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Abstract. A feature is an increment in product functionality. Features can encap-
sulate different program representations, programs can be synthesized by feature
composition, and programs can be declaratively specified using features. We
explain in this paper how feature-based program synthesis works, how features
interact, how interactions are controlled, and explore the relationship between
features and aspects.

1 Introduction

Just as the structure of matter is fundamental to chemistry and physics, so too is the
structure of software fundamental to computer science. By structure we mean what is a
module? And how are modules composed to build other modules? Sadly, the structure
of software is not well understood: software design is an art form, and as long as it
remains so, our abilities to automate key tasks in program design, construction, and
maintenance will be fundamentally limited.

In the 1950s, Watson and Crick discovered the structure of DNA [33]. Prior to their
work, our understanding of cellular processes, the mechanics of cellular diseases and
how such diseases could be treated, were quite limited. After their work, science and
medicine have made phenomenal advances. The fields of genetics, microbiology, bio-
chemistry, and biotechnology have either flourished or were created as a result of
understanding and manipulating the structure of DNA.

We are following a similar historical path with respect to program structure. Among
the ultimate goals or “challenge problems” in software development is the synthesis of
efficient programs from declarative specifications. (To do this means that we really
understand program structure.) It requires advances in:

*  generative programming — letting machines (not people) do the hard work of
program development given a design,

®  declarative domain specific languages (DDSLs) — raising the abstraction of lan-
guages beyond Java and C# to specify desired programs declaratively, and

*  automatic programming — letting machines (not people) do the hard work of
designing an efficient program.

Program synthesis offers an appealing future for software engineering: what is well-
understood is automated; programs can be automatically customized for performance,
capability, or both; and most importantly, program maintenance and development costs
are reduced.
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Interestingly, these goals have been achieved in other engineering disciplines. For
example, pages at the Dell or Gateway web sites allow customers to declaratively
specify the features of a personal computer that they want [17][19]. Each page is a
DDSL for specifying a Dell or Gateway product. There are other web-based DDSLs:
you can customize your own BMW [12], and (of all things) there are pages for custom-
ized faucets and sinks [3]! We should be able to do the same for software.

Features make this possible. A feature is an increment in product functionality [35]. A
target product is specified in terms of its features. Architects use features to reason
about product designs. By making features first-class entities in design, specification,
and implementation, we have the potential to automate significant tasks of product
design and development. A key step is to modularize features. AOP can play a role, as
features can use static and dynamic crosscuts.

Feature oriented designs arose from work on software product lines (SPLs), where dif-
ferent programs of a product line or product family are differentiated by features. The
goal of SPL is the systematic and efficient creation of products. In the next section,
tools and ideas for feature-based program synthesis are described. The core technolo-
gies are generative programming, DDSLs, automatic programming, and of course,
modularization technologies like aspects.

2 GPL: An Example

The Graph Product Line (GPL) is a family of related Java packages that implement
different combinations of graph algorithms [20]. We synthesize members of GPL by
composing features. We use a grammar, where tokens denote features, to define the set
of all possible feature compositions. Each composition is represented by a sentence of
this grammar, and the set of all sentences is the set of all GPL products that can be
built. Product line grammars are usually context sensitive, i.e., selecting a feature may
require (or exclude) other features. (We note that such dependencies are a form of fea-
ture interactions — more on this later). Figure 1a shows a specification for GPL: above
the %% marker is a context free grammar and below the marker is a set of contextual
constraints (e.g., the strongly connected components algorithm StrongC requires
Directed graphs and a depth-first-search DFs algorithm). Tools translate this specifi-
cation into a DDSL that resembles the Dell and Gateway web sites (Figure 1b) [10].

Users can select the desired features of a graph package using GPL’s DDSL. Figure 1b
shows the specification of a GPL package that implements vertex numbering (Num-
ber), strongly connected components (StrongC), and cycle checking algorithms
(Cycle) on a Weighted, Directed graph using a depth-first search algorithm (DFs).
(The actual DDSL interface is more sophisticated, as other capabilities are present;
Figure 1b is sufficient to convey the idea.) Our DDSL automatically propagates con-
straints as users select features, so that only correct graph program specifications can
be written. Further, there are additional capabilities for debugging product line models
(i.e., context sensitive grammars) and proofs are offered to explain automatic selec-
tions or deselections [10]. Given a specification, our DDSL generates a file that
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(a)|GPL : Alg+ Src Wgt Gtp ;

Gtp : Directed | Undirected;

Wgt : Weighted | Unweighted;

Src : BFS | DFS ;

Alg : Number | Connected | StrongC
Fig 1. GPL DDSL | Cycle | MSTPrim | MSTKruskal;
%%

Connected = Undirected A Src;
StrongC = Directed A DFS;

Cycle = Gtp A DFS;

MSTKruskal v MSTPrim — Undirected A Weighted;

(b) Alg
Number

[] Src Wt Gtp

StrongC (] = veighted ) Directed
Cycle DFS

(]

[2m]

defines the sequence of features that must be composed to synthesize the target appli-
cation. Other tools perform this composition to yield the source, binaries, and docu-
mentation for a GPL application. Other than writing the specification, all steps are
done automatically. Although a GPL application is small, the ideas that we describe
scale: the tools that we use to synthesize GPL programs were synthesized themselves
from features, and collectively these tools are over a hundred times larger (in excess of
200K LOC Java).

Figure 2 shows the big picture of the entire process. Domain engineers understand the
variabilities and commonalities of a domain of applications. They create a product line
model (i.e., a context sensitive grammar) and a library of implemented features. A user
declaratively specifies products using a DDSL (which is synthesized from the product
line model) to produce a program specification (i.e., a composition of features). Fea-
ture composition tools then synthesize the program and its documentation, and return
the result back to the user.
& you

L
product U product
Flg 2 Feature specification

Based Program
Synthesis Process
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We and others have developed tools to:

* synthesize different program representations (e.g., source, makefiles, grammars)
[91[5][18][30],

* automatically analyze feature compositions (e.g., to ensure that all generated pro-
grams satisfy particular type safety properties) [11],

® automatically optimize the designs of programs (e.g., choose among different
implementations of selected features) [7][36], and

*  synthesize tool suites using multi-dimensional separation of concerns (which pro-
vides a fundamental way to reduce program specification complexity) [8].

And we have used these tools to synthesize product lines for avionics, fire support sim-
ulators, extensible Java compilers, and web applications, among others [9][18]. In the
remainder of this paper, we address three questions: (1) How does feature-based pro-
gram synthesis work? (2) How are features related to aspects? And (3) how do features
interact?

3 How Does Feature-Based Program Synthesis Work?

Editing digital photographs is a familiar activity. One takes a photo, uploads it to a PC,
and photo editing software is used to, say, crop a photograph and remove red eyes. We
generally don’t think about this, but photo editors treat photographs as objects. Users
can successively invoke methods or functions (e.g., crop, remove red eye) on input
photos to produce desired output photos. This is a standard programming language
view of applications: the resulting photo is produced by evaluating an expression:

newPhoto = redEye (crop (oldPhoto))

But what if objects are programs? It is not hard to imagine a tool that allows you to
start with a simple program, and by progressively invoking methods (or functions),
features are added to this program, both synthesizing its code and documentation. This
is exactly how our tools of Section 2 work. Users start with a simple program (e.g., a
Directed graph), add on edge weights (Weighted), a search algorithm (DFS), and an
assortment of graph algorithms (Number, StronglyC, Cycle). The expression that
composes features to produce the target program is called a feature metaexpression:

program = Cycle(StrongC(Cycle (DFS (Weighted (Directed)))))

Metaprogramming treats programs as data and program design and synthesis as a com-
putation. Our tools use features as the basis for a metaprogramming model of program
synthesis.

More generally, science is about structure and the manipulation of structure. Software
design is about program structure and its manipulation. Our tools manipulate program

structure using two operations, which AOP researchers will find familiar [21]:1
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* adding new structure (i.e., introduction), and

¢ modifying existing structure (i.e., advising)

In the following sections, we outline two key operations used in feature-based program
synthesis, and then explain how these operations relate to feature metaexpressions.

3.1 Introduction Sum (+)

New class members, classes, and packages are incrementally added to a program using
the operation introduction sum (+). Consider program P in Figure 3a which consists of
a single class ¢ with a single member b. We introduce method foo () in Figure 3b, and
to this add member i in Figure 3¢, and add class D in Figure 3d. We model these tran-
sitions algebraically: the original program in Figure 3a is the metaexpression P=C.b
(i.e., program P consists of a single member b from class €). Introducing method
foo () adds a new term to P’s metaexpression, namely P=C.b+C. foo. Introducing
member i adds yet another term (P=C.b+C. foo+C.1i), and introducing class D adds
several more terms, one per member of class D: P=C.b+C. foo+C.i+D.bar+D.cnt.
Evaluating the metaexpression for P synthesizes its code of Figure 3d. Here we assume
that the order in which terms are added by introduction sum does not matter, e.g.,

C.i+C.j=C.j+C.i.2
class C { class C { class C { class C {
String b; String b; String b; String b;
} (a) void foo () void foo(){..} void foo(){..}
{} int i; int i;
} M } © }
class D {
String bar;
int ent(){..}
Fig 3. Incremental Development of Program p } )

Introduction sum algebraically models introductions in AOP, but it is more general.
Not only can a feature add new members and methods to an existing class, it can also
add new tokens and rules to an existing grammar, new headings and bodies to HTML
files, new targets and properties of makefiles, as well as add new classes, new pack-
ages, new HTML files, etc. Introduction sum is an operation that augments the struc-
ture of any program artifact, of which code, HTML files, and grammar files are
examples.

1. There are more operations, but the essence of our approach is described by two operations.

2. There are versions of our theory where introduction sum is not commutative. Also, constructs
such as class initialization, throws clauses, extends and implements clauses can be expressed
as additional terms.
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3.2 Advice Weaving (e)

Our tools are based on a generalization of mixins, a well-understood but not-yet-com-
mon OO technology [1][28][32]. A mixin is a class whose superclass is specified by a
parameter. Mixins extend a parent class with new variables and methods (e.g., intro-
ductions), and allow existing methods to be extended (by the mixin overriding a parent
method and calling the parent method via super). Mixin-like technologies offer a lim-
ited pointcut-advice language: around advice with execution pointcuts that capture
individual join points. The reason why we have used mixins is simple: a vast majority
of features implement object-oriented collaborations, also known as role-based
designs [28]. Collaborations primarily rely on heterogeneous advice — advice that
advises only one join point [16]. (Or more accurately, collaborations advise many join
points, each with a unique advice body). In principle, there is no reason why feature-
based tools and languages should have limited advice capabilities: homogenous advice
(advice that advises multiple join points) are needed [16]. Below we will sketch a
model that supports a general form of advice that encompasses existing advice mecha-
nisms in Aspect].

Consider Figure 4a, which shows a program with a class ¢ and an after advice which
we call hi. The weaving of advice hi into ¢ yields a program that is equivalent to that
in Figure 4b. Whether the program of Figure 4b is statically produced, or whether it is
emulated by dynamically advising the execution flow of class ¢ in Figure 4a is not
important; these are two of many possible implementations of Figure 4a. Note that we
renamed method setI to setI’ in Figure 4b to differentiate it from the original and
unadvised setI method of Figure 4a.

class C { class C {
int i,5; int i,3;
void setI(int x){ i=x; } void setI’ (int x)
void setJ(int x){ j=x; } { i=x; print(“hi”); }
3} void setd’ (int x)
after(): { j=x; print(“hi~”); }
execution(void *.set*(..)) } (b)
{ print (“hi”); } (a)

Fig 4. Advice Weaving

We model class ¢ of Figure 4a by the introduction sum: C.i+C.j+C.setI+C.setd.
We model advice as a function that maps programs to programs, and express the pro-
gram design of Figure 4a as:

P = hie(C.i+C.j+C.setI+C.setd) (1)

where o means function application. That is, hi advises all members of the program
(which happens to be all members of class ¢). At compile time, a compiler inhales P’s
source, creates metaexpression (1), and evaluates it. The evaluation is performed in
several steps. First, advice distributes over introduction sum:
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P = hieC.i + hieC.j + hieC.setI + hieC.setJd (2)

This distributivity property is basic to aspect-oriented programming: an advice advises
all parts of a program. Second, we can simplify (2) by noticing that hi does not
advise members C.i and C.j as hi captures none of their join points (or their shadows
[22]). This means that hieC.i=C.i and hieC.j=C.j. Simplifying (2):

P =C.1i + C.j + hieC.setI + hieC.setd (3)
Third, hi advises each set method. Let setI’ and setJ’ be:

void setI’ (int x) { i=x; print(“hi”); }
void setd’ (int x) { j=x; print(“hi”); } (4)

which represents the advised SetI and SetJd methods. Using (4), we simplify (3) to:

P =2C.i+ C.j + C.setI’ + C.setJ’ (5)

which is our algebraic representation of Figure 4b. In short, feature-based synthesis
works by creating a metaexpression that defines a program, which includes advice
weaving and introduction sums, and simplifying the metaexpression so that all advice
has been applied, yielding an introduction sum of primitives.

While treating advice as a function that maps programs to programs is not standard
AOP fare [23], our use of algebra does not prevent a standard AOP interpretation. For
example, it is perfectly acceptable to interpret hieC. setd to mean the execution of the
C.setJd method as advised by hi, or the metaexpression a3ea2ealem0 to mean the
execution of method mo0 as advised by advice al, a2, and a3 in this order.

Before we proceed, note that the body of an advice can be advised by other advice. We
argue, like others [25][4], that an advice body is really a form of introduction, and
should be treated as such. Further, advice should be specified separately from its body.
While we may write a piece of advice using Aspect] syntax:

after () : execution( void *.set*(..)) { print(“hi”); }

Internally, we treat this as an implicit method introduction and pure advice, advice
whose body invokes a method and itself has no join points [21]:

static void hi() { print(“hi”); } // implicit introduction
after () : execution (void *.set*()) hi(); // pure advice

See [25][4] for possible implementations of these ideas.



adi27.fm

3.3 Metaexpressions

Readers may have noticed our use of two different kinds of metaexpressions. Feature
metaexpressions define a program in terms of a composition of features. The metaex-
pressions that we used in the last two sections involving the operations (+,e) are differ-
ent: we call them module expressions. Module expressions give us a simple way to
explain how features are implemented using introductions and advice.

In principle, a base program B is simply an introduction sum of terms, where a term is
a method or variable. A feature is a function that maps programs to programs. A gen-
eral form of a feature function F is:

F(x) = i + aex (6)

That is, F applies advice (a) to its input program (x), and introduces new terms (i).3
This gives us a simple and precise way to define features and program structure by
composing features.

As an example, we can synthesize program P of Figure 4 from the following features.
Suppose the base program I implements class ¢ with only variable i and the setI
method. We model 1 as:

I =C.i + C.setI (7)
Now, suppose feature J introduces variable j and the setJ method. We model J as:

J(x) = C.j + C.setd + x (8)
where J does not advise its input. Finally, let feature HI use hi to advise its input:

HI (x) = hiex

Given the feature metaexpression HI (J(I)), we can expand it to our earlier module
definition (1):

P =  HI(J(I))
= hi.(c.j + C.setJd + (C.i + C.SetI)) // substitution
= hie(C.i + C.j + C.setI + C.setd) // reorder sum

The justification for the last step follows from our earlier statement that the order in
which terms are added by introduction sum does not matter. By defining features as
module expressions, we can directly translate a program’s feature metaexpression into
module expression. By simplifying the module expression, we can then synthesize a
program’s code.

3. Advice a can be a composition of multiple pieces of advice. See [21] for further details.
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Incidentally, our discussion of metaprogramming focusses on the static creation of pro-
grams given a static composition of features. Feature orientation is much more gen-
eral: features can be added and removed from programs dynamically. A program’s
structure — whether or not it changes dynamically — is still expressed in terms of fea-
ture metaexpressions and module expressions.

3.4 Bounded Quantification

Another difference between feature orientation and aspect orientation is the use of
bounded quantification: advice is not applied at the end of a program’s construction in
feature-based development, but rather to the current state of a program’s development.
That is, when a feature is added to a program, its advice is applied immediately and its
advice does not “come alive” again to weave subsequent introductions. This is differ-
ent than AOP and is historically consistent with years of prior work on metaprogram-
ming [27], program transformations [34], and model driven design [31].

As an example of bounded quantification, again let’s revisit program P of Figure 4a.
Suppose feature K introduces variable k and method setk:

K (x) C.setK + C.k + x (9)

If we apply K to P, the module expression for the resulting program (shown in
Figure 5) is:

K(P) = C.k + C.setK + hie(C.i + C.j + C.setI + C.setd) (10)
Note that the hi advice is not applied to subse- 37 -—¢ T
quent introductions. Feature-based program syn- int i,5;
thesis uses bounded quantification, i.e., advice is void setI’ (int x)
applied after each feature is added to a program, { i=x; print(“hi”); }
and once woven, the weaving of that advice is fin- void setd’ (int x)
ished. In contrast, AOP uses unbounded quantifi- { j=x; print(“hi”); }
cation, i.e., advice is always applied at the end of a int k;
program’s construction and any subsequent intro- void setK(int x)
ductions are woven by this advice. For example, if { k=x; }
only unbounded advice were used, the module
expression for the resulting program would be: Fig 5. Introduction after Weaving
P = hie(C.k + C.setK + C.i + C.j + C.setI + C.setd) (11)

which is not the same as (10). Thatis, (10) and (11) are different programs. From a
mathematical viewpoint, unbounded quantification is a special case of bounded quan-
tification (i.e., all advice is applied at the end of a program’s construction).

This raises an interesting question as to why aspects have unbounded quantification
semantics. I believe the reason is historical: aspects originated from work on meta-
classes [13], where an interpreter is the program, and user programs are simply data
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that the interpreter executes. In this context, one thinks exclusively about extending the
interpreter with new features. In the Figure 6a, we see two methods of an interpreter
(load () — which loads the text of a program and methcall () — which executes a
method call), and the text of a program where three method invocations (m(), n (), and
p ()) are shown. This interpreter constitutes a base program.

In Figure 6b, we see a refinement of (a)

) program interpreter Toad program
the interpreter: after each method .
R . R m() void load()
call, the string “hi” is printed. As "0

void methcall()———-—"|

the interpreter executes the program 00
text, the advice of each method
invocation inserted into the pro-
gram’s control flow (shown by a
bubble call-out). In Figure 6¢c, we (b)
see another two refinements of the
interpreter, but this time the
load () method is advised: feature
2 introduces method y () to the pro-
gram text, and feature 3 introduces
method x () to the program text. So

base

interpreter Toad program
void load()

void methcall()4———--—- code
print(“hi”);

program

feature1( base )

when the interpreter is run, the orig- (© interprater foag program
. . - a yO{..
inal program text is loaded, meth- void load() add( x(){--})

ods y() and x() are introduced
into the text. (y () invokes method
q (), and x () invokes method r () ).
Then the program is interpreted,
method calls are advised on both
original program text and on all
introductions. This is exactly the phenomena of unbounded quantification: one can
think of advice and introductions in Aspect] as refinements of inferpreters, and indi-
rectly refinements of program text.

void methcall()—=——---|

code
print(“hi”);

void y() { ..q(J~- feature3( feature2( feature1( base )))

void x() {..r() 3= pi >

Fig 6. Refining Interpreters

What makes the distinction of bounded vs. unbounded quantification difficult to appre-
ciate is that bounded quantification can sometimes be emulated using unbounded quan-
tification by (a) eliminating wild cards and enumerating all targeted join points and/or
(b) using “declare precedence” constructs. But not always. First, enumeration
works in the context of a single program where there is a fixed set of features that are
composed prior to a given feature. This is uncommon in product lines and program
synthesis; it is the norm that there are many different sets of features that are composed
prior to any given feature. Second, enumerating wild cards is impractical if the number
of join points is large.

In principle, features likely need both kinds of quantification: bounded advice is the
norm in product lines and incremental development while unbounded advice is used to
implement program-wide constraints, like invariants [29][26]. To support feature-
based development properly using aspects, several forms of language assistance are

10
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needed. First, features require a much broader notion of introduction than that offered
by Aspectl, e.g., we want to encapsulate new classes, new grammar files, etc. within a
feature, as well as encapsulating the introduction of new members to existing classes.
Second, pieces of advice need to be tagged with a “bounded” or “unbounded” modi-
fier, to indicate when a piece of advice is local to a particular step in a program’s devel-
opment or when it is a program invariant.

4 Feature Interactions in Program Synthesis

We and others have observed that structuring a program in terms of features helps

designers understand and control feature interactions [35].4 We have recognized two
different kinds of interactions. The first is called a reference interaction — when a fea-

ture F1 references members introduced by feature F2.> This is a standard call-graph
concept, which requires that feature F2 be composed before F1 in a feature metaex-
pression, i.e., F1(..F2 (..)). That is, a member must be defined before it can be ref-
erenced. The second kind is called a structural interaction — when a feature F1 refines
(advises, modifies) members that were introduced by F2. Again, F2 must be composed
before F1 in a feature metaexpression — a member must be defined before it is refined
(advised, modified). In both kinds of interactions, no “declare precedence” clauses
are used. The concept of “precedence” is the order in which features are composed.

Now let’s look at the feature metaexpression F4 (F3 (F2 (F1))). Let i; denote the
module expression of the introductions for feature F;, and let a; denote F;’s advice.

Figure 7a graphically depicts this feature metaexpression and exposes all possible
interactions. The top-most box in a column represents the introductions of a feature,
and boxes vertically below indicate the advice that is being applied by subsequent fea-
tures. Figure 7b shows the corresponding module expression, where each summand
represents the module expression of a column, e.g., a4ea3ea2eil is the module
expression for the right-most column.

g
(a) .

2 = -
. .

s ey - s e

- I I

(b) F4(F3(F2(Fl)) = i4 + a4e(i3 + a3e(i2+a2e(il)))

i4 + adeil3 + adeal3eil2 + a4dea3ealeil

Fig 7. Feature Compositions

4. The literature on feature interactions is vast. See [14][24] for related work.
5. In Section 2, we noted that selecting a feature F2 may require another feature F1. Such con-
straints are often due to reference interactions.

11
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Each advice box in Figure 7a in principle can advise prior introductions, and doing so
would constitute a “structural interaction” between features (i.c., the advice of F4
modifies the introductions of F1). Of course, a feature can reference any member that
was defined prior to that feature’s addition to a program. However, it would seem that
the number of structural interactions grows as the square of the number of features
(i.e., every subsequent feature can advise all prior features). Our theory admits this
possibility. But in practice, our experience is different.

We have observed that the contents of most fea-

[
tures is predominantly (95%) introductions and 08 O
very few pieces O.f advice are used in feature-based - g g g
program synthesis [6]. So, although composing N R e R
features might potentially have many structural N [y [y B Y O [
interactions as Figure 8 suggests, most interactions e R
(i.e., the white boxes in Figure 8) are vacuous Fig 8. Feature Interactions

(empty). That is, features advise the introductions

of a few specific features, and rarely advise introductions from all features. Of course,
different case studies may reveal different statistics, but the pattern of using a few and
directed pieces of advice has been observed by others even when the full range of
advice in aspect languages is available [4]. The reason is that as collaborations grow in
size, the dominance of introductions becomes overwhelming and the number of struc-
tural interactions tends to shrink because ‘dynamic’ rather than ‘structural’ refine-
ments are preferred. For example, Eclipse plug-ins are features (i.e., increments in
Eclipse functionality). Such plug-ins are a// introductions, and have no structural inter-
actions with the Eclipse code base. (More accurately, the introductions that plug-ins
make do not modify existing classes, but instead are new classes, introductions that
Aspect] cannot express). In contrast, as features shrink in size, the need for structural
interactions seems to increase.

5 Topics of the ADI 2006 Workshop

Several topics were proposed for discussion at the ADI 2006 Workshop. In this sec-
tion, we briefly explain how some of these topics are addressed in the context of fea-
ture-based program synthesis.

Mutual Exclusion and Dependencies among Features. It is very common that two
features cannot both be present in a program or that using one feature implies the use
of another. We capture these dependencies in a product line model (e.g., a context-sen-
sitive grammar like that in Figure 1a). For example, the mutual exclusion of features A
and B could be expressed in the grammar itself:

C:A | B; // choose only 1
Or as a contextual constraint:

A v B = (—AAB) v (AA—B) // at most one of A,B is true

12
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Known Interactions and Domain-Specific Languages (DSLs). Security features are
known to impact performance. Should DSLs be used to express this interaction? The
way we handle this is to recognize that programs and features have multiple represen-
tations. Suppose a program has two representations: code (to implement it), and a per-
formance model (to estimate the program’s performance). When a feature is composed
with the program, both program representations may be updated. In the case of a secu-
rity feature, both the program code and performance model are updated. The updated
model allows us to assess the performance impact of using that security feature. The
same applies to non-security features. We note that this is a standard paradigm not only

for feature-based program synthesis, but also its predecessor: relational query optimi-

zation.®

Ordering of Aspects. Is the “precedence” concept sufficient? To us, aspects tell us
how the existing structure of a program changes when a feature is added. The order in
which features are composed determines the application order of aspect (advice).

Order of Advice Execution. The existing rules in AspectJ for ordering advice within
an aspect are complex, and to specify a particular ordering can be difficult. We advo-
cate simpler rules: the order in which advice is listed in an aspect is the order in which
it is applied [21]. This makes advice execution order easy to specify and understand.

Formal Representations and Analyses. We use a simple algebra to express program
structure and model structural interactions (advising). We also use elementary laws
(e.g., advice distributes over introduction sum) to reason about program designs, and
do so in a way that is independent of their representation. That is, our metaexpressions
could represent Java code, or grammars, or HTML. This is consistent with prior work
on program generation [27], and is what would be expected of a structural model for
programs, i.e., the meaning of particular terms is uninterpreted and all interpretations
(i.e., program representations) follow the same rules.

When to Recognize Interactions. Program synthesis is the inverse of refactoring.
Given a feature metaexpression A (B(C) ), we can synthesize a program P. To give a
legacy program P a feature-based design requires us to map the structure of P to a fea-
ture metaexpression A (B (C) ) . What is interesting here is that we can understand inter-
actions of features in two different ways. We can recognize feature interactions early in
product line design or we can discover interactions late (after a program has been
implemented) during a refactoring process. In either case, we create a product line
model (i.e., context sensitive grammar) to define legal uses of a feature and explicitly
state each feature’s dependencies (in terms of the presence, absence, and ordering of
other features).

6. A retrieval program is specified declaratively as an SQL statement. A parser maps this state-
ment to a relational algebra expression, i.e., a feature metaexpression. An optimizer rewrites
this expression, and derives a performance model for the expression by composing the per-
formance model of each operation in the expression. In general, a relational operation encap-
sulates two different representations: code to implement it and a performance model [27].
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Interaction Detection. We classify interactions among features F1 and F2 in two
ways: does F2 reference an introduction of F1? And does F2 advise an introduction of
F1? There is considerable available compiler support for detecting reference interac-
tions. In contrast, tool support for structural interactions is lacking. Here’s a motivating
example. Consider legacy class ¢ in Figure 9a. We want to decompose this class into a
composition of features F2 and F1, shown in Figure 9b. To know whether a decompo-
sition is correct, we have to prove C=F2 (F1). That is, we have to prove that the code
of ¢ is equivalent to the code that is produced by F2 (F1) . The notion of equivalence
we use is called source equivalence: differences in white space are ignored, and the
order in which members are listed in a class can vary (as it does not matter to the Java

compiler)7. Tool support to verify a refactoring of a legacy application into features is
something that is currently lacking. Hopefully the idea is clear.

class C {
. class C {
int x = 0; int C.y = 4; i
i int x = 0;
int y = 4;
oid foo : i
voi 0 { _ after (C o) : this (o) . void foo() {
x =+ 5; && execution ( X =+ 5;
X =+ Yy; void C.foo()) } '
} { o.x =+ o.y; } }
}

(a) (b)
Fig 9. Equalities in Legacy Refactoring

It is worth noting that others in the AOP community have taken a similar stand: Cole
and Borba have presented aspect refactorings as identities much in the same way that
we describe here [15][2]. We anticipate more such work in the future, as guarantees for
structural and behavioral equivalence between unfactored and feature-refactored code
will become increasingly important.

6 Conclusions

Science has benefited when structure is imposed on problems. Structure gives us a
greater understanding and insight into the workings of Nature. It is our belief that
understanding the structure of software will be the key to automating many of tasks
that we have to perform manually today and a simple mathematical representation of
program structure will be essential.

The history of imperative programming languages and software design has been a pro-
gression of increasingly more abstract concepts of modular structures: from unstruc-
tured programs of the 1960s, to structured programs of the 1970s, to object-oriented
programs of the 1980s, to component-based programs of the 1990s, and now to fea-
tures and aspects.

7. Aspect compilers generally do not transform source code, and a different notion of program
equivalence may be needed.
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Feature orientation imposes a simple structure on the universe of programs and pro-
gram representations. Features are the semantic building blocks of programs, and pro-
gram structure is (largely) defined and manipulated through the use of two simple
operations, introduction sum (+) and advice (e), on primitive program elements. We
have argued that giving program structure a mathematical description simplifies pro-
gram design, controls artificial complexity, helps understand feature interactions, per-
mits reasoning about programs algebraically, supports program analyses, and
automates rote tasks of software development. More importantly, it allows us to think
in broader terms: we don’t have to restrict our ideas about program design only in
terms of code; we can now think in more abstract ways that can be expressed using
many different program representations, and our tools will be based on sound and sim-
ple mathematical concepts.
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