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1. INTRODUCTION

Statically typed programming languages allow earlier error checking, better

enforcement of disciplined programming styles, and the generation of more

efficient object code than languages where all type consistency checks are

performed at run time. However, even in statically typed languages, there is

often the need to deal with data whose type cannot be determined at compile

time. For example, full static typechecking of programs that exchange data

with other pro~ams or access persistent data is in general not possible. A

certain amount of dynamic checking must be performed in order to preserve

type safety.

Consider a program that reads a bitmap from a file and displays it on a

screen. Probably the simplest way to do this is to store the bitmap externally

as an exact binary image of its representation in memory. (For concreteness,

assume that the bitmap is stored internally as a pair of integers followed by a

rectangular array of Booleans.) But if we take strong typing seriously, this is

unacceptable: when the data in the file happens not to be two integers

followed by a bit string of the appropriate length, the result can be chaos.

The safety provided by static typing has been compromised.

A better solution, also widely used, is to build explicit procedures for

reading and writing bitmaps— storing them externally as character strings,

say, and generating an exception if the contents of the file are not a legal

representation of a bitmap. This amounts essentially to decreeing that there

is exactly one data type external to programs and to requiring that all other

types be encoded as instances of this single type. Strong typing can now be
preserved, at the cost of some programming. But as software systems grow to

include thousands of data types, each of which must be supplied with

printing and reading routines, this approach becomes less and less attractive.

What is really needed is a combination of the convenience of the first solution

with the safety of the second.

The key to such a solution is the observation that, as far as safety is

concerned, the important feature of the second solution is not the details of

the encoding of a bitmap as a string, but the fact that it is possible to

generate an exception if a given string does not represent a bitmap. This

amounts to a run-time check of the type correctness of the read operation.

With this insight in hand, we can combine the two solutions above: the

contents of a file should include both a binary representation of a data object

and a representation of its type. The language can provide a single read

operation that checks whether the type in the file matches the type declared
for the receiving variable. In fact, rather than thinking of files as containing

two pieces of information—a data object and its type—we can think of them

as containing a pair of an object and its type. We introduce a new data type

called Dynamic, whose values are such pairs, and return to the view that all

communication with the external world is in terms of objects of a single type

—no longer String, but Dynamic. The read routine itself does no run-time

checks, but simply returns a Dynamic. We provide a language construct,
dynarnlc (with a lowercase “d”), for packaging a value together with its type
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into a Dynamic (which can then be “externed” to a file), and a typecase

construct for inspecting the type tag of a given Dynamic.

We might use typecase, for example, to display the entire contents of a

directory where each file may be either a bitmap or a string:

foreach filename in open Dir(” MyDir”) do
let image = read(filename) in

typecase image of
(b: Bitmap)

display Bitmap(b)
(s: String)

displayString(s)
else

displayString(’’ (???)”)
end

This example can be generalized by making the directory itself into a

Dynamic. Indeed, the entire file system could be based on Dynamic structures.

Dynamic objects can also be used as the values exchanged during interprocess

communication, thereby providing type safe interactions between processes.

The Remote Procedure Call paradigm [4] uses essentially this mechanism.

(Most RPC implementations optimize the conversions to and from the trans-

port medium, so the Dynamic objects may exist only in principle.)

A number of systems already incorporate mechanisms similar to those we

have described. But so far these features have appeared in the context of

full-scale language designs and seldom with a precise formal description of

their meaning. No attention has been given to the more formal implications

of dynamic typing, such as the problems of proving soundness and construct-

ing models for languages with Dynamic.

The purpose of this paper is to study the type Dynamic in isolation, from

several angles. Section 2 reviews the history of dynamic typing in statically

typed languages and describes some work related to ours. Section 3 intro-

duces our version of the dynamic and typecase constructs and gives examples

of programs that can be written with them. Section 4 presents an operational

semantics for our language and obtains a syntactic soundness theorem.

Section 5 investigates two semantic models for the same language and their

relation to the operational semantics. Section 6 outlines some preliminary

work on extending our theory to a polymorphic lambda-calculus with Dy-

namic. Section 7 discusses some of the issues involved in implementing

Dynamic efficiently.

2. HISTORY AND RELATED WORK

Since at least the mid-1960s, a number of languages have included finite

disjoint unions (e.g., Algol-68) or tagged variant records (e.g., Pascal). Both

of these can be thought of as “finite versions” of Dynamic: they allow values
of different types to be manipulated uniformly as elements of a tagged

variant type, with the restriction that the set of variants must be fixed in

advance. Simula-67’s subclass structure [51, on the other hand, can be thought
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of as an infinite disjoint union—essentially equivalent to Dynamic. The

Simula-67 INSPECT statement allows a program to determine at run time

which subclass a value belongs to, with an ELSE clause for subclasses that

the program does not know or care about.

CLU [191 is a later language that incorporates the idea of dynamic typing

in a static context. It has a type any and a force construct that attempts to

coerce an any into an instance of a given type, raising an exception if the

coercion is not possible. Cedar/Mesa [18] provides very similar REFANY and

TYPECASE. These features of Cedar/Mesa were carried over directly into

Modula-2 + [31] and Modula-3 [10, 11]. In CLU and Cedar/Mesa, the primary

motivation for including a dynamic type was to support programming idioms

from LISP.

Schaffert and Scheifler gave a formal definition [321 and denotational

semantics [331, respectively, of CLU, including the type any and the force

construct. This semantics relies on a domain of run-time values where every

value is tagged with its compile-time type. Thus, the coercion mapping a

value of a known type into a value of type any is an identity function; force

can always look at a value and read off its type. Our approach is more

refined, since it distinguishes those values whose types may need to be

examined at run time from those that can be stripped during compilation.

Moreover, the semantic definition of CLU has apparently never been proved

to be sound. In particular, it is not claimed that run-time values actually

occurring in the evaluation of a well-typed program are tagged with the types

that they actually possess. The proof of a soundness result for CLU would

probably require techniques similar to those developed in this paper.

ML [15, 23, 24] and its relatives have shown more resistance to the

incorporation of dynamic typing than languages in the Algol family. Proba-

bly this is because many of the uses of Dynamic in Algol-like languages are

captured in ML by polymorphic types. Moreover, until recently, ML has not

been used for building software systems that deal much with persistent data.

Still, there have been various proposals for extending ML with a dynamic

type. Mike Gordon seems to have thought of it first (“Adding Eval to ML,”

personal communication, circa 1980); his ideas were later extended by My-

croft [26]. The innovation of allowing pattern variables in typecase expres-

sions (see below) seems to originate with Mycroft. (Unfortunately, neither of

these proposals were published.) Recent versions of the CAML language [36]

include features quite similar to our dynamic and typecase constructs.

Amber [7], a language based on subtyping, includes a Dynamic type whose
main use is for handling persistent data. In fact, the Amber system itself

depends heavily on dynamically typed values. For example, when a module is

compiled, it is stored in the file system as a single Dynamic object. Uniform

use of Dynamic in such situations greatly simplifies Amber’s implementation,

The use of dynamically typed values for dealing with persistent data seems

to be gaining in importance. Besides Amber, the mechanism is used perva-

sively in the Modula-2 + programming environment. A REFANY structure

can be “pickled” into a bytestring or a file, “unpickled” later by another

program, and inspected with TYPECASE. Dynamically typed objects have also
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been discussed recently in the database literature as an approach to dealing

with persistent data in the context of statically typed database programming

languages [1, 2, 8].

Recently, Thatte [341 has described a “quasi-static” type system based on

the one described here, where our explicit dynamic and typecase constructs

are replaced by implicit coercions and run-time checks.

3. PROGRAMMING WITH DYNAMIC

This section introduces the notation used in the rest of this paper: essentially

Church’s simply typed lambda-calculus [12, 16] with a call-by-value reduction

scheme [28], extended with the type Dynamic and the dynamic and typecase

constructs. We present a number of example programs to establish the

notation and to illustrate its expressiveness.

Our fundamental constructs are A-abstraction, application, conditional, and

arithmetic on natural numbers. We write e = v to show that an expression e

evaluates to a value v, and e:T to show that an expression e has type T. For

example,

+ : Nat ~ Nat ~ Nat
5+3*8
(N: Nat + Nat. f(0)) : (Nat - Nat) ~ Nat
(Af: Nat+ Nat. f(0)) (Ax: Nat. x + 1) * 1

In order to be able to consider evaluation and typechecking separately,

we define the behavior of our evaluator over all terms, not just over well-typed

terms, (In a compiler for this language, the typechecking phase might strip

away type annotations before passing programs to an interpreter or code

generator. Our simple evaluator just ignores the type annotations.)

Of course, evaluation of arbitrary terms may encounter run-time type

errors such as trying to apply a number as if it were a function. The result of

such computations is the distinguished value wrong:

(56) = wrong
(Az: Nat. O) (56) + wrong

Note that in the second example a run-time error occurs even though the

argument z is never used in ( Az. O): We evaluate expressions in applicative

order. Also, note that wrong is different from 1 (nontermination). This

allows us to distinguish in the semantics between programs that loop forever,

which may be perfectly well typed, and programs that crash because of

run-time type errors.

To make the examples in this section more interesting, we also use strings,

Booleans, Cartesian products, and recursive h-expressions, all of which are

omitted in the formal parts of the paper. Strings are written in double quotes;

II is the concatenation operator on strings. Binary Cartesian products are

written with angle brackets; fst and snd are projection functions returning
the first and second components of a pair. Recursive lambda expressions are

written using the fixpoint operator ret, where we intend rec(f: U + T) Ax: U. e to
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denote the least-defined function f such that, informally, f = Ax: U. e. For

example,

(Xx: Nat. x + 1, 1) (Nat+ Nat) x Nat
snd((hx: Nat. x + 1, 1)) + 1

(rec(f: Nat - Nat) An: Nat. If n = O then 1 else n *f(n – 1)) (5) * 120

We show at the end of this section that recursive h-expressions actually need

not be primitives of the language: they can be defined using Dynamic.

Values of type Dynamic are built with the dynamic construct. The result of

evaluating the expression dynamic e:T k a pair of a value v and a type tag T,

where v is the result of evaluating e. The expression dynamic e:T has type

Dynamic if e has type T.

The typecase construct is used to examine the type tag of a Dynamic value.

For example, the expression

Xx: Dynamic.
typecase x of

(i: Nat) i + 1
else O

end

applied to (dynamic 1: Nat), evaluates to 2. The evaluator attempts to match

the type tag of x against the pattern Nat, succeeds, binds i to the value

component of x, adds 1 to i, and returns the result.

The patterns in the case branches need not fully specify the type they are

to match: they may include “pattern variables,” which match any subexpres -

sion in the type tag of the selector. The pattern variables are listed between

parentheses at the beginning of each guard, indicating that they are bound in

the branch.

The full syntax of typecase is

typecase e~.l of
. . .

(~,)(x,: T,) e,
,..

else eel~e
end

where e~e,, ~el~e, and e, are expressions, xl are variables, T, are type expres-

sions, and X, are lists ~of distinct type variables. (It will sometim~s be

convenient to treat the Xl as a set rather than a list,) If any of the Xi are
empty, their ~nclosing parentheses may be omitted. The occurrences of type

variables in X, are binding and have scope over the whole branch, that is,

over both T, and e,.

If the type tag of a typecase selector matches more than one guard, the first

matching branch is executed. There are other possible choices here. For

inst ante, we could imagine requiring that the patt ems form an “exclusive
and exhaustive” covering of the space of type expressions so that a given type

tag always matches exactly one pattern [26].
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One example using dynamic values is a function that returns a printable

string representation of any dynamic value:

rec(tostring: Dynamic + String)
Adv: Dynamic.

typecase dv of
(v: String) “\”” II v II “\” “
(v: Nat) natToStr(v)
(X, Y) (v: X + Y) “(function)”
(x, Y) (v: x x Y)

“(” II tostring(dynamic fst(v): X) II “,”
II tostring(dynamic snd(v): Y) II “)”

(v: Dynamic)
“dynamic” II tostring(v)

else “(unknown)”
end

The case for pairs illustrates a subtle point. It uses a pattern to match any

pair and then calls the tostring function recursively to convert the compo-

nents. To do this, it must package them into new dynamic values by tagging

them with their types. This is possible because the variables X and Y are

bound at run time to the appropriate types.

Since the type tag is part of the run-time representation of a dynamic

value, the case for Dynamic should probably return a string representation

not only of the tagged value but of the type tag itself. This is straightforward,

using an auxiliary function typetostring with the same structure as tostring:

rec(typetostring: Dynamic + String)
Adv: Dynamic.

typecase dv of
(v: String) “String”
(v: Nat) “Nat”
(X, Y) (v: X + Y) “(function)”
(x, Y) (v: x x Y)

typetostring(dynamic fst(v): X)
II “x “
II typetostring(dynamic snd(v): Y)

(v: Dynamic) “Dynamic”
else “(unknown)”

end

Neither tostring nor typetostring quite does its job: for example, when

tostring gets to a function, it stops without giving any more information about

the function. It can do no better, given the mechanisms we have described,

since there is no effective way to get from a function value to an element of

its domain or codomain. This limitation even precludes using typetostring to

show the domain and codomain types of the function, since the argument to

typeotostring must be a value, not just a disembodied type.

It would be possible to add another mechanism to the language, providing

a way of” unpackaging” the type tag of a Dynamic into a data structure that

could then be examined by the program. (Amber [71 and Cedar/Mesa [181
have this feature.) Although this would be a convenient way to implement

operations like type printing, which may be important in practice, we believe
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that most of the theoretical interest of Dynamic lies k the interaction

between statically and dynamically checked parts of the language that the

typecase expression allows. Under the proposed extension, a function could

behave differently depending on the type tag of a dynamic value passed as a

parameter, but the type of its result could not be affected without giving up

static typechecking.

Another example, demonstrating the use of nested typecase expressions, is

a function that applies its first argument to its second argument, after

checking that the application is correctly typed. Both arguments are passed

as dynamic values, and the result is a new dynamic value. When the

application fails, the type tag of the result will be String and its value part

will be “Error”. (In a richer language, we could raise an exception in this

case.)

Adf: Dynamic. hale: Dynamic.
typecase df of

(x, Y) (f: x + Y)
typecase de of

(e. X) dynamic f(e): Y
else dynamic “Error”: String

end
else dynamic “Error”: String

end

Note that, in the first guard of the inner typecase, X is not listed as a bound

pattern variable. It is not intended to match any type whatsoever, but only

the domain type off. Therefore, it retains its binding from the outer pattern,

making it a constant as far as the inner typecase is concerned.

Readers may enjoy the exercise of defining a similar function that takes

two functions as dynamic values and returns their composition as a dynamic

value.

In contrast to some languages with features similar to Dynamic (e. g.,

Modula-2 + [31]), the set of type tags involved in a computation cannot be

computed statically: our dynamic expressions can cause the creation of new

tags at run time. A simple example of this is a function that takes a dynamic

value and returns a Dynamic whose value part is a pair, both of whose

components are equal to the value part of the original dynamic value:

Adx: Dynamic.
typecase dx of

(x) (x: x)
dynamic (x, x): X x X

else dx
end

It is easy to see that the type tag on the dynamic value returned by this

function must be constructed at run time, rather than simply being chosen

from a finite set of tags generated by the compiler.

Our last application of Dynamic is more substantial. We show that it can be

used to build a fixpoint operator, allowing recursive computations to be

expressed in the language even without the rec construct. It is well known
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that fixpoint operators cannot be expressed in the ordinary simply typed

lambda-calculus. (This follows from the strong normalization property [16, p.

163],) However, by hiding a certain parameter inside a dynamic value,

smuggling it past the type system, and unpackaging it again where it is

needed, we can write a well-typed version in our language.

A fixpoint of a function f is an argument x for which f(x) = x (our use of the

equality sign here is informal). A fixpoint operator fix is a function that

returns a fixpoint of a function f when applied to f:

fix f = f (fix f).

In call-by-value lambda-calculi, an extensional version of this property

must be used instead: for any argument a,

(fix f) a = f(fix f) a.

One function with this property (a call-by-value version of the standard Y
combinator [3, p. 131; 28]) can be expressed in an untyped variant of our

notation by

fix= Af. dd

where

d= Xx. Az. (f(xx))z

To see that (fix f) a = f (fix f) a for any function f and argument a, we

calculate as follows:

(fixf) a = ((hf. d d) f) a
=(dd)a
= (Az. (f (d d)) z) a
= (f (d d)) a
= (f ((Xf. d d) f)) a
= (f (fix f)) a

To build something similar in the typed language, we need to do a bit more

work. Rather than a single fixpoint function, we have to build a family of

functions (one for each arrow type). That is, for each arrow type T + U we

define a function fix~+ u whose type is ((T - U) ~ (T + U)) A (T A U). Unfortu-

nately, there is no way to obtain fix ~+ u by just filling in suitable type

declarations in the untyped fix given above. We need to build it in a more

roundabout way.

First, we need an expression a~ for each type T. (It does not matter what

the expressions are; we need to know only that there is one for every type.)

Define

–oaNat–
_“ ,,

astr,ng —
aTXu = (aT, au)
a~-u = XX:T. au

aDYnamiC= dynamic O:Nat
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Next, we build a family of “embedding” functions from each type T into

Dynamic, and corresponding “projection” functions from Dynamic to T:

emb~ = hx: T, dynamic x: T
proj~ = Xy: Dynamic.

typecase y of
(z. T) Z
else a~

end

It is easy to see that, if an expression e of type T evaluates to some value v,

then so does proj~(emb~(e)).

Now we are ready to construct fix~+ ~. Abbreviate:

emb = emb Dynamic +(T-U)

proj = ProJDYn,m,c-(T-u)
d = Ax Dynamic. hz:T. f ((proj x) x) z

To see that d is well typed, assume that f has type (T + U) ~ (T ~ U). The

type of d works out to be Dynamic ~ (T ~ U). Then

fixT+u = At: ((T+ U) + (T+ U)) d (emb d)

has type ((T ~ U) + (T -+ U)) + (T -+ U), as requirecl, and has the correct be-

havior.

4. OPERATIONAL SEMANTICS

We now formally define the syntax of the simply typed lambda-calculus with

Dynamic and give operational rules for typechecking and evaluation.

4.1 Notation

TVar is a countable set of type variable identifiers. TExp is the class of type

expressions defined over these by the following BNIF equation, where T and U

range over TExp and X ranges over TVar:

T:= Nat
lx
I T+U
I Dynamic

Similarly, Var is a countable set of variables and OpenExp is the class of the

open expressions defined by the following equation, where e ranges over

OpenExp, x over Var, and T over TExp:

e:, = x
I wrong
I Ax:T ebody

~ ~un(ebody)

I succ en=,
I test en,, O:eZ.,O succ(x):esu..
/ dynamic ebOdY:T
I typecase e,,, of

. . .

(~,)(x,.T,) e,
. . .

else eel~e
end
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Recall that ~, denotes a list of distinct type variables and that if the list is

empty the enclosing parentheses may be omitted.

This is a simpler language than we used in the examples. We have omitted

strings, Booleans, Cartesian products, and built-in recursive h-expressions.

The natural numbers, our only built-in datatype, are presented by O, SUCC,

and test. The test construct helps reduce the low-level clutter in our defini-

tions by subsuming the usual if. . . then . . . else. . . construct, test for zero,

predecessor function, and Boolean datatype into a single construct. It is based

on the Martin-L6f elimination rule for natural numbers [211.

We give special names to certain subsets of TExp and OpenExp. FTV(e) is

the set of free type variables in e. FV(e) is the set of free variables in e.

ClosedExp denotes the closed expressions, Exp denotes the expressions with

no free type variables (but possibly with free variables), and TypeCode

denotes the closed type expressions. When we write just “expression,” we

mean an expression with no free type variables.

Evaluation is taken to be a relation between expressions and expressions

(rather than between expressions and some other domain of values). We

distinguish a set Value c ClosedExp of expressions “in canonical form. ” The

elements of Value are defined inductively: wrong is in canonical form; O, succ

0, Succ(succ o), . . . are in canonical form; an expression ( Ax:T. e~O~~) is in

canonical form if it is closed; and an expression dynamic ebod ~:T is in canoni-

cal form if T is closed and if e~O~Y is in canonical form and different from

wrong.

A substitution u is a finite function from type variables to closed type

expressions, written [X - T, T +- U, . . . ]. Subst denotes the set of~ll substitu-

tions. Subst~., denotes the set of substitutions whose domain is X,. We use a

similar notation for substitution of canonical expressions for free variables in

expressions.

A type environment is a finite function from variables to closed type

expressions. To denote the modification of a type environment TE by a

binding of x to T, we write TE[X + T]. The empty type environment is

denoted by ~.

We consistently use certain variables to range over particular classes of

objects. The metavariables x, y, and z range over variables in the language.

(They are also sometimes used as actual variables in program examples.) The

metavariable e ranges over expressions. Similarly, X, Y, and Z range over

type variables; and T, U, V, and W range over type expressions. The letter o

ranges over substitutions. TE ranges over type environments. Finally, v and

w range over canonical expressions.
These definitions and conventions are summarized in Figures 1 and 2.

4.2 Typechecking

Our notation for describing typechecking and evaluation is a form of “struct -

ural operational semantics” [29]. The typing and evaluation functions are
specified as systems of inference rules; showing that an expression has a

given type or reduces to a given value amounts precisely to giving a proof of

this fact using the rules. Because the inference rules are similar to those
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1-[1t numbers

1-(7T vanahles

TI ar type I arlable~

TErp t} pe expressio’us

TypeCodc = {T E TEzp/ FTI-(T) = 0} closed t} pes

OIJPIIEZp opeu expression

C’losedErp = {e s OpenEzpl F1 ( e ) = FT1”( e ) = 0} closed expressions
Exp = {e E O,oenErpl FTI’(Q) = (J} expressions

I Lluc = {e E 0penEq2 e in canonical form} canonical expressions

Subst = TIar ~ Type Code substitutions

Sub~t5 = T1’ar ~ TypeCode substitutions with domain ~

TEnr = 1hr ~ Typ~Code type entmonments

Fig. 1. Summary of basic definitions.

Fig. 2. Summary of naming conventions.

x+ y, z variables

e expressions

v. w canonical expressions ( values)

x. Y, z type t,arlables

T. U. V. W t: pf~ expressions

u substitutions

T-F type environments

used in systems for natural deduction in logic, this style of description has

also come to be known as “natural semantics” [17]

The rules closely follow the structure of expressions and incorporate a

strong notion of computation. To compute a type for e~un(e~~~), for example,

we first attempt to compute types for its subterms e ~“n and e~,~ and then, if

we are successful, to combine the results. This exactly mimics the sequence of

events we might observe inside a typechecker for the language.

The formalism extends fairly easily to describing a variety of programming

language features like assignment statements and exceptions. This breadth

of coverage and “operational style” makes the notation a good one for

specifying comparatively rich languages like Standard ML [24]. A group at

INRIA has built a system for directly interpreting formal specifications

written in a similar notation [6, 13, 14].

The rules below define the situations in which the judgment “expression e

has type T“ is valid under assumptions TE. This is written “ TE + e : T.”
The first rule says that a variable identifier has whatever type is given for

it in the type environment. If it is unbound in the present type environment,

then the rules simply fail to derive any type. (Technically, the clause

“x ~ Dom(TE)” is not a premise but a side condition that determines when

the rule is applicable.)

x ~ Dom(TE)

TE + X : T-l?(x)
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A h-expression must have an arrow type. The argument type is given

explicitly by the annotation on the bound variable. To compute the result

type, we assume that the bound variable has the declared type, and attempt

to derive a type for the body under this assumption.

7’E[x + U] t- ebOdY: T

TE t- Xx:U.ebOdY: (U + T)

A well-typed function application must consist of an expression of some

arrow type applied to another expression, whose type is the same as the

argument type of the first expression.

TE + efun: (U + T)
TE + eara: U

TE + efun(earg) : T

The constant O has type Nat.

TE+O: Nat

A succ expression has type Nat if its body does.

TE b enat: Nat

TE + succ en~t: Nat

A test expression has type T if its selector has type Nat and both of its arms

have type T. The type of the second arm is derived in an environment where

the variable x has type Nat.

TE h- enat: Nat
TE k ezerO: T
7W[X + Nat] + e,UCC:T

TE + (test en~~O:ez,,O succ(x):e~uCC) : T

A dynamic expression is well typed if the body actually has the type

claimed for it.

TE t- ebodv: T

773 + (dynamic e~OdY:T) : Dynamic

The typecase construct is a bit ~ore complicated. In order for an expression

of the form (typecase e~el of . . . (Xl) (XI:TI) e, . . . end) to have a type T, three

conditions must be met: first, the selector e~,l must have type Dynamic.

Secon~, for every possible substitution u of typecodes for the pattern vari-

ables X,, the body e, of each branch must have type T. Third, the else arm

must also have type T.

The second premise is quantified over all substitutions a e Subst~,. Strictly
speaking, there are no inference rules that allow us to draw conclusions

quantified over an infinite set, so a proof of this premise requires an infinite
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number of separate derivations. Such inflnitary derivations present no theo-

retical difficulties— in fact, they make the rule system easier to reason about

–but a typechecker based naively on these rules would have poor perfor-

mance. However, our rules can be replaced by a finitary system using skolem

constants that derives exactly the same typing judgments.

TE + (typecase e~,l of

(~1) (x,:T,) e,
else eel~e

end) :T

Finally, note that the expression wrong is assigned no type. It is the only

syntactic form in the language with no associated typing rule.

4.3 Evaluation

The evaluation rules are given in the same notation as the typechecking

rules. We define the judgment “closed expression e reduces to canonical

expression v,” written “e = v,” by giving rules for each syntactic construct in

the language. In general, there is one rule for the normal case, plus one or

two others specifying that the expression reduces to wrong under certain

conditions.

In this style of semantic description, there is no explicit representation of a

nonterminating computation. Whereas in standard denotational semantics

an expression that loops forever has the value ~ (bottom), our evaluation

rules simply fail to derive any result whatsoever.

When the evaluation of an expression encounters a run-time error like

trying to apply a number as if it were a function, the value wrong is derived

as the expression’s value. The evaluation rules preserve wrong.

There is no rule for evaluating a variable: evaluation is defined only over

closed expressions. Parameter substitution is perfcu-med immediately during

function application.

The constant wrong is in canonical form.

F wrong + wrong

Every h-expression is in canonical form.

+ XX. T e ~ody ~ Ax:T e body

We have chosen a call-by-value (applicative-order) evaluation strategy: to

evaluate a function application, the expression being applied must be reduced

to a canonical expression beginning with h, and the argument expression

must be reduced to some legal value; that is, its computation must terminate

and should not produce wrong. If one of these computations results in wrong,

the application itself reduces immediately to wrong. Otherwise, the argument
is substituted for the parameter variable in the A body, which is then
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evaluated under this binding.

F-efun = hx:T. e~OdY
h e,,g = w (w * wrong)

h ebOdY[x+ w] = v

+ efun (earg )*V

t- e~un+ w (w not of the form (Ax T.ebOdY))

+ efun (earg ) * wrong

F efun * W (W = (kx:T. ebody))
+ ea,g * wrong

+ efun (earg ) * wrong

The constant O is in canonical form.

1- o-o

A succ expression is in canonical form when its body is a canonical number

(i.e., an expression of the form O or succ n, where n is a canonical number). It

is evaluated by attempting to evaluate the body to a canonical value v,

returning wrong if the result is anything but a number, and otherwise

returning succ applied to v.

I- e“,t + v (v a canonical number)

+ succ enaf * succ v

I- e“,t = v (v not a canonical number)

+- succ en~t a wrong

A test expression is evaluated by evaluating its selector, returning wrong if

the result is not a number, and otherwise evaluating one or the other of the

arms depending on whether the selector is zero or a positive number. In the

latter case, the variable x is bound inside the arm to the predecessor of the

selector.

k enat + O
I-- ezero + v

h- (test e“.t O:eze,O succ(x):e,UCG) = v

+ e“at - succ w
+e SUcc[x- WI - v

+ (test en,t O:ez,,O succ(x):e.uCG) + v

t- e“,t = w (w not a canonical number)

+ (test enat O:eZe,Osucc(x):e~UCC) + wron9

A dynamic expression is evaluated by evaluating its body. If the body

reduces to wrong, then so does the whole dynamic expression.

t- ebOdY+ w (w # wrong)

+ (dynamic e~OdY:T) = dynamic w:T

+ ‘body = wrong

+ (dynamic ebOdY:T) + wrong
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A typecase expression is evaluated by evaluating its selector, returning

wrong immediately if this produces wrong or anything else that is not a

dynamic value, and otherwise trying to match the type tag of the selector

value against the guards of the typecase. The function match has the job of

matching a run-time typecode T against a pattern expression U with free

variables. If there is a substitution u such that T = U U, then match(T, U) = o.

(For the simple type expressions we are dealing with here, u is unique if it

exists.) Otherwise, match(T, U) fails. Section 7.2 discusses the implementa-

tion of match.

The branches are tried in turn until one is found for which match succeeds.

The substitution returned by match is applied to the body of the branch.

Then the selector’s value component is substituted for the parameter variable

in the body, and the resulting expression is evaluated. (As in the rule for

application, we avoid introducing run-time environments by immediately

substituting the bound variable x, and pattern variables T, into the body of

the matching branch.) The result of evaluating the body becomes the value

for the whole typecase.

If no guard matches the selector tag, the else body is evaluated instead.

t- e,.l = dynamic w:T
vj < k. rnatch(T, ~) fails

match(T, Tk) = (J
➤ ekff[xk+w] + v

F (typecase e~.l of

(~,) (xl T,) e,. .
else e~l~~)

end) *V

K e~.l + dynamic w:T
v k. match(T, Tk) fails

k e.l., + v

+ (typecase e~el of

. (~1) (XI:TI) e,
else e~l~e)

end) -v

& e + v (v not of the form (dynamic wT))

+ (typecase e,,, of

. . . (~1) (xlT,) e,. .
else e~l.J

end) * wrong

4.4 Soundness

We have defined two sets of rules: one for evaluating expressions and one for

deriving their types. At this point, it is reassuring to observe that the two

systems “fit together” in the way we would expect. We can show that

“evaluation preserves typing”: that if a well-typed expression e reduces to a

canonical expression v, then v is assigned the same type as e by the typing

rules. From this it is an easy corollary that no well-typed program can

evaluate to wrong.
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We begin with a lemma that connects the form of proofs using the typing

rules (which use type environments) with that of proofs using the evaluation

rules (which use substitution instead of binding environments). Since many

of the type environments we are concerned with will be empty, we write

“ 1- e:T” as an abbreviation for “~ t- e: T.”

LEMMA 4.4.1 (Substitution preserves typing). For all expressions e,

canonical expressions v, closed types V and W, type environments TE, and

variables z, if I--v:V and TE[z + V] F- e:W, then TE + e[z + v]:W.

WOOF. We argue by induction on the length of a derivation of TE[z + V]

+ e: W. There is one case for each of the typing rules; in each case, we must

show how to construct a derivation of TE I- e[z +- v]: W from a derivation

whose final step is an application of the rule in question. We give the proof

for three representative cases:

— e = x. If x = Z, then e[z - V] = v. By the typing rule for variables, TE[z +-

V] I- z:V. Immediately, TE + e[z + v]:V. If x # z, then e[z ~ V] = x and

TE + e[z + V]:W.

. e = Ax:T. e ~OdY. If x = z, then e[z ~ v] = e. Immediately, TE I-- e[z + v]:W.
If x # z, then for the typing rule for A-expressions to apply (giving

TE[z +- V] t- e:T -+ U for some T and U), it must be the case that TE[x + T,

z + V] + e~O~Y:U. By the induction hypothesis, TE[x +- T] + e~O~Y[z + v]:U.

By the typing rule for h again, TE I- Ax: T.(e~OdY[z + v]):T + U. By the

definition of substitution, TE I- e[z + v] :T + U.

– e = e~un(e,,,). For the typing rule for application to apply (giving TE[z +

V] I- e: W), it must be the case that TE[s + v] + etun:T ~ W and TE[z + V]

+ e~r~:T for some T. By the induction hypothesis, TE + e ~Un[z+ v] :T ~ W

and TE t- earg[z - v] :T. Now by the typing rule for application, TE +

(efun[z +- v])(earg[z + v]): W. By the definition of substitution, TE E e[z -

V]:w. ❑

Now we are ready for the soundness theorem itself.

THEOREM 4.4.2 (Soundness). For all expressions e, canonical expressions

v, and types W, if E e - v and F- e:W, then + v:W.

fiOOF. By induction on the length of the derivation E e * v. There is

one case for each possible syntactic form of e. We show only a few representa-

tive cases:

—e = Ax: T.ebOdY. Immediate, since v = e.

—e = efun(earg). The typechecking rule for application must be the last step

in the derivation of E e:W, so + e~~Q:T and t- e~Un:T ~ W for some T. If the

last step in the derivation of t- e = v is the second evaluation rule for

application, then I- efUn =’ U for some U not of the form ~x:T e bO@. But

among canonical expressions, only those of this form are assigned a func-

tional type by the typing rules, so our assumption contradicts the induction
hypothesis. Similarly, if the last step in the derivation of + e ~ v is the

third evaluation rule for application, then + e~,~ + wrong. But wrong is
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not assigned any type whatsoever by the typing rules, again contradicting

the induction hypothesis. So we may assume that the main evaluation rule

for application is the last step in the derivation of E- e - v, from which it

follows that ~ e~Un+ Ax: T.ebOdY, E- ea,g = w (w + wrong), and E e~O~Y[x -

w] = v. By the induction hypothesis, t- w:T and + hx:T. e ~O~Y:T ~ W Since

the last step in the latter derivation must be the typing rule for h-expres-

sions, [x - T] K e~O~Y:W. By Lemma 4.4.1, + e~O~Y[x - w]. W. Finally, by

the induction hypothesis again, + v:W.

—e = dynamic ebOdY: T. If + e&@ - wrong, then by the induction hypothesis

and the typing rule for dynamic, + wrong :T. This cannot be the case. So

assume that t-- e~OdY = w (w # wrong), so that the main evaluation rule for

dynamic is the last step in the derivation of + e = v. The typechecking rule

for dynamic must be the last step in the derivation of I- e:W (here,
W = Dynamic), so + ebOdY:T. By the induction hypothesis, t- w:T. By the

typing rule for dynamic again, !- v:W.

—e = typecase e,,, of
. . .

(~,) (x,:T,) e,

else eel~~
end

Assume that I-- e~,l = dynamic w:U, that for some k, rnatch(U, T~) = a

whereas match(U, T,) fails for all 7“ < k, and that e~u[x~ ~ w] = v, so that

the main evaluation rule for typecase is the last step in the derivation of

+ e - v. (The argument for the second typecase rule is straightforward;

the wrong case proceeds as in the previous two arguments.) By the type-

checking rule for typecase, + e~el: Dynamic. By the induction hypothesis,

E w: U. By the typechecking rule again, [x~ - T~o ] + e~ u: W. By the defini-

tion of match, this can be rewritten as [x~ - U] t- e~a:W. By Lemma 4.4.1,

+ e~a[x~ ~ w]:W. Now, by the induction hypothesis, I- v:W. ❑

Since wrong is not assigned any type by
immediate:

Corollary 4.4.3. For all expressions e,

T, if I- e * v and t- e:T then v # wrong.

5. DENOTATIONAL SEMANTICS

the typing rules, the following is

canonical expressions v, and types

Another way of showing that our rules are sound is to define a semantics for

the language and to show that no well-typed expression denotes wrong. In

general terms, this involves constructing a domain V and defining a “mean-

ing function” that assigns a value [e] ~ in V to each expression e in each

environment p. The domain V should contain an element wrong such that

[wrong] ~ = wrong for all p.

Two properties are highly desirable:

(1) If e is a well-typed expression, then [e] ~ # wrong for well-behaved p.
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(2) If !-e+ v,then [e] = ~v](i.e., evaluation is sound).

To prove the former one, it suffices to map every typecode T to a subset [T] of

V not containing wrong, and to prove the following

—If + e:T, then [e] ~ e [T] for all p (i.e., typechecking is sound).

In this section we carry out this program in an untyped model and suggest

an approach with a typed model.

5.1 Untyped Semantics

In this subsection we give meaning to expressions as elements of an untyped

universe V and to typecodes as subsets of V. It would appear at first that the

meaning of Dynamic can simply be defined as the set of all pairs (u, T), such

that u e [T]. But T here ranges over all types, including Dynamic itself, so this

definition as it stands is circular. We must build up the denotations of type

expressions more carefully.

We therefore turn to the ideal model of types, following MacQueen, Plotkin,

and Sethi [20]. (We refer the reader to this paper for the technical back-

ground of our construction.) Typecodes denote ideals: nonempty subsets of V
closed under approximations and limits. We denote by Idl the set of all ideals

in V.
The ideal model has several features worth appreciating. First, to some

extent the ideal model captures the intuition that types are sets of struc-

turally similar values. Second, the ideal model accounts for diverse language

constructs, including certain kinds of polymorphism. Finally, a large family

of recursive type equations are guaranteed to have unique solutions. We

exploit this feature to define the meaning of Dynamic with a recursive type

equation.

We choose a universe V that satisfies the isornorphism equation

V = N + (V ~ V) + (V x TypeCode) + W,

where N is the flat domain of natural numbers and W is the type error

domain {w} ~ . The usual continuous function space operation is represented

as +; the product space E x A of a cpo E and a set A is defined as

{(e, a) I e c E, e # 1, and a e A} U { -L ~}, with the evident ordering.
V can be obtained as the limit of a sequence of approximations VO, Vl, . . . .

where

Vo= {l}

v L+l = N + (V, ~ V,) + (Vz x TypeCode) + W.

We omit the details of the construction, which are standard [3, 201.

At this point, we have a universe suitable for assigning a meaning to

expressions in our programming language. Figure 3 gives a full definition of

the denotation function [ ], using the following notation:

—” d in V,” where d belongs to a summand S of V, is the injection of d into

v;
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u ] Elk-–( IiL!–v)–v

[xl, – P(x)—
[wrong], = wrong

[Ax:T . e,.,,], = (Ao. if v = wrong then wrong else [e, O,y]P{z -, j ) in V

[e,mn (e.r,)lp = if [e..l~ Q W-V) then wrong else (Udpl v– v )([dp )

[0], = Oin V

[mm e’n.t], -— if [e..,]fl @ N then wrong else ( [em.,]fll ~ + 1) m V

[test em., O:e_ succ(x) : e .CC],,
—— ] ~ N then wrongif [em.t ~

else if [e.a, ]o = O in v then [ezerolp
else[e.ucc]p{=– [fIe.aJcI~–IJI. v]}

[dynamic e,.,, :T]P = if [e~O~)]P = wrong then wrong else ( ([e~.~, ]P, T) in V)

[typecase e..] of . ..(~) (x, :T, )e,. else e,,,,],
—— If [e.,, ]P ~ (Vx TypeCode) then wrong

elselet (d. U) = [e,.]]P I vx Type Code ‘n

if . . .
elseif match (U, T, ) succeeds

then let a = ?natch(U, T,) in [e,a]ofz,-~}

else if .

nelse [eel.. ~

Fig. 3. Meaning function for expressions.

-wrong is an abbreviation for “ w in V“;

—u I ~ yields, if u = (d in V) for some d e S, then d; otherwise, ~ ;

—uES yields 1 if v = J- , true if u = (d in V) for some deS, and false

otherwise;

— = yields ~ whenever either argument does.

Note that the definition of = guarantees that [( Xx: T.e~O~Y)(e.,,)] ~ = ~
whenever [e.,~] ~ = 1 .

The denotation function “commutes” with substitutions, and evaluation is

sound with respect to the denotation function:

LEMMA 5.1.1. Let e be an expression, Q a substitution, and ,0 and P’ two

environments. Assume that p maps each variable symbol x for which v is

defined to [x u],., and that it coincides with p’ elsewhere. Then [e o ] ~. = [e] ~.

PRooF. The proof is a tedious inductive argument, and we omit it. ❑

THEOREM 5.1.2. For all expressions e and v, if E e + v then [e] = [v].

PROOF. We argue by induction on the derivation of I- e = v. There is one

case for each evaluation rule. We give only a few typical ones.

–For function applications, assume that [e~Un] = [ Ax:T.e~O~Y], [e,,~] = [w]

with w # wrong, and [e~O~Y[x + wI] = [v], to prove that [e~Un(e,,~)] = [v].
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Note that ~Xx:T.e ,.,,] ~ must be a function from V to V for all p and that w

cannot denote wrong (since w is canonical). Therefore, we have [e~un(e,,~)] ~

= [%,1.{* +.} where u = [e,,J ~, for all p. Since [e,,~] = [w], Lemma

5.1.1 yields [efun(e.,~)] ~ = [e~O~Y[x ~ w]] ~, and the hypothesis [e~O~Y[x ~
w]] = [v] immediately leads to the desired equation.

–For construction of dynamic values, assume that [e~O~Y] = [w] with w #

wrong, to prove that [dynamic ebOd~:T] = [dynamic w: T]. As in the previous

case, because w cannot denote wrong, we have [dynamic ebOd~:T] ~ =

([ebOdYj ~, T) and [dynamic w:T] ~ = ([w] ~, T). The desired equation follows at

once from [e~O~Y] = [w].

–For typecase operations, assume that [e~.l] = ~dynamic w: T], wwztch(T, TJ)

fails for all j < k, m+atch(T, T~) = U, and [e~o[x~ +- w]] = [v], to prove that

[typecase e~el of. . . (Xl) (xI:T,) e,. . . else e,l~e end] = [v]. As usual, w cannot
denote wrong, and hence, we obtai~ the following chain of equalities, for

arbitrary p: [typecase e~el of. . . (X,) (X I:TI) e, . . . else eel~e end] ~ equals

[e~ u ] ~{$. _ ~}, where d is [w] ~ (by the hypotheses and the definition of [ ]),

equals [e~ a[x~ - w]] ~ (by Lemma 5.1.1), equals [v] ~ (by the hypotheses).

The case where the else branch of a typecase is chosen is similar but

simpler. ❑

Although we now have a meaning [e] for each program e, we do not yet

have a meaning [T] for each typecode T. Therefore, in particular, we cannot

prove yet that typechecking is sound. The main difficulty, of course, is to

decide on the meaning of Dynamic.

We define the type of dynamic values with a recursive equation. Some

auxiliary operations are needed to write this equation.

Definition 5.1.3. If I G V is a set of values and T is a typecode, then

lT= {c\(c, T)el}.

(Often, and in these definitions in particular, we omit certain injections from

summands into V and the corresponding projections from V to its summands,

which can be recovered from context.)

Definition 5.1.4. If 1 G V and J q V are two sets of values, then

I* J = {(c, T ~ U) I C(lT) G Ju, where T, U e TypeCode}.

Note that if I and J are ideals then so is 1* J.
Using these definitions, we can write an equation for the type of dynamic

values:

D= N x {Nat]

UD-H D

UD*X {Dynamic}.

Here the variable D ranges over Id, the set of all ideals in V.
The equation follows from our informal definition of the type of dynamic

values as the set of pairs (v, T) where [v] e [T]. Intuitively, the equation states
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that a dynamic value can be one of three things. First, a dynamic value with

tag Nat must contain a natural number. Second, if (c, T ~ U) is a dynamic

value then C(v) ~ [U] for all u e [T], and hence, (c(u), U) is a dynamic value

whenever (v, T) is. Third, a dynamic value with tag Dynamic must contain a

dynamic value.

How is one to guarantee that this equation actually defines the meaning of

Dynamic? MacQueen, Plotkin, and Sethi [201 invoke the Banach Fixed Point

theorem to show that equations of the form D = F(D) over Idl have unique

solutions, provided F is contractile in the following sense.

Informally, the rank r(a) of an element a of V is the least i such that a

“appears” in V, during the construction of V as a limit. A witness for two

ideals 1 and J is an element that belongs to one but not to the other; their

distance d( 1, J) is 2-‘, where r is the minimum rank of a witness for the

ideals. The function G is contractile if there exists a real number t < 1 such

that, for all Xl, . . . . X., Xi, . . . . Xi, we have

d(G(X1,. ... Xn), G(Xj, ..., X;)) St”max{d(X,, X:)ll S i= n}.

Typically, one guarantees that an operation is contractile by expressing it

in terms of basic operations such as x and + , and then inspecting the

structure of this expression. In our case, we have a new basic operation, * ;

in addition, x is slightly nonstandard. We need to prove that these two

operations are contractile.

THEOREM 5.1.5. The operation x is contractile (when its second argument

is fixed). The operation -H is contractile.

PRooF. The arguments are based on the corresponding ones for Theorem 7

of [201. In fact, the proof for x is a trivial variant of the corresponding one.

We give only the proof for * .

Let c be a witness of minimum rank for I ~ J and ~ - J’, being, say,

only in the former ideal. Then c # L (otherwise, it would not be a witness),
so e = (f, T - U) for some f, T, and U. By the analogue of Proposition 4 of

[201, f = Ll(al = b,) for some a,, b, GV, with r(f) > max(r(ai), r(b,)) (here

a, * b, denotes the step function that returns b, for arguments larger than a,

and 1 otherwise). Since c q!~ ~ J, f is not in 1$ * J~. Hence, there must

be an x~l~ such that f(x) #J&. Let a = U{a, / a, ~ x} and b =

U{ 6, \ al ~ x} = f(x). Then a cl!! (since a ~ x), but b ~ J~. Moreover, by

the analogue of Proposition 4 of [201, r(a) s max{ r( a,) I a, E x} < r(f) and

r(b) < r(f). Similarly, r(a) + 1 < r(c) and r(b) + 1 < r(c).

There are two cases. H a $ IT, then (a, T) is a witness for I and I’ of rank

less than r(c). (For all u, r((v, T)) < r(u) + 1.)Otherwise, a el~, and so

b = f(a) e JU since f e Z~ + JU. Thus, (b, U) is a witness for J and J of rank

less than r(c). In either case, we have c(1 ~ J, I’ ~ J’) = r(c) >

min(c( 1, I’), C( J, J’)). •l

Immediately, the general result about the existence of fixed points yields

the desired theorem.
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[ ] : 1(/1)( ( ‘()(/( –Idl

h Fig. 4. Meaning function for typecodes.

THEOREM 5.1.6. The equation

D = N x {Nat}

u~+~

U D x {Dynamic}

has a unique solution in Idl.

Let us call this solution Dynamic.

Finally, we are in a position to associate an ideal [T] with each typecode T

(see Figure 4). The semantics fits our original intuition of what dynamic

values are, as the following lemma shows:

LEMMA 5.1.7. For all values u and typecodes T, (u, T) e Dynamic if and

only if u e [T].

PROOF. The proof is by induction on the structure of T.

For T = Nat, we need to check that (u, Nat) e Dynamic iff u e [Nat]. This

follows immediately from the equation, since all and only natural numbers

are tagged with Nat.

Similarly, for T = Dynamic, we need to check that (u, Dynamic) e Dynamic

iff u e [Dynamic]. This follows immediately from the equation, since all and

only dynamic values are tagged with Dynamic.
Finally, for T = U + V, we need to check that (u, U + V) e Dynamic iff

u e [U + V]. By the induction hypothesis, we have Dynamic” = ~U] and

Dynamic” = [V]. We derive the following chain of equivalences: (v, U + V) s

Dynamic iff u(Dynamic ~) G Dynamic ~ (according to the equation), iff

u([U]) s [V] (by the induction hypothesis), iff u e ~U + V] (according to the

definition of [ ]). ❑

We can also prove the soundness of typechecking:

Definition 5.1.8. The environment ,0 is consistent with the type environ-

ment TE on the expression e if TE(x) is defined and p(x) e [T-E(x)] for all

x e FV(e).

THEOREM 5.1.9. For all type environments TE, expressions e, environ-

ments ,0 consistent with TE on e, and typecodes T, if TE + e:T then [e] ~ G [T].

PROOF. We argue by induction on the derivation of TE ● e:T. There is

one case for each typing rule. We give only a few typical ones.

—For abstractions, assume that [e], G T for all TE and all p consistent with

TE[x + U] on e, to prove that [hx:U.e] ~ e (U + T) for all TE and all p

consistent with TE on Ax: U. e. Consider some u G [U]. According to the
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definition of [ ], we need to show that ([Ax: U .e] J u G [T]. We may assume

that u # J- (the 1 case is trivial) and u # wrong ([U] cannot contain

wrong). Thus, we have [hx:U. e] ~U = [e] ~{X_ “}. The hypothesis immediately

yields that this value is a member of [T].

–For function applications, assume that [e~Un] ~ e [U + T] and that [e.,,] ~ e

[U], to prove that [e~Un(e,,~)], e [T]. By the definition of function types,

[efun] ~ must be a function from V to V, and [e,,~] ~ cannot be wrong, since
[U] cannot contain wrong. In addition, we may assume that [e.,,] ~ # 1
(the J- case is trivial). Immediately, [efun(earg)], = ([efun] Jearg]., and the

definition of [U + T] yields that this value must be a member of [T].

—For construction of dynamic values, assume that [e~O~~], e [T], to prove

that [dynamic ebO~Y:T~~ e [Dynamic]. Since [T] cannot contain wrong,

[ebOdY]O # wrong, and hence, [dynamic ebOdY:T]P = ([ebody]p, T). The desired
result then follows from Lemma 5.1.7.

–For typecase operations, assume that [e~e,] ~ e Dynamic for all TE and all

p consistent with TE on e~,l; [elu] ~ e [T] for all i, for all o e Substx,; and for

all TE and all p consistent with TEIx I + T,01 on e, u, and [eeL~,] ~ G [T] for all

~E and p consistent with TE on e.l~e. We prove that [typecase e~,l of . . .

(X,) (x,: T,) e,. . . else ee,~e+end] ~ e [T] for all TE and all P consistent with TE

on (typecase e~el of. . . (Xl)(xl:Tl)el . . . else e,l,. end). Similarly, to the other
cases, [e~,l] ~ must be the pair of a value and a type~ode, and we may

assume that it is not 1 . Hence, [typecase e~el of. . . (Xl) (X I:TI) e, . else

eel,, end] ~ is either [e, uIl .{~,+ ~} for some i and with d equal to the first

component of the selector, or simply [eel~e] ~. In the former case, Lemma

5.1.7 guarantees that d e [Tl a], and hence, the hypotheses guarantee that

[e, a] ~{.i ~ ~} e [T]. In the latter case, the hypotheses guarantee that [e,l,,] ~
e [T]. In either case, we derive [typecase e~.l of . . . (Xl) (x,: T,) e, . . . else e.l~.

end]p e [T]. ❑

It follows from Theorem 5.1.2, Theorem 5.1.9, and the fact that no [T] can

contain (w in V) that no well-typed expression evaluates to wrong. This gives

us a new proof of Corollary 4.4.3.

5.2 Typed Semantics

The semantics [ ] is, essentially, a semantics for the untyped lambda-

calculus, as in its definition type information is ignored. This seems very ap-

propriate for languages with implicit typing, where some or all of the type

information is omitted in programs. But for an explicitly typed language it

seems natural to look for a semantics that assigns elements of domains Vr to
expressions of type T. One idea to find these domains is to solve the infinite

set of simultaneous equations

v –NNat —

v ~+u = VT-)VU

v Dynamic = p,.

A similar use of sums appears in Mycroft’s work [261.
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6. EXTENSIONS

In this section we present some preliminary thoughts on extending the ideas

in the rest of the paper to languages with implicit or explicit polymorphism,

abstract data types, and more expressive type patterns.

6.1 Polymorphism

For most of the section, we assume an explicitly typed polymorphic lambda-

calculus along the lines of Reynolds’s system [30]. The type abstraction

operator is written as A. Type application is written with square brackets.

The types of polymorphic functions begin with V. For example, vT.T -+ T is

the type of the polymorphic identity function, AT. hx:T. x.

In the simplest case, the typechecking and operational semantics of dy-

namic and typecase carry over nearly unchanged from the language described

in Section 4. We simply redefine match as follows:

—If there is a substitution a such that T and U u are identical up to renaming

of bound type variables, then match (T, U) returns some such substitution.

Otherwise, match(T, U) fails.

We can now write typecase expressions that match polymorphic type tags.

For example, the following function checks that f is a polymorphic function

taking elements of any type into Nat. It then instantiates f at W, the type tag

of its second argument, and applies the result to the value part of the second

argument.

kdf: Dynamic. Ade: Dynamic
typecase df of

(f: vZ. Z + Nat)
typecase de of

(W) (e: W) f[W](e)
else O

end
else O

end

6.2 Abstract Data Types

In a similar vein, we can imagine extending the language of type tags to

include existentially quantified variables. Following Mitchell and Plotkin

[251, we can think of a Dynamic whose tag is an existential type as being a
module with hidden implementation, or alternatively as an encapsulated

element of an abstract data type. Our notation for existential types and

labeled products follows that of Cardelli and Wegner [91. For example,

As: 3Rep. {push: Rep + Nat + Rep,
pop: Rep + (Nat x Rep),
top: Rep + Nat,
empty: Rep}.

open s as stk[Rep]
in stk.top(stk. push stk. empty 5)
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is a function that takes a stack package (a tuple containing a hidden

representation type Rep, three functions, and a constant value), opens the

package (making its components accessible in the body of the open expres-

sion), and performs the trivial computation of pushing the number 5 onto an

empty stack and returning the top element of the resulting stack.

The following function takes a Dynamic containing a stack package (with

hidden representation) and another Dynamic of the same type as the elements

of the stack. R pushes its second argument onto the empty stack from the

stack package and returns the top of the resulting stack, appropriately

repackaged as a dynamic value.

Ads” Dynamic. Ade. Dynamic.
typecase ds of

(X) (s. ~Rep.
{push. Rep + X + Rep,
pop: Rep + (X x Rep),
top: Rep - X,
empty: Rep})

typecase de of
(e X) open s as stk[Rep]

in dynamic stk top(stk. push stk, empty e) : X
else e

end
else e

end

In order to preserve the integrity of existentially quantified values in a

language that also has Dynamic, it seems necessary to place some restrictions

on the types that may appear in dynamic expressions to prevent their being

used to expose the witness type of an existentially quantified value beyond

the scope of an open (or abstype) block. In particular, the type tag in a

dynamic constructor must not be allowed to mention the representation types

of any currently open abstract data types, as in the following:

Ads Dynamic. Xde: Dynamic.
typecase ds of

(X) (s. 3Rep.
{push. Rep + X + Rep,
pop: Rep + (X x Rep),
top” Rep + X,
empty, Rep})

open s as stk[Rep]
in (* Wrong: *) dynamic stk. empty Rep

else de
end

It would be wrong here to create a Dynamic whose type tag is the represen-

tation type of the stack (assuming a such type is available at run time),

because this would violate the abstraction. It is also unclear how to generate
a type tag that does not violate the abstraction. Hence, we choose to forbid

this situation.

6.3 Restrictions

In a language with both explicit polymorphism and Dynamic, it is possible to

write programs where types must actually be passed to functions at run time:

AX. ix.X. dynamic x:X
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The extra cost of actually performing type abstractions and applications at

run time (rather than just checking them during compilation and then

discarding them) should not be prohibitive. Still, we might also want to

consider how the dynamic construct might be restricted so that types need not

be passed around during execution. A suitable restriction is that an expres-

sion dynamic e:T is well-formed only if T is closed.

This restriction was proposed by Mycroft [26] in the context of an extension

of ML, which uses implicit rather than explicit polymorphism. The appropri-

ate analogue of “closed type expressions “ in ML is “type expressions with

only generic type variables,” that is, expressions whose type variables are

either instantiated to some known type or else totally undetermined (i. e., not

dependent on any type variable whose value is unknown at compile time).

In fact, in languages with implicit polymorphism, Mycroft’s restriction on

dynamic is required: there is no natural way to determine where the type

applications should be performed at run time. Dynamics with nongenetic

variables can be used to break the ML type system. (The problem is analo-

gous to that of “updatable refs” [35].)

6.4 Higher-Order Pattern Variables

By enriching the language of type patterns, it is possible to express a much

broader range of computations on Dynamics, including some interesting ones

involving polymorphic functions. Our motivating example here is a general-

ization of the dynamic application function from Section 3. The problem there

is to take two dynamic values, make sure that the first is a function and the

second an argument belonging to the function’s domain, and apply the

function. Here we want to allow the first argument to be a polymorphic

function and to narrow it to an appropriate monomorphic instance automati-

cally, before applying it to the supplied parameter. We call this “polymorphic

dynamic application. ”

To express this example, we need to extend the typecase construct with

“functional” pattern variables. Whereas ordinary pattern variables range

over type expressions, functional pattern variables (named F, G, etc., to

distinguish them from ordinary pattern variables) range over functions from

type expressions to type expressions.

Using functional pattern variables, polymorphic dynamic application can

be expressed as follows:

Adf: Dynamic. Ade: Dynamic.
typecase df of

(F, G) (f: vZ. (F Z) -+ (G Z))
typecase de of

(W) (e: (F W))
dynamic f[W](e): (G W)

else
dynamic “Error”: String

end
else

dynamic “Error”: String
end
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For instance, when we apply the function to the arguments

df = dynamic (AZ. XX: Z. X): (vZ Z + Z)

de = dynamic 3: Nat

the first branch of the outer typecase succeeds, binding F and G to the

identity function on type expressions. The first branch of the inner typecase

succeeds, binding W to Nat so that (F W) = Nat and (G W) = Nat. Now f(F W)

reduces to Ax: (F W) .x, and f (G W)(e) reduces to 3, which has type (G W) = Nat

as claimed.

Another intriguing example is polymorphic dynamic composition:

Xdf: Dynamic. Xdg: Dynamic.
typecase df of

(F, G) (f: vW. (F W) + (G W))
typecase dg of

(H) (g: vV. (G V)+ (H V))
dynamic (AW. g[VV] o t[w])

vV. (F V) + (G H)
else .

end
else

end

This function checks that its two arguments are both polymorphic func-

tions and that their composition is well typed, returning the composition if

so.

6.5 Open Issues

This preliminary treatment of polymorphism and higher-order pattern vari-

ables leaves a number of question unanswered: What is the appropriate

specification for the match operation? How difficult is it to compute? Is there

a sensible notion of “most general substitution” when pattern variables can

range over things like functions from type expressions to type expressions?

Should pattern variables range over all functions from type expressions to

type expressions, or only over some more restricted class of functions? What

are the implications (for both operational and denotational semantics) of

implicit versus explicit polymorphism? We hope that our examples may

stimulate the creativity of others in helping to answer these questions.

7. IMPLEMENTATION ISSUES

This section discusses some of the issues that arise in implementations of
languages with dynamic values and a typecase construct; methods for effi-

cient transfer of dynamic values to and from persistent storage, implementa-

tion of the match function, and representation of type tags for efficient

matching.

7.1 Persistent Storage

One of the most important purposes of dynamic values is as a safe and

uniform format for persistent data. This facility may be heavily exploited in

large software environments, so it is important that it be implemented
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\t_itllout subtyping R_itll subtyping

Name equivalence lIodula-2+. CLL-. etc. Sinlula-6T

Rigid Structural Equivalence Modula-3, Cedar

Structural Equivalence Amber
!, t

Pattern variables Our lanma~e ?

Fig.5. Taxonomy oflanguages with dynamic values.

efficiently. Large data structures, possibly with circularities and shared

substructures, need to be represented externally so that they can be quickly

rebuilt in the heap of a running program. (The type tags present no special

difficulties: they are ordinary run-time data structures.)

Fortunately, a large amount of energy has already been devoted to this

problem, particularly in the Lisp community. Many Lisp systems support

“fasl” files, which can be used to store arbitrary heap structures. (See [22] for

a description of a typical fasl format. The idea goes back to 1974, at least. )

A mechanism for “pickling” heap structures in Cedar/Mesa was designed

and implemented by Rovner and Maxwell, probably in 1982 or 1983. A

variant of their algorithm, due to Lampson, is heavily used in the Modula-2 +

programming environment at the DEC Systems Research Center. Another

scheme was implemented as part of Tartan Labs’ Interface Description

Language [27]. This scheme was based on earlier work by Newcomer and Dill

on the “Production Quality Compiler-Compiler” project at CMU.

7.2 Type Matching

Although the particular language constructs described in this paper have not

been implemented, various schemes for dynamic typing in statically typed

languages have existed for some time (see Section 2). Figure 5 gives a rough

classification of several languages, according to the amount of work involved

in comparing types and the presence or absence of subtyping.

Type matching is simplest in languages like CLU [191 and Modula-2 + [311,

where the construct corresponding to our typecase allows only exact matches

(no pattern variables) and where equivalence of types is “by name.” In

Modula-2 + , for example, the type tags of dynamic values are just unique

identifiers, and type matching is a check for equality.

When subtyping is involved, matching becomes more complicated. For

example, Simula-67 uses name equivalence for type matching so type tags
can again be represented as atoms. But, to find out whether a given object’s

type tag matches an arm of a when clause (which dynamically checks

whether an object’s actual type is in a given subclass of its statically

apparent type), it is necessary to scan the superclasses of the object’s actual

class. This is reasonably efficient, since the subclass hierarchy tends to be

shallow and since only a few instructions are required to check each level.
It is also possible to have a language with structural equivalence where

type matching is still based on simple comparison of atoms. Modula-3, for

example, includes a type similar to Dynamic, a typecase construct that allows
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only matching of complete type expressions (no pattern variables), and a

notion of subtyping [10, 11]. (We do not know of a language with structural

equivalence, Dynamic, and exact type matching, but without subtyping. )

Efficient implementation of typecase is possible in Modula-3 because the

rules for structural matching of subtypes are “rigid” —subtyping is based on

an explicit hierarchy. Thus, a unique identifier can still be associated with

each equivalence class of types, and as in Simula-67, match can check that a

given tag is a subtype of a typecase guard by quickly scanning a precompiled

list of superclasses of the tag.

Amber’s notion of “structural subtyping” [7] requires a more sophisticated

representation of type tags. The subtype hierarchy is not based on explicit

declarations, but on structural similarities that allow one type to be safely

used wherever another is expected. (E. g., a record type with two fields a and

b is a subtype of another with just the field a, as long as the type of a in the

first is a subtype of the type of a in the second.) This means that the set of

supertypes of a given type cannot be precomputed by the compiler. Instead,

Dynamic values must be tagged with the entire structural representation of

their types—the same representation that the compiler uses internally for

typechecking, (In fact, because the Amber compiler is bootstrapped, the

representations are exactly the same. ) The match function must compare the

structure of the type tag with that of each type pattern.

The language described in this paper also requires a structural representa-

tion of types, not because of subtyping, but because of the pattern variables

in typecase guards. In order to determine whether there is a substitution of

type expressions for pattern variables that makes a given pattern equal to a

given type tag, it is necessary to actually match the two structurally, filling

in bindings for pattern variables from the corresponding subterms in the type

tag. This is exactly the “first-order matching” problem. We can imagine

speeding up this structural matching of type expressions by precompiling

code to match an unknown expression against a given known expression,

using techniques familiar from compilers for ML (David MacQueen, private

communication).

The last box in Figure 5 represents an open question: Is there a sensible

way to combine some notion of subtyping with a typecase construct that

includes pattern variables? The problems here are quite similar to those that

arise in combining subtyping with polymorphism (e. g., the difficulties in

finding principal types).

8. CONCLUSIONS

Dynamic typing is necessary for embedding a statically typed language into a

dynamically typed environment, while preserving strong typing. We have

explored the syntax, operational semantics, and denotational semantics of a

typed lambda-calculus with the type Dynamic. We hope that, after a long but

rather obscure existence, Dynamic may become a standard programming

language feature.
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