Foundations for
Programming Languages

John C. Mitchell
Department of Computer Science
Stanford University
jcm@cs.stanford.edu

This book will be published by MIT Press.
Please do not circulate.
© John C. Mitchell 1995.

July 24, 1995

Contents

1 Introduction 16
1.1 Model Programming Languages 16
1.2 Lambda Notation 17
1.3 Equations, Reduction, and Semantics 20

1.3.1 Axiomatic semanticso 20
1.3.2 Operational semantics Lo 21
1.3.3 Denotational semantics Lo L L 22
1.4 Types and Type Systems L e 22
1.5 Notation and Mathematical Conventions 25
1.6 Set-theoretic Background L L L 26
1.6.1 Fundamentalso 26
1.6.2 Relations and Functions Lo Lo oo 29
1.7 Syntax and Semantics L. Lo e 32
1.7.1 Object language and meta-language 32
1.7.2 0 GrammarS v . v v e 32
1.7.3 Lexical analysis and parsing o L. 34
1.7.4 Example mathematical interpretation 35
1.8 Induction e e e e e 37
1.8.1 Induction on the natural numbers 37
1.8.2 Induction on expressions and proofs L 0oL, 41
1.8.3 Well-founded induction e 46

2 The Language PCF 50
2.1 Introduction e e e e e 50
2.2 Syntax of PCF o e o1

221 Overview e e e e e e e e e e e 51
2.2.2 Booleans and natural numbers 0oL oo 52
2.2.3 Pairing and functions oL Lo 55
2.2.4 Declarations and syntactic sugar 59
2.2.5 Recursion and fixed-point operators oL 62
2.2.6 PCF syntax summary and collected examples 66
2.3 PCF Programs and Their Semantics 69
23.1 Programsandresults.o 69
2.3.2 Axiomatic semantics L. 70
2.3.3 Denotational semanticso 73
2.3.4 Operational semantics oo 74
2.3.5 Equivalence relations defined by each form of semantics 76

Foundations for Programming Languages 2

2.4 PCF Reduction and Symbolic Interpreters 78
2.4.1 Nondeterministic reduction L Lo 78

2.4.2 Reduction strategies 82
2.4.3 The left-most and lazy reduction strategies 84
2.4.4 Parallel reduction 88

24.5 Eager PCEF o e 89

2.5 PCF Programming Examples, Expressive Power and Limitations 93
2.5.1 Records and n-tuples. 93
2.5.2 Searching the natural numbers. L L L. 95

2.5.3 Tteration and tail recursion. 97
2.5.4 Total recursive functions oo L 100

2.5.5 Partial recursive functionso 103

2.5.6 Non-definability of parallel operations 107

2.6 Variations and Extensions of PCF o oo, 114
2.6.1 Summary of extensionso 114

2.6.2 Unit and sum typeso e 114
2.6.3 Recursive types L 117
2.6.4 Lifted types e e 123

3 Universal Algebra and Algebraic Data Types 133
3.1 Introduction e e e e e 133
3.2 Preview of algebraic specification o oo o Lo 134
3.3 Algebras, Signaturesand Terms L oL 135
3.3.1 Algebras. 135
3.3.2 Syntax of algebraic terms oL 136
3.3.3 Algebras and the interpretation of termso 138
3.3.4 The substitution lemma oL 141

3.4 Equations, Soundness and Completeness 143
3.4.1 Equations e e e 143
3.4.2 Term algebras and substitution 0oL 144
3.4.3 Semantic implication and an equational proof system 146
3.4.4 Forms of completeness oL 156
3.4.5 Congruence, quotients and deductive completeness 157
3.4.6 Nonempty sorts and the least model property 160

3.5 Homomorphisms and Initiality 0. 161
3.5.1 Homomorphisms and isomorphisms. 161
3.5.2 Imitial algebras 163

3.6 Algebraic Data Types 169
3.6.1 Specification and data abstraction 169
3.6.2 Initial algebra semantics and datatype induction 171
3.6.3 Examples and error values Lo oo 176
3.6.4 Alternative approaches to error values 181

3.7 Rewrite Systems 183
3.7.1 Basic definitionso e 183
3.7.2 Confluence and provable equality 186
3.7.3 Termination L e e e 188

3.7.4 Critical pairs e 192

Foundations for Programming Languages

3.7.5 Left-linear non-overlapping rewrite systems
3.7.6 Local confluence, termination and completion
3.7.7 Applications to algebraic datatypes

4 Simply-Typed Lambda Calculus

4.1
4.2

4.3

4.4

4.5

Introduction L e
TypPes . o e e e e e e e e e
4.2.1 Syntax e e e e e
4.2.2 Interpretation of types
Terms L e e e e e
4.3.1 Context-sensitive syntax L oL o
4.3.2 Syntax of A7 terms
4.3.3 Terms with product, sum and related types
4.3.4 Formulas-as-types correspondence
4.3.5 Typingalgorithm
Proof Systems L e
4.4.1 Equations and theories Lo Lo
4.4.2 Reductionrules L
4.4.3 Reduction with additionalrules oL,
4.4.4 Proof-theoretic methods for consistency and conservativity
Henkin Models, Soundness and Completeness
4.5.1 General models and the meanings of terms
4.5.2 Applicative structures, extensionality and frames
4.5.3 Environment model condition Lo Lo Lo oL
4.5.4 Type and equational soundness
4.5.5 Completeness for Henkin models without empty types
4.5.6 Completeness with empty types oo
4.5.7 Combinators and the combinatory model condition
4.5.8 Combinatory and lambda algebras
4.5.9 Henkin models for other types

5 Models of Typed Lambda Calculus

5.1
5.2

9.3
5.4

9.5

Introduction L e e e e
Domain-Theoretic Models and Fixed Points
5.2.1 Recursive definitions and fixed point operators
5.2.2 Complete partial orders, lifting and cartesian products
5.2.3 Continuous functions
5.2.4 Fixed points and the full continuous hierarchy
5.2.5 CPO model for PCF e
Fixed-point Induction e
Computational Adequacy and Full Abstraction
5.4.1 Approximation theorem and computational adequacy
5.4.2 Full abstraction for PCF with parallel operations
Recursion-theoretic Models Lo
5.5.1 Introduction
5.5.2 Modest sets e e
5.5.3 Full recursive hierarchy oo

198
202
204

207
207
208
208
209
210
210
212
217
219
222
225
225
233
235
237
242
242
243
245
249
252
254
256
258
259

Foundations for Programming Languages

5.6 Partial Equivalence Relations and Recursion

5.6.1
5.6.2
9.6.3
5.6.4
9.6.5

Partial equivalence relation interpretation of types
Generalization to partial combinatory algebras
Lifting, partial functions and recursion oL
Recursion and the intrinsicordero
Lifting, products and function spaces of effective cpos

6 Imperative programs
Introduction L e
While programs e e

6.1
6.2

6.3

6.4

6.5

6.6

6.2.1
6.2.2

L—values and R—values L o
Syntax of while programs L L oL

Operational Semantics L e e

6.3.1
6.3.2
6.3.3
6.3.4

Basic symbols in expressions e e e e e e e
Locations and stores L
Evaluation of expressions e
Execution of commands oL oL

Denotational Semantics e

6.4.1
6.4.2
6.4.3

Typed lambda calculus with stores
Semantic functions
Equivalence of operational and denotational semantics

Before—after Assertions About While Programs

6.5.1
6.5.2
6.5.3
6.5.4

First-order and partial correctness assertions
Proof rules e
Soundness e e e e e e e
Relative completeness e

Semantics of Additional Program Constructs

6.6.1
6.6.2
6.6.3
6.6.4

Overview e e
Blocks with local variables.
Procedures
Combining blocks and procedure declarations

7 Categories and Recursive Types
7.1 Introduction
7.2 Cartesian Closed Categories i e

7.3

7.2.1
7.2.2

Category theory and typed languages
Categories, functors and natural transformations

7.2.3 Definition of cartesian closed category
7.2.4 Soundness and the interpretation of termso
7.2.5 Henkinmodelsasccc’s.
7.2.6 Categorical characterization of meaning function
Kripke Lambda Models and Functor Categories
T7.3.1 Overview o e e e e e e
7.3.2 Possible worlds

7.3.3
7.3.4
7.3.5

Applicative structures e
Extensionality, combinators and functor categories
Environments and meanings of terms

308
308
311
315
317
321

325
325
327
327
328
329
329
329
330
331
336
336
339
343
346
346
348
353
354
359
359
359
365
367

Foundations for Programming Languages 5

7.3.6 Soundness and completenesso Lo 414
7.3.7 Kripke lambda models as cartesian closed categories 416

7.4 Domain models of recursive types Lo oL 419
7.4.1 A motivating example L L 419
7.4.2 Diagrams, cones and limits L. 422
7.4.3 F-algebras e 424

7.4.4 w-Chains and initial Fralgebras 426

7.4.5 O-categories and embeddings Lo, 430
7.4.6 Colimits and O-colimits L 432
7.4.7 Locally continuous functors oL oo 436
7.4.8 Examples of the general method 437

8 Logical Relations 442
8.1 Introduction to Logical Relations 442
8.2 Logical Relations Over Applicative Structures 443
8.2.1 Definition of Logical Relation 443

8.2.2 The Basic Lemma, e 444
8.2.3 Partial functions and theories of models, 449
8.2.4 Logical partial equivalence relations 450

8.2.5 Quotients and extensionality oL 451

8.3 Proof-Theoretic Results 455
8.3.1 Completeness for Henkin models 455
8.3.2 Normalization e 457
8.3.3 Confluence and other reduction properties 459
8.3.4 Reduction with fixr and additional operations 464

8.4 Partial Surjections and Specific Models oo oo, 473
8.4.1 Partial surjections and the full classical hierarchy 473
8.4.2 Full recursive hierarchy oo 474
8.4.3 Full continuous hierarchy oo, 476

8.5 Representation Independence L Lo 478
8.5.1 Motivation e 478
8.5.2 Example language 478
8.5.3 General representation independenceo Lo 481

8.6 Generalizations of logical relations 483
8.6.1 Introduction e 483
8.6.2 Motivating examples: complete partial orders and Kripke models 484
8.6.3 Sconing and relationso oL oL e 489
8.6.4 Comparison with logical relations 494
8.6.5 General case and applications to specific categories L. 496

9 Polymorphism and Modularity 499
9.1 Introduction e e e e 499
9.1.1 Overview o e e e e e e 499
9.1.2 Types as function argumentsl 500
9.1.3 General products and sumso oL 504
9.1.4 Types as specifications oL e 505

9.2 Predicative Polymorphic Calculus. oo 508

Foundations for Programming Languages 6

9.2.1 Syntax of typesand terms oo oL 508
9.2.2 Comparison with other forms of polymorphism 513
9.2.3 Equational proof system and reduction. 516
9.2.4 Models of predicative polymorphismo, 518
9.2.5 ML-style polymorphic declarations o0, 521

9.3 Impredicative Polymorphism oo oo 524
9.3.1 Introduction e 524
9.3.2 Expressiveness and properties of theories 525
9.3.3 Termination of reduction oo 538
9.3.4 Summary of semantic models oo Lo 543
9.3.5 Models based on universal domains L 0oL 545
9.3.6 Partial equivalence relation modelso 548

9.4 Data Abstraction and Existential Types oL 555
9.5 General Products, Sums and Program Modules 560
9.5.1 The ML Module Language, 560
9.5.2 Predicative calculus with products and sums 564
9.5.3 Representing Modules With Products and Sums 568
9.5.4 Predicativity and the relationship between universes 570

10 Subtyping and related concepts 573
10.1 Imtroduction e e e e 573
10.2 Simply Typed Lambda Calculus with Subtyping 575
10.3 Records oL 581
10.3.1 General properties of record subtyping 581
10.3.2 Typed calculus with records and subtyping 582

10.4 Semantic Models of Subtyping Lo 586
10.4.1 OVerview o e e e e e e 586
10.4.2 Conversion interpretation of subtyping 586
10.4.3 Subset interpretation of typeso 993
10.4.4 Partial equivalence relations as types 598

10.5 Recursive Types and a Record Model of Objects 603
10.6 Polymorphism with Subtype Constraints 611
11 Type Inference 621
11.1 Introduction to Type Inference 621
11.2 Type Inference for A\~ with Type Variables 624
11.2.1 The language A;” . . . o o v it e e 624
11.2.2 Substitution, instances and unification 0000 625
11.2.3 An algorithm for principal Curry typings 630
11.2.4 Implicit typing o o 635
11.2.5 Equivalence of typing and unification. 636

11.3 Type Inference with Polymorphic Declarations 641
11.3.1 ML type inference and polymorphic variables 641
11.3.2 Two sets of implicit typing rules 0oL 642
11.3.3 Type inference algorithms L o oL, 645
11.3.4 Equivalence of MLy and MLs 650

11.3.5 Complexity of ML type inference 653

Foundations for Programming Languages 7

Bibliography 661

Index 676

List of Figures

1.1 Binary trees. L e 40
3.1 A locally confluent but non-confluent reduction. 193
3.2 Disjoint reductions L 194
3.3 Trivial overlap L e e 195
3.4 Critical pair e e e e 196
5.1 Ordering of continuous functions By =B, oo, 270
7.1 Morphismof cones. L 423
7.2 F-algebras and unique morphisms of cocones. 428
7.3 Unique morphism from »(®) into limit cone pover AP 434
11.1 Unification on expression graphs L 0oL 627

List of Tables

0.1
0.2
0.3

1.1

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1

7.1

11.1
11.2
11.3
11.4

Introductory course outline 13
Mathematical course on typed lambda calculus 14
Course on type theory L 15
Well-founded relations for common forms of induction. 47
Equational proof system for PCF oo, 71
Reduction axioms for PCF 75
Left-most reduction for PCF. o 85
Lazy reduction for PCF. 87
Eager PCF reduction. e 90
Evaluation contexts for lazy PCF reduction. 108
Algebraic specification of stacks. o0 oL oL 152
Algebraic specification of multi-sets, nat and bool. 153
Algebraic specification of trees. oL Lo 154
A specification for set, nat and bool. Lo 170
A specification for list, atom and bool. 177
Naive treatment of error values for list, atom and bool. 178
A specification for [list, atom and bool with error values. 180
Type-checking algorithm. oL 223
Smyth-Plotkin method for finding fixed-points of functors. 438
Recursive algorithm Unify. 628
Algorithm PT for principal \;” (Curry) typing. 631
Algorithm reducing A;” (Curry) typing to unification. 637
Algorithm PTL for principal typing with let. 648

Preface

This book presents a framework for the analysis of syntactic, operational and semantic properties
of programming languages. The framework is based on a mathematical system called typed lambda
calculus. The main features of lambda calculus are a notation for functions and other computable
values, together with an equational logic and rules for evaluating expressions. The book is organized
around a sequence of lambda calculi with progressively more complicated type systems. These are
used to analyze and discuss relevant programming language concepts. The emphasis is on sequential
languages, although many of the techniques and concepts also apply to concurrent programming
languages.

The simplest system in the book is an equational system sometimes called universal algebra.
This logic without function variables may be used to axiomatize and analyze many of the data
types commonly used in programming. The next system is a lambda calculus with function types
and, optionally, cartesian products and disjoint unions. When enriched with recursive definitions,
this language provides a useful framework for studying operational and semantic properties of
functional programs. When combined with algebraic data types, this system is adequate to define
many Algol-like languages. In particular, with types for memory locations and stores, we may
study traditional axiomatic, operational and denotational semantics of imperative programs. More
advanced technical machinery, such as the method of logical relations, category theory, and the
semantics of recursively defined types are covered in the middle chapters. The last three chapters
of the book study polymorphic types, along with declaration forms for abstract data types and
program modules, systems of subtyping, and type inference.

Prerequisites and relation to other topics

The book is written for upper-level undergraduates or beginning graduate students specializing in
theoretical computer science, software systems, or mathematics. It is also suitable for advanced
study or technical reference. While the only true prerequisite is the proverbial “appropriate level
of mathematical maturity,” most students will find some prior experience with formal logic, com-
putability or complexity theory, and programming languages helpful. In general, students familiar
with these topics at the level of a general introductory course such as [AU92] or above should pro-
ceed with confidence and with their sleeves rolled up. To give the prospective reader or instructor
more information, the primary connections with related topics are summarized below.

Mathematical logic. The systems of lambda calculus used in this book share many features
with traditional mathematical logic. Each has a syntax, a proof system, and a model theory. For
this reason, general ideas from logic such as the definition of well-formed formulas, soundness and
completeness of proof systems, and interpretation of expressions in mathematical structures are
used. These are introduced briefly as needed. First-order logic itself is used only in the sections
on proving properties of programs; here an intuitive understanding of the meaning of formulas is
assumed.

10

Foundations for Programming Languages 11

Computability and complexity theory. The basic distinction between computable and non-
computable functions is used in the study of PCF (Chapter 2). The text defines and uses the
class of partial recursive functions and refers to Turing machines in the exercises of two sections. A
few additional concepts from recursion theory are assumed in constructing semantic models using
Godel numbering of recursive functions (Chapter 4). All of these would be familiar from any course
that covers universal Turing machines or undecidable properties of computable functions. A certain
amount of basic recursion theory is developed in the text using PCF, including a simple exercise
showing that the halting problem for PCF programs is not programmable in PCF.

Programming. Although no specific programming experience is required, students with some
exposure to a programming language with higher-order functions, such as Lisp, Scheme or ML,
will find it easier to relate this theory to practice. To give a general feel for the expressiveness of
typed lambda calculus, Chapter 2 contains a series of programming examples and techniques. This
provides a self-contained overview of some relevant programming issues.

Category theory. Category theory appears only in more advanced sections of the book. While all
the necessary definitions are presented and illustrated by example, a non-mathematical reader with
no prior exposure to category theory may wish to consult additional sources. If a more leisurely or
comprehensive introduction is needed, the reader is referred to an elementary introduction tailored
to computer scientists, e.g., [BW90, Pie91].

Sample Course Outlines

Three sample course outlines are given in Tables 0.1 through 0.3. The first is an introductory
course that has been taught several times as Stanford CS 258. The listed prerequisites for this
course, which covers the core topics in Chapters 2-6, are a one-quarter course in automata and
computability theory and a one-quarter course that includes mathematical logic but does not cover
soundness, completeness or model-theoretic constructions in depth. CS 258 has been completed
successfully by undergraduates, M.S. students specializing in systems or theory, and beginning
Ph.D. students. While the Stanford course is taught in 10 weeks, it is easy to expand the course to
a 15-week semester. Some options for expansion are: (i) cover the topics listed at a more leisurely
pace, (ii) include the section on algebraic rewrite systems, (iii) prove soundness, completeness
and other properties of typed lambda calculus, or (iv) survey selected topics from Chapters 9-
11. Tt is also possible to drop imperative programs (Chapter 6) in favor of one or more of these
options. While the chapter on algebra (Chapter 3) is not strictly required for later topics, universal
algebra provides a useful opportunity to introduce or review logical concepts in a relatively simple
mathematical setting. This aspect of the chapter may be redundant if students have taken a more
rigorous undergraduate course on mathematical logic.

The second course, in Table 0.2, is a more mathematical course on typed lambda calculus
and semantic techniques, with more technical detail and less programming motivation. The third
course, in Table 0.3, covers type systems, beginning with typed lambda calculus and proceeding
with polymorphism, subtyping and type inference. These three overlapping courses cover most of
the book.

Acknowledgements and Disclaimers

Many people have read drafts and provided useful comments and suggestions. I would like to
thank M. Abadi, S. Abramsky, V. Breazu-Tannen, K. Bruce, L. Cardelli, R. Casley, P.-L. Curien,
P. Gardner, D. Gifford, D. Gries, C. Gunter, R. Harper, S. Hayashi, F. Henglein, B. Howard, P.
Kanellakis, A. Kfoury, P. Lescanne, H. Mairson, I. Mason, A. Meyer, E. Moggi, N. Marti-Oliet, A.

Foundations for Programming Languages 12

Pitts, J. Riecke, K. Ross, D. Sanella, P. Scott, D. Tranah, T. Uribe and the students of Stanford
CS 258 and CS 358. Special thanks to teaching assistants My Hoang, Brian Howard and Ramesh
Viswanathan for their help with homework exercises and sample solutions, a few of which made
their way into examples in the text.

Almost all of this book is based on previously published research, some by the author. When
specific results are taken from the literature, an effort has been made to cite original sources as
well as relevant survey articles and books. However, as with any project of this size, there are
likely to be some errors and omissions. In addition, while an effort has been made to circulate and
teach any original material or alternate proofs developed for this book, there are undoubtably some
remaining errors.

John C. Mitchell
Stanford, CA

Foundations for Programming Languages 13

Sample Introductory Course
1. Functional programming and typed lambda calculus (Chapter 2)

(a) Boolean, natural number, pairing and function expressions; definition of recursive func-
tions using fixed-point operator (Section 2.2)

(b) Comparison of axiomatic, operational and denotational semantics (Section 2.3)

(c) Properties of reduction; deterministic symbolic interpreters (Section 2.4)

(d) Programming techniques, expressive power, limitations (Section 2.5)
2. Universal algebra and algebraic data types (Chapter 3)

(a) Algebraic terms, equations and algebras (Sections 3.1-3)

(b) Equational proof system, soundness and completeness (Section 3.4)
)
)

(c
(d) Aspects of algebraic theory of data types (Section 3.6)

Homomorphisms and initiality (Section 3.5)

3. Semantics of typed lambda calculus and recursion (Parts of Chapters 4 and 5)

(a) Presentation of context-sensitive syntax by typing rules (Sections 4.3.1, 4.3.2, 4.3.5)
(b) General models, summary of soundness and completeness (Sections 4.5.1-4)
(c) Domain-theoretic models of typed lambda calculus with fixed-point operators (Sections
5.1 and 5.2; Sections 5.3 and 5.4 time permitting)
4. Imperative programs (Chapter 6)

(a) Syntax of while programs; L-values and R-values (Section 6.2)
(b) Structured operational semantics (Section 6.3)

(c) Denotational semantics using typed lambda calculus with location and store types, fixed-
point operator (Section 6.4)

(d) Partial correctness assertions. Soundness, relative completeness and example proofs
(Section 6.5)

Table 0.1: Introductory course outline

Foundations for Programming Languages 14

Course on semantics and typed lambda calculus
1. Syntax and proof systems of typed lambda calculus

(a) Context-sensitive syntax and typing algorithm (Sections 4.1—3)
(b) Equational proof system and reduction (Section 4.4)

(c) Recursion using fixed-point operators (Skim 2.2.2-4, cover 2.2.5)
(d) Recursive types and explicit lifting (Section 2.6)

2. Model theory of typed lambda calculus

(a) General definitions, soundness and completeness (Sections 4.4.1, 4.5.1-6)
(b) Domains (Sections 5.1, 5.2)
(c) Modest sets (Sections 5.5, 5.6)

3. Logical relations

(a) Definition and basic lemmas (Sections 8.1, 8.2)

(b) Proof-theoretic results: completeness, normalization and confluence (Section 8.3)

(c) Completeness theorems for set-theoretic hierarchy, modest sets and domains (Section
8.4)

4. Category theory and recursive types

(a) Categories, functors and natural transformations (Sections 7.1, 7.2.1-2)

(b) Cartesian closed categories and typed lambda calculus (Section 7.2.3-6)
) An example of a category that is not well-pointed: Kripke lambda models (Section 7.3)
)

(c

(d) Domain models of recursive types (Section 7.4)

Table 0.2: Mathematical course on typed lambda calculus

Foundations for Programming Languages 15

Course on type theory
1. Simply-typed lambda calculus

(a) Context-sensitive syntax and typing algorithm (Sections 4.1-3)
(b) Equational proof system and reduction (Section 4.4.1, 4.4.2)

2. Polymorphism
(a) Introduction to polymorphic types (Section 9.1)
(

(c) Properties of impredicative polymorphism (Section 9.3.1-4)

b) Predicative polymorphism (Section 9.2)

(d) Data abstraction and existential types (Section 9.4)

(e) General products, sums and program modules (Section 9.5)
3. Subtyping

(a) Basic syntactic issues, equational reasoning, containment and conversion interpretations
of subtyping (Sections 10.1-10.4)
(b) Records, recursive types, records-as-objects (Section 10.5)

(c) Polymorphism with subtype constraints (Section 10.6)
4. Type inference

(a) Type inference and erasure functions (Section 11.1)
(b) Type inference for simply-type lambda calculus using unification (Section 11.2)

(c) ML-style polymorphic declarations (Section 11.3)

Table 0.3: Course on type theory

