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Abstract: OOSPEC is a model-based specification 
language and development system. If is intended as a small 
system for use in introducing formal specifications for 
undergraduates. OOSPEC combines features from several 
other specification and programming languages, particularly 
VDM , 2, Eiffel, Ada, and Smulltalk. The environment 
and implementation are based (loosely) on Smalltalk. The 
environment supports a direct manipulation graphical 
interface for creation and evaluation of partial and full 
specifications. Objects are defined as instances of class 
speci’cations. Object data items and methods are modeled 
in terms of high level structures such as sets, sequences, 
and maps. Class methods are defined by pre- and post- 
assertions, although post- “assertions” have the side effect 
of binding new values of “out” data items. Correct syntax 
of specifications is directed by the editor. Type constraints 
and some other semantic constraints are checked as each 
assertion expression if defined. An example of a common 
banking system specijication is presented. 

1 Introduction 

In the preface to his book on formal systems 
specification [lNC 881, Ince writes: 

“Formal specification is the name given to the use 
of discrete mathematics for describing the function of 
both hardware and software systems. It is a subject 
which is gaining popularity in the United Kingdom 
and the United States; it was recently made a major 
component of the British Government’s Alvey 
software engineering strategy. It is now starting to 
impinge upon the undergraduate and postgraduate 
curricula. Unfortunately, few books cover the subject 
at an introductory level. . ..I’ 

Ince provided an introductory text for formal specifications, 
but at the 1988 date, object oriented style for specifications 
was not covered. 
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A further problem of bringing formal specifications 
into undergraduate curricula is that few supporting tools are 
available. Writing specifications is similar in concept to 
writing programs. U.S. students expect -- indeed, need -- 
an interactive environment and an executable language. 

This paper presents a language for writing model-based 
specifications in an object-oriented form together with its 
supporting environment for development and evaluation 
(execution) of specifications. OOSPEC draws its basis 
from both VDM [BJO 821 and Z [DIL 901, in that data 
items are modeled in terms of high level structures such as 
sets, sequences, and maps and operations are specified by 
pre- and post-conditions about the state of data items 
expressed in predicate calculus notation [GRl 811. The 
object oriented structure of OOSPEC is based on Smalltalk 
[GOL 831. The imperative style of operation specifications 
follows from the specification part of Ada [ANS 831. Class 
parameter&&on derives from Eiffel [MEY 881 and FOOPS 
[GOG 871 as well as Ada. 

In order to achieve executable specifications, assertion 
predicates are given some aspects of procedural lanaguages; 
this follows in the same fashion that Prolog allows a 
procedural interpretation. OOSPEC predicates allow 
sequential, conditional, and iterative evaluation. What 
establishes OOSPEC as a specification language is that it 
uses high level structures to model data items. 

The following sections describe general features of the 
OOSPEC language and the environment. A more 
complete presentation of the system [PAR 931 and an 
executable form of the interpreter are available from the 
author. Section 5 presents OOSPEC specification of a 
commonly used example. 

2 OOSPEC Language 

2.1 General Description 

The basic unit of specification is the class. A class is 
a static specification of the structure and properties of a 
possible collection of objects that are instances of the class. 
Objects are dynamic run-time elements that will be created 
and modified during evaluation of a specification. The class 
of which an object is an instance is also referred to as the 
type of the object. 
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A class consists of data representation, in the form of 
instance variables, and operations that are defined over that 
data representation. An OOSPEC specification is 
composed of a collection of classes related by some 
hierarchy. 

2.2 Objects 

Objects are the basic building block of specifications. 
Simple objects are an instance of one of the primitive 
classes, as: ‘a string’ , 465 (integer), 35.7 (real), 
$A (character), < 1 2 3 > (a sequence of same type 
elements), { 1 2 3 } (a set of same type elements). 
Map types are included in the full language, but not yet 
implement. 

A named object is an instance of a class that is 
represented by an identifier. Is is declared as: 

accountNumber : INTEGER; 

Named objects are used as instance variable, temporary 
variables, and parameters. Note that objects are created 
implicitly. Most object oriented languages require an 
explicit create message to the class of the object to be 
created. However, implicit creation fits better in the style 
of specification, particulary specification of modules to be 
implemented in imperative languages that use similar 
declaration of variables. 

2.3 Messages 

Specifications are executed by evaluating message 
expressions. Each message evaluates certain operations 
within objects and may modify the state of the objects. 
Generally, an OOSPEC message has one of the following 
forms: 

object toperation-name ( argl, argd, . . . > 
. . . object is unchanged 

or object -operation-name ( argl, arg2, . . . ). 
. . . object is changed 

The only way an object can be in a new state is for one of 
its component objects to be bound to a new value using the 
bind message, as: name = bind (‘John’) 

For messages with zero or one argument, the 
parentheses may be omitted. 

Messages with no arguments are called unary 
messages, as: ‘this is a string’ c size 

< 3 5 2 6 > t Fist 
Binary messages are those that have only one 

argument, for example: ‘hello’ t + ( ‘there’ ) 
which may be abbreviated by omitting the t symbol as: 

‘hello’ + ‘there’ . 
Binary messages are evaluated strictly from left to right; 
however, parentheses may be used to dictate the order of 
evaluation. Thus, the arithmetic message: 

(3 + + (4)) + * (2) 
may be written as: 3+4*2 

It returns the result 14. We can, however, use parentheses 
to control evaluation order, so that the message: 

3 + (4 * 2). 
returns the result 11. 

A complex message may have more than one 
argument, arguments that are themselves messages, or it 
may itself be an argument within another message. 
Examples of complex messages are: 

< 3 5 2 6 8 1 > t at ( ‘hello’ t size ) 
and (3+4)t>x. 

All objects respond to the equality message =. Many 
classes define the relational message operators <, I, >, 2, 
f in their own context. For example, the class 
SEQUENCE defines the relational operators for comparing 
sequences while the class INTEGER defines the same 
relational operators for comparing integers. 

Many objects understand messages that test their state, 
class, or condition. All such predicate messages evaluate 
to true or false. For example: 

9 t isOdd 
name t idtring. 

The class boolean also defines proposition. operators 
and, or, not, equal, and implies. For example, if c is 
an instance of class character, then the predicate that c is 
not a digit is: ( c < $0 ) t or ( c > $9 >. 

In previous examples, nested messages were always 
evaluated first. For block messages evaluation of nested 
argments is delayed. 

The class boolean defines the conditional block 
messages if-then and if-then-else with delayed evaluation 
of their arguments. For example: 

( x < y ) t if-then ( name c= bind (‘John’) ) . 

If x < y evaluates to true, then name G bind 
(‘John’) will be evaluated; in either case, the message is 
evaluate as true. Similarly, 
( x < y ) t if-then-else ( name = bind (‘John’) , name e 

bind (‘Tom’) > 

must bind name to either ‘John’ or ‘Tom’. 

Three types of iterator block messages are provided: 
timesRepeat is defined for integer objects, whileTrue and 
whileFalse are defined over boolean objects. For example: 

3 t timesRepeat ( x = bind ( x + 1) ) 

results in x being incremented by 3. 

2.4 Classes 

A class is the basic unit of specification in OOSPEC. 
A simple example is shown in Figure 1. Objects of type 
STUDENT have the operation register,which when 
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evaluated with proper parameter values results in 
modification of values of name and id instance variables 
within the object. 

For each class operation, pre- and post- assertion 
predicates specify, respectively, the required state of data 
items for the operation to be valid and the resultant state of 
dam items after evaluation of the operation. Assertions are 
composed of messages to the related data objects. Because 
of the left-to-right order of evaluation of messages, 
sequential evaluation of conjuncts is implicit. For 
convenience to readers, assertions may be written in 
sequential conjunctive form. Thus, the post assertion for 
register could have been writen as: 

nameebind ( aName ) t and (idebind ( anId ) ) . 

Model based specification languages such as VDM are 
grounded on the notion of specifying operations via pre- and 
post-conditions. Other languages such as Eiffel and 
annotated C++ [LEJ 911, use pre- and post-conditions to 
strengthen documentation or as a support mechanism for 
ensuring program correctness. In OOSPEC, the behavior 
of operations is entirely defined by pre- and post-condition 
assertions. 

STUDENT; class: 
document: 
inherits from: ROOT 
class invariants: 
public 

instance variables 
name :STRING; 
id : INTEGER ; 

procedure register ( in aName : STRING; in anId 
NTEGER ); 

we 
(aNametsize#O)tand(anId#O) 

post 
name*bind ( aName ), 
idebind ( anId ) 

grivak 

end class 

Figure 1. A simple specification 

More genrally, a class specification may be parameterized, 
as in Figure 2. To specialize a generic class for a particular 
type, an actual type name must be supplied, as: 

sl : STACK( INTEGER ). 

In Figure 2, assertions are not shown; using the class 
editor (see environment section), they may be made visible 
by opening each operation declaration. The expanded form 
is shown in Figure 3. 

STACK ( ItemType : GENERIC ); class: 
document: 
. rnherits from: ROOT 
class invariants: 
public 

procedure push( in item : ItemType ); 
procedure pop( ); 
function top( ) : ItemType ; 
function empty( ) : BOOLEAN; 

private 
s : SEQUENCE( ItemType ); 

Figure 2 Specification of a generic STACK, unexpanded. 

lass: STACK( ItemType : GENERIC >; 
locument: 
nherits from: ROOT 
lass invariants: 
lublic 

procedure push( in item : ItemType ); 
post 

s e append( item ); 

procedure pop( ); 
pre 

( s t size ) t f 0; 
post 

s ti removeLast ; 

function top( ) : ItemType; 
pre 

( s t size ) t f 0; 
post 

top + bind ( s t last ); 

function empty( ) : BOOLEAN; 
pre 
post 

empty e bind ( 0 t = ( s + size ) ) ; 

wivate 
instance variables 

s : SEQUENCE( ItemType ); 

:nd class 

F’igure 3. Expanded Specification of STACK 

In these examples, structural parts of the class 
specification are shown by keywords even those parts that 
are empty. Parts of class specifications are explained in the 
following paragraphs. 

The documentation section contains an English 
description of the class, along with dates of creation, 
modification, version, author, etc. are listed. The English 
description is optional but it is particularly useful to 
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beginning students. The class editor (see Environment 
section) requires some entry or update for every edit 
operation on the class specification. 

The inherits from field contains the names of 
classes of which the class is a subclass. A class inherits or 
includes properties from its superclass. Further aspects of 
inheritance are presented in a later section. 

Class invariants allow for specification of invariant 
properties of or constraints on data objects that are 
components of the class. The notion of class invariants 
dates back to Hoare’s work on data type invariants [HOA 
721. The application of data type invariants to program 
design was investigated in [JON 801, [JON 861 and [JON 
901. An invariant of a class C should hold for every 
instance i of C at times when i is in a stable state, 
which is define as: 

l at the time of creation of i, 
l before an operation r of C is entered 

as a result of every message of the form i t r 
l after operation r completes evaluation. 

Class invariants may be violated during evaluation of an 
operation, but after the evaluation is completed and the 
instance is in a stable state, the invariant must hold true. It 
is permitted for a class invariant to be violated during the 
evaluation of private operations. The reason for this 
relaxation of the rule is because private operations may be 
called from within public operations and that invariants are 
not required to hold true during the evaluation of a public 
operation. Class invariants for instance i of class C are 
checked before and after evaluation of each public operation 
when i is in a stable state. If the invariant does not hold, 
evaluation stops with an error message. An example of a 
class invariant is: 

aSet t forAl12( cl, c2, cl t #( c2 ) t implies( ( cl t 
ssn ) t #( c2 t ssn ) ) ) . 

To support information hiding, a class is composed of 
public and private sections. The notion of information 
hiding dates back to Pamas’ work [PAR 721 and is most 
evident in Ada [ANS 831 with the use of public and private. 
The public section of a class specifies those procedures, 
functions, and instance variables that make up the interface 
for objects defined by the class. Access to private entities 
is limited to the class in which they are defined. 

A common feature of every object oriented language is 
the notion of instance variables [GOL 831 or in some 
langauges attributes [MJZY 881. Instance variables are data 
values held by objects. In OOSPEC, every instance 
variable must be declared with a type. A public instance 
variable may be accessed from other classes by sending a 
message with the same name as the instance variable. In 
order to guarantee that class invariants hold when objects 
are created, instance variables are initialized to a default 
zero or null value according to their types. 

Operations in OOSPEC correspond to methods in other 
object oriented languages, except that procedure and 
function operations are distinguished. This distinction 
allows a specification to be readily understood as a 
specification of module in imperative languages such Ada 
or Pascal. A function operation must return a value of the 
specified type. A procedure operation does not have an 
.explicit return value, but it may determine new values for 
instance variables or for the proceudre parameters. In 
addition, for use in composing assertion messages, each 
procedure operation is interpreted as a boolean expression -- 
that is, successful evaluation of a procedure message will 
result in the value true. 

Operation parameters are of five modes:: in, out, in- 
out, selector, and assertion. The in, out, and in-out 
modes correspond to those defined in Ada. Selector and 
assertion parameters are used simultaneously within an 
operation declaration. An assertion parameter is used to 
pass a message to an operation and the message that is sent 
will make references to zero or more selector parameters. 
For example, if setOfItems is an instance of type SET, 
then the message: 
setOff terns t forA112( iteml, item2, wf(item21) 
contains two selector parameters, item1 and item2, which 
are referenced within the underlined message parameter. 

Temporuty variables may be introduced within the 
specification of any operation (although none appear in 
these examples). Like instance variables, temporary 
variables are data values held by objects. However, the 
value of a temporary variable is retained only during the 
evaluation of the operation. 

2.5 Class Inheritance 

OOSPEC supports three forms of inheritance: 
hierarchical inheritance, specialized hierarchical 
inheritance, and specialized inheritance. 

Hierarchical inheritance is similar to that provided by 
Smalltalk. A class may be specified to be the subclass of 
an existing class, called the superclass. A subclass inherits 
all of its superclass’ features except for its name. A 
subclass may redefine inherited operations. A subclass my 
amend inherited invariants. A subclass may define new 
instance variables, operations, and class invariants. 
However, a subclass may not redefine or add to the list of 
class parameters that it inherits from its superclass. Table 
1. summarizes the rules for hierarchical class inheritance. 

Specialized heiarchical inheritance is similar to 
hierarchical inheritance except that some class parameters 
must be specialized with existing types. For example, 
INTEGER-STACK could be created as a subclass of 
STACK(INTEGER) . 
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superclass inherited redefined amended 
features 

operations j I 

Table 1. Hierarchical inheritance rules 

Finally, created objects inherit all but the private 
properties of their defining type. For example, suppose 
the class hierarchy of BINARY-TREE is: 

BINARY-TREE 
I 

ORDERED-BINARY-TREE 
I 

INTEGER-BINARY-TREE 

and let Tl: INTEGER-BINARY-TREE. That is, 
ORDERED-BINARY-TREE is a restricted form of a 
BINARY-TREE; it is a subclass of BINARY-TREE. It 
inherits all the instance variables of BINARY-TREE, but it 
adds a further class invariant (the ordered property) and it 
redefines operations such as insert, remove, find, etc. to 
conform with the class invariant. INTEGER-BINARY- 
TREE is a specialized subclass of ORDERED-BINARY- 
TREE; it inherits everything from the specialized class 
ORDERED-BINARY-TREE ( INTEGER). The object 
Tl inherits all public operations of INTEGER-BTNARY- 
TREE and it satifies the class invariant which was 
inherited from ORDERED-B INARY -TREE. 

As in other object-oriented languages, to explicitly 
reference an operation in the superclass the special object 
super is provided. Within the ORDERED-BINARY- 
TREE class, the message 

super t invariants 
evaluates the invariants of BINARY-TREE in the context 
of ORDERED-BINARY-TREE. Similarly, the variable 
self is provided for accessing instance variables and 
operations inside the same class. For example, the message 

self t find( item ) 
evaluates the operation find in the same class. 

3 The Environment 

ENSPEC is a support environment for specifications 
developed in the language OOSPEC. It integrates a 
graphical-direct-manipulation editor, a knowledge/data base 

of prediates and other facts/rules, consistency checking 
facilities, documentation facilities, and most important, an 
interpreter and degugger. The complete description is 
presented in [PAR 931. 

Figure 4. is a sample of what the ENSPEC menus 
look like. These particular menus are available during the 
composition (editing) of a class. The class menu consists 
of those commands that are relevant on a class while the 
operation menu contains commands related to actions 
performed on an operation. 

New Soecification Etioand All I 
Open Specification... 880 Cailapse RII 

Close _ .._,____ _- __._._ - ._.__....____. - ._..._.. ._ 

saw fldd Class Parameter 

Saue tls... ,.__...__,.._...__,.............................. 

Select Current Operation 

Page Setup... . . . 

Print Select Super 
. . . . 

Add Public Instance 

Add Priuate Instance 

Add Public Procedure 
Rdd Public function 

Rdd Private Procedure 
Odd Private Function 

. . 

Remove Operation I 

!!!l!z,bI 

Rdd In Parameter 
Add Out Parameter 
Add InOut Parameter 
Add Selector Parameter 

Add Rfsertion Parameter 
Rdd Temporary Uariable 

.__-- -.__----_-.._---..--...-..-.. 

Specify Pre 
Specify Post 

Edit Name 
ttemoue Operation 

Change Label font . . . 

Debugger On 

Debugger Off 
. . . . . . 

Oefaults 

Change Operation Type 1 

Figure 4. ENSPEC menus in composition mode. 

Figure 5. shows an actual screen image of the 
prototype while editing the class queue. Here, the 
postcondition is being constructed interactively by selecting 
‘pieces from pop-up menus that appear. 

r v function removeQ ( ) : INTEGER ; 1 

contents 

MESSAGE 
removea u LITERAL 
SELF 
SUPER 

0 1 

Figure 5. Editing a class 

173 



A class is evaluated through an Input/Output Frame. 
Figure 6 shows an example of an I/O Frame, in this case 
for the queue class. The I/O Frame lets the user enter 
values for parameters and trigger operations to evaluate. 
The interpreter then evaluates the operation and the result is 
displayed in output parameters. This allows for quick 
evaluation and testing of spccilications. 

To demonstrate major features and functions of 
:ENSPEC and its language OOSPEC, a prototype was built 
in Smalltalk. 

In its current form, the ENSPEC prototype focuses on 
composing and evaluating specifications. The prototype 
deviates from the specification of OOSPEC in that only 
single left arrows are impemented in messages, and that in 
palace of using symbolic names of operations the prototype 
uses their mnemonic equivalent. 

In the prototype, SET, SEQUENCE, INTEGER, 
REAL, BOOLEAN, Interpreter (I/O Frames and 
evaluation), Creation of new classes, and Modifying 
existing classes are fully implemented. 

The following two tables list features and the current 
status of their implementation. Table 2 lists environment 
features and Table 3 lists language features. 

Environment Features 

implemented: SET, SEQUENCE, INTEGER, REAL, 
BOOLEAN, Interpreter, Class creation, Class modification 

not implemented: CHARACTER, MAP, Assistance 
Facility, Knowledge/Database, Debugger, Documentation 
Facilities 

partially implemented: Consistency Checking, Class 
Browser , Editor 

Table 2. Implementation Status of Environment Features 

Language Features 

implemented: Specialized Inheritance, Functions & 
Procedures, Instance Variables, Public and Private 
Sections, in, out, in-out Parameters, Selector Parameters, 
Return Parameters, Temporary Variables, Precondition & 
Postcondition, Assertion, Literals, Simple Objects, Named 
Objects, Simple Messages, Unary Messages, Binary 
Messages, Complex Messages, Arithmetic Messages, 
Binding, Relational Messages, Conditional Messages, 
Boolean Messages, Iterative Messages, 

not implemented: Spec. Hierarchical In., Hierarchical 
Inheritance, Class Document, Class Invariant, Predicate 
Messages, self & super 

partially implemented: Consistency Checking, 
Class Parameters, Assertion Parameters, Naming Rules 
Table 3. Implementation Status of Language Features 

The prototype was built in SmalltalWV Mac@ [SHA 
911 on a midrange Apple Macintosh@ computer. Table 4 
summarizes some measures of the ENSPEC prototype 
implementation. 

Number of Classes 41 
Number of Methods 454 
Number of Lines of code 5500 
Application size 237K Bytes 
Min. Memory space required 4MB 
Development Effort 6 man months 

Table 4. Measures of the prototype code 

We are quite content with the performance of the 
prototype considering that it is an interpreter implemented 
on top of Smalltalk’s interpreter running on an average 
personal computer. In fact, in tests of specifications the 
size of the banking example below, we were able to edit and 
evaluate classes with near instantaneous response from the 
prototype 

5 Banking Example 

The following banking example presents actual screen 
images from the prototype. 
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The BANK Class 
~BANK ( ); 

d locument: 

iI nherits from: ROOT 

lass inuariants: 

ma 
v procedure oWnAccount ( in initielDeWtit: REAL ; 

temp uars 
out accountld: INTEGER ); 

newld: INTEGER ; 

newhccount: ACCOUNT ; 

0 pre 

. InitialDeposit +greaterThenOrEquel ( 100.0 ) 

v post 

l nextAccountld *bind ( nextAccountld tadd ( 100 ) ) , 

# newld *bind ( nextkcountld ) , 

l newhccount teetld ( newld 1 , 

0 newhccount tectivete , 

l new&ccount t-credit ( initialDepoeit ) , 

l accounts +bind ( eccounts 
*union ( accounts +makeASet ( new&count ) ) 1 

l eccountld *bind ( newld ) 

procedure CreditAccount ( in amount: REAL ; 
in eccountld: INTEGER ); 

v pre 

l accounts t exist ( e , ( a C id? ) t equals ( accountld ) 1 
a post 

l eccounte + exist ( e , ( e + id? ) t equals ( eccountld ) ) 

+and ( a +-credit ( amount ) ) : 

procedure debitAccount ( in amount: REAL ; 

v pre 
in accountld: INTEGER ); 

+ accounts c exist< a, ( e f id? ) t equels ( accountld ) ) 

+end ( ( e +balence? ) 
~greatcrThanOrEque1 ( emount ) ) ) 

D post 

l eccounte t exist ( e , ( a t id? 1 t equals ( accountld ) ) 

tend ( e *debit ( amount ) 1 ) 

[ procedure closeAccount ( in accountld: INTEGER ); 

-3 pre 

l accounts t exilt ( .e , ( e t id? ) t equals ( eccountld ) 
v post 

l accounts t exist ( a , ( a t id? 1 t equals ( eccountld 1 

tend ( < e c&bit ( e cbelence? ) ) 

+end ( * +7nActivate ) ) ) 

function aocount6alance ( in eccountld: INTEGER ) : REAL ; 

-J pre 

l eccounte + exist ( e , ( B C id? ) t equal3 ( accountld ) 
T7 post 

. accounts t exist ( e , ( a C id? ) t equals ( accountld ) 

+and ( bccountsdlence +blnd ( e tbalance? ) ) 

function worthOfBank( ): RE&L ; 

v post 

l acmunis +forAll ( a , ( e +ective? 1 

trnd ( worthofsank 
cbind ( vorthOfBank 

+add ( .a cbalance? ) ) 1 ) 

instance vars 

accounts: SET ( AMOUNT ); 
nrxtbccountld : WTEGER ; 

-BANK 

Figure 4. Specification of BANK 

The ACCOUNT Class 

locument: 

mherits from: ROOT 

lass invariants: 

ma 
procedure credit ( in amount: REAL ); 

v pre 

l ( amount +greeterThen ( 0.0 1 1 *and ( ectivc ) 

v post 

l balance +bind ( balance +add ( amount ) ) 

procedure debit ( in amount: REAL ); 

v pre 

0 ( emount +gresterThen ( 0.0 ) ) +-end ( sctlvc 1 
77 post 

. balance +bind ( balance Ctubtrect ( amount 1 ) 

procedure aCtiVatC ( b; 
v pre 

. ( id +notEqudls ( 0 ) ) tend ( active tequels ( hlsc ) 
D post 

l ectivc *bind ( true ) 

procedure inActivate ( ); 

v pre 

l ( id +notEquals ( 0 1 ) tend ( active ) 
-3 post 

l active tbind ( false ) 

procedure eetld( in anld: INTEGER ); 

x v post 

l id +bind ( anld ) 

function id? ( ) INTEGER ; 

-3 post 

l id? +bind ( id ) 

v function belance? ( 1 : REAL ; 

D pre 

l ect1vt +equaie ( true ) 
v post 

l bahnce? &bind ( balance 1 

function active? ( ) : BOOLEAN ; 

7 post 
l ectlve? +bind ( active 1 

mm 
instance uars 

id: INTEGER , 
balance: REAL ; 
ective: BOOLEAN , 

-CCOUNT 

Figure 5. Specification of ACCOUNT 

6 Conclusions 

OOSPEC was designed to be an object oriented 
specification language that is based on manipulation of 
sets, sequences, functions, relations, and predicates with 
quantifiers. Furthermore a support environment has been 
designed that makes learning and using OOSPEC easier. 
Since one of our objectives has been for ENSPEC to be 
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usable by students of introductory data structure/algorithms 
courses, careful attention has been paid to making the 
environment easy to use. That includes incorporating the 
familiar notions of functions and procedures and parameter 
passing from traditional imperative languages such as Ada 
and Pascal. 

The prototype has successfully proven that it is 
possible to implement such an executable specification 
system on personal machines with an acceptable 
pfOllMIlCe. 
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