
Completely Bounded Quanti�cation is DecidableDinesh Katiyar Sriram Sankar�Stanford UniversityCalifornia, USAAbstractThis paper proves the decidability of subtyping for F� when the bounds on polymorphictypes do not contain Top (i.e., in all types of the form 8�<:�1:�2, �1 does not contain Top).This general restriction is subsequently relaxed to allow unbounded quanti�cation.1 IntroductionF� [CW85,CG] is a typed �-calculus with subtyping and bounded second-order polymorphism.The importance of F� in programming language design is that it provides a simple context forstudying the typing problems that arise when subtyping and bounded quanti�cation are addedto polymorphic languages such as ML.Curien and Ghelli [CG] recently developed a subtyping algorithm for F� and proved its partialcorrectness. Subsequently, Ghelli [Ghe90] presented a termination proof for this algorithm. Amistake was discovered in this termination proof, following which Pierce [Pie92] presented a proofshowing that the subtyping problem for general F� types is undecidable.This paper shows how one can make the subtyping problem decidable by imposing some restric-tions on F� types. We �rst prove the termination of Curien and Ghelli's algorithm when thebounds on all polymorphic types involved do not contain Top. i.e., In all types of the form8�<: �1:�2, �1 does not contain Top. Such a bound completely determines the structure of �,hence we refer to this as \completely bounded". We later show that this restriction can be relaxedto allow unbounded quanti�cation. Adding records and unions to our system causes it to becomeundecidable. We are currently working on de�ning subset restrictions for records and unionssimilar to those presented in this paper to make subtype checking decidable in the presence ofthese types.We are in the process of designing a type system based on F� for a prototyping language calledRapide [BL90,MMM91], and are implementing a subtyping algorithm for this type system. Giventhe undecidability of subtyping for general F� types, we need to restrict our type system so as to�ERL449, Computer Systems Laboratory, Stanford University, Stanford, California - 94305. phone: (415)723-1835. email: sankar@cs.stanford.edu. 1

make subtyping decidable. Results such as those presented in this paper will aid in determiningthe necessary restrictions.In Section 2, we present Curien and Ghelli's algorithm. We prove the termination of this al-gorithm for completely bounded quanti�cation in Section 3. Section 4 shows how we can relaxour restrictions to allow unbounded quanti�cation. Section 5 presents examples of records andunions that cannot be handled by simple extensions of Curien and Ghelli's algorithm. Section 6concludes the paper by describing plans for future work.2 Curien and Ghelli's algorithmA F� type � is either a simple type (such as Int), a variable, a function type (�1 ! �2), or apolymorphic type (8�<:�1:�2). Given a list of assumptions � and two types � and � , the subtypingproblem is to determine whether or not � ` � <: � | i.e., whether or not � is a subtype of �given the assumptions in �. The assumptions in � will all be of the form �<: � , where � is atype variable and � is a type. (This convention | that �'s refer to type variables and �'s and� 's refer to types | is used for the rest of the paper. We shall also use � to refer to simple types| the context will make it clear whether a particular � is a variable or a simple type.) � in thiscase is called the bound of � and is referred to as �(�). Free variables in � may only be boundedin other assumptions in � to the left (earlier in the list) of the assumption containing � .Curien and Ghelli's algorithm is presented as a list of axiom schemas and inference rules. Theseschemas and rules contain templates of subtyping problems. The algorithm proceeds by applyingthe inference rules backwards to the subtyping problem. If the subtyping problem matches thetemplate below the line of an inference rule, it reduces to subtyping problems that can be derivedfrom the templates above the line of the inference rule. If the subtyping problem matches thetemplate of an axiom schema, the algorithm reports success. In all other cases, the algorithmreports failure.The axiom schemas and inference rules are listed below:(NTop) � ` �<:Top(NRefl) � ` �<:�(NVar) � ` �(�)<: �� ` �<: �(NArrow) � ` �1<: �1 � ` �2<: �2� ` �1 ! �2<: �1 ! �2(NAll) � ` �1<:�1 �; �<:�1 ` �2<: �2� ` 8�<:�1:�2<: 8�<:�1:�22

3 Proof of terminationWe prove termination by de�ning a complexity metric which is �nite and positive for each sub-typing problem, and show that the application of inference rules causes the complexity of the newsubtyping problems generated to decrease. Since the complexity cannot decrease inde�nitely, thealgorithm will have to terminate.In 3.1, we de�ne the complexity metric. In 3.2, we show how the complexity metric is a�ected byapplying the various inference rules. We conclude with a condition (Theorem 1) that, if satis�ed,will guarantee the termination of the subtyping algorithm. Finally, in 3.3, we show how ourrestrictions on bounds of polymorphic types satis�es the condition of Theorem 1.3.1 The complexity metricWe de�ne the size of a type � with respect to a list of assumptions �, and refer to this as size(�)�.The complexity of a subtyping problem � ` � <: � is de�ned as:complexity(� ` � <: �) def= size(�)� + size(�)�size(�)� is determined by recursively replacing variables in � with their respective bounds andthen computing the textual size of the resulting expression. size(�)� is formally de�ned as:size(Top)� = 1size(�)� = (size(�(�))� if �(�) is de�ned1 otherwisesize(�1 ! �2)� = size(�1)� + size(�2)�size(8�<:�1:�2)� = size(�1)� + size(�2)�;�<:�1Examples:1. size(Top ! �)�<: Int!Int= size(Top)�<: Int!Int + size(�)�<: Int!Int= 1+ size(Int ! Int)�<: Int!Int= 1+ size(Int)�<: Int!Int + size(Int)�<: Int!Int= 1+ 1 + 1 = 3.2. size(8�1<:(�2 ! Int):�1)�2<: Int!Int= size(�2 ! Int)�2<: Int!Int + size(�1)�2<: Int!Int;�1<:�2!Int= size(�2)�2<: Int!Int + size(Int)... + size(�2 ! Int)�2<: Int!Int;�1<:�2!Int= size(Int ! Int)... + 1 + size(�2)�2<: Int!Int;�1<:�2!Int + size(Int)...= 2+ 1 + size(Int ! Int)... + 1= 2+ 1 + 2 + 1 = 6. 3

Lemma 1 size(�)� is always �nite and positive.Proof. It is obvious from the de�nition of size that it has to be positive. We prove that it is�nite by showing that evaluation of size terminates for all � and �. A complexity metric similarto that used in Ghelli's
awed termination proof actually works in this case.The complexity metric to prove the termination of the evaluation of size(�)� is obtained by �rstordering all the variables that occur in � and � such that the following property is satis�ed: If�i is de�ned in the bound of �j , then �i occurs to the left of �j in the ordering. It is possible toobtain such an ordering given the structure of F� (there may be multiple orderings that satisfythis condition in which case, one of them is chosen arbitrarily). The depth of each variable is thende�ned as the number of variables that occur to the left of it in this ordering.The complexity of any subproblem size(� 0)�0 that arises during the evaluation of size(�)� is thetuple hD;Si, where D is the maximum depth over all the variables that occur in � 0 and S is thetextual length of � 0. There may be variables in � 0 and �0 that do not occur in either of � or �.These variables are created when an existing variable is duplicated in the reduction process, thusrequiring one of the uses to be renamed. The depth of the renamed variable is de�ned to be thesame as its unrenamed counterpart. The key to this proof is that de�ning the depth of renamedvariables in this manner maintains the condition based on which the initial ordering was created.It is easy to see that the complexity decreases (the ordering between hD;Si tuples is lexicographic)during the evaluation of size(�)�. For all reductions other than size(�)� = size(�(�))�, the Dcomponent of the complexity metric either remains the same or decreases while the S componentdecreases; whereas in the abovementioned reduction, the D component decreases.Since this complexity metric cannot decrease inde�nitely, the evaluation of size for any � and �has to terminate. 23.2 The e�ect of inference rule application on complexityNVarcomplexity(� ` �<: �) = size(�)�+size(�)� = size(�(�))�+size(�)� = complexity(� ` �(�)<: �)i.e., The complexity metric remains the same after application of the inference rule NVar. How-ever, NVar may be applied continuously at most as many times as there are variables in � beforeone of the other rules has to be applied. The complexity metric reduces when any of the otherrules are applied, so there is no problem.NArrowIt is quite obvious that complexity(� ` �1<:�1) and complexity(� ` �2<: �2) are both less thancomplexity(� ` �1 ! �2<: �1 ! �2). 4

NAllIt is quite obvious that complexity(� ` �1<:�1) is less than complexity(� ` 8�<:�1:�2<:8�<:�1:�2).We shall now simplify complexity(� ` 8�<:�1:�2<: 8�<:�1:�2) � complexity(�; �<:�1 ` �2<: �2)to determine the conditions under which the complexity metric decreases when reducing to thesecond rule above the line in NAll. This expression, which must be positive for the complexitymetric to decrease, simpli�es as follows:complexity(� ` 8�<:�1:�2<: 8�<:�1:�2)� complexity(�; �<:�1 ` �2<: �2)= (size(8�<:�1:�2)� + size(8�<: �1:�2)�)� (size(�2)�;�<: �1 + size(�2)�;�<: �1)= (size(�1)� + size(�2)�;�<:�1 + size(�1)� + size(�2)�;�<: �1)� (size(�2)�;�<: �1 + size(�2)�;�<: �1)= size(�1)� + size(�1)� + (size(�2)�;�<:�1 � size(�2)�;�<: �1)We concentrate on the part size(�2)�;�<: �1 � size(�2)�;�<: �1 from the last line above. If this ex-pression is non-negative, then the overall expression will be positive, and therefore the complexitymetric will decrease on the application of NAll. We need to present the following lemma beforewe can proceed further.Lemma 2 For any types �, � , and for any list of assumptions �, such that the variable � isnot bounded in any of them, and also does not occur anywhere in �, size(�)�;�<: � = size(�)� +n(size(�)� � 1), where n � 0 and depends only on �.The evaluation of size(�)�0 (for any �0) will reduce to zero or more evaluations of the formsize(�)�00 in addition to other reductions. Reductions to the form size(�)�00 may be either due tooccurrences of � in �, or occurrences of � in bounds in �0 which are used to replace the variablesthey bound. If �0 does not contain any bound that contains �, then the number of times size(�)�0reduces to the form size(�)�00 depends only on �. Suppose this number is n.Therefore, size(�)� reduces to n evaluations of the form size(�)�00 , each of which evaluates to 1since � is not bounded anywhere. So we can write size(�)� as m+ n where m is the result of theevaluation of the remainder of the reductions.Similarly, size(�)�;�<: � reduces to n evaluations of the form size(�)�00 , while the remainder ofthe reductions evaluate to m. Each reduction to size(�)�00 further reduces to size(�)�00 . Since �00is of the form �; �<: �; . . ., � does not depend on the portion of �00 to the right of �. Therefore,size(�)�00 = size(�)�. So we can write size(�)�;�<: � as m + n(size(�)�), which is the same assize(�)� + n(size(�)� � 1). 2We now simplify size(�2)�;�<:�1 � size(�2)�;�<: �1 .size(�2)�;�<:�1 � size(�2)�;�<: �1= (size(�2)� + n(size(�1)� � 1))� (size(�2)� + n(size(�1)� � 1)) (for some n � 0)= n(size(�1)� � size(�1)�)We are now ready to present the �rst of our main results.5

Theorem 1 During the execution of Curien and Ghelli's algorithm, if size(�1)� � size(�1)�(where �1, �1, and � are as de�ned in NAll) is true every time NAll is used to reduce a sub-typing problem to the subtyping problem derived from the right template above the line (�; �<:�1 `�2<: �2), then the algorithm will terminate.Proof. Obvious from the results of this section. 23.3 Subset restrictions to guarantee terminationWhen applying NAll on a subtyping problem, we shall require that we �rst consider the subtypingproblem derived from � ` �1<: �1 (the left template above the line in NAll). Only if thealgorithm terminates successfully on this problem do we consider the subtyping problem derivedfrom �; �<:�1 ` �2<: �2 (the right template above the line in NAll). Hence, we can assume that� ` �1<:�1 when the algorithm is applied on the subtyping problem derived from �; �<:�1 `�2<: �2. Assuming this, we have the following corollary to Theorem 1.Corollary 1 For every � , � that are bounds of polymorphic types and for every list of assumptions�, if � ` � <:�) size(�)� � size(�)�, then Curien and Ghelli's algorithm will terminate.Lemma 3 If size(�1)� = size(�2)�, then, for any �, size(�)�;�<: �1 = size(�)�;�<: �2.Proof. This follows trivially from Lemma 2. size(�)�;�<: �1 = size(�)� + n(size(�1)� � 1) =size(�)� + n(size(�2)� � 1) = size(�)�;�<: �2 . 2We are now ready to present another key result, Theorem 2, that if the subset restrictions men-tioned in Section 1 are satis�ed, then the condition of Corollary 1 will be satis�ed. A straight-forward consequence of this is that if these subset restrictions are met, then Curien and Ghelli'salgorithm will terminate, and hence completely bounded quanti�cation is decidable.Theorem 2 For all types � , � that do not contain Top, and for any list of assumptions �, if� ` � <: �, then size(�)� = size(�)�.Proof. If � ` � <: �, then there must be a proof �1 ` �1<:�1;�2 ` �2<:�2; . . . ;�n ` �n<: �nwhere �n = �, �n = � , and �n = �, and each �i ` � i<:�i is either of the form of NRefl, orobtained from earlier steps in the proof using one of the rules NVar, NArrow, or NAll. Notethat NTop will not be used in such a proof since Top does not occur in � and � .We prove by induction that for all i (1 � i � n), size(� i)�i = size(�i)�i . The induction hypothesisis that for all j (1 � j < i), size(� j)�j = size(�j)�j . Assuming the induction hypothesis, we provesize(� i)�i = size(�i)�i . There are four cases to consider:1. �i ` � i<:�i is of the form of NRefl. i.e., � i = �i. Therefore, size(� i)�i = size(�i)�i .6

2. �i ` � i<: �i is derived using NVar from an earlier step of the form �i ` �i(� i)<:�i. Inthis case, � i is a variable bounded in �i. Therefore, size(� i)�i = size(�i(� i))�i = size(�i)�i .3. �i ` � i<: �i is derived using NArrow from earlier steps �k ` �k <: �k and �l ` � l<: �l.Then �i = �k = �l, � i = �k ! � l, and �i = �k ! �l. Therefore, size(� i)�i = size(�k)�i +size(� l)�i = size(�k)�k + size(� l)�l = size(�k)�k + size(�l)�l = size(�k)�i + size(�l)�i =size(�i)�i .4. �i ` � i<: �i is derived using NAll from earlier steps �k ` �k <:�k and �l ` � l<: �l.Then �i = �k , �l = �i; �<:�k , � i = 8�<:�k:� l, and �i = 8�<:�k :�l for some variable�. Therefore, size(� i)�i = size(�k)�i + size(� l)�i;�<:�k = size(�k)�k + size(� l)�i;�<: �k =size(�k)�k + size(� l)�l = size(�k)�k + size(�l)�l = size(�k)�i + size(�l)�i;�<:�k = size(�i)�i .24 Allowing unbounded quanti�cationWe can relax our restriction on the use of Top to allow unbounded quanti�cation and still re-tain decidability of subtype checking. Furthermore, any variable bounded by Top (directly orindirectly) may be used as a bound for another variable. We refer to these variables as \Top-bounded".With this relaxation, there are two kinds of bounds that we can write: (1) Types that do notcontain either Top or Top-bounded variables; and (2) Types that are either Top or a Top-boundedvariable.To show that this will not cause problems, we rede�ne size(Top) for all Top's that occur as boundsof variables to be a number L that is larger than the size of any bounds of the �rst kind mentionedabove. With this rede�nition of size, it is quite easy to see that Corollary 1 continues to holdeven when the bounds � and � are from this relaxed domain.There are four cases to consider where � and � may each be either of the two kinds mentionedabove. We consider each case separately:1. � and � are both types not containing Top or Top-bounded variables: This case has beenhandled in Theorem 2.2. � and � are both types that are either Top or a Top-bounded variable: Then size(�) =size(�) = L.3. � is a type not containing Top or Top-bounded variables while � is either Top or a Top-bounded variable: Then size(�) = L > size(�).4. � is either Top or a Top-bounded variable while � is a type not containing Top or Top-bounded variables: In this case, � cannot be a subtype of �, so we need not consider it anyfurther. 7

5 Record and union typesWe have shown that one can achieve a decidable type system for a fairly unconstricted subset ofF�. An immediate extension that we started working on was the addition of record and uniontypes. However, it turns out that adding either record or union types to the type system (alongwith their associated inference rule) makes the subtyping problem undecidable. Finding the rightrestrictions to allow the addition of these types is the subject of current research.5.1 Record typesWe denote the record type with �elds l1 . . . ln having types �1 . . .�n respectively as fl1: �1; . . . ; ln: �ng.The inference rule for records is :(NRec) � ` �1<: �1 . . . � ` �n<: �n� ` fl1: �1; . . . ; ln: �n; ln+1: �n+1; . . .g<:fl1: �1; . . . ; ln: �ngEssentially one can either add extra �elds to a record type or specialize the types of existing �eldsto get a subtype.As we saw earlier, the problem with the original unrestricted system was that one could havesubtypes that were structurally much more complicated than the supertype and one could exploitthis in creating subtyping subproblems that grew in�nitely in their complexity. We preventedthis �nally by restricting the use of Top, which is what allowed a subtype to be more complicatedthan the supertype in the �rst place. However, record types provide another way of allowing asubtype to be more complex than the supertype, namely by adding extra �elds. So the emptyrecord type provides an entity conceptually similar to Top. We now show that one can reproducethe non-terminating example mentioned in Pierce [Pie92], in spite of the restrictions on Top withthe use of records.Let :� = � ! b where b is some simple type. Note that :� <::� i� � <:�.Let � = fa: 8�<:fg::fa: 8�<:�::�ggNow consider the subtyping problem�0<: � ` �0<:fa: 8�1<:�0::�1gThis causes the following sequence of subproblems to be generated in�nitely:�0<: � ` �0 <: fa: 8�1<:�0::�1g�0<: � ` fa: 8�1<:fg::fa: 8�2<:�1::�2gg <: fa: 8�1<:�0::�1g�0<: �; �1<:�0 ` :fa: 8�2<:�1::�2g <: :�1�0<: �; �1<:�0 ` �1 <: fa: 8�2<:�1::�2g�0<: �; �1<:�0 ` �0 <: fa: 8�2<:�1::�2g�0<: �; �1<:�0 ` fa: 8�2<:fg::fa: 8�3<:�2::�3gg <: fa: 8�2<:�1::�2g�0<: �; �1<:�0; �2<:�1 ` :fa: 8�3<:�2::�3g <: :�28

and so on.This pattern of non-termination is practically identical to the one displayed in [Pie92].5.2 Union typesUnion types pose problems similar to that of record types.Union types are written as fl1: �1 + . . . + ln: �ng, with the usual meaning. The inference rule forunion types is fairly straightforward.(NUnion) � ` �1<: �1 . . . � ` �n<: �n� ` fl1: �1 + . . . + ln: �ng<:fl1: �1+ . . . + ln: �n + . . .gThe subtype is allowed to be a union over a subset of specializations of the types in the supertype.Since the subtype can be a union of a fewer types than the supertype, one can have types withunions in contravariant positions thereby resulting in subtypes that have more complex structuresthan the supertype. Again, one can exploit this to generate an example of a subtyping problemthat doesn't terminate. Behavior identical to that displayed in the previous example on recordtypes arises for the subtyping problem�0<: � ` �0<::fa::(8�1<:�0::�1)gwhere � = :fa::(8�<::fg:fa::(8�<:�::�)g)g6 Future workWe are currently working on various possible subset restrictions on records and unions to makesubtype checking decidable in the presence of these types. Following this, we intend to extendour system with recursive types. This might involve techniques similar to those employed byAmadio and Cardelli [AC91] to study the interaction of recursive types with subtyping. A furtherextension would be the addition of the so-called F-bounds [CCH*89], which essentially allow thebounds of polymorphic functions to be recursive.AcknowledgementsWe would like to thank John Mitchell for many insightful discussions. We are also gratefulto David Luckham, Neel Madhav, Sigurd Meldal and other members of the Programming andVeri�cation Group at Stanford for many useful discussions on the type system for Rapide. Theauthors were supported by DARPA grant ONR N00014-90-J1232 (Sriram) and NSF grant CCR-8814921 (Dinesh). 9

References[AC91] R. Amadio and L. Cardelli. Subtyping recursive types. In Proc. 18th ACM Symp. onPrinciples of Programming Languages, pages 104{118, 1991.[BL90] F. Belz and D. C. Luckham. A new approach to prototyping Ada{based hard-ware/software systems. In Proc. ACM Tri-Ada Conference, pages 141{155, 1990.[CCH*89] P. Canning, W. Cook, W. Hill, J. C. Mitchell, and W. Oltho�. F-bounded quanti�ca-tion for object-oriented programming. In Functional Prog. and Computer Architecture,pages 273{280, 1989.[CG] P.-L. Curien and G. Ghelli. Coherence of subsumption. (to appear).[CW85] L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymor-phism. Computing Surveys, 17(4):471{522, 1985.[Ghe90] G. Ghelli. Proof Theoretic Studies about a Minimal Type System Integrating Inclusionand Parametric Polymorphism. PhD thesis, University of Pisa, 1990.[MMM91] J. C. Mitchell, S. Meldal, and N. Madhav. An extension of standard ML modules withsubtyping and inheritance. In Proc. 18th ACM Symp. on Principles of ProgrammingLanguages, pages 270{278, 1991.[Pie92] B. Pierce. Bounded quanti�cation is undecidable. In Proc. 19th ACM Symp. onPrinciples of Programming Languages, pages 305{315, 1992.

10

