
OOSPEC: An Executable Object-Oriented Specification Language

Mohammad N. Paryavi
IBD Informatics, Inc.

P. 0. Box 10660
Kansas City, MO 641884660
parcom@applelink.apple.com

Abstract: OOSPEC is a model-based specification
language and development system. If is intended as a small
system for use in introducing formal specifications for
undergraduates. OOSPEC combines features from several
other specification and programming languages, particularly
VDM , 2, Eiffel, Ada, and Smulltalk. The environment
and implementation are based (loosely) on Smalltalk. The
environment supports a direct manipulation graphical
interface for creation and evaluation of partial and full
specifications. Objects are defined as instances of class
speci’cations. Object data items and methods are modeled
in terms of high level structures such as sets, sequences,
and maps. Class methods are defined by pre- and post-
assertions, although post- “assertions” have the side effect
of binding new values of “out” data items. Correct syntax
of specifications is directed by the editor. Type constraints
and some other semantic constraints are checked as each
assertion expression if defined. An example of a common
banking system specijication is presented.

1 Introduction

In the preface to his book on formal systems
specification [lNC 881, Ince writes:

“Formal specification is the name given to the use
of discrete mathematics for describing the function of
both hardware and software systems. It is a subject
which is gaining popularity in the United Kingdom
and the United States; it was recently made a major
component of the British Government’s Alvey
software engineering strategy. It is now starting to
impinge upon the undergraduate and postgraduate
curricula. Unfortunately, few books cover the subject
at an introductory level. . ..I’

Ince provided an introductory text for formal specifications,
but at the 1988 date, object oriented style for specifications
was not covered.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given thal
copyright is by permission of the Association of Computing
Machinery. To copy otherwise. or to republish, requires a fee
and/or specific permission.

William J. Hankley
Dept. of Computing and Information Sciences

Kansas State University
Manhattan, KS 66506
hankley@cis.ksu.edu

A further problem of bringing formal specifications
into undergraduate curricula is that few supporting tools are
available. Writing specifications is similar in concept to
writing programs. U.S. students expect -- indeed, need --
an interactive environment and an executable language.

This paper presents a language for writing model-based
specifications in an object-oriented form together with its
supporting environment for development and evaluation
(execution) of specifications. OOSPEC draws its basis
from both VDM [BJO 821 and Z [DIL 901, in that data
items are modeled in terms of high level structures such as
sets, sequences, and maps and operations are specified by
pre- and post-conditions about the state of data items
expressed in predicate calculus notation [GRl 811. The
object oriented structure of OOSPEC is based on Smalltalk
[GOL 831. The imperative style of operation specifications
follows from the specification part of Ada [ANS 831. Class
parameter&&on derives from Eiffel [MEY 881 and FOOPS
[GOG 871 as well as Ada.

In order to achieve executable specifications, assertion
predicates are given some aspects of procedural lanaguages;
this follows in the same fashion that Prolog allows a
procedural interpretation. OOSPEC predicates allow
sequential, conditional, and iterative evaluation. What
establishes OOSPEC as a specification language is that it
uses high level structures to model data items.

The following sections describe general features of the
OOSPEC language and the environment. A more
complete presentation of the system [PAR 931 and an
executable form of the interpreter are available from the
author. Section 5 presents OOSPEC specification of a
commonly used example.

2 OOSPEC Language

2.1 General Description

The basic unit of specification is the class. A class is
a static specification of the structure and properties of a
possible collection of objects that are instances of the class.
Objects are dynamic run-time elements that will be created
and modified during evaluation of a specification. The class
of which an object is an instance is also referred to as the
type of the object.

0 1995 ACM O-8979 l-737-5
169

A class consists of data representation, in the form of
instance variables, and operations that are defined over that
data representation. An OOSPEC specification is
composed of a collection of classes related by some
hierarchy.

2.2 Objects

Objects are the basic building block of specifications.
Simple objects are an instance of one of the primitive
classes, as: ‘a string’ , 465 (integer), 35.7 (real),
$A (character), < 1 2 3 > (a sequence of same type
elements), { 1 2 3 } (a set of same type elements).
Map types are included in the full language, but not yet
implement.

A named object is an instance of a class that is
represented by an identifier. Is is declared as:

accountNumber : INTEGER;

Named objects are used as instance variable, temporary
variables, and parameters. Note that objects are created
implicitly. Most object oriented languages require an
explicit create message to the class of the object to be
created. However, implicit creation fits better in the style
of specification, particulary specification of modules to be
implemented in imperative languages that use similar
declaration of variables.

2.3 Messages

Specifications are executed by evaluating message
expressions. Each message evaluates certain operations
within objects and may modify the state of the objects.
Generally, an OOSPEC message has one of the following
forms:

object toperation-name (argl, argd, . . . >
. . . object is unchanged

or object -operation-name (argl, arg2, . . .).
. . . object is changed

The only way an object can be in a new state is for one of
its component objects to be bound to a new value using the
bind message, as: name = bind (‘John’)

For messages with zero or one argument, the
parentheses may be omitted.

Messages with no arguments are called unary
messages, as: ‘this is a string’ c size

< 3 5 2 6 > t Fist
Binary messages are those that have only one

argument, for example: ‘hello’ t + (‘there’)
which may be abbreviated by omitting the t symbol as:

‘hello’ + ‘there’ .
Binary messages are evaluated strictly from left to right;
however, parentheses may be used to dictate the order of
evaluation. Thus, the arithmetic message:

(3 + + (4)) + * (2)
may be written as: 3+4*2

It returns the result 14. We can, however, use parentheses
to control evaluation order, so that the message:

3 + (4 * 2).
returns the result 11.

A complex message may have more than one
argument, arguments that are themselves messages, or it
may itself be an argument within another message.
Examples of complex messages are:

< 3 5 2 6 8 1 > t at (‘hello’ t size)
and (3+4)t>x.

All objects respond to the equality message =. Many
classes define the relational message operators <, I, >, 2,
f in their own context. For example, the class
SEQUENCE defines the relational operators for comparing
sequences while the class INTEGER defines the same
relational operators for comparing integers.

Many objects understand messages that test their state,
class, or condition. All such predicate messages evaluate
to true or false. For example:

9 t isOdd
name t idtring.

The class boolean also defines proposition. operators
and, or, not, equal, and implies. For example, if c is
an instance of class character, then the predicate that c is
not a digit is: (c < $0) t or (c > $9 >.

In previous examples, nested messages were always
evaluated first. For block messages evaluation of nested
argments is delayed.

The class boolean defines the conditional block
messages if-then and if-then-else with delayed evaluation
of their arguments. For example:

(x < y) t if-then (name c= bind (‘John’)) .

If x < y evaluates to true, then name G bind
(‘John’) will be evaluated; in either case, the message is
evaluate as true. Similarly,
(x < y) t if-then-else (name = bind (‘John’) , name e

bind (‘Tom’) >

must bind name to either ‘John’ or ‘Tom’.

Three types of iterator block messages are provided:
timesRepeat is defined for integer objects, whileTrue and
whileFalse are defined over boolean objects. For example:

3 t timesRepeat (x = bind (x + 1))

results in x being incremented by 3.

2.4 Classes

A class is the basic unit of specification in OOSPEC.
A simple example is shown in Figure 1. Objects of type
STUDENT have the operation register,which when

170

evaluated with proper parameter values results in
modification of values of name and id instance variables
within the object.

For each class operation, pre- and post- assertion
predicates specify, respectively, the required state of data
items for the operation to be valid and the resultant state of
dam items after evaluation of the operation. Assertions are
composed of messages to the related data objects. Because
of the left-to-right order of evaluation of messages,
sequential evaluation of conjuncts is implicit. For
convenience to readers, assertions may be written in
sequential conjunctive form. Thus, the post assertion for
register could have been writen as:

nameebind (aName) t and (idebind (anId)) .

Model based specification languages such as VDM are
grounded on the notion of specifying operations via pre- and
post-conditions. Other languages such as Eiffel and
annotated C++ [LEJ 911, use pre- and post-conditions to
strengthen documentation or as a support mechanism for
ensuring program correctness. In OOSPEC, the behavior
of operations is entirely defined by pre- and post-condition
assertions.

STUDENT; class:
document:
inherits from: ROOT
class invariants:
public

instance variables
name :STRING;
id : INTEGER ;

procedure register (in aName : STRING; in anId
NTEGER);

we
(aNametsize#O)tand(anId#O)

post
name*bind (aName),
idebind (anId)

grivak

end class

Figure 1. A simple specification

More genrally, a class specification may be parameterized,
as in Figure 2. To specialize a generic class for a particular
type, an actual type name must be supplied, as:

sl : STACK(INTEGER).

In Figure 2, assertions are not shown; using the class
editor (see environment section), they may be made visible
by opening each operation declaration. The expanded form
is shown in Figure 3.

STACK (ItemType : GENERIC); class:
document:
. rnherits from: ROOT
class invariants:
public

procedure push(in item : ItemType);
procedure pop();
function top() : ItemType ;
function empty() : BOOLEAN;

private
s : SEQUENCE(ItemType);

Figure 2 Specification of a generic STACK, unexpanded.

lass: STACK(ItemType : GENERIC >;
locument:
nherits from: ROOT
lass invariants:
lublic

procedure push(in item : ItemType);
post

s e append(item);

procedure pop();
pre

(s t size) t f 0;
post

s ti removeLast ;

function top() : ItemType;
pre

(s t size) t f 0;
post

top + bind (s t last);

function empty() : BOOLEAN;
pre
post

empty e bind (0 t = (s + size)) ;

wivate
instance variables

s : SEQUENCE(ItemType);

:nd class

F’igure 3. Expanded Specification of STACK

In these examples, structural parts of the class
specification are shown by keywords even those parts that
are empty. Parts of class specifications are explained in the
following paragraphs.

The documentation section contains an English
description of the class, along with dates of creation,
modification, version, author, etc. are listed. The English
description is optional but it is particularly useful to

171

beginning students. The class editor (see Environment
section) requires some entry or update for every edit
operation on the class specification.

The inherits from field contains the names of
classes of which the class is a subclass. A class inherits or
includes properties from its superclass. Further aspects of
inheritance are presented in a later section.

Class invariants allow for specification of invariant
properties of or constraints on data objects that are
components of the class. The notion of class invariants
dates back to Hoare’s work on data type invariants [HOA
721. The application of data type invariants to program
design was investigated in [JON 801, [JON 861 and [JON
901. An invariant of a class C should hold for every
instance i of C at times when i is in a stable state,
which is define as:

l at the time of creation of i,
l before an operation r of C is entered

as a result of every message of the form i t r
l after operation r completes evaluation.

Class invariants may be violated during evaluation of an
operation, but after the evaluation is completed and the
instance is in a stable state, the invariant must hold true. It
is permitted for a class invariant to be violated during the
evaluation of private operations. The reason for this
relaxation of the rule is because private operations may be
called from within public operations and that invariants are
not required to hold true during the evaluation of a public
operation. Class invariants for instance i of class C are
checked before and after evaluation of each public operation
when i is in a stable state. If the invariant does not hold,
evaluation stops with an error message. An example of a
class invariant is:

aSet t forAl12(cl, c2, cl t #(c2) t implies((cl t
ssn) t #(c2 t ssn))) .

To support information hiding, a class is composed of
public and private sections. The notion of information
hiding dates back to Pamas’ work [PAR 721 and is most
evident in Ada [ANS 831 with the use of public and private.
The public section of a class specifies those procedures,
functions, and instance variables that make up the interface
for objects defined by the class. Access to private entities
is limited to the class in which they are defined.

A common feature of every object oriented language is
the notion of instance variables [GOL 831 or in some
langauges attributes [MJZY 881. Instance variables are data
values held by objects. In OOSPEC, every instance
variable must be declared with a type. A public instance
variable may be accessed from other classes by sending a
message with the same name as the instance variable. In
order to guarantee that class invariants hold when objects
are created, instance variables are initialized to a default
zero or null value according to their types.

Operations in OOSPEC correspond to methods in other
object oriented languages, except that procedure and
function operations are distinguished. This distinction
allows a specification to be readily understood as a
specification of module in imperative languages such Ada
or Pascal. A function operation must return a value of the
specified type. A procedure operation does not have an
.explicit return value, but it may determine new values for
instance variables or for the proceudre parameters. In
addition, for use in composing assertion messages, each
procedure operation is interpreted as a boolean expression --
that is, successful evaluation of a procedure message will
result in the value true.

Operation parameters are of five modes:: in, out, in-
out, selector, and assertion. The in, out, and in-out
modes correspond to those defined in Ada. Selector and
assertion parameters are used simultaneously within an
operation declaration. An assertion parameter is used to
pass a message to an operation and the message that is sent
will make references to zero or more selector parameters.
For example, if setOfItems is an instance of type SET,
then the message:
setOff terns t forA112(iteml, item2, wf(item21)
contains two selector parameters, item1 and item2, which
are referenced within the underlined message parameter.

Temporuty variables may be introduced within the
specification of any operation (although none appear in
these examples). Like instance variables, temporary
variables are data values held by objects. However, the
value of a temporary variable is retained only during the
evaluation of the operation.

2.5 Class Inheritance

OOSPEC supports three forms of inheritance:
hierarchical inheritance, specialized hierarchical
inheritance, and specialized inheritance.

Hierarchical inheritance is similar to that provided by
Smalltalk. A class may be specified to be the subclass of
an existing class, called the superclass. A subclass inherits
all of its superclass’ features except for its name. A
subclass may redefine inherited operations. A subclass my
amend inherited invariants. A subclass may define new
instance variables, operations, and class invariants.
However, a subclass may not redefine or add to the list of
class parameters that it inherits from its superclass. Table
1. summarizes the rules for hierarchical class inheritance.

Specialized heiarchical inheritance is similar to
hierarchical inheritance except that some class parameters
must be specialized with existing types. For example,
INTEGER-STACK could be created as a subclass of
STACK(INTEGER) .

172

superclass inherited redefined amended
features

operations j I

Table 1. Hierarchical inheritance rules

Finally, created objects inherit all but the private
properties of their defining type. For example, suppose
the class hierarchy of BINARY-TREE is:

BINARY-TREE
I

ORDERED-BINARY-TREE
I

INTEGER-BINARY-TREE

and let Tl: INTEGER-BINARY-TREE. That is,
ORDERED-BINARY-TREE is a restricted form of a
BINARY-TREE; it is a subclass of BINARY-TREE. It
inherits all the instance variables of BINARY-TREE, but it
adds a further class invariant (the ordered property) and it
redefines operations such as insert, remove, find, etc. to
conform with the class invariant. INTEGER-BINARY-
TREE is a specialized subclass of ORDERED-BINARY-
TREE; it inherits everything from the specialized class
ORDERED-BINARY-TREE (INTEGER). The object
Tl inherits all public operations of INTEGER-BTNARY-
TREE and it satifies the class invariant which was
inherited from ORDERED-B INARY -TREE.

As in other object-oriented languages, to explicitly
reference an operation in the superclass the special object
super is provided. Within the ORDERED-BINARY-
TREE class, the message

super t invariants
evaluates the invariants of BINARY-TREE in the context
of ORDERED-BINARY-TREE. Similarly, the variable
self is provided for accessing instance variables and
operations inside the same class. For example, the message

self t find(item)
evaluates the operation find in the same class.

3 The Environment

ENSPEC is a support environment for specifications
developed in the language OOSPEC. It integrates a
graphical-direct-manipulation editor, a knowledge/data base

of prediates and other facts/rules, consistency checking
facilities, documentation facilities, and most important, an
interpreter and degugger. The complete description is
presented in [PAR 931.

Figure 4. is a sample of what the ENSPEC menus
look like. These particular menus are available during the
composition (editing) of a class. The class menu consists
of those commands that are relevant on a class while the
operation menu contains commands related to actions
performed on an operation.

New Soecification Etioand All I
Open Specification... 880 Cailapse RII

Close _ .._,____ _- __._._ - ._.__....____. - ._..._.. ._

saw fldd Class Parameter

Saue tls... ,.__...__,.._...__,..............................

Select Current Operation

Page Setup... . . .

Print Select Super
. . . .

Add Public Instance

Add Priuate Instance

Add Public Procedure
Rdd Public function

Rdd Private Procedure
Odd Private Function

. .

Remove Operation I

!!!l!z,bI

Rdd In Parameter
Add Out Parameter
Add InOut Parameter
Add Selector Parameter

Add Rfsertion Parameter
Rdd Temporary Uariable

.__-- -.__----_-.._---..--...-..-..

Specify Pre
Specify Post

Edit Name
ttemoue Operation

Change Label font . . .

Debugger On

Debugger Off
.

Oefaults

Change Operation Type 1

Figure 4. ENSPEC menus in composition mode.

Figure 5. shows an actual screen image of the
prototype while editing the class queue. Here, the
postcondition is being constructed interactively by selecting
‘pieces from pop-up menus that appear.

r v function removeQ () : INTEGER ; 1

contents

MESSAGE
removea u LITERAL
SELF
SUPER

0 1

Figure 5. Editing a class

173

A class is evaluated through an Input/Output Frame.
Figure 6 shows an example of an I/O Frame, in this case
for the queue class. The I/O Frame lets the user enter
values for parameters and trigger operations to evaluate.
The interpreter then evaluates the operation and the result is
displayed in output parameters. This allows for quick
evaluation and testing of spccilications.

To demonstrate major features and functions of
:ENSPEC and its language OOSPEC, a prototype was built
in Smalltalk.

In its current form, the ENSPEC prototype focuses on
composing and evaluating specifications. The prototype
deviates from the specification of OOSPEC in that only
single left arrows are impemented in messages, and that in
palace of using symbolic names of operations the prototype
uses their mnemonic equivalent.

In the prototype, SET, SEQUENCE, INTEGER,
REAL, BOOLEAN, Interpreter (I/O Frames and
evaluation), Creation of new classes, and Modifying
existing classes are fully implemented.

The following two tables list features and the current
status of their implementation. Table 2 lists environment
features and Table 3 lists language features.

Environment Features

implemented: SET, SEQUENCE, INTEGER, REAL,
BOOLEAN, Interpreter, Class creation, Class modification

not implemented: CHARACTER, MAP, Assistance
Facility, Knowledge/Database, Debugger, Documentation
Facilities

partially implemented: Consistency Checking, Class
Browser , Editor

Table 2. Implementation Status of Environment Features

Language Features

implemented: Specialized Inheritance, Functions &
Procedures, Instance Variables, Public and Private
Sections, in, out, in-out Parameters, Selector Parameters,
Return Parameters, Temporary Variables, Precondition &
Postcondition, Assertion, Literals, Simple Objects, Named
Objects, Simple Messages, Unary Messages, Binary
Messages, Complex Messages, Arithmetic Messages,
Binding, Relational Messages, Conditional Messages,
Boolean Messages, Iterative Messages,

not implemented: Spec. Hierarchical In., Hierarchical
Inheritance, Class Document, Class Invariant, Predicate
Messages, self & super

partially implemented: Consistency Checking,
Class Parameters, Assertion Parameters, Naming Rules
Table 3. Implementation Status of Language Features

The prototype was built in SmalltalWV Mac@ [SHA
911 on a midrange Apple Macintosh@ computer. Table 4
summarizes some measures of the ENSPEC prototype
implementation.

Number of Classes 41
Number of Methods 454
Number of Lines of code 5500
Application size 237K Bytes
Min. Memory space required 4MB
Development Effort 6 man months

Table 4. Measures of the prototype code

We are quite content with the performance of the
prototype considering that it is an interpreter implemented
on top of Smalltalk’s interpreter running on an average
personal computer. In fact, in tests of specifications the
size of the banking example below, we were able to edit and
evaluate classes with near instantaneous response from the
prototype

5 Banking Example

The following banking example presents actual screen
images from the prototype.

174

The BANK Class
~BANK ();

d locument:

iI nherits from: ROOT

lass inuariants:

ma
v procedure oWnAccount (in initielDeWtit: REAL ;

temp uars
out accountld: INTEGER);

newld: INTEGER ;

newhccount: ACCOUNT ;

0 pre

. InitialDeposit +greaterThenOrEquel (100.0)

v post

l nextAccountld *bind (nextAccountld tadd (100)) ,

newld *bind (nextkcountld) ,

l newhccount teetld (newld 1 ,

0 newhccount tectivete ,

l new&ccount t-credit (initialDepoeit) ,

l accounts +bind (eccounts
*union (accounts +makeASet (new&count)) 1

l eccountld *bind (newld)

procedure CreditAccount (in amount: REAL ;
in eccountld: INTEGER);

v pre

l accounts t exist (e , (a C id?) t equals (accountld) 1
a post

l eccounte + exist (e , (e + id?) t equals (eccountld))

+and (a +-credit (amount)) :

procedure debitAccount (in amount: REAL ;

v pre
in accountld: INTEGER);

+ accounts c exist< a, (e f id?) t equels (accountld))

+end ((e +balence?)
~greatcrThanOrEque1 (emount)))

D post

l eccounte t exist (e , (a t id? 1 t equals (accountld))

tend (e *debit (amount) 1)

[procedure closeAccount (in accountld: INTEGER);

-3 pre

l accounts t exilt (.e , (e t id?) t equals (eccountld)
v post

l accounts t exist (a , (a t id? 1 t equals (eccountld 1

tend (< e c&bit (e cbelence?))

+end (* +7nActivate)))

function aocount6alance (in eccountld: INTEGER) : REAL ;

-J pre

l eccounte + exist (e , (B C id?) t equal3 (accountld)
T7 post

. accounts t exist (e , (a C id?) t equals (accountld)

+and (bccountsdlence +blnd (e tbalance?))

function worthOfBank(): RE&L ;

v post

l acmunis +forAll (a , (e +ective? 1

trnd (worthofsank
cbind (vorthOfBank

+add (.a cbalance?)) 1)

instance vars

accounts: SET (AMOUNT);
nrxtbccountld : WTEGER ;

-BANK

Figure 4. Specification of BANK

The ACCOUNT Class

locument:

mherits from: ROOT

lass invariants:

ma
procedure credit (in amount: REAL);

v pre

l (amount +greeterThen (0.0 1 1 *and (ectivc)

v post

l balance +bind (balance +add (amount))

procedure debit (in amount: REAL);

v pre

0 (emount +gresterThen (0.0)) +-end (sctlvc 1
77 post

. balance +bind (balance Ctubtrect (amount 1)

procedure aCtiVatC (b;
v pre

. (id +notEqudls (0)) tend (active tequels (hlsc)
D post

l ectivc *bind (true)

procedure inActivate ();

v pre

l (id +notEquals (0 1) tend (active)
-3 post

l active tbind (false)

procedure eetld(in anld: INTEGER);

x v post

l id +bind (anld)

function id? () INTEGER ;

-3 post

l id? +bind (id)

v function belance? (1 : REAL ;

D pre

l ect1vt +equaie (true)
v post

l bahnce? &bind (balance 1

function active? () : BOOLEAN ;

7 post
l ectlve? +bind (active 1

mm
instance uars

id: INTEGER ,
balance: REAL ;
ective: BOOLEAN ,

-CCOUNT

Figure 5. Specification of ACCOUNT

6 Conclusions

OOSPEC was designed to be an object oriented
specification language that is based on manipulation of
sets, sequences, functions, relations, and predicates with
quantifiers. Furthermore a support environment has been
designed that makes learning and using OOSPEC easier.
Since one of our objectives has been for ENSPEC to be

175

usable by students of introductory data structure/algorithms
courses, careful attention has been paid to making the
environment easy to use. That includes incorporating the
familiar notions of functions and procedures and parameter
passing from traditional imperative languages such as Ada
and Pascal.

The prototype has successfully proven that it is
possible to implement such an executable specification
system on personal machines with an acceptable
pfOllMIlCe.

176

7 References

[ANS 831 ANSI and AJPO, Military Standard: Ada
Programming Lanauge (Am. Nat. Standards Inst. and
US Gov. Dept of Defense, Ada Joint Program Office),
ANSI/M&STD-1815A-1983, Feb. 17, 1983.

[BJO 821 Bjomer. D. and Jones, C. B. Formal
Specification and Softwre Development. Prentice/I-U,
Englewood Cliffs, NJ, 1982.

[BOO 861 Booth, Grady. Object-oriented development.
IEEE Transactions on Software Engineering. SE-12,
2, Feb. 1986, pp. 211-221.

[BOO 91) Booth, Grady. Object-oriented Design.
Benjamin/Cummings, Redwood City, CA, 1991.

[COA 91-l] Coad, P. and Yourdon, E.; Object-Oriented
Analysis, 2nd Ed., Prentice Hall, Englewood
Cliffs,New Jersey, 1991.

[COA 91-21 Coad, P. and Yourdon, E.; Object-Oriented
Design. Prentice Hall, Englewood Cliffs,New Jersey,
1991.

[COH 861 Cohen, B., Hardwood, W., and Jackson, M.,
The Specification of Complex Systems, Addison-
Wesley, 1986.

w- 901 Diller. A. 2: An Introduction to Formal
Methods. John Wiley & Sons, New York, 1990.

[ELL 901 Ellis, Margaret, A. and Stroustrup, Bjarne.
The Annotated C++ reference manual. Addison-
Wesley, 1990.

KiOG871 Goguen. J. A. and Meseguer, J.; Unifying
Functional, Object-Oriented and Relational
Programming with Logical Semantics. In Research
directions in object-oriented programming, B. Shriver
and P. Wegner. (eds.). MIT Press, 1987, pp. 417-478.

[GGL 831 Goldberg, A. and Robson. D. Smalltalk-80,
fhe Language and Its Implementation, Addison-Wesley,
Reading, Mass., 1983.

[HOA 721 Hoare. C.A.R. Proof of Correctness of Data
Representations, Acta Informatica, vol. 1, pp. 271-
281, 1972.

[INC 881 Ince, D. C.; An Introduction to Discrete
Marhematics and Formal System Specificarion.
Oxford Applied Mathematics and Compu ring Science
Series. Clarendon Press, Oxford, 1988.

[JON 801 Jones, C. B. Software Development: A
Tigorous Approach, Prentice-Hall International, Hemel
Hempstead, 1980.

[JON 86) Jones, C. B. Systematic Software
Development using VDM, Prentice-Hall International.
Hemel Hempstead, 1986.

]JON 901 Jones, C. B. Systematic Software
Development lrsing VDM. Prentice Hall, New York,
1990.

[LET 911 LeJacq, Jean Pierre. Function Preconditions
in Object Oriented Software. ACM SIGPLAN
Notices, vol. 26, no. 10, Oct. 1991, pp. 13-18.

[LlS 86) Liskov. B. and Guttag, J. Abstraction and
Specification in Program Development. The MID
Press, Cambridge, Massachusetts, 1986.

[MEY 881 Meyer, Bertrand. Object-oriented Software
Construction. Prentice Hall, New York, 1988.

[PAR 721 Parnas, D. L., On Criferia 10 Be Used in
Decomposing Systems into Modules, CACM. vol. 14,
no. 1, April 1972, pp. 221-227.

[PAR 931 Paryavi, M. N. An Object-Oriented Formal
Specification Language and Support Environment.
Ph.D. Dissertation , CIS Dept., Kansas State
University, Manhattan, Kansas, 1993.

[SHA 911 Shafer, Dan and Ritz, Dean A. Practical
Smalltalk Using SmalltaWV. Springer-Verlag, New
York, NY, 1991.

(WIR 901 Wirf-Brock, R., Wilkcrson, B., and
Wiener,L.; Designing Object-Oriented Software.
Prentice Hall, Englewood Cliffs,New Jersey, 1990.

177

