A Case Study of Operational and Denotational Semantics

Maja Frydrychowicz
23/04/2007

Abstract

We examine the concepts upon which program evaluation and domain theory are based by
studying the semantics of a small programming language. In particular, we discuss the prop-
erties of Scott domains and their role in describing principles such as recursive programming
via fixed points, computation as finite approzimation, as well as, the importance of compo-
sitionality in denotational semantics. The definition of a correspondence between these two
semantics styles is then explored.

Introduction

Operational semantics describe evaluation strategies: the procedures by which a programming
language arrives at its output. Denotational semantics abstract away from step-by-step evalua-
tion, and instead provide means to establish general properties of a programming language. The
field of domain theory thus relates orders and topological spaces to the seemingly far-removed
study of programming language behaviour and design. The stark contrast in approach might lead
one to think that operational and denotational semantics have very little in common. However,
the relationship between these two semantics styles is a rich and well-studied topic. As an intro-
duction to these ideas, we define operational and denotational semantics for a small programming
language, and systematically review the principles behind the latter approach. This allows us to
then consider what one might need to show in order to conclude that the two methods are in
fact in agreement.

Simple Applicative Language

We restrict our study of semantics to the Simple Applicative Language (SAL). As its name
indicates, its syntax is not very elaborate. However, the constructs it provides are sufficient for
the study of the core concepts at hand. For convenience, we assume that basic boolean logic
and arithmetic are given, and we describe SAL’s constructs in these terms. This additional
simplification does not diminish the relevance of this case study, since the keys ideas to consider
are directly related to abstraction and recursion, as we will soon demonstrate.

SAL is equipped with abstractions, pairs, basic arithmetic, conditionals and most impor-
tantly, recursion via the Fix operator. Throughout the remaining sections of this document,
L,M,N refer to general terms, x, vy, z, to variables, o, 7, to types, and n, to values associated with
natural numbers, including 0.

F,:c:rl—:c:rhyp I'Fn:Nat Vn € Naturals

I I false : Bool ' = true : Bool
T,z:m FM:m l FI—FI\/Il_:I\I/\IIatI FNl—.NN:Nat plus
T i Mo = plus N : Nat
T'EFM:m xm)
'EM:my - T'EN:m ————— proj; .
TF MN :m owp km(M) 7 ie{1,2}
F"MZTl F}_N:TQ . FFMNat Fl—N:Natminus
pair I' M minus N : Nat
L' (M, N):7 X 7o
I'EFM:7—> 71 fix
P"MllBOO| F"MQiT PFMS:Tcond T Fix M .7

'~ if My then My else M3 : 7

Figure 1: SAL Type System.

Types 7 ::= Bool |Nat|r — 7|7 x 7
Terms M:u= z|Az:7. M| MM | (M, M) | m;(M)| Fix M | M plus M | M minus M
| true | false | if M then M else M | n

n € Naturals
x € Variables
ie{l,2}

The type inference rules presented in Figure 1 are defined in the usual manner. I' denotes
the context of assumptions in the type derivation. The discussion of free variables and context
substition is omitted.

SAL’s type system is an essential part of our discussion of denotational semantics, and will
guide us through the process of defining appropriate semantic maps.

Operational Semantics

We describe the operational semantics (Figure 2) of SAL by using inference rules to define a
binary relation “—” on terms. M — M’ represents a single evaluation step from term M. The
constant terms true, false and n : Nat are regarded as values, and conclude all evaluations. Since
the terms n are restricted to the natural numbers, 0 minus n is defined to evaluate to 0 for all n.

Furthermore, it should be noted that the evaluation of conditional statements is restricted to a
specific order: the boolean “guard” is reduced to a constant term first, afterwhich the appropriate
case is evaluated. The operator Fix is used to define recursive functions: when a function Fix M
of type 0 — o is applied to an argument, it replicates itself and that argument inside M. Thus,
the operational semantics express that the argument to the Fix operator is reduced step by step
until it reaches the form of an abstraction, at which point a substitution is performed according
to the usual definition of fixed point.

Ax:7.M N N/x|M
pirMON — [N/a] o

if M then Ni else No — if M’ then Nj else No

0 minusn — 0

M— M
if true then M else N — M Mplus N — M’ plus N

M— M
M minus N — M’ minus N

if false then M else N — N

mi((M1, Ma)) — M; N— N
M plus N — M plus N’

ny plus ng — ny + no
N — N
M minus N — M minus N’

ni minus ng — N1 — Ny

M— M ,
Fix M — Fix M’ M—M
(M) — (M)
M— M ,
MN — M N M-— M
<M7 N> — <M’7 N>
. . N— N
Fix Az : 7. M — [Fix Az : 7. M /2]M (M, N) — (M, N)

Figure 2: SAL Operational Semantics.

Denotational Semantics

Denotational semantics describe the meaning of a program in terms of mappings from types
and terms to mathematical objects. We call these objects denotations. The goal is to capture
the notion of computation with these mappings. We will study SAL with semantic maps based
on Scott domains. These are endowed with many useful properties. In particular, the set of

all continuous functions on Scott domains forms a Scott domain, as does the product of Scott

domains.

Consider the following model. Let Scott domains represent types. Suppose the present compu-
tation is always associated with some environment p, which maps variable names to elements of
the appropriate Scott domain, according to the variable’s type. We observe that environment
is reminiscent of I', the assumption context in the inference rules for typing SAL. Given a term

and an environment, we want to produce an element from the appropriate Scott domain.

[-] : Type — Scott Domains
[-] : Term — Environment — Element of Scott Domain

Environment p : Variable — Element of Scott Domain

Note that we are overloading our notation [-] for maps on terms and maps on types.

Suppose we are given the following explicit definitions for the type maps in our model.

domains representing Bool and Nat are illustrated in Figure 3.

[Bool] =B,
[[Nat]] =N
[o — 7] = [[e] — [7]] Set of Scott-continuous functions.

[o x 7] = [o] x [7] Product of Scott domains

The

The partial order imposed by these domains qualifies each element’s information content.
For domain elements z,y, if x <y then y can be thought to contain more information than .
Furthermore, the information associated with y is consistent with that of x. It is therefore easy
to see that the bottom element of each domain represents a term with no information content,

or a term whose evaluation diverges.

tt Vi 0 1 2 3 ..
1 1

Figure 3: B, and N

Given the above setting, how should we define the corresponding term maps in order to
accurately denote the meaning of a term? One reasonbale intuition, inspired by the resemblance
of the environment p to SAL’s typing assumption context I', we attempt to model the required

term maps after SAL’s type inference rules.

We begin with the simplest cases. Applying a term map to any constant term n : Nat and
some environment p should yield the element corresponding to n in the domain [Nat], since no
further computation can narrow n down to a more precise value. Also, the environment p has no
impact on the result, since no variable names are involved in term n. The same holds for terms
false and true.

[true : Bool]p = tt € [Bool]
[false : Bool]p = ff € [Bool]
[n: Nat]p = n € [Nat]

As for typing judgements in SAL’s type system, the meaning associated with the above terms,
depends only on the terms, and not on any other information.

Next, we consider arithmetic operations. SAL restricts the types of the subterms of plus
and minus to Nat. It also describes a dependence of this term’s type on the type of each of its
subterms. The definition below expresses this same dependence. As in our description of SAL’s
operational semantics, we express the meaning of plus and minus in terms of basic arithmetic
operations, which we assume to be given. Note that, it is also possible that one of M,N is not
well-typed, or never converges to a value, in which case it is mapped to 1. The parent term
should therefore also be mapped to L.

1 if [M]p= L or [N]p= L

[M plus N]p = {([[an+ [N]p) € [Nat] otherwise

[M minus N]p = {J_ if [[Mﬂp‘:ior INJp=L
([M]p — [N]p) € [Nat] otherwise

where M,N are of type Nat

The semantic maps for pairs, projections and conditionals exhibit similar behaviour, in the
sense that the result of the mapping depends exclusively on subterms.

1 if [MJp=_Lor [N]p= L
(IM]p, [N]p) € [71] x [12] otherwise

[[<M7 N>]]/0 - {

where M : 7, N : 1

[m:((M1, M2))]p = [Mi]p € [r]

where <M1, M2> 1 T1 X TQ

€ if [L]p=L
[ifLthen Melse N]p=<[M]p if[Llp=1tteB,
[Nlp it [L]p=4ff €BL
So far, the environment p has not had any influence on the outputs of our semantic maps. We

now examine the terms that explicitly involve variables and employ substitutions. The upcoming
denotations are more intricate, although they still match SAL’s type inference rules.

The semantic map for variables is straightforward: the variable x is mapped to a domain
that reprepresents its type. It is mapped to a specific element in that domain, as indicated by
the current environment p, which may of course be a partial function:

[z :7]p = p(z) € [7]

The semantic map for abstraction is of particular interest. Consider an abstraction with
formal parameter z : 0 and body M : 7. The semantic map [-] applied to this abstraction and a
given environment p yields a function f : [o] — [7]. For any d € [o], f(d) updates the current
environment p according to d, and then applies a semantic map to the body M with the new
environment p’ = p[z — d]. Thus p/(z) = d, but is otherwise identical to p.

[Mc:0. M 10— 7]p=f€][o] — []]
where M : 7 and Vd € [o] f(d) = [M]p[z — d] € [7]

To confirm that this definition is correct, we must show that f is indeed a Scott-continuous
function as required by the type map provided:

1. Is f monotone?
2. Does f preserve directed suprema?

One approach is to verify the desired property case by case, for all possible terms M. Of course,
there are infinitely many possible terms; however, the semantic map definitions we’ve examined
so far indicate that term denotations in this model are constructed entirely with the denotations
of subterms. This is a property we should watch for in the upcoming term map definitions
for application and the Fix operator. If this constructive property does hold, it is reasonable
to attempt a proof by induction on the structure of terms. The likely difficulties one would
encounter in such a proof is with establishing the continuity of the domain functions used in
recursion, and abstraction, since they modify their environments.

The semantic map for applications is closely related to that for abstractions. In essence, we
are applying the function f = [M: o — 7] € [[o] — [7]] described earlier.

elr]
[M(N): 7]p=[M: 0 —7[p([M: o]p)
elo]

Thus [M(N) : 7]p = f([N : o]p) = [L]p[z — [N : o]p] where M is of the form Az : o.L. Yet
again, this fits nicely with SAL’s type system, and is expressed using subterms, as desired.

Finally, we arrive at the mythical Fix operator, which is meant to represent the computational
fixed point of an abstraction. Our goal is to semantically capture the behaviour that Fix M is a
fixed point of the abstraction M. That is, Fix M = M Fix M. In addition, we would like to define
the semantics of Fix M exclusively in terms of its subterm M. Let fiz ¢ denote any fixed point
of a function g. Note that fix g may be undefined for some inputs. We propose the following
map for Fix M:

[Fix M : 7]p = fiz([M]p)

where M is of the form Az : 7.N
For this semantic map definition to be accurate, we need to establish that
1. A fixed point of M exists.
2. Fix M is indeed a fixed point of M.

As dictated by the established denotation for abstraction, [M]p is in fact a function, call
it f, of type [r] — [r]. Assuming that f is indeed continuous (and thus also monotone) as
required by the type map, it is guaranteed to have a fixed point (Scott’s fixed point theorem).
The denotation of a recursive function Fix M amounts to applying f repeatedly to L € [7],
which produces a chain L < f(L) < f?(L) < f3(L) < ... in [r]. Since [r] is a domain
according to our model, this chain has a supremum v € [7]. By continuity and the properties
of suprema, f(v) = v, so v corresponds to the fixed point of f. We may look at the elements of
the above-mentioned chain as increasingly accurate approximations of the final value obtained
by the recursive program represented by Fix M.

The denotation for Fix M brings to light why the continuity of f is a key property of these
semantic maps.

The Requirements of Semantic Correspondence

Establishing that two semantic styles for a given programming language agree leads to useful
insights regarding program equivalence. The first step toward proving such a correspondence is
to define what it means for semantic styles to coincide.

We’ve presented an evaluation relation — on terms to describe the operational semantics of
SAL, as well as, maps [-] on terms and types to Scott domains that describe SAL’s denotational
semantics. Our present goal is to observe what properties of the relationship between — and
[-] would indicate that to the two definitions of program semantics are in essence the same.

One aspect of correspondence between the two approaches concerns the equivalence of terms.
If [M] = [N] = = € [7], then there should exist a constant term v such that there are finite
series of evaluation steps from M to v and from N to v in terms of — and vice versa.

A stronger property to consider is that which restricts the results of evaluation. If a given
term evaluates to v via —, that same term should be mapped with [-] to the denotation of v -
the domain element that represents v. The converse should also be true. Formally, we require

M—...— v < [M]p=[v]y

While these properties are essential for a correspondence between — and [-], we cannot
claim, based on our current knowledge, that these are the only requirements.

Conclusion

By developing the operational and denotational semantics of the Simple Applicative Language, we
demonstrated the role Scott domains and continuous functions play in the denotation of recursive
and non-recursive functions. An interesting connection between the programming language type
inference rules and the definitions of semantic maps on terms was used to guide our completion
of the denotational semantics. The modular way in which the term maps are defined indicates

that structural induction is available as a general proof strategy for properties of the model such
as continuity of functions, perhaps. We then identified three properties that illustrate, at least
in part, what it means for semantic styles to agree: essentially the term maps and evaluation
relation defined must both associate terms with the same values.

References

[1] C. Gunter. Semantics of Programming Languages: Structures and Techniques. (Chapter 2),
MIT Press, 1992.

[2] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

