
Constraint-set Satisfiability for Overloading

Carlos Camarão
Univ. Fed. de Minas Gerais,

DCC-ICEX
Belo Horizonte 31270-010, Brasil

camarao@dcc.ufmg.br

Lucı́lia Figueiredo
Univ. Federal de Ouro Preto,

DECOM-ICEB
Ouro Preto 35400-000, Brasil

lucilia@dcc.ufmg.br

Cristiano Vasconcellos
Pontifı́cia Univ. Católica do

Paraná, DI-CCET
Curitiba 80215-901, Brasil

damiani@ppgia.pucpr.br

ABSTRACT
This article discusses the problem of constraint-set satisfi-
ability (CS-SAT) — that is, the problem of determining
whether a given constraint-set is satisfiable in a given typing
context — in the context of systems with support for over-
loading and parametric polymorphism. The paper reviews
previous works on constraint-set satisfiability, showing that
overloading policies used in order to guarantee decidability
of CS-SAT have been generally too restrictive. An algo-
rithm is proposed that does not impose a severe restriction
on possible overloadings and decides CS-SAT in an expect-
edly vast majority of cases of practical interest. In cases for
which satisfiability cannot be decided, a configurable limit
on the number of iterations is used in order to guarantee
termination.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features; D.3.1 [Programming Languages]: Formal
Definitions and Theory

General Terms
Languages

Keywords
Overloading, ad-hoc polymorphism, constrained polymor-
phism, type constraints, constraint-set satisfiability

1. INTRODUCTION
A language or type system that supports overloading and

parametric polymorphism makes use of an overloading pol-
icy to restrict overloading, in order to obtain a balance be-
tween performing type inference (or type checking) in a rea-
sonably efficient way, on one hand, and considering as valid
a large set of programs that make use of overloading, on
the other hand. We will prefer to use the term constrained

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP’04, August 24–26, 2004, Verona, Italy.
Copyright 2004 ACM 1-58113-819-9/04/0008 ...$5.00.

polymorphism, instead of the more usual term ad-hoc poly-
morphism, to refer to the combination of parametric poly-
morphism and overloading.

Some early type systems adopted a rather simple context-
independent overloading policy [17, 22], which restricts over-
loading so that each overloaded function f must be such
that, for each application of f to an expression e, the de-
cision of which function to be applied can be determined
according to the type of e. With context-dependent over-
loading, on the other hand, this decision can be made by
considering the (program) context where the application of
f to e occurs.

A context-independent overloading policy is adopted nowa-
days in several mainstream programming languages, like e.g.
C++ and Java, for methods defined in the same class (that
is, disregarding the fact that dynamic binding of names
to methods can be seen as a form of overloading resolu-
tion). While such an approach enables simple solutions
to problems related to overloading (overloading resolution
in particular), it is rather restrictive. For example, con-
stant symbols cannot be overloaded, neither can a func-
tion name such as read , with definitions having types that
are instances of the polymorphic type ∀a.String → a. A
context-dependent overloading policy, on the other hand,
allows such definitions. For example, the type of read in
λx. read x == "a string" can be determined to be String →
String .

Many type systems for overloading have adopted a less
restrictive, context-dependent overloading policy. These in-
clude system CT [1], Haskell’s type classes [21, 13, 10] and
other related systems [33, 2, 27, 14, 7, 5, 9, 8, 25, 28].
The constraint-set satisfiability problem (CS-SAT) is to de-
termine, given a constraint-set κ and a typing context Γ,
whether κ is satisfiable in Γ. It is an important problem in
these systems, for which there is no known widely accepted
solution. In this paper we present an algorithm for the solu-
tion of CS-SAT , without imposing a restrictive overloading
policy.

The paper is organized as follows. Section 2 gives an in-
formal overview of system CT, a type system designed for
the support of constrained polymorphism. Section 3 intro-
duces basic notations and terminology, including definitions
of what constitutes an overloading policy and when a set of
assumptions is considered as a typing context. CS-SAT is
defined in Section 4. Section 5 reviews overloading policies.
Our solution is presented in Section 6. Section 7 presents a
significant optimization for checking constraint-set satisfia-
bility. Section 8 concludes.

67

Due to space reasons, we cannot discuss in this paper sev-
eral other important topics related to overloading, such as
constraint-set simplification and ambiguity, and in particu-
lar we only include an informal description of type system
CT.

2. OVERVIEW OF SYSTEM CT
Type system CT is an extension of the Damas-Milner type

system [3] for the support of overloading. We assume a set
of types of terms of a language that is basically core-ML [18,
3, 19, 20] extended with the possibility of introducing over-
loaded definitions. Thus, typing contexts may have more
than one assumption for the same variable, and the set of
assumptions for a variable may be extended in let-bindings.

Types of expressions are constrained polymorphic types.
A set of constraints κ is a (possibly empty) set of pairs o : τ ,
where o is an overloaded name and τ is a simple type; a con-
strained polymorphic type is written as ∀α1. ∀αn. κ. τ ,
where n ≥ 0 and αi is a type variable, for i = 1, . . . , n.

A typing context Γ is formed by a finite number of type
assumptions x : σ, where x is a name (or symbol) and σ is
a constrained polymorphic type. An overloaded symbol has
more than one type assumption in Γ. The set of valid type
assumptions for an overloaded symbol in a typing context is
defined by an overloading policy, as discussed in Sections 3
and 5.

The principal type of an expression e, in a given typing
context Γ, is a minimal (or the least, if we consider types
to be equivalent up to a proper renaming of type variables)
type that is general enough to represent the set of all types
that can be derived for e in Γ. The types represented by
the principal type of an expression are called its instances.
The principal type of an overloaded symbol o is obtained
by quantifying over the type variables of the least common
generalization (lcg) of the set of types in assumptions for
o in Γ. The use of lcg is fundamental for the computation
of unique principal types, while allowing typing contexts to
be stepwisely extended with overloaded definitions. The use
of lcg in the type system should not be surprising, given
that principal means minimal and general enough to rep-
resent the set of all derivable types. Related type systems
that do not (need to) use lcg either have principal types
of overloaded symbols fixed a priori, in a global typing con-
text (cf. e.g. [21, 13, 22, 9]), or introduce “multiple principal
types” [26, 27].

For any simple types τ, τ ′ and any substitution S, let τ ≤S

τ ′ hold if S(τ) = τ ′, and let τ ≤ τ ′ hold if there exists S such
that τ ≤S τ ′. Let also τ ≤S T hold, for some set of simple
types T, if τ ≤S τ ′, for all τ ′ ∈ T. Analogously, let τ ≤ T

hold if there exists S such that τ ≤S T holds. lcg(τ, T)
is defined to hold if τ ≤ T holds and, whenever τ ′ ≤ T,
we have that τ ′ ≤ τ .1 A function that computes a least
common generalization of a set of simple (non-quantified)
types is given in Section 3.

Example 1. Consider that the assumptions for (==) in a
typing context called Γ(==) are:

1≤ can be extended to a partial order on all polymorphic
constrained types, for which quantification is antimonotonic,
that is, if τ ≤ τ ′ then σ′ ≤ σ (read: σ is more general than
σ′), where σ and σ′ are obtained by quantifying all type
variables in τ and τ ′, respectively.

(==) : Int → Int → Bool
(==) : Float → Float → Bool

The following types can be derived for (==) in this typing
context:

(==) : Int → Int → Bool
(==) : Float → Float → Bool
(==) : ∀a. {(==) : a → a → Bool}. a → a → Bool

The last one is the principal type of (==) in Γ(==). It
can be instantiated to types of the form {(==) : τ → τ →
Bool}. τ → τ → Bool , for which the constraint is satisfiable
in Γ — in this particular case, τ can be either Int or Float
or α, for some type variable α. If τ is Int or Float , the set
of constraints can be simplified to an empty constraint-set
(i.e. the constraints can be removed).

Example 2. Consider the following definition of function
ins, that uses (==):

ins a [] = [a]
ins a (b:x) = if a==b then b:x else b:ins a x

The principal type of a recursive let-binding correspond-
ing to this definition, obtained by using the least common
generalization of types in the assumptions for (==) in Γ(==),
is the following:

∀a. {(==) : a → a → Bool}. a → [a] → [a]

In a typing context with a type assumption for ins cor-
responding to this definition, in addition to the type as-
sumptions in Γ(==), this type tells us that ins can be used
in any context where an expression of type {(==) : τ →
τ → Bool}. τ → [τ] → [τ] can be used, if constraint-set
{(==) : τ → τ → Bool} is satisfiable in this typing context.
Additional definitions of (==) can be visible in this con-
text, as for example a definition of (==) with type Char →
Char → Bool and, in this case, ins could also be used with
type Char → [Char] → [Char].

Functions may also be overloaded to operate over distinct
type constructors, as in the following example.

Example 3. We assume in this example distinct defini-
tions of function ins, corresponding to operations for insert-
ing elements in lists and trees, originating the following type
assumptions:

ins : ∀a. {(==) : a → a → Bool}. a → [a] → [a],
ins : ∀a. {(==) : a → a → Bool}. a → Tree a → Tree a

In a typing context containing these assumptions, say
Γins, the following type can be derived for ins (where c is a
constructor variable):

∀a.∀c. {ins : a → c a → c a}. a → c a → c a

Note that this type does not explicitly contain a constraint
on (==). This constraint is automatically recovered from the
constraints on types of the assumptions for ins in Γins, there-
fore implicitly creating a hierarchy of dependencies between
overloaded symbols.

68

A new definition of an overloaded symbol must not nec-
essarily have a type that is an instance of the least common
generalization of types given by previous definitions. In-
stead, any new definition may imply the assignment of a
more general type than that computed according to previ-
ous definitions. This is illustrated by the following example.

Example 4. Consider that we also want to overload ins
with definitions that take a comparison operator as an ar-
gument, operating on ordered lists and trees and originating
the following type assumptions, additionally to those in Γins

of Example 3:

ins : ∀a. (a → a → Bool) → a → [a] → [a]
ins : ∀a. (a → a → Bool) → a → Tree a → Tree a

The type derived for ins, in a typing context also including
these assumptions, is shown below:

∀a.∀b.∀c. {ins : a → b → c}. a → b → c

a b c

a → [a] → [a]
a → Tree a → Tree a

a → a → Bool → a → [a] → [a]
a → a → Bool → a → Tree a → Tree a

lcg(a, {a, a, a → a → Bool , a → a → Bool})
lcg(b, {[a], Tree a, a, a})
lcg(c, {[a], Tree a, [a] → [a],Tree a → Tree a})

3. NOTATION
Types have the following context-free syntax:

Definition 1.

Simple Types τ ::= C τ1 . . . τn | α τ1 . . . τn (n ≥ 0)
Constraints κ ::= {o : τ} | κ ∪ κ′

Types σ ::= τ | κ. τ | ∀α.σ

Meta-variables α, β, a, b and c are used for type and
constructor variables. We assume that there is a given set
of type constructors.

We use ∀ᾱ. κ. τ as an abbreviation for ∀α1. · · · ∀αn. κ. τ ,
for some n ≥ 0. Similarly, κ. τ denotes {κi. τi}i=1..n, for
some n ≥ 0, and analogously for τ̄ , σ̄ etc. We assume that
∀ᾱ.∅.τ = ∀ᾱ.τ .

We assume, for simplicity, that term variables (x ∈ X) are
divided into let-bound (o ∈ O) and lambda-bound (u ∈ U).

Meta-variable A is used to denote a set of type assump-
tions, for which it is assumed that if x ∈ A and x ∈ U then
σ = τ , for some simple type τ . For any set of type assump-
tions A = {xi : σi}i=1..n, we define dom(A) = {xi}i=1..n.
Letting {x : σi}i=1..n be the (possibly empty) set of all as-
sumptions for x in A, we define A(x) = {σi}i=1..n.

The set of free type variables of type σ is defined as usual
and denoted by tv(σ). tv(κ) and tv(A) are defined simi-
larly, taking into account the types occurring in κ and A,
respectively. We use tv(t1, . . . , tn) as an abbreviation for
tv(t1) ∪ . . . ∪ tv(tn). Type σ is called closed if tv(σ) = ∅.

An overloading policy, denoted by meta-variable ρ, is a
predicate on a set of type assumptions that specifies whether

A(x) is a valid set of types of definitions of x, for each symbol
x. In this paper we use the following.

Definition 2 (Typing context). A set of type assump-
tions A is a typing context, according to an overloading pol-
icy ρ, if ρ(A) holds.

unify(E) is assumed to give the most general unifying sub-
stitution for the set of pairs of type expressions E, usually
written as a set of type equations [23]. A definition of unify
can be given as usual (see e.g. [20, page 774]).

A substitution S is a function from type or constructor
variables to simple types or type constructors, respectively.
The identity substitution is denoted by id. As usual, ◦ de-
notes function composition. Sσ represents the capture-free2

operation of substituting S(α) for each free occurrence of
type variable α in σ. This operation is extended to con-
straints and typing contexts in the usual manner, and jux-
taposition is right-associative, so that, for example, S S′ σ
denotes S(S′(σ)). We define dom(S) = {α | S(α) 	= α}. For
ease of notation, it will be often convenient to use a finite
mapping notation for substitutions. In this case, we write
S = {(αj
→ τj)}j=1..m to denote the substitution such that
dom(S) = {αj}j=1..m and S(αj) = τj , for j = 1, . . . , m.

For any function f , f†{ai
→ τi}i=1..n denotes the function
f ′ such that f ′(x) = f(x), if x 	∈ {ai}i=1..n, and f ′(ai) = τi,
for i = 1, . . . , n. We define: σ[τ/α] = (id † {α
→ τ})σ.

We define that inst(σ, κ. τ) holds if σ = ∀ᾱ. κ′. τ ′ and
κ. τ = (κ′. τ ′)[τ̄ /ᾱ], for some τ̄ . Analogously, gen(κ. τ, σ) is
defined to hold if σ = ∀β̄. κ. τ [β̄/ᾱ], for some β̄, and ᾱ =
tv(κ. τ). We also use κ. τ to denote any generalisation of κ. τ ,
i.e. any member of {σ | gen(κ. τ, σ)}. Similarly for κ, that is,
letting κ = {oi : τi}i=1..n, we have that κ = {oi : τi}i=1..n,
and κ can also be written as {‖o1 : τ1, . . . , on : τn‖}.

A function that computes a least common generalization
of a set of simple types is given in Figure 1.

For ease of notation, we make a simplification and consider
lcg as a function over a set of types, by choosing an arbitrary
representative of the equivalence class of types that are least
common generalizations of {τi}i=1..n, where τ is equivalent
to τ ′ if they are equal except for renaming of fresh type
variables. Meta-variable ν is used to denote a type or a
constructor variable.

An extra parameter is used in the definition of lcg ′ so that,
for example, the least common generalization of the set of
types {α1 → β1 → α1, α2 → β2 → α2} is α → β → α, for
some fresh type variables α, β (and not, say, α → β → α′).

We also need a definition of lcg between a set of types and
a set of sets of types, defined as follows. Let {τi}i=1..n ≤S

{{τij}i=1..n}j=1..m hold if Sτi = τij , for i = 1, . . . , n, j =
1, . . . , m, and {τi}i=1..n ≤ {{τij}i=1..n}j=1..m hold whenever
{τi}i=1..n ≤S {{τij}i=1..n}j=1..m holds, for some S.

Note that, for {τi}i=1..n ≤ {{τij}i=1..n}j=1..m to hold, it
is not sufficient that τi ≤ τij holds, for all i = 1, . . . , n, j =
1, . . . , m. For example, it does not hold that {α → α, α} ≤{{Int → Int ,Bool}, {Int → Int ,Char}}, although α → α ≤
Int → Int , α ≤ Bool , α → α ≤ Int → Int and α ≤ Char
hold.

lcg({τi}i=1..n, {{τij}i=1..n}j=1..m) is defined to hold when-
ever the following conditions hold:
2The operation of applying substitution S to σ is capture-
free if tv(Sσ) = tv(S(tv(σ))), where application of substi-
tution S to a set of type variables {αi}i=1..n is given by
{S(αi)}i=1..n.

69

lcg(T) = τ where (τ,S) = lcg ′(T, ∅), for some S

lcg′({τ}, S) = (τ, S)

lcg′({ν τ1 . . . τn, ν′ τ ′
1 . . . τ ′

m}, S) =
if S(α) = (ν τ1 . . . τn, ν′ τ ′

1 . . . τ ′
m) for some α then (α, S) else

if n 	= m then (α′, S † {α′
→ (ν τ1 . . . τn, ν′ τ ′
1 . . . τ ′

m)}) where α′ is a fresh type variable

else ν0 τ ′′
1 . . . τ ′′

n where (ν0, S0) =

{
(ν, S) if ν = ν′

(α, S † {α
→ (ν, ν′)}) otherwise, where α is fresh

(τ ′′
i , Si) = lcg′({τi, τ

′
i}i=1..n, Si−1), for i = 1, . . . , n

lcg′({τ1, τ2} ∪ T, S) = lcg′({τ, τ ′}, S′) where (τ, S0) = lcg′({τ1, τ2}, S)
(τ ′, S′) = lcg′(T, S0)

Figure 1: Least common generalization of a set of types

1. {τi}i=1..n ≤ {{τij}i=1..n}j=1..m;

2. for any set of types {τ ′
i}i=1..n such that {τ ′

i}i=1..n ≤
{{τij}i=1..n}j=1..m, we have that τ ′

i ≤ τi, for i =
1, . . . , n.

Letting S be a set of substitutions, ∩S denotes any sub-
stitution R such that, for all α, lcg(R(α), {S(α) | S ∈ S})
holds.

4. CONSTRAINT-SET SATISFIABILITY
Informally speaking, the occurrence of a constraint-set κ

in the principal type of an expression e indicates that it is
possible for this expression to occur in some context, as a
subexpression of another expression, whose principal type
has none of the constraints in κ, because the use of e in
this context has enabled overloading of all symbols in κ to
be resolved. This elimination of constraints can occur when
the types of overloaded symbols in κ have been instantiated
in such a way that it is possible to determine which of the
definitions of each overloaded symbol should be used for the
evaluation of e.

It should be noted that it is possible for constraints oi : τi,
i = 1, . . . , n, in a constraint-set κ, to be separately satisfiable
in a given typing context Γ, whereas κ is not. Consider:

Example 5. Let Γ1 = {f : Int → Int , f : Float → Float , o :
Char , o : Bool}. Constraints f : α → α and o : α are
both satisfiable in Γ1, when considered separately, whereas
κ1 = {f : α → α, o : α} is not.

Geoffrey Smith and Dennis Volpano have examined the
CS-SAT problem [26, 32, 27, 30, 31], stated as whether,
given a constraint set κ and a typing context Γ, there ex-
ists a substitution S such that Γ Sκ is provable (Smith
and Volpano have examined the CS-SAT problem for global
overloading, as we also do in this paper). For any κ, the
provability of Γ κ is defined as equivalent to the provabil-
ity of Γ x : τ , for all x : τ ∈ κ. For arbitraries Γ and κ,
CS-SAT has been shown to be undecidable [26, 32].

As pointed out by Mark Jones [13], a definition of CS-SAT
should be independent on provability in a type system. In
his work, typability is separated from so-called predicate

entailment (which in our case means constraint-set satisfia-
bility). Mark Jones did not, however, fully considered the
question of constraint-set satisfiability, only examining the
problem in general terms, in [15].

We give below a revised definition of CS-SAT that is in-
dependent on provability in a type system, being given only
in terms of the given inputs, namely a set of constraints
and a set of type assumptions. This may help in reason-
ing about the problem and in establishing connections with
other problems. Let (where 2Γ denotes the powerset of Γ):

Definition 3 (Constrant-set satisfiability).

{{oi : σij}i=1..n}j=1..m ⊆ 2Γ

for i = 1, . . . , n, j = 1, . . . , m : inst(κij .τij , σij)

for j = 1, . . . , m : Γ |=
⋃

i=1..n

κij

lcg({τi}i=1..n, {{τij}i=1..n}j=1..m)

Γ |= {oi : τi}i=1..n
(sat)

The proof system “works nicely for recursive constraints”.
For example, to prove satisfiability of {(==) : [[α]] → [α] →
Bool} in Γ(==) of Example 1 — that is, to show that Γ(==) |=
{(==) : [α] → [α] → Bool} is provable, we take lcg({[α] →
[α] → Bool}, {{[α] → [α] → Bool}}) and prove satisfiabil-
ity of {(==) : α → α → Bool} in Γ(==) − {∀α. {(==). α →
α → Bool .[α] → [α] → Bool}, by taking lcg({α → α →
Bool}, {{Int → Int → Bool ,Float → Float → Bool}}).

A closed world approach to overloading, as supported by
system CT, is such that:

1. Any definition of a variable x cannot be placed in a
context where there exists no definition of an over-
loaded symbol used in the definition of x. System CT

could be extended to support also an open world ap-
proach for overloading, but such an extension is out-
side the scope of this paper. Without such an exten-
sion, a definition of, say, (==) for lists is not typable
if placed in a context where there exists no definition
for (==) for the list elements.

2. If a definition of a variable x that uses another variable
y is placed in a context where there exists a single

70

definition of y, then the type of x has no constraint on
y. Here, again, this would not be the case if support
for treating y as in an open world is provided. Note,
however, that a recursive definition of (==) for lists
that is placed in a context in which there exists just
another definition of (==) – say, for integers — would
have a polymorphic type (namely ∀α. {(==) : α→α→
Bool}. [α] → [α] → Bool). We will return to this
example in Section 6.

If {oi : τi}i=1..n = ∅, rule (sat) is (vacuoulsy) equivalent
to the axiom Γ |= ∅.

We can now give:

Definition 4 (CS-SAT). The CS-SAT problem is to
determine, given a typing context Γ and a constraint-set κ,
whether or not Γ |= κ is provable.

Example 6. Let:

Γf = { f : Int → Int ,
f : Int → Float ,
f : Float → Float }

According to rule (sat), constraints {f : Int → Int}, {f :
Int → β}, {f : Int → Float}, {f : α → β} and {f : Float →
Float} are satisfiable in Γf, but not, for example, constraint
{f : Float → β}, because this type is not a least common
generalization of simple types in assumptions for f in Γf

(reflecting the fact that if f is used in a program context
represented by Γf in an expression where its argument has
type Float , then its result must be of type Float).

Example 7. Consider Γ = Γf ∪ Γo1 ∪ Γo2 ∪ Γo3 , where
Γo1 = {o1 : Bool, o1 : Char} , Γo2 = {o2 : Float, o2 : Char} ,
Γo3 = {o3 : Int, o3 : Float} and Γf is as in Example 6.

Constraint-sets {o1 :α}, {o2 :α}, {o3 :α} and {f :α → β}
are satisfiable in Γ. We have also that:

1. a constraint-set {f : τ, o1 : τ ′} is satisfiable in Γ only
if tv(τ)∩ tv(τ ′) = ∅;

2. {f : Float → Float , o2 : Float} is the only constraint-
set of the form {f : τ ′ → τ, o2 : τ ′} satisfiable in Γ.
In system CT, overloading is said to be resolved for
any satisfiable constraint with an empty set of type
variables. This constraint can be “removed” from the
constraint-set in which it appears.

3. all constraint-sets of the form {f : τ ′ → τ, o3 : τ ′}
satisfiable in Γ are (up to renaming of type variables α
and β): {f : Int → Int , o3 : Int}, {f : Int → Float , o3 :
Int}, {f :Float → Float , o3 :Float}, {f : Int → β, o3 :
Int} and {f :α → β, o3 :α}.

Example 8. Consider now Γ = Γf ∪ Γo1 ∪ Γg, where:

Γg = { g : ∀α. {f : α → α}. [α] → [α],
g : ∀α. {f : α → α}. Tree α → Tree α,
o2 : ∀β. {o1 : β}. [β] }

Γg |= {g : [α] → [α], o2 : [α]} cannot be proved, since this
involves proving Γg |= {f :α1 → α1, o1 : α1} (for some fresh
type variable α1), which cannot be proved because there is

no T ∈ 2Γ(f)∪Γ(o1) such that lcg({a1 → a1, a1}, T) holds.

5. CS-SAT AND OVERLOADING POLICIES
Without any restrictions on the assumption set, CS-SAT

has been shown to be undecidable[26, 32]. Type systems for
overloading have explored since then a number of overload-
ing policies with restrictions on types of overloaded symbols.
We discuss some of these policies below.

Let global overloading in a set of type assumptions A be
characterized by:

Definition 5.

global(A) = ((o : σ) ∈ A and #A(o) > 1 imply tv(σ) = ∅)

In fact, the overloading policy given by global is slightly
more general than what we should expect from the name
“global overloading”, since global allows overloaded defini-
tions to occur in inner scopes, as long as their types do not
contain free (lambda-bound) type variables.

The context-independent overloading policy of System O[22]
can be defined as follows:

ρo(A) holds if global(A) holds and
(({o :σ, o :σ′} ⊆ A,

σ = ∀ᾱ. κ. C τ̄ → τ, σ′ = ∀ᾱ′. κ′. C′ τ̄ ′ → τ ′

(for some τ̄ , τ̄ ′, κ, κ′, C, C′) and σ′ 	= σ
)

imply C 	= C′
)

Early work on context-dependent overloading (e.g. [17,
33]) did not consider the problem of constraint-set satisfi-
ability. As a consequence, expressions with non-satisfiable
constraint-sets could be well-typed. For example, True +

True is well-typed in [33], in a program context where + is
overloaded for integers and floating-point numbers but not
for booleans.

In [26, 27], an overloading policy called overloading by
constructors was proposed, defined by:

ρoc(A) holds if A(o) = {∀αi1, . . . , αini . κi. τi}i=1..n

implies
(
τ0 ≤ {τi}i=1..n, for some τ0 s.t. tv(τ0) = {α}

(for a single type variable α) and, for i = 1, . . . , n:

1. κi = {o : τ0[α
′
i/α] | α′

i ∈ {αij}j=1..ni}
2. τi = τ0[Ci αi1 · · ·αini/α], for some Ci, and

3. Ci 	= Cj , for all j ∈ {1, . . . , n}, j 	= i
)

Γ(==) of Example 1 is a typing context according to ρoc,
but Γf of Example 6 and Γins of Example 3 are not.

With ρoc, CS-SAT has been shown in [32] to be solvable in
polynomial time. This overloading policy is, however, very
restrictive. It disallows, in particular, any constrained type
with more than one element in the constraint set, like in:

Example 9. ρoc disallows the overloadings in:

Γ* = { + : Int → Int → Int , + : Float → Float → Float ,
* : Int → Int → Int , * : Float → Float → Float ,
* : ∀α. {+ : α → α → α, * : α → α → α}.

Matrix α → Matrix α → Matrix α }

The (single parameter) overloading policy used in Haskell,
less restrictive than ρoc, can be defined as follows:

71

ρh(A) holds if o ∈ O implies that A(o) is of the form
{∀αi1 ..αimi

.κi.(τ [Ciαi1 ..αimi
/α])}i=1..n and, if n > 1:

1. tv(τ) = α, for a single type variable α

2. Ci 	= Cj , for i 	= j

3. (o′ : τ ′) ∈ κi, 1 ≤ i ≤ n, implies tv(τ ′) = {α′} ⊆
{αi1 ..αimi

}
In [24], Helmut Seidl proved, using the type system of

Tobias Nipkow and Christian Prehofer[21], that CS-SAT is
EXPTIME complete for Haskell typing contexts. In [31],
Dennis Volpano proved the same, using Geoffrey Smith’s
type system [26].

Example 9 was presented by Volpano [30] as a motivation
for making a less restrictive proposal, called parametric over-
loading . Let us define also, for any set of types {σi}i=1..n,
where σi = ∀ᾱi. κi. τi, that lcg(τ, {σi}i=1..n) holds if it holds
that lcg(τ, {τi}i=1..n). The overloading policy ρv in Vol-
pano’s parametric overloading can be defined inductively as
follows:

1. ρv(∅) holds;

2. if ρv(A) holds, A(x) = ∅ and, letting σ = ∀ᾱ. κ. τ , we
have that, for all o : τ ′ ∈ κ, lcg(τ ′, A(o)) holds, then
ρv(A ∪ {x : σ});

3. if i) ρv(A) holds, ii) B = {x : ∀αi1 αini
. κi. τi}i=1..n,

where n > 1, iii) A(x) = ∅, iv) lcg(τ, {τi}i=1..n) holds,
for some τ such that tv(τ) = {α} (for a single type
variable α), v) for i = 1, . . . , n we have that τi =
τ [Ci αi1 . . . αini

/α] (for some type constructor Ci), vi)

for all i, i′ ∈ {1, . . . , n} we have that Ci 	= Ci′ if i 	= i′,
and vii) (o : τ ′) ∈ κi implies that lcg(τ ′, (A ∪ B)(o))
holds (where, clearly, either o is an overloaded symbol
whose type assumptions occur only in A or o = x),
then ρv(A ∪ B) holds.

Let an overloaded symbol o depend on o′ in A if there
exists o : ∀ᾱ. κ. τ in A such that (o′ : τ ′) ∈ κ, for some τ ′.
The inductive definition of ρv(A) is aimed at ensuring that
no mutual recursion occurs in constraint-sets, where the abs-
cence of mutual recursion in constraint-sets is defined by the
requirement that the transitive closure of this dependency
relation on overloaded symbols is antisymmetric.

Volpano’s parametric overloading is still restrictive. It dis-
allows, for example, overloaded definitions whose types have
a least common generalisation with more than one type vari-
able. Volpano has shown in [30] that CS-SAT for parametric
overloading is NP-hard.

System CT’s overloading policy ρct (Definition 8 below)
relaxes restrictions imposed on types of overloaded symbols.
Although CS-SAT is undecidable under system CT’s over-
loading policy, we present in the next section an algorithm
that is expected to decide CS-SAT in a vast majority of cases
of practical interest. In cases where satisfiability cannot be
decided, the algorithm terminates by using a configurable
limit on the number of performed iterations.

Definition 6 (Well-formed typing context). Let
wfd(A) hold if, for all (o : ∀ᾱ. κ. τ) ∈ A, we have that A |= κ
is provable.

Definition 7 (Non-overlapping overloadings).

nonOverlapping(A) =
(
o ∈ O, {σ, σ′} ⊆ A(o), σ′ 	= σ,

σ = ∀ᾱ. κ. τ, σ′ = ∀ᾱ′. κ′. τ ′, tv(ᾱ) ∩ tv(ᾱ′) = ∅
implies unify({τ = τ ′}) fails

)

Definition 8 (System CT’s overloading policy).

ρct(A) =
(
global(A) and nonOverlapping(A) and wfd(A)

)

System CT could be modified to allow overlapping over-
loadings (by introducing a mechanism of choice between
overlapping definitions), as in e.g. Haskell, but this has been
left for future work and is not discussed in this paper.

Example 10. Consider:3

A1 = { o : Int , o : Float , o : ∀a. {o : a}. [a] }
A2 = { o : Int , o : Float , o : ∀a. {one : a}. a }
A3 = { o : Int , o : Float , o : ∀a. {o : [a]}. [a] }
A4 = { o : Int , o : Float , o : ∀a. {t : [[a]]}. [a],

t : Int , t : Float , t : ∀a. {o : a}. [a] }
A5 = { o : Int → Int , o : ∀a, b. {o : a → b}. [a] → b }
A6 = {o : Int , o : ∀a. {o : a}. [a] }
We have:

Ai ρct(Ai) Reason

A1 true A1 |= {o : a}
A2 false not nonOverlapping(A2)
A3 false A3 	|= o : [a]
A4 false A4 	|= t : [[a]]
A5 false A5 	|= o : a → b
A6 true A6 |= o : a

6. CS-SAT: A SOLUTION
Function sat (Figure 3) tests satisfiability of a constraint-

set κ in a given typing context Γ. sat(κ, Γ) either fails or
gives a substitution S such that Γ |= Sκ is provable4 and,
furthermore, for any S′ such that Γ |= S′κ is provable, there
exists a substitution R such that S′ = R ◦S (see Theorem 1
below). The substitution returned by sat is used, in system
CT’s type inference algorithm, to infer principal typings, by
application of this substitution and constraint-set simplifi-
cation (a process called improvement in e.g. [13, 15]).

The test of satisfiability of a constraint-set κ = {oi :
τi}i=1..n in a typing context Γ requires determining, firstly,
the largest set of assumptions {oi :∀ᾱi.κi. τ

′
i}i=1..n in Γ such

that there exists a substitution that unifies each τi with τ ′
i .

We call this the sat-set of κ in Γ. It is the first component

3The basic idea for obtaining a proof of satisfiability of a
constraint o : τ is to find a subset of assumptions of o
in the relevant typing context with instances of type, say,
o : ∀ᾱi. κi. τi, for i = 1, . . . , n, such that the least common
generalisation of {τi}i=1..n yields τ and each κi is itself sat-
isfiable in this typing context.
4We do not require instead that SΓ |= Sκ holds because we
are considering only global overloading in this paper.

72

given by function satset , defined in Figure 2 (the second
component is the most general unifying substitution).

Secondly, for κ to be satisfiable in Γ, there must exist, for
each oi : τi ∈ κ, i = 1, . . . , n, at least one (oi : κ′. τ ′) in the
sat-set of κ in Γ such that κ′ is itself satisfiable in Γ. For
example, κ = {(==) : [C] → [C] → Bool} is not satisfiable
in Γins (Example 3), for any parameterless type constructor
C distinct from Int and Float , because {(==) : C → C →
Bool} is itself not satisfiable in Γins.

sat(κ, Γ) is given by sats(κ, Γ, κ, ∅), where κ is a positive
integer constant, chosen as a limit on the number of recursive
calls for which satisfiability cannot be otherwise decided (as

explained below).5 The last parameter in sats(κ, Γ, κ, κ′),
initially the empty set, contains generalizations of constraints
which have already been tested for satisfiability (in a par-
ticular branch of the tree of recursive calls to sats).

A call to sats
({oi : τi}i=1..n, Γ, κ, κ

)
such that satset({(oi :

τi, Γi)}i=1..n = {({oi : κij . τij}i=1..n, Sj)}j=1..m originates
m (possibly zero) recursive calls to sats , one for each value
of j ∈ {1, . . . , m}. sats tests whether there exist, in these re-
cursive calls, so-called downward and, if not, looping occur-
rences of constraints, as explained by means of an example
below. If there is a looping occurrence in some constraint-
set κj , sats calls itself (to test satisfiability of this looping
constraint) on a proper subset of the original typing context
Γ. This is also explained in the following.

Relations defining downward and looping occurrences are
defined in Figure 4. Additional notation used in the defini-
tion of sats is given below:

κ1 ⊕ κ2 = κ1 ∪ κ2

Γ � κ = Γ − κ

Example 11. Consider assumption set A6 = {o : Int , o :
∀a. {o : a}. [a]} of Example 10, and sats({o : a}, A6, κ, ∅).
We have that

satset({o : a}, A6) = { ({o : Int}, {a
→ Int}),
({o : {o : a′}.[a′]}, {a
→ [a′]}) }

where a′ is a fresh type variable. Constraint-set {o : a′}
must then be tested for satisfiability, by a recursive call to
sats .

Since {o : a′} � ∅, the recursive call to sats is given by:

sats({o : a′}, A6, κ, {‖o : a‖})
where {o : a} is marked to have already been tested (and

{‖o : a‖} = ∀a. {o : a}. a). satset ({o : a′}, A6) is analogous.
But now, in the recursive call to sats , we have (no downward
but) a looping occurrence, given by {‖o : a‖} ≤ {o : a′}. The
next recursive call becomes then:

sats({o : a′′}, A′
6, κ, {‖o : a‖})

where A′
6 = A6 − {∀a. {o : a}. [a]}.

We have that satset(o : a′′, A′
6) = {(o : Int , {a′′
→ Int)}

and thus that sats({o : a′′}, A′
6, κ, {‖o : a‖}) = {a′′
→ Int}.

Using this, we have, in the call to sats({o : a′}, A6, κ, {‖o :
a‖}), that
5Formally, κ should be an additional parameter in the def-
inition of sat , but we allow ourselves a bit of informality
here.

S = {{a′
→ Int , a′
→ [Int]}}
This gives ∩S = {a′
→ α}, where α is a fresh type vari-

able. Thus, in the call to sats({o : a}, A6, κ, ∅), we have
that

S = {{a
→ Int , {a
→ [α]}}
giving ∩S = {a
→ α′}, for some fresh type variable α′.

In situations where there are no no downward nor looping
occurrences, a predefined limit on the number of recursive
calls to sats is decremented, until zero, thus guaranteeing
termination. This is illustrated in the following.6

Example 12. Let Γ = { o : Int→Bool ,
o :Char → Int ,
o : ∀a, b. {o : a → b}. T 2 a → b}

where T i a is used as abbreviation for the simple type given
by T (T . . . (T a)) with i occurrences of T . Let κ = {o :
α → T α}. Then sat(κ, Γ) loops forever if a limit κ is not
used (the limit is placed on the number of recursive calls
to sat for which the parameters yield neither looping nor
downward occurrences):

sat(κ, Γ)
= sats(κ, Γ, κ, ∅)})
= sats({(o : a1 → T 3a1, Γ, κ − 1, κ)}) ◦ S1

where S1 = {α
→ T 2a1, b1
→ T 3a1}
= sats({(o : a2 → T 5a2, Γ, κ − 2, κ ∪ {‖o : a1 → T 2a1‖}})

◦ S2 ◦ S1

where S2 = {a1
→ T 2a2, b2
→ T 5a2}
= . . . (loops if test on κ is not used)

However, for all cases that would cause sats to loop for-
ever if a test on κ was not used, a type error will be correctly
reported, since the constraint-set is not satisfiable (see theo-
rem 3). On the other hand, with the introduction of the test,
there can exist satisfiable constraints for which the test on κ

incorrectly reports failure, as demonstrated in the following.

Example 13. We consider an instance of the Post Cor-
respondence Problem (PCP) presented in [32]. A similar
one appears in [26], but involves overlapping assumptions,
and the given set of assumptions is thus not considered
(by nonOverlapping) as a valid typing context (according
to ρct). Typing context Γp and constraint-set κp given be-
low are such that κp is satisfiable in Γp if and only if its
solution to the corresponding instance of PCP (constructed
as given in [32]) exists. Typing context Γp is as follows:

Γp =
{

p : (C1 → C0 → C) → (C1 → C0 → C1 → C) → C′
1

p : (C0 → C1 → C1 → C) → (C1 → C1 → C) → C′
2

p : (C1 → C0 → C1 → C) → (C0 → C1 → C) → C′
3

p : ∀a, b. {p : a → b → c}.
(C1 → C0 → a) → (C1 → C0 → C1 → b) → (C′

1 → c)
p : ∀a, b, c. {p : a → b → c}.

(C0 → C1 → C1 → a) → (C1 → C1 → b) → (C′
2 → c)

p : ∀a, b. {p : a → b → c}.
(C1 → C0 → C1 → a) → (C0 → C1 → b) → (C′

3 → c) }
6The example was presented to us by Martin Sulzmann.

73

satset(∅) = {(∅, id)}
satset({o : τ}, Γ) = {({o : κ. τ ′}, S) | o : ∀ᾱ. κ. τ ′ ∈ Γ, ᾱ ∩ tv(τ) = ∅,

unify({τ = τ ′}) = S}
satset({o : τ} ∪ κ, Γ) =

let {({o : κi. τi}, Si)}i=1..n = satset ({o : τ}, Γ)

{(Γij , Sij)}j=1..mi = satset ({o : Siτ | o : τ ∈ κ}, Γ), for i = 1..n

in {(Γij ∪ {o : κi. τi}, Sij ◦ Si)}i=1..n,j=1..mi

Figure 2: satset

sat (κ, Γ) = sats
({κ, Γ, κ, ∅)

sats(∅, Γ, κ, κ) = id
sats

({oi : τi}i=1..n, Γ, κ, κ
)

=

let
{({oi : κij . τij}i=1..n, Sj

)}j=1..m
= satset

({(oi : τi)}i=1..n, Γ
)

in if m = 0 then fail else
let for j = 1, . . . , m:

κj =
⋃

i=1,...,n Sjκij ,

(Γj ,κj) =
if κj � κ (downward occurrence) then (Γ, κ) else
if κ ≤ κj (looping occurrence) then (Γ � {oi : κij . τij}i=1..n, κ) else
if κ > 0 then (Γ, κ − 1) else fail

κ0 = κ ⊕ {oi : τi}i=1..n

S =
{
S′

j ◦ Sj | S′
j = sats(κj , Γj , κj , κ0)

}j=1..m

in if S = ∅ then fail else
⋂

S

Figure 3: sat

κ′
� κ =

(∃(o : τ) ∈ κ′ such that τ � κ(o)
)

τ � ∅ holds, τ � {τ ′} =
(
τ � τ ′ or τ < τ ′), τ � T =

(
τ � {τ ′}, for some τ ′ ∈ T

)

(C τ1 . . . τn) � (C′ τ ′
1 . . . τ ′

m) =
(
C 	= C′ or τi � τ ′

i , for some i ∈ {1, . . . , n})
τ � τ ′ does not hold, otherwise

κ ≤ κ′ =
(∃(o : τ) ∈̄κ such that τ ≤ κ(o)

)
(o : τ) ∈̄ κ = (o : τ ∈ κ)

τ ≤ T =
(∃ τ ′ ∈ T such that τ ≤ τ ′)

Figure 4: Relations on constraints and types

74

where C,C0,C1,C
′
1 and C′

2 are unary type constructors.
Let κp = {p : a → a → b}. We have that sat(κp, Γp) fails

if, but only if, κ < 1, since:

satset ({(p : a → a → b, Γp)}) = {({p : κ. τ}, S)}
where

κ. τ ={p : a1 → b1 → c1}. (C1 → C0 → a1) →
(C1 → C0 → C1 → b1) → (C′

1 → c1)}
S =

{(
a1
→ C1 → b1, b
→ (C′

1 → c1),
a
→ (C1 → C0 → C1 → b1)

)}

and the recursive call to sats is

sats
({

(p : (C1 → b1) → b1 → c1, Γp, κ−1, {‖p : a → a → b‖})})
This involves the computation of

satset
({(p : (C1 → b1) → b1 → c1, Γp)}

)
which gives

{
(p : (C1 → C0 → C1 → C) → (C0 → C1 → C) → C′

3, S1),
(p : {p : a2 → b2 → c2}. (C1 → C0 → C1 → a2) →

(C0 → C1 → b2) → (C′
3 → c2), S2)

}
where: S1 = id † {(b1
→ C0 → C1 → C, c1
→ C′

3)} and
S2 = id † {(a2
→ b2, b1
→ C0 → C1 → b2, c1
→ (C′

3 → c2))}.
The first of these results causes a recursive call to sats

with an empty constraint-set, which yields the identity sub-
stitution. The second involves a recursive call to sats given
by:

sats
({(

p : b2 → b2 → c2, Γp − {p : ∀a, b. {p : a → b → c}.
(C1 → C0 → C1 → a) → (C0 → C1 → b) → (C′

3 → c)},
κ − 1, {‖p : a → a → b, p : (C1 → b1) → b1 → c1‖},

)})

This also succeeds. The final result is given by

⋂
{S ◦ S1 ◦ id, S ◦ S2 ◦ S3 ◦ id}

where S3 = {a3
→ C1 → b3, b2
→ C1 → C0 → C1 →
b3, c2
→ C′

1 → c3}.

For any value 	, we can find a satisfiable constraint κ� such
that sat(κ�, Γp) fails with κ = 	. For example, if 	 = κ = 1,
we can take κ� = {p : (C0 → C1 → a) → (C1 → C1 → a) →
b); if 	 = κ = 2, we can take κ� = {p : (C0 → C1 → C1 →
C0 → C1 → a) → (C1 → C1 → C1 → C1 → a) → b), and so
on.

Function sat satisfies the following (proofs can be found
in [4]):

Theorem 1 (Correctness of sat). For any set of as-
sumptions Γ such that ρct(Γ) holds and any constraint-set κ,
if sat (κ, Γ) = S, for some S, then Γ |= Sκ is provable and,
furthermore, for any S′ such that Γ |= S′κ is provable, there
exists R such that S′ = R ◦ S.

π̂(∅) = ∅
π̂({o : τ} ∪ κ) = let K = π̂(κ) in

if ∃ κ′ ∈ K such that tv(τ) ∩ tv(κ′) 	= ∅
then K − {κ′} ∪ {κ′ ∪ {o : τ}}
else K ∪ {{o : τ}}

Figure 5: Constraint-set projections

sat(κ, Γ) = sat ′(κ, Γ, κ, ∅)

sat ′(κ, Γ, κ, κ0) = S1 ◦ S2 ◦ · · ·Sn

where {κi}i=1..n = π̂(κ)
Si = sats(κi, Γ, κ, κ0)

Figure 6: Satisfiability of projections

Theorem 2 (sat always terminates). For any set of
assumptions Γ such that ρct(Γ) holds and any constraint-set
κ, either sat(κ, Γ) fails or sat(κ, Γ) = S, for some S.

Although sat is not complete (with respect to CS-SAT),
that is, although failure of sat (κ, Γ) does not imply that
there exists no S such that Γ |= Sκ is provable (see Example
13), we have:

Theorem 3. For any set of assumptions Γ such that ρct(Γ)
holds and any constraint-set κ, if sat(κ, Γ) fails with κ = 	
(for some) and there exists S such that Γ |= Sκ is prov-
able, then there exist 	′ > 	 and S′ such that sat(κ, Γ) = S′

if κ = 	′, and S′ = R ◦ S, for some R.

7. OPTIMIZATION
The verification of satisfiability of a constraint-set κ in a

typing context Γ can be “optimized” by noting that con-
straints with types that have no type variables in common
can be tested separately. Figure 5 defines so-called projec-
tions of constraint-set κ, which are the subsets of constraints
in κ whose types have at least one common type variable.
A projection can be seen as an automatically derived set of
“functionally dependent” constraints. Figure 6 contains a
definition of sat(κ, Γ) based on the composition of substitu-
tions given by computing sat separately for each projection
of κ. The definition of sats is changed to call sat ′ instead of
making a direct recursive call to sats .

It is not difficult to see that the size of the sat-set of
a constraint-set {oi : τi}i=1..n is, in the worst case, s1 ×
· · · × sn, where si is the size of the sat-set of the constraint
oi : τi. Worst cases occur when each constraint represents
an independent projection. For a simple example, consider:

Γ = {o1 : Int , o1 : Bool , o1 : Char , o2 : Int , o2 : Float}
Then satset({o1 : a, o2 : b}, Γ) returns a sat-set that

is a combination of all elements in the sat-set given by
satset({o1 : a}, Γ) = {o1 : Int , o1 : Bool , o1 : Char} with all
elements in the sat-set given by satset ({o2 : a}, Γ) = {o2 :
Int , o2 : Float}. This combination is fruitless in the case

75

of independent projections like {o1 : a} and {o2 : b}, and is
avoided by computing sats({o1 : a}, Γ) and sats({o2 : b}, Γ)
separately, and just composing the obtained substitutions.

8. CONCLUSION
This article has addressed the problem of constraint-set

satisfiability, in the presence of context-dependent overload-
ing and parametric polymorphism. An algorithm is pre-
sented that uses a finite sequence of unifications to perform
constraint-set satisfiability, and does not require the use of a
restrictive overloading policy. The article has also reviewed
some related works on constraint-set satisfiability and over-
loading policies.

Related recent works that seek a foundation for the sup-
port of constrained polymorphism include Martin Sulzmann’s
[28], based on the explicit use of constraint handling rules,
and Bart Demoen, Maŕıa de la Banda and Peter Stuckey’s
[6], based on the transformation of constraint-set satisfiabil-
ity into resolution in constraint logic programs.

A prototype of a type inference algorithm is available at
http://www.dcc.ufmg.br/~damiani/CT/CT.zip. The examples
presented in this paper (and many others) have been tested
with this prototype and are included in this file. The pro-
totype includes a parser (based on Parsec’s monadic parser
combinators [12]) for a language that is basically core-Haskell
without type classes and with support for overloading as de-
scribed in this paper. The implementation is an adaptation
of a type inference algorithm written by Mark Jones [16]
and, essentially, it performs type inference allowing mutu-
ally dependent definitions and polymorphic recursion [29,
11], followed by constraint-set satisfiability, using the algo-
rithm described in this paper, improvement (application of
the substitution returned by sat followed by constraint-set
simplification) and ambiguity checking.

9. REFERENCES
[1] Carlos Camarão and Lućılia Figueiredo. Type

Inference for Overloading without Restrictions,
Declarations or Annotations. In Proceedings of the 4 th

Fuji International Symposium on Functional and Logic
Programming (FLOPS’99), number 1722 in Lecture
Notes in Computer Science, pages 37–52, 1999.

[2] Kung Chen, Paul Hudak, and Martin Odersky.
Parametric Type Classes. In Proceedings of the 1992
ACM Conference on Lisp and Functional
Programming, pages 170–181, 1992.

[3] Lúıs Damas and Robin Milner. Principal type schemes
for functional programs. In Proceedings of the 9 th

ACM Symposium on Principles of Programming
Languages (POPL’82), pages 207–212, 1982.

[4] Lućılia Figueiredo, Carlos Camarão and Cristiano
Vasconcellos. Constraint-set Satisfiability for
Overloading. Technical report, UFMG, 2003.

[5] Fergus Henderson, David Jeffery and Zoltan Zomogyi.
Type Classes in Mercury. Technical Report 98/13,
University of Melbourne, 1998.

[6] Bart Demoen, Maŕıa Garćıa de la Banda, and Peter J.
Stuckey. Type Constraint Solving for Parametric and
Ad-hoc Polymorphism. In Proceedings of the 22 nd

Australasian Computer Science Conference, 1999.

[7] Dominic Duggan, Gordon Cormack, and John Ophel.
Kinded type inference for parametric overloading.

Acta Informatica, 33(1):21–68, 1996.

[8] Dominic Duggan and John Ophel. Open and closed
scopes for constrained genericity. Theoretical
Computer Science, 275(1–2):215–258, 2002.

[9] Dominic Duggan and John Ophel. Type checking
multi-parameter type classes. Journal of Functional
Programming, 12(2):135–158, 2002.

[10] Cordelia Hall, Kevin Hammond, Simon Peyton Jones,
and Philip Wadler. Type Classes in Haskell. ACM
Transactions on Programming Languages and
Systems, 18(2):109–138, 1996.

[11] Fritz Henglein. Type inference with polymorphic
recursion. ACM Transactions on Programming
Languages and Systems, 15(2), 253–289, 1993.

[12] Daan Leijen and Erik Meijer. Parsec: Direct Style
Monadic Parser Combinators for the Real World.
Technical Report UU-CS-2001-35, Department of
Computer Science, Universiteit Utrecht, 2001.
http://www.cs.uu.nl/ daan/parsec.html.

[13] Mark Jones. Qualified Types. Cambridge University
Press, 1994.

[14] Mark Jones. A system of constructor classes:
overloading and higher-order polymorphism. Journal
of Functional Programming, 5(1):1–36, 1995.

[15] Mark Jones. Simplifying and Improving Qualified
Types. In Proceedings of the 1 st ACM Conference on
Functional Programming and Computer Architecture
(FPCA’95), pages 160–169, 1995.

[16] Mark Jones. Typing Haskell in Haskell. In Proceedings
of the 1999 Haskell Workshop. Published in Technical
Report UU-CS-1999-28, Department of Computer
Science, University of Utrecht. Available at
http://www.cse.ogi.edu/~mpj/thih/

[17] Stefan Kaes. Parametric overloading in polymorphic
programming languages. In Proceedings of the 2 nd

European Symposium on Programming (ESOP’88),
number 300 in Lecture Notes in Computer Science,
pages 131–144, 1988.

[18] Robin Milner. A theory of type polymorphism in
programming. Journal of Computer and System
Sciences, 17:348–375, 1978.

[19] John Mitchell. Polymorphic type inference and
containment. Information and Computation,
76(2/3):211–249, 1988.

[20] John Mitchell. Foundations for Programming
Languages. MIT Press, 1996.

[21] Tobias Nipkow and Christian Prehofer. Type
Reconstruction for Type Classes. Journal of
Functional Programming, 1(1):1–100, 1993.

[22] Martin Odersky, Philip Wadler, and Martin Wehr. A
Second Look at Overloading. In Proceedings of the 7 th

ACM Conference on Functional Programming and
Computer Architecture, pages 135–146, 1995.

[23] J.A. Robinson. A machine oriented logic based on the
resolution principle. Journal of the ACM, 12(1):23–41,
1965.

[24] Helmut Seidl. Haskell Overloading is DEXPTIME
complete. Information Processing Letters, 52(2):57–60,
1994.

[25] Mark Shields and Simon Peyton Jones.
Object-oriented style overloading for Haskell. In

76

Workshop on Multi-Language Infrastructure and
Interoperability (BABEL’01), 2001. Available at
http://haskell.readscheme.org/lang sem.html.

[26] Geoffrey Smith. Polymorphic Type Inference for
Languages with Overloading and Subtyping. PhD
thesis, Cornell University, 1991.

[27] Geoffrey Smith. Principal type schemes for functional
programs with overloading and subtyping. Science of
Computer Programming, 23(2-3):197–226, 1994.

[28] Peter Stuckey and Martin Sulzmann. A Theory of
Overloading. In Proceedings of the 7 th ACM
International Conference on Functional Programming,
pages 167–178, 2002.

[29] Cristiano Vasconcellos, Lućılia Figueiredo, and Carlos
Camarão. A Practical Type Inference for Polymorphic
Recursion using Haskell. Journal of Universal
Computer Science, 9(8):873–890, 2003.

[30] Dennis Volpano. Haskell-style Overloading is NP-hard.
In Proceedings of the 1994 International Conference
on Computer Languages, pages 88–95, 1994.

[31] Dennis Volpano. Lower Bounds on Type Checking
Overloading. Information Processing Letters,
57(1):9–14, 1996.

[32] Dennis Volpano and Geoffrey Smith. On the
Complexity of ML Typability with Overloading. In
Proceedings of the ACM Symposium on Functional
Programming and Computer Architecture., number
523 in Lecture Notes in Computer Science, pages
15–28, 1991.

[33] Philip Wadler and Stephen Blott. How to make ad-hoc
polymorphism less ad hoc. In Proceedings of the 16 th

ACM Symposium on Principles of Programming
Languages (POPL’89), pages 60–76. ACM Press, 1989.

77

