems
and hired Tim Baker, because they strongly felt that corrective measures were
necessary. Perhaps, they thought, he could harmonize and update an accounting
information system that is rather uncoordinated and somewhat obsolete at
present.

Highlighted words represent GSL clauses and relations, italic words are
used for major relations. Words started with a capital letter indicate objects
while the words started with a simple letter represent minor relations.

GSL specifications for Revenue Cycle

When Salesperson obtain Order
Then_Do Salesperson mail Or Phone Order to RegionalSalesOffice

When RegionalSalesOffice receive Order
Then_Do RegionalSalesOffice record Order on Register And_Then

RegionalSalesOffice prepare OriginalCopyOfOrder And
SecondCopyOfOrder And ThirdCopyOfOrder And
LastCopyOfOrder And_Then RegionalSalesOffice mail
OriginalCopyOfOrder to Customer And_Then
RegionalSalesOffice store LastCopyOfOrder
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by CustomerName

Define OriginalCopyOfOrder Is_A Order End_Define
Define SecondCopyOfOrder Is_A Order End_Define
Define ThirdCopyOfOrder Is_A Order End_Define
Define LastCopyOfOrder Is_A Order End_Define
Define Backorder Is_A Order End_Define

When RegionalSalesOffice end Day
Then_Do RegionalSalesOffice mail Order to HomeOffice

When SalesOrderDepartment Of HomeOffice receive Order
 from RegionalSalesOffice
Then_Do SalesOrderClerk Of SalesOrderDepartment review Order
 for Completeness And Accuracy

WhenS alesOrderDepartment review Order  After
SalesOrderDepartment Of HomeOffice receive Order

 from RegionalSalesOffice
If Order is Complete And Accurate
Then_Do SalesOrderClerk assign Number to Order And_Then

SalesOrderClerk send Order to CreditDepartment
for CreditCheck

When CreditDepartment approve Credit for amount Of Order
After CreditDepartment receive Order
from SalesOrderDepartment

Then_Do CreditDepartment send SecondCopyOfOrder to
 InventoryControlDepartment And_Then CreditDepartment

send ThirdCopyOfOrder to BillingDepartment

When InventoryControlClerk Of InventoryControlDepartment
 receive SecondCopyOfOrder from CreditDepartment
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Then_Do InventoryControlClerk perform checkForSufficientInventory

Define Warehouse at Area Of Customer As Warehouse End_Define

Define MainFinishedGoodsWarehouse at Dallas As MainWarehouse
End_Define

Define CheckForSufficientInventory As
InventoryControlClerk checkfor SufficientInventory
in Warehouse  Or MainWarehouse
byreferringto ProductStatusReports After
InventoryControlClerk Of InventoryControlDepartment
receive SecondCopyOfOrder from CreditDepartment

End_Define

When InventoryControlClerk found SufficientInventory
at Warehouse While CheckForSufficientInventory

Then_Do InventoryControlClerk mail Order to Warehouse

When InventoryControlClerk Not found SufficientInventory
at Warehouse While CheckForSufficientInventory

Then_Do InventoryControlClerk mail Order to MainWarehouse

When CheckForSufficientInventory
If OutOfStock
Then_Do InventoryControlClerk prepare Backorder And_Then

InventoryControlClerk send Order to
ProductionPlanningAndControlDepartment

Define OutOfStock As
Quantity = 0

End_Define
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When Warehouse Or MainWarehouse receive Order
from InventoryControlDepartment

Then_Do Warehouse Or MainWarehouse prepare Shipment
for Order And_Then
Warehouse Or MainWarehouse prepare
ShippingReport And BillOfLanding
And_Then Warehouse Or MainWarehouse enclose
ShippingReport with Shipment As PackingSlip
And_Then Warehouse Or
MainWarehouse enclose BillOfLanding with Shipment
And_Then Warehouse Or MainWarehouse
ship Shipment And_Then
Warehouse Or MainWarehouse send
ShippingReport to  BillingDepartment

When BillingClerk Of  BillingDepartment receive
ShippingReport

Then_Do BillingClerk retrieve LastCopyOfOrder And_Then
BillingClerk verify ProductNumber And Quantity
And_Then BillingClerk write ShippingDate Of
ShippingReport on LastCopyOfOrder And_Then
BillingClerk write Price Of ShippingReport on
LastCopyOfOrder And_Then
BillingClerk send LastCopyOfOrder to
DataPreparationSection Of
AccountingDataProcessingDepartment

When AccountingDataProcessingDepartment receive
LastCopyOfOrder from BillingDepartment

Then_Do AccountingDataProcessingDepartment retrieve
LastCopyOfOrder And_Then
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AccountingDataProcessingDepartment print
FirstCopyOfSalesInvoice And
SecondCopyOfSalesInvoice And
ThirdCopyOfSalesInvoice And
FourthCopyOfSalesInvoice And
FifthCopyOfSalesInvoice And_Then
AccountingDataProcessingDepartment send
FirstCopyOfSalesInvoice And
SecondCopyOfSalesInvoice to Customer And_Then
AccountingDataProcessingDepartment send
ThirdCopyOfSalesInvoice And
FourthCopyOfSalesInvoice to
SalesOrderDepartment And_Then
AccountingDataProcessingDepartment store
FifthCopyOfSalesInvoice in AlphabeticalOrder

Define FirstCopyOfSalesInvoice And SecondCopyOfSalesInvoice
And ThirdCopyOfSalesInvoice And
FourthCopyOfSalesInvoice And FifthCopyOfSalesInvoice
Is_A SalesInvoice

End_Define

When Mailroom Of HomeOffice receive CashReceipt
Then_Do Mailroom list CashReceipt on SpecialForm And_Then

Mailroom send Cheque And SpecialForm to Cashier

When Cashier receive Cheque And SpecialForm from Mailroom
Then_Do Cashier prepare FirstCopyOfBankDepositSlip And

SecondCopyOfBankDepositSlip And_Then
Cashier endorse Cheque

Define FirstCopyOfBankDepositSlip And
SecondCopyOfBankDepositSlip Is_A BankDepositSlip
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End_Define

When Cashier start Day
Then_Do Cashier send Cheque to Bank And_Then

Cashier file FirstCopyOfBankDepositSlip And_Then
Cashier send SecondCopyOfBankDepositSlip to
CreditDepartment

When CreditClerk Of CreditDepartment receive
SecondCopyOfBankDepositSlip from Cashier

Then_Do CreditClerk write CustomerNumber Of Customer
on SecondCopyOfBankDepositSlip And_Then

 CreditClerk send SecondCopyOfBankDepositSlip to
DataPreparationSection

When DataPreparationSection receive
SecondCopyOfBankDepositSlip from CreditDepartment

Then_Do DataPreparationSection store ReceiptData Of
SecondCopyOfBankDepositSlip

When AccountingDataProcessingDepartment end Day
Then_Do AccountingDataProcessingDepartment process

ReceiptData with AccountsReceivableMaster

When AccountingDataProcessingDepartment end Month
Then_Do AccountingDataProcessingDepartment print

AccountsReceivableAgingSchedule And Statement
And_Then AccountingDataProcessingDepartment send
AccountsReceivableAgingSchedule to CreditManager
Of CreditDepartment And_Then
AccountingDataProcessingDepartment
send Statement to Customer
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GSL specifications for Production Cycle

Define ProductionPlanningAndControlDepartment
As PlanningDepartment

End_Define

When PlanningDepartment receive
Backorder And ProductionAuthorization

Then_Do PlanningDepartment schedule Backorder And_Then
PlanningDepartment schedule ProductionAuthorization

When          ProductionSuperintended And
InventoryControlManagaer compare
ForecastedSalesOfProduct with
CurrentInventoryLevelOfProduct

If ForecastedSalesOfProduct <
CurrentInventoryLevelOfProduct

Then_Do ProductionSuperintended And
InventoryControlManagaer prepare
ProductAuthorization And_Then
ProductionSuperintended And
InventoryControlManagaer send
ProductionAuthorization to  PlanningDepartment

When PlanningDepartment determine
QuantityRequiredMaterials And QuantityRequiredParts
After PlanningDepartment receive
Backorder Or ProductionAuthorization

If ((QuantityAtHand Of Materials > QuantityRequiredMaterials)
Or
(QuantityAtHand Of Materials = QuantityRequiredMaterials))
And
((QuantityAtHand Of Part > QuantityRequiredParts ) Or
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 (QuantityAtHand Of Part = QuantityRequiredParts ))
Then_Do ProductionClerk schedule Backorder Or ProductAuthorization

When PlanningDepartment determine
QuantityRequiredMaterials And QuantityRequiredParts
After PlanningDepartment receive
Backorder Or ProductionAuthorization

If (QuantityAtHand Of Materials <
QuantityRequiredMaterials) And
QuantityAtHand Of Part < QuantityRequiredParts )

Then_Do ProductionClerk prepare
PurchaseRequisition And_Then
ProductionClerk send PurchaseRequisition to
PurchasingDepartment

When ProductionClerk found ScheduleDateNear
Then_Do ProductionClerk send Backorder Or ProductionAuthorization

to DataPreparationSection Of
ProductionDataProcessingDepartment

When ProductionDataProcessingDepartment receive
Backorder Or ProductAuthorization from PlanningDepartment

Then_Do ProductionDataProcessingDepartment store
ProductionAuthorization Or Backorder
by ProductNumber And_Then
ProductionDataProcessingDepartment prepare
ProductionOrder And MaterialRequisition And
MoveTicket And_Then
(ProductionDataProcessingDepartment send
MaterialRequisition to MaterialStoreroom) And
(ProductionDataProcessingDepartment send
ProductionOrder And MoveTicket to
FirstProductionDepartment) And
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(ProductionDataProcessingDepartment send
ProductionOrder  to CostAccountingDepartment) And
(ProductionDataProcessingDepartment store
MaterialRequisition for InventoryProcessing)

Define FirstProductionDepartment Is_A ProductionDepartment
End_Define

Define FabricationDepartment Is_A FirstProductionDepartment
End_Define

When MaterialStoreroom receive MaterialRequisition from
ProductionDataProcessingDepartment

Then_Do MaterialStoreroom send Material to
ProductionDepartment Of MaterialRequisition

When ProductionDepartment complete
Backorder Or ProductionAuthorization

Then_Do ProductionDepartment send MoveTicket to
PlanningDepartment

When PlanningDepartment end Day
Then_Do PlanningDepartment send MoveTicket to

ProductionDataProcessingDepartment

When (ProductionDataProcessingDepartment receive
MoveTicket from PlanningDepartment) And
ProductionDataProcessingDepartment end Day

Then_Do ProductionDataProcessingDepartment store
MoveTicket by ProductionOrderNumber And_Then
ProductionDataProcessingDepartment update
OpenProductionOrderFile While
ProductionDataProcessingDepartment prepare
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DailyProductionStatusReport
When MaterialStoreroom end Day
Then_Do MaterialStoreroom send MaterialRequisition to

ProductionDataProcessingDepartment

When ProductionDataProcessingDepartment receive
MaterialRequisition from MaterialStoreroom And
ProductionDataProcessingDepartment end Day

Then_Do ProductionDataProcessingDepartment store
MaterialRequisition by MaterialPartNumber

When WorkCenter end Day
Then_Do WorkCenter send JobTimeTicket to

ProductionDataProcessingDepartment

When ProductionDataProcessingDepartment receive
JobTimeTicket from WorkCenter

Then_Do ProductionDataProcessingDepartment store
JobTimeTicket by ProductionOrderNumber

When ProductionDataProcessingDepartment end Day After
(ProductionDataProcessingDepartment store
MaterialRequisition by MaterialPartNumber) And
(ProductionDataProcessingDepartment store
JobTimeTicket by ProductionOrderNumber)

Then_Do ProductionDataProcessingDepartment update
WorkInProcessMasterFile using
MaterialRequisition And JobTimeTicket

When FabricationDepartment Or AssemblyDepartment
produce Goods While FabricationDepartment Or
AssemblyDepartment process Backorder Or
ProductionAuthorization
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Then_Do FabricationDepartment Or AssemblyDepartment
inspect Units Of Goods

When FabricationDepartment Or AssemblyDepartment
pass Units Of Goods While
FabricationDepartment Or AssemblyDepartment
inspect Units Of Goods

Then_Do FabricationDepartment Or
AssemblyDepartment send
Goods to MainWarehouse And_Then
FabricationDepartment Or  AssemblyDepartment send
OrderRelease to PlanningDepartment And
CostAccountingDepartment

When PlanningDepartment receive OrderRelease from
FabricationDepartment Or AssemblyDepartment

Then_Do PlanningDepartment record Completion Of  Backorder Or
ProductionAuthorization And_Then
PlanningDepartment send OrderRelease to
ProductionDataProcessingDepartment

When ProductionDataProcessingDepartment receive
OrderRelease from PlanningDepartment

Then_Do ProductionDataProcessingDepartment store
OrderRelease by ProductNumber And_Then
ProductionDataProcessingDepartment update
FinishGoodsMasterFile And
WorkInProcessMasterFile And
OpenProductionOrdersFile with OrderRelease And_Then
ProductionDataProcessingDepartment prepare
CompletedProductionOrdersReport
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GSL specifications for Expenditure Cycle

Define  Utilities Is_A Expenditure End_Define
Define Insurance Is_A Expenditure End_Define
Define  Material Is_A PurchaseItem End_Define
Define  Part Is_A PurchaseItem End_Define
Define Subassembly Is_A PurchaseItem End_Define

When ProductionClerk compare quantity Of
RawMaterialInventory with quantity Of
ProductionPlan for Item

If Quantity Of RawMaterialInventory for item <
Quantity Of ProductionPlan for Item

Then_Do ProductionClerk create
PurchaseRequisition And_Then
ProductionClerk send PurchaseRequisition to
PurchasingDepartment

WhenI nventoryControlClerk check RawMaterialInventory for item
If Quantity Of RawMaterialInventory for Item = ReorderLevel
Then_Do InventoryControlClerk create PurchaseRequisition And_Then

InventoryControlClerk send PurchaseRequisition to
PurchasingDepartment

Define InventoryControlClerk As InventoryControlClerk
End_Define

When Buyer Of PurchasingDepartment
receive PurchaseRequisition

Then_Do Buyer select Supplier who-is Reliable And_Then
Buyer write SupplierNumber And AcceptablePrice
for Item on PurchaseRequisition And_Then
Buyer send PurchaseRequisition to
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DataPreparationSection Of
ProductionDataProcessingDepartment

 When DataPreparationSection Of
ProductionDataProcessingDepartment receive
PurchaseRequisition from PurchasingDepartment

Then_Do ProductionDataProcessingDepartment store
PurchaseRequisition And_Then
ProductionDataProcessingDepartment update
RawMaterialInventoryFile And OpenPurchaseOrderFile
While ProductionDataProcessingDepartment prepare
PurchaseOrder by Supplier-number And_Then
Purchase-manager Of PurchasingDepartment sign
PurchaseOrder And_Then PurchasingManager
send PurchaseOrder to Supplier And
ReceivingDepartment And AccountsPayableDepartment
And_Then PurchasingDepartment file
PurchaseOrder by supplierName

When ReceivingDepartment receive PurchasingItem
Then_Do ReceivingClerk retrieve PurchaseOrder And_Then

(ReceivingClerk count Part) Or
(ReceivingClerk weigh Material) And_Then
ReceivingClerk send PurchasingItem to
MaterialStoreroom And_Then
ReceivingClerk initial receivingReport And_Then
ReceivingClerk send receivingReport to
AccountsPayableDepartment And
DataPreparationSection Of
ProductionDataProcessingDepartment And_Then
ReceivingClerk file ReceivingReport

When DataPreparationSection Of
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ProductionDataProcessingDepartment receive
ReceivingReport from ReceivingDepartment

Then_Do ProductionDataProcessingDepartment store
ReceivingReport And_Then
ProductionDataProcessingDepartment update
RawMaterialInventoryFile by
MaterialPartNumber And_Then
ProductionDataProcessingDepartment update
OpenPurchaseOrderFile by PurchaseOrderNumber

When AccountsPayableClerk check SupplierInvoice with
ReceivingReport And PurchaseOrder After
AccountsPayableDepartment receive SupplierInvoice

Then_Do AccountsPayableClerk prepare DisbursementVoucher
And_Then AccountsPayableClerk record
SupplierInvoiceData in
VoucherRegister by PaymentDueDate

When AccountsPayableClerk retrieve VoucherRegister
If PaymentDueDate Of DisbursementVoucher = Today
Then_Do AccountsPayableClerk send PaymentVoucher to

DataPreparationSection Of
AccountingDataProcessingDepartment

When DataPreparationSection Of
AccountingDataProcessingDepartment receive
PaymentVoucher from AccountsPayableDepartment

Then_Do AccountingDataProcessingDepartment store
PaymentVoucher And_Then
AccountingDataProcessingDepartment update
AccountsPayableMasterFile While
AccountingDataProcessingDepartment prepare
ChequeVoucher And ChequeRegister by



150

SupplierAccountNumber

Define AccountingDataProcessingDepartment update
AccountsPayableMasterFile As
AccountingDataProcessingDepartment credit
Amount Of PaymentVoucher to
SupplierAccount And_Then
AccountingDataProcessingDepartment debit
Amount Of PaymentVoucher to
AccountsPayableAccount

End_Define
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Datacruncher Office Equipment, Inc.
Statement of Income

For the Years Ended December 31, 1991 and 1992

(thousands of dollars)

1991 1992

Revenues
   Sales, dealers
   Sales, direct
   Service

Total revenues

Cost of goods sold

Gross profit on sales

Operating expenses
     Selling and distribution expenses
     Administrative (including
     accounting and data processing)
     expenses
     Research and Engineering
     expenses
     Interest expenses
     Other expenses, including
     depreciation

Total operating expenses

Net income before income taxes
Provision for income taxes

Net Income

$35,812
27,343
7,327

$70,482

49,934

$20,548

$11,284

2,302

1,346
1,372

741

$17,045

$ 3,503
1,191

$ 2,312

$30,654
21,870

6236

$58,760

39,375

$19,385

$ 9,532

1,875

1,473
1,013

733

$14,626

$ 4,759
1,618

$ 3,141

Figure A.1  Statement of income
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Datacruncher Office Equipment, Inc.
Statement of Financial Position
December 31, 1991 and 1992

(thousands of dollars)
1991 1992

Assets
   Current assets
      Cash     $      516       $ 2,178
      Accounts receivable, net        12,022          9,518
      Inventories
         Raw materials and parts          5,674          4,852
         Work-in-process          6,923          5,107
         Finished goods          9,547          7,321
      Prepaid expenses             547            695
  Total current assets      $35,229      $29,671
  Fixed Assets      $12,184      $11,380
     Less: Accumulated depreciation          7,132          5,939
  Net fixed assets      $ 5,052      $  5,441
  Other assets      $10,636      $  6,991
Total assets      $50,917      $42,103
Equities
  Current liabilities
     Notes payable       $ 5,731       $ 1,880
     Current maturities of long-term debt          682   595
     Accounts payable          4,619          3,751
     Accrued expenses and taxes          6,978          4,826
  Total current liabilities      $18,010      $11,052
   Long term debt      $  7,100      $  6,400
   Stockholders’ equity
      Common stock, no par value
         Authorized 1,000,000 shares;
         outstanding 650,000 shares      $ 9,858       $ 9,858
      Capital surplus         2,610          2,610
      Retained earnings       13,339        12,183
Total stockholders’ equity     $25,807      $24,651

Total equities     $50,917      $42,103

                Figure A.2  Statement of financial position
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Measures of Activity
DOCUMENT VOLUMES PER MONTH

Sales Orders (with an average of 6 items per document) 2000
Cash receipts 1950
Purchase requisitions 1000
Purchase orders (with an average of 8 lines per document) 1000
Back orders   260
Production orders   105
Shipping reports 1980
Bills of landing 1980
Materials requisition   475
Move tickets   355
Stock transfer notices   240
Receiving reports (with an average of  7 lines per document)   960
Disbursement vouchers 1010
Cheque vouchers (other than payroll)   830

NUMBER OF ACTIVE RECORDS IN KEY FILIES
Accounts receivable 1850
Accounts payable   517
Finished-goods inventory   120
Work-in-process inventory   170
Raw-materials and parts inventory        11,960
Bills of material   120
Employee earnings 1098
General ledger     92

OTHER MEASURES OF ACTIVITY
Number of new customers per month     20
Number of inquiries from customers per day     70
Number of adjustments (e.g. sales returns) per month   160
Number of days (on the average) between the time that purchase
   order is mailed and materials or parts are received    15
Number of days (on the average) required to process a
   sales order    12
Percentage of products rejected during production inspections
    during current year      5
Number of dealers accounting for 75% of sales by all dealers    40

Figure A.3  Measures of activity
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APPENDIX (B)

AN EXAMPLE SYSTEM WITH

EXECUTION

This appendix shows GSL specifications for a real world problem and the
execution of specifications. This assignment case appears in appendix B in
“Accounting Information systems: A Cycle Approach”[Davis 1990].
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Bubbling Stone Beverage Company

Company Background

The Bubbling Stone Beverage Company began bottling its soft drink,
Sassafras Ale. In 1895. The drink quickly began to enjoy strong local demand as
a refreshing, tangy thirst quencher and gradually grew in popularity as a mixer
for a variety of more libatious beverages. The company was then, and continues
to be, a tightly controlled family business. The vast majority of the equity shares
are held by Mr. Hamm R. Locke and the only son of the founder. Lesser number
of shares are held by Mrs. Locke and three children. The company has always
been led by a single strong personality (farther and son) who, fortunately,
exemplified the personal attributes essential to successful leadership.

In the beginning, Bubbling Stone bottled its single product and distributed
it through Associated Grocers, Inc. When Mr. Hamm R. Locke assumed control
in 1950,the company entered a prolong period of sustained growth. Home-based
in a large southern city, the company gradually expanded its operations to the 18
surrounding states. Mr. Locke first acquired the Popsi Cola franchies in his
home city, followed in 1960 by the acquisition of the 6-UP and Dr. Peeper
franchise. Company growth continued throughout the decades of the 1960s and
1970s through the acquisition of bottling and distributing operations in strategic
locations in other states.

Today, all drinks are bottled exclusively in the home-based bottling
facility and shipped to remote areas for distribution by other retailers and
bottlers, and in an increasing number of instances by the company’s own retail
operations. This philosophy of centralized manufacturing and decentralized
marketing has made the company one of the most cost-efficient bottling
companies in the industry. The complete computerized high-speed production
processes not only ensure highest standards of product quality, but it also
permits distribution at retail prices significantly lower than competing colas and
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other brand-names soft drinks. Its line of products now includes Popsi, Diet
Popsi, Popsi Free, Mountain Frost, 6-UP, Diet 6-UP, Dr. Peeper, Diet Dr.
Peeper, A & Z Root Beer, Sunpict, Fruitrite, and its own patented Bubbling
Stone Sassafras Ale. The company maintains separate records (by division) for
its own local retail sales and sales to outside distributors.

Organization

As might be expected in a family company, all functions and operations
fall under the personal supervision of the owner Mr. Locke. The organization is
consisting of nine “departments” under the direct control of the President.  The
executive secretary to the president manages the flow of corporate information
in and out of that office. Each department is headed by an executive of vice-
president rank, to whom certain specific functions and responsibilities are
delegated.

The vice-president of manufacturing and operations is responsible for
procurement, manufacturing, and distribution of the product. Reporting to him
are the director of operations, director of manufacturing, and the fleet manager.

The company vice-president manages the four retail divisions of the
corporation. She has subordinates in charge of operations in Memphis, Atlanta,
Mobile, and Jacksonville.

The vice-president/treasurer holds direct responsibility for all financial
affairs of the company. His departmental operations are subdivided into general
accounting, data processing, internal auditing, and office management.

The vice-president of marketing works directly with the public relation
department and a special marketing unit to create and implement an overall
marketing strategy for the company.
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The vice-president of corporate development coordinates and test new
products lines, whereas the vice-president of corporate affairs works within and
outside the company to develop corporate goodwill and monitor the public
image of the company.

Finally, the vice-president of sales holds direct responsibility of
maintaining and monitoring the activities of the sales force.

Mr. Locke often humorously alludes to his “horizontal” organization,
referring, of course, to the broad span of control at the executive level. He
insists, however, that he is quite capable and comfortable with these divers and
challenging responsibilities. In a speech to a local professional accounting
meeting one evening, he stated that he personally “handled” every dollar that
came into and went out of his business. He has set as his primary goal the
acquisition of all major franchises for his company’s products in his home state
and contiguous states.

System Logic (Revenue Cycle Subsystem)

In order to accomplish the corporation’s objectives, the president and his
key officials have structured an effective network of transaction processing
subsystems to handle, control, process, and report vital financial information.
These subsystems are linked in an interdependent chain of information flows
illustrated in Figure B.1. Although this chart portrays the company’s overall
information systems philosophy, as described by the newly appointed director of
internal auditing, specific operations may appear to fit only clumsily into the
pattern. The following subsystems descriptions evolved from lengthy
discussions with lower management and “line” personnel.
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Sales

Bubbling Stone operates two separate sales systems: a “route” or city,
sales system and an “outside” sales system in distinctly separate streams.

City Sales System

This system originates through the activities of route  sales-persons, each
traveling an established itinerary with a truckload of company products and
calling on pre-designated established customers. At the beginning of each
workday, the route sales-person’s truck is stocked with the products from
inventory by the shipping department. He or she then given a list of approved
customers on whom to call. Sales are made exclusively from the stock o the
truck and may be made either for cash or on account. The sales person is
authorized to pay for certain miscellaneous company expenses out of collected
cash.

Check-in procedures at the end of the day require the salesperson to turn
in all cash and unsold inventory and to account for all of the day’s transactions.
A physical count of both return inventory and cash is made at once. The
salesperson is required to reconcile total sales for the day with (1) cash turned
in, (2) charge sales, and (3) out-of-pocket expenses. Discrepancies, if any, are
identified and corrected before financial data are allowed to enter to the system.

When all route salespersons have “cleared” the check-in procedure, a
master reconciliation is performed by a designated sales office clerk, and all
sales related financial data enter to the route sales system. Data are processed to
the general ledger system (Master database). Interfacing systems such as
accounts receivable and inventory shipping are provided all information that is
critical to their operation by the route sales system.
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Outside Sales System

This system handles all sales to non-local bottlers and distributors. Orders
are routinely taken by telephone, filled from finished goods inventory, and
shipped via company fleet vehicle to remote locations.

Upon receipt of the telephone order, and before confirmation of the sale,
inventories are verified and the customer’s credit is checked. Confirmation is
immediately followed by the creation of a four-part invoice by the person
handling the sale. One copy is sent to accounts receivable. The remaining three
copies go to shipping where one is filed and the other two travel with the
product to the customer. The customer acknowledges receipt by signing and
returning a copy of the invoice to accounts receivable via the truck driver.
Accounts receivable then transmits sales data and customer account information
to the general ledger system.

Accounts Receivable

The division of the sales function into route sales and outside sales
subsystems has resulted in the maintenance of two separate accounts receivable
subsystems. Customer account changes are independently transmitted to the
general ledger system by each of the accounts receivable systems, and each acts
as a subsidiary ledger supporting the general ledger control account. Payments
received in the central mail room are divided according to type of account (route
or outside) and are distributed intact to the appropriate accounts receivable
systems. Cash handling is discussed under the section on cash control.

Shipping

The shipping function varies slightly in its service to route sales and
outside sales.
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Rout Sales

Each route salesperson provides a “stocking form” to shipping at the end
of each day, specifying the goods he or she wants on the truck the following
day. Each evening the shipping personnel withdraw the product from inventory
and load the salesperson’s truck in accordance with the stocking form. The route
sales system is then advised by an “executed” copy of the stocking form of the
exact amount of inventory on the truck, which must be accounted for at the end
of the following day.

Outside Sales

Shipping is notified of outside sales by the three-copy invoice set; a copy
of the form serves as an inventory withdrawal document, and, as indicated
earlier, two copies accompany the shipment to the customer. Shipping is
responsible for obtaining a receipted (signed) copy of the invoice from the
customer and returning it to accounts receivable-outside sales. This
“trunaround” document then provides completed transaction evidence for
inventory and general ledger system updating.
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Figure B.1 Conceptual Framework of Financial Information System
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Inventory

When bottled products are transferred to finished goods storage by
production, the inventory and general ledger subsystems are notified and
updated by production reports from production control. Although inventory
withdrawals are made on the basis of (1) a stocking list for route sales and (2)
copies of invoices for outside customer sales, it is incumbent on the two separate
accounts receivable systems to provide transactional data to support the
inventory subsystem and general ledger entries. The only direct link between
inventory and the general ledger system occurs when reconciliations or manual
adjustments are necessary.

In addition to the “Revenue Cycle Subsystem”, Bubbling Stone
company’s financial system consists of three other subsystems namely,
“Expenditure Cycle Subsystem”, “Cash, Property, and General Ledger
Subsystem” and “Production and Inventory Subsystem”. However, the system
logic for other three subsystems are not included in this section because only the
“outside sales system” which is a part of the “Revenue Cycle Subsystem” is
selected for illustration. Figure B.2 shows the overview of the outside sales
system.

Figure B.2 Overview of the outside sales
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Requirements

(1) Upon receipt of the telephone order, and before confirmation of the sale,
inventories are verified and the customer’s credit is checked.

(2) Confirmation is immediately followed by the creation of a four-part
invoice by the person handling the sales. One copy is sent to accounts
receivable. The remaining three copies go to shipping.

The above two requirements are extracted from the description given in
the system logic of outside sales system. The activities at the shipping
department upon receiving invoices are out of the boundary of the outside sales
system. As we can see, these requirements just inform us what has to be
performed by the outside sales system but do not say how it should be done.
That is, we have incomplete information at this stage. Therefore the
specification language should be capable to represent these incomplete
requirements now, and later when the detail information are available it should
also be capable of incorporating the additional information without major
modifications to the existing specifications.

GSL specifications

In order to write GSL specifications, one has to identify the events,
conditions and actions for each requirement. Table 4 depicts them for outside
sales system. Although it is not clearly stated,  the requirement (1) indicates that
the outside sales system should reject the order in the case of invalid inventory
or invalid customer’s credit. If not, system should confirm the order.
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Requirement Event Condition Action

1 Receive Order (1)  Verify Inventory

(2)  Check Customer’s

Credit

1 Verify Inventory Invalid

Inventory

Reject Order

1 Check

Customer’s

Credit

Invalid Credit Reject Order

2 Order not

rejected after

inventory

verification and

customer’s credit

check

(1)  Confirm Order

(2)  Create Invoice

(3)  Send One Copy of

Invoice to

Accounts

Receivable

(4)  Send Other Three

Copies of Invoice

to Shipping

Department

As shown in Table 4, there are three events for requirement 1 and one
event for requirement 2. Following four GSL statements represent them.

(S1) When RecieveOrder
Then_Do InventoryVeirifcation And CustomersCreditCheck

Table 4 Events, conditions and actions table for outside sales system
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(S2) When InventoryVerification
If InvalidInventory
Then_Do RejectOrder

(S3) WhenCustomersCreditCheck
If InvalidCredit
Then_Do RejectOrder

(S4) WhenNot RejectOrder Just_After
(InventoryVeirifcation And CustomersCreditCheck)

Then_Do ConfirmOrder And_Then
CreateInvoice And_Then
SendOneCopyToAccountsReceivable And
SendThreeCopiesToShipping

Specifications S1, S2 and S3 represent requirement 1 while specification S4
represents requirement 2. Note that, there is a user defined temporal relation
called “Just_After”.  Suppose that the temporal relation “Just_After” is defined
as follows:

(S5) If p Just_After q
Then q And_Then p.

That is the reverse operation of And_Then connective. This simply improves
the readability of the specification. The above specifications namely S1, S2, S3,
S4 and S5 specify the  most abstract level requirements of the outside sales
system. The detailed information is left for later stage of the development.
Therefore whatever the detailed specifications are, the above specifications
remain unchanged. That means, we can specify detailed requirements without
modifying the existing abstract level specifications. This proves the scalability
of the specifications language. The abstract level specifications introduce the
following abstract level objects:
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RecieveOrder
InventoryVeirifcation
CustomersCreditCheck
InvalidInventory
RejectOrder
InvalidCredit
ConfirmOrder
CreateInvoice
SendOneCopyToAccountsReceivable and
SendThreeCopiesToShipping.

These are the most abstract level objects in the outside sales system. The
view of a system adopted in this research allows creation of new objects using
other objects and relations. Therefore the next step is to find out the next level
objects and relations (major and minor relations) for the above objects. Table 5
provides a possible list of next level objects and relations.
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Objects
Major

Relations
Minor

Relations
RecieveOrder
OutsideSalesSystem
Order

receive

InventoryVeirifcation
OutsideSalesSystem
Inventory
Order

verify with

CustomersCreditCheck
OutsideSalesSystem
Customer
              CreditsDue
Order

check
Of (GSL relation)

in

InvalidInventory
Inventory
Product
            Quantity
Order

greaterthan
Of (GSL relation)
Forall (GSL relation)

in

RejectOrder
OutsideSalesSystem
Order

reject

InvalidCredit
Order
Customer
              CreditsDue
Zero

greaterthan
Of (GSL relation)

in

ConfirmOrder
OutsideSalesSystem
Order

confirm

CreateInvoice
OutsideSalesSystem
Invoice

create

SendOneCopyToAccountsReceivable
SalesPerson
Invoice
One
AccountsReceivable

send
Of (GSL relation)

to
copiesof

SendThreeCopiesToShipping
SalesPerson
Invoice
Three
Shipping

send
Of (GSL relation)

to
copiesof

Table 5 A possible list of objects and relations for outside sales system
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Having the list of objects and relations in Table 5, the top level objects of
the outside sales system can be defined as follows:

(S6) Define RecieveOrder As
OutsideSalesSystem receive Order

End_Define

(S7) Define InventoryVeirifcation As
OutsideSalesSystem verify Order with Inventory

End_Define

(S8) Define CustomersCreditCheck As
OutsideSalesSystem check
CreditsDue Of Customer in Order

End_Define

(S9) Define InvalidInventory As
(Quantity Of Product in Order greaterthan
Quantity Of Product in Inventory)
Forall Product

End_Define

(S10) Define RejectOrder As
OutsideSalesSystem reject Order

End_Define

(S11) Define InvalidCredit As
CreditsDue Of Customer in Order
greaterthan Zero

End_Define

(S12) Define ConfirmOrder As
OutsideSalesSystem confirm Order
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End_Define

(S13) Define CreateInvoice As
OutsideSalesSystem create Invoice

End_Define

(S14) Define SendOneCopyToAccountsReceivable As
SalesPerson send One copiesof Invoice
to AccountsReceivable

End_Define

(S15) Define SendThreeCopiesToShipping As
SalesPerson send Three copiesof Invoice
to Shipping

End_Define

Specification S1 to S15 are the complete set of specifications for the
outside sales system. It is clear from the above specifications that the changes to
specifications S6 to S15 will not effect the specifications S1 to S5. That means
the abstract level specifications remain unchanged even if the detailed
specifications are changed. This guarantees the scalability of GSL
specifications.

Transformation of GSL specifications to TANDTL logical
statements

First, the top level objects in specifications S1 to S4 will be replaced by
the bottom level objects and relations. The revised specifications will be:

(S1) When OutsideSalesSystem receive Order
Then_Do OutsideSalesSystem verify Order with Inventory And

OutsideSalesSystem check
CreditsDue Of Customer in Order
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(S2) When OutsideSalesSystem verify Order with Inventory
If (Quantity Of Product in Order greaterthan

Quantity Of Product in Inventory) Forall Product
Then_Do OutsideSalesSystem reject Order

(S3) WhenOutsideSalesSystem check
CreditsDue Of Customer in Order

If CreditsDue Of Customer in Order
greaterthan Zero

Then_Do OutsideSalesSystem reject Order

(S4) When(OutsideSalesSystem verify Order with Inventory  And
OutsideSalesSystem check
CreditsDue Of Customer in Order)
And_Then (Not OutsideSalesSystem reject Order)

Then_Do OutsideSalesSystem confirm Order And_Then
OutsideSalesSystem create Invoice And_Then
(SalesPerson send One copiesof Invoice
to AccountsReceivable And
SalesPerson send Three copiesof Invoice to Shipping)

Then the revised specifications S1 to S4 will be transformed to TANDTL logical
statements.

(S1) receive(OutsideSalesSystem, Order) �
verify(OutsideSalesSystem, Order, Inventory) ∧
check(OutsideSalesSystem, CreditsDue(Customer, Order))

(S2) verify(OutsideSalesSystem, Order, Inventory) ∧
∀ Product. Greaterthan(Quantity(Product, Order),
Quantity(Product, Inventory))� reject(OutsideSalesSystem, Order)
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(S3) check(OutsideSalesSystem, CreditsDue(Customer, Order)) ∧
greaterthan(CreditsDue(Customer, Order), Zero)    
� reject(OutsideSalesSystem, Order)

(S4) [verify(OutsideSalesSystem, Order, Inventory) ∧
  check(OutsideSalesSystem, CreditsDue(Customer, Order))] ∏
 [¬reject(OutsideSalesSystem, Order)] �
confirm(OutsideSalesSystem, Order) ∏
create(OutsideSalesSystem, Invoice) ∏
[send(SalesPerson, One, Invoice, AccountsReceivable) ∧
send(SalesPerson, Three, Invoice , Shipping)]

For simplicity, let us rename objects as follows:
S - OutsideSalesSystem
O - Order
I - Inventory
D - CreditsDue
P - Product
Q - Quantity
C - Customer and
V - Invoice
SP - SalesPerson
SH - Shipping
AR - AccountsReceivable

Then the specifications S1 to S4 becomes

(S1) receive(S, O) � verify(S, O, I) ∧  check(S, D(C, O))

(S2) verify(S, O, I) ∧  ∀ P. greaterthan(Q(P, O), Q(P, I))� reject(S, O)
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(S3) check(S, D(C, O)) ∧  greaterthan(D(C, O), Zero)   � reject(S, O)

(S4) [verify(S, O, I) ∧  check(S, D(C, O))] ∏ [¬reject(S, O)] �
confirm(S, O) ∏
create(S, V) ∏ [send(SP, One, V, AR) ∧  send(SP, Three, V , SH)]

Inconsistency proofs

First, skolemization rules are applied to specification S2 to remove the
variable P (Product). Then S2 will be :

(S2) ∀ P.¬[verify(S, O, I) ∧  Greaterthan(Q(P, O), Q(P, I))] ∨  reject(S, O)

Because sub formulae verify(S, O, I) and reject(S, O) are free of variable P, we
can move the universal quantifier to the beginning of the formula. Then we can
simply ignore the universal quantifier. Therefore the following logical formulae
can be used for non-clausal resolution.

(S1) ¬receive(S, O) ∨   [verify(S, O, I) ∧  check(S, D(C, O))]
(S2) ∀ P.¬[verify(S, O, I) ∧  greaterthan(Q(P, O), Q(P, I))] ∨  reject(S, O)
(S3) ¬[check(S, D(C, O)) ∧  greaterthan(D(C, O), Zero)] ∨  reject(S, O)
(S4) ¬{[verify(S, O, I) ∧  check(S, D(C, O))] ∏ [¬reject(S, O)]} ∨

{confirm(S, O) ∏create(S, V) ∏ [send(SP, One, V, AR) ∧
send(SP, Three, V , SH)]}

These statements can be rewritten as follows:

(S1) ¬receive(S, O) ∨   [verify(S, O, I) ∧  check(S, D(C, O))]
(S2) ∀ P.¬verify(S, O, I) ∨  ¬greaterthan(Q(P, O), Q(P, I)) ∨  reject(S, O)
(S3) ¬check(S, D(C, O)) ∨  ¬greaterthan(D(C, O), Zero)] ∨  reject(S, O)
(S4) ¬{[verify(S, O, I) ∧  check(S, D(C, O))] ∏ [¬reject(S, O)]} ∨
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{confirm(S, O) ∏create(S, V) ∏ [send(SP, One, V, AR) ∧
  send(SP, Three, V , SH)]}

Applying non-clausal resolution,

(R1) ∀ P.¬receive(S, O)∨  ¬greaterthan(Q(P, O), Q(P, I)) ∨  reject(S, O)
⊥ verify(S, O, I) (S1,S2)

(R2) ∀ P.¬receive(S, O)∨  ¬greaterthan(Q(P, O), Q(P, I)) ∨  reject(S, O)
⊥ check(S, D(C, O))  (S1,S3)

(R3) ¬receive(S, O) ∨   check(S, D(C, O)) ∨  {confirm(S, O) ∏create(S, V) ∏
[send(SP, One, V, AR) ∧  send(SP, Three, V , SH)]}

⊥ verify(S, O, I) (S4,S1)
(R4) ∀ P.¬verify(S, O, I) ∨  ¬greaterthan(Q(P, O), Q(P, I)) ∨

¬check(S, D(C, O)) ∨  ¬greaterthan(D(C, O), Zero)]
⊥ reject(S, O) (S2,S3)

(R5) ∀ P.¬greaterthan(Q(P, O), Q(P, I)) ∨  reject(S, O)∨  {confirm(S, O)
          ∏create(S, V) ∏ [send(SP, One, V, AR) ∧ send(SP, Three, V , SH)]}

⊥ verify(S, O, I) (S4,S2)
We can go on further, but will not be able to get “false” as the resolvent. That
means we cannot prove that the set of logical formulae {S1, S2, S3, S4} is
inconsistent.

Execution of GSL specifications

The executable specifications can be rewritten as follows:

(S1) Hold{receive(OutsideSalesSystem, Order)} �
Exec{verify(OutsideSalesSystem, Order, Inventory) ∧
check(OutsideSalesSystem, CreditsDue(Customer, Order))}

(S2) Hold{verify(OutsideSalesSystem, Order, Inventory) ∧
∀ Product. Greaterthan(Quantity(Product, Order),
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Quantity(Product, Inventory))}�
Exec{reject(OutsideSalesSystem, Order)}

(S3) Hold{check(OutsideSalesSystem, CreditsDue(Customer, Order)) ∧
greaterthan(CreditsDue(Customer, Order), Zero)}   �
Exec{reject(OutsideSalesSystem, Order)}

(S4) Hold{[verify(OutsideSalesSystem, Order, Inventory) ∧
  check(OutsideSalesSystem, CreditsDue(Customer, Order))] ∏
 [¬reject(OutsideSalesSystem, Order)]} �
confirm(OutsideSalesSystem, Order) ∏
Exec{create(OutsideSalesSystem, Invoice) ∏
[send(SalesPerson, One, Invoice, AccountsReceivable) ∧
send(SalesPerson, Three, Invoice , Shipping)]}.

Suppose that the system has following databases:
Customer Database
Name Address Credits_Due
AA Address AA 500
BB Address BB 0

Inventory Database
Product Quantity Unit_Price
Popsi 4000 1

Order Database
Date Order Customer Product Quantity

Invoice Database
Date Order Customer Product Quantity
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In addition to above databases, we need Action Database for execution.

Action Database
Action Cycle

Now suppose that customer “AA” places an order number 1 for 300 Popsi on
98.04.01.

Execution steps

Cycle 0
System will initiate the functioning of the Outside Sales System by

external event; customer AA’s order and will create the record
“receive(OutsideSalesSystem, 1)” in Action Database with the cycle number 0.
At the cycle 0, the system will check the Action Database and find that there is
an event “receive(OutsideSalesSystem, 1)” to be taken. Then the system will
evaluate the action against the executable specifications. Only the condition in
formula S1 is satisfied. Therefore system has to execute the actions
“verify(OutsideSalesSystem, Order, Inventory)”  and “check
(OutsideSalesSystem, CreditsDue(Customer, Order))” in the next cycle. To do
this, system will schedule these actions by creating records in Action Database
as shown. The “1” in the cycle field indicates that the actions
“verify(OutsideSalesSystem,1,Inventory)” and “check(OutsideSalesSystem,
CreditDue(AA,1))” to be taken in the cycle 1. No more actions to be taken at
cycle 0. Execution proceeds to cycle 1. Databases at the end of the cycle 0 will
be as follows:
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Customer Database
Name Address Credits_Due
AA Address AA 500
BB Address BB 0

Inventory Database
Product Quantity Unit_Price
Popsi 4000 1

Order Database
Date Order Customer Product Quantity
98.04.04 1 AA Popsi 300

Invoice Database
Date Order Customer Product Quantity

Action Database
Action Cycle
receive(OutsideSalesSystem, 1) 0
verify(OutsideSalesSystem,1, Inventory) 1
check (OutsideSalesSystem, CreditsDue(AA, 1)) 1

Cycle 1

No new orders. The system will find that there are two actions
“verify(OutsideSalesSystem,1,Inventory)”and “check (OutsideSalesSystem,
CreditsDue(AA, 1))” to be executed in cycle 1. Then system will execute them.
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While evaluating executable statements against the Action Database, system will
find that condition of statement S2 is true as action “check (OutsideSalesSystem,
CreditsDue(AA, 1))” is found in the Action Database and the CreditsDue of
customer AA is greater than zero. Then the action “reject(OutsideSalesSystem,
1)” will be schedule for processing at the next cycle. Therefore system will
generate a record in Action Database with the action
“reject(OutsideSalesSystem, 1)” and “cycle 2”. Conditions of other statements
are not true and no other actions to be taken at the cycle 1, processing will
proceeds to cycle 2. The databases at the end of the cycle 1 are as follows:

Customer Database
Name Address Credits_Due
AA Address AA 500
BB Address BB 0

Inventory Database
Product Quantity Unit_Price
Popsi 4000 1

Order Database
Date Order Customer Product Quantity
98.04.04 1 AA Popsi 300

Invoice Database
Date Order Customer Product Quantity
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Action Database
Action Cycle
receive(OutsideSalesSystem, 1) 0
verify(OutsideSalesSystem,1, Inventory) 1
check (OutsideSalesSystem, CreditsDue(AA, 1)) 1
reject(OutsideSalesSystem, 1) 2

Cycle 2

Only one action to be performed. System will execute the action
“reject(OutsideSalesSystem, 1)” and will find that none of the conditions in
executable statements are true. Condition in statement S4 is not true because

[verify(OutsideSalesSystem, 1, Inventory) ∧
check(OutsideSalesSystem, CreditsDue(AA, 1))] ∏
 [¬reject(OutsideSalesSystem, 1)]

is not held. At this cycle

[verify(OutsideSalesSystem, 1, Inventory) ∧
check(OutsideSalesSystem, CreditsDue(AA, 1))] ∏
 [reject(OutsideSalesSystem, 1)]

is held because system “reject(OutsideSalesSystem, 1)” just after the actions
“verify(OutsideSalesSystem, 1, Inventory)” and “check(OutsideSalesSystem,
CreditsDue(AA, 1))”. No more actions to be performed in this cycle. Processing
moves to next cycle. Databases will remains unchanged.

Cycle 3

system will not find any actions to perform. No new orders for evaluation.
Therefore system will stop processing.
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