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Abstract. Inheritance in the form of subtyping is considered in the framework of a polymorphic type 
discipline with records, variants, and recursive types. We give a denotational semantics based on the 
paradigm that interprets subtyping as explicit coercion. The main technical result gives a coherent 
interpretation for a strong rule for deriving inheritances between recursive types. 

1 Introduction 

There have been several efforts recently to integrate the flexibility of object-oriented programming [GR83] 
with rich type disciplines such as the polymorphic lambda calculus. Such reseach has dealt with semantics, 
language design and type inference algorithms (see, for example, [Car88, CW85, Car, CM88, Wan87, 
JM88, OB88, Rem89, Wan891). In [BCGS89] we proposed a semantic paradigm for typed languages 
which feature inheritance in the form of subtyping. This paradigm sees the subtyping relation as indicating 
the presence of a coercion function; we therefore refer to this as the "inheritance-as-implicit-coercion" 
paradigm. We showed how these coercions could be compiled by making them explicit using definable 
terms of a typed calculus without subtyping. For example, if a subtyping relation s < t is made explicit 
as P : s + t ,  then an instance of the inheritance rule 

is interpreted as 

In this approach it must be shown that the obtained explicit coercions do not depend on the way in 
which inheritance between complex type expressions is derived from the basic inheritance relations on 
records and variants. It must also be shown that the typing information obtained by using the inheritance 
rule in different ways at various stages of type-checking is coherent. In other words, the meaning of 
typing information a : r in a context should not depend on the way in which the typing is derived. 
These coherence properties were established in [BCGS89] for a calculus in which interaction between 
inheritance and recursive types is (basically) trivial. Using this paradigm, we showed how various models 
of parametric polymorphism and recursive types could be seen as models for calculi with inheritance in 
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the form of subtyping, even though these models have no relevant concept of type incusion. However, 
the problem of subtyping between recursive types was left open. 

The work which we discuss in this abstract extends the inheritance-as-implicit-coercion paradigm and 
the related coherence properties to a system which has a strong form of subtyping between recursive 
types. In [BCGS89] we suggested the rule 

where A is an inheritance context and the variable a has onlypositive occurrences in the types s and t. This 
restriction rules out unwanted inheritance judgements which have no clear computational or mathematical 
interpretation. For example, if this restriction were relaxed, we could derive such inheritances as pa.a + 

s < pa.a + t for types s and t which satisfy s < t. We see no reasonable coercion between these 
two types. On the other hand, there are instances in which this rule seems too restrictive. Consider, for 
example, the following recursive ML datatype declarations 

datatype small = Int2 of int I Rec2 of {l:small}; 

and the declaration 

datatype large = Intl of int I Recl of {l:large, m:large->large}; 

There is an evident coercion from large into small. Indeed, this coercion is definable as a (recursive) 
ML program: 

fun f (Intl n) = Int2 (n) 

I f (Recl {l=y, m=-}) = Rec2 {l=f (y)}; 

which has type large -> small. 
In this paper we consider the following rule 

which is strong enough to derive inheritances such as the one between the ML recursive type examples 
in the paragraph above.3 

Once the inheritance-as-implicit-coercion paradigm is adopted, it is straightforward to see what the 
explicit coercions corresponding to such inheritances ought to be: 

(The precise syntax is given in section 2; in particular one cannot quite use P in the coercion between 
the recursive types because the type of f is not right.) 

The problem, as in general with this paradigm, is to show that such an interpretation is coherent. The 
need for coherence arises because interpretations are given to typing derivations, rather than typed terms. 
Since we consider the typed t e r n  as the syntactic entities to which meaning is to be assigned, we need 

3We thank Jim O'Toole for bringing this rule to our attention. Subsequently, we learned that this rule was already included 
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to show that the interpretation of different typing derivations of the same typed term is actually the same. 
This coherence result is the main technical point of the paper. 

In section 2, we begin by describing the syntax of a polymorphic lambda calculus with records, 
variants, recursive types and subtyping. In particular, we give give type-checking rules in the style 
of [CW85] for a language we call F++. We indicate how to translate typing derivations of FU into terms 
of F+, an extension of the polymorphic lambda calculus with variants, records, and recursive types, and 
we prove the semantic coherence of this translation. In section 3 we present some directions for further 
research. 

2 Technical results 

We describe our calculus F++ which features inheritance in the form of subtyping, records, variants, 
recursive types, and parametric polymorphism. The type expressions of the language are given by the 
following abstract syntax: 

The inheritance relation. In order to give the rules for deriving inheritance between types in our calculus, 
we utilize a meta-linguistic notational convention indended to minimize the use of subscripts. Lower case 
letters a, b, al, etc from the beginning of the alphabet are used for type variables. An upper case letter 
A, B, A', etc from the beginning of the alphabet will denote a list of distinct type variables al, . . . ,a,. 
Appending of lists is denoted by juxtaposition. For example, if A is the list a17 . . . , a, and B is the list 
bl, . . . , b,, then AB is the list al, . . . , a,, bl, . . . , b,. Moreover, we denote the list al, . . . , a,, a by Aa. 
If n = m for the lists A and B, we will write A < B for the set of subtypings {al < bl, . . . ,a, < b,). 
In particular, Aa < Bb represents the set {al < bl, . . . ,a, < b,, a < b). We use s, t, sf, etc for type 
expressions and S, T, Sf, etc for lists of type expressions and follow conventions such as those given 
above for lists of variables. 

An inheritance judgement is a sequent of the form A < B I- s < t, where A and B are disjoint. (As it 
will be apparent from the subtyping rules, the assumptions a < b are used for deriving subtypings between 
recursive types.) Given lists S = sl, . . . ,s, and T = t17.. . , t,, a sequent of the form A < B I- S < T 
abbreviates the set of sequents A < B I- s; < ti where 1 5 i 5 n. The axioms and rules for inferring 
inheritance judgements are given as follows: 

where c does not occur in AB 

provided a is not free in t and b is not free in s 



where c does not occur in AB. 

Proposition 1 The transitiviv rule 

is derivable. 

Terms Variables will be denoted by lower case letters x, y, XI, f, g, etc and lists of variables by upper 
case letters X ,  Y, XI, F ,  etc. Given a list X = 21,. . . , x, of variables and a list S = s l ,  . . . , s, of types, 
we write X : S for the set of typings {xl : sl, . . . , x, : s,). Terms are denoted by e, el, etc and lists of 
terms by E, El, etc. A typing judgement is a sequent r t- e : s where r is a pairs of sets A < B, X : S. 
A sequent r I- E : T abbreviates a set of such judgements. Terms are given by the following abstract 
syntax : 

e ::= x : s 1 intro[pa.s]e ( elim[pa.t]e ( 
Ax : s .  e I e (e l )  I 
{ L = E )  I e l l  I 
[ I  = el I case e o f  L F I 
Aa. e I e ( t )  

The axiom and rules for infemng typing judgements are given as follows: 



1 Parametric Polymorphism 

Figure 1: F++ is projected onto the calculus F+. 

I' I- e : {LZ : S s )  
I ' I - e l l : s  

T I - e : s  
I' I- [ I  = e] : [ L I :  S s ]  

I ' I - e : [ L : S ]  I ' t F : S + s  
I ' I - c a s e e o f  L +  F : s  

where F : S  + s  abbreviates a set of typings fi : sl + s ,  . . . , f, : s, + s  

wliere c does not occur free in AB or S  

The translation. Our paradigm offers an interpretation for F++ via a translation that eliminates the 
subtyping in favor of definable explicit coercion terms. For the purposes of this abstract, the target of 
this translation is simply the syntax of the Girard-Reynolds polymorphic lambda calculus, extended with 
records, variants, and recursive types. We will call this target syntax F+. Figure 1 might be helpful in 
visualizing the basic idea behind this interpretation. 

It would take too much space to write out the full translation here. We will give details in the full 
paper. [BCGS89] already discusses many cases not mentioned here. We focus only on the subtyping rule 



for recursive types. As we mentioned in the introduction, this represents the main new feature that we 
treat here: 

A < B I- pa.s < pb.t 

is translated using a recursively defrned coercion: 

F f  : A a + B b k P : s - t t  
F : A + B k (pg  :   pa.^ + pb.t).  Ax : (pa . s ) .  intr~[pb.t](Q(elim[~a.~](x)))) : pa.s + pb.t 

where Q is the term ( [ p a . s / a ,  pb.t/b](A f : a  -t b . P ) ) ( g )  For a concrete example, the reader can check 
that this describes exactly the coercion derived for the ML types discussed in section 1. 

We can now state precisely what our coherence result says: for each of a number of domain-theoretic 
models of F+, the translations of any two F++ typing derivations that yield the same judgement have, as 
F+ terms, the same denotation. To be specific, we state the theorem for one such model, namely Scott 
domains and continuous maps [CGW]. 

Recall that a continuous map is strict iff it preserves bottom. Because variants are interpreted as 
separated sums, and because the coherence property requires certain identities [BCGS89] about these 
sums which hold only for strict maps, we need to make sure that coercions are always interpreted as strict 
maps: 

Lemma 2 Let F : A -t B I- P  : s  -t t  be the translation in F +  of an F++ inheritance judgement. Then, 
whenever F is interpreted by strict maps, the meaning of P  is also a strict map. 

Theorem 3 (Coherence for Typing Judgements) The translations of any m o  F++ typing derivations 
that yield the same judgement have, as F +  t e r n ,  the same denotation. 

Almost any of the known interpretations of the polymorphic lambda calculus with recursive types 
will also suffice. For example, algebraic lattices with continuous functions and the usual domain-theoretic 
interpretation of recursive types have the desired property [7T87, HP871. Universal domains [CGW, 
ABL861 and approaches using stable functions [Gir87, CGW871 also validate the theorem (in the latter 
case, coercions are linear maps). It would take too much space to state abstractly the precise properties 
required of such models in general. We will postpone this to a fuller version of this paper. However, 
we must mention that the key point is to use continuous (respectively stable) interpretations of function 
types and to interpret recursive definitions as least fixed points. 

3 Directions for Further Investigations 

So far, both in [BCGS89] and in the present paper, the technical results have been concerned only with 
denotational aspects. We believe, however, that our inheritance-as-implicit-coercion paradigm is a full- 
fledged semantic paradigm. We intend to substantiate this claim through an analysis of the connection 
between our interpretation and operational semantics. 

Moreover, we hope that this paradigm will also yield in a natural fashion proof principles for verifying 
program equivalences for the kind of languages we interpret. 

The fact that in [BCGS89] and in the present paper we were able to apply the inheritance-as-implicit- 
coercion paradigm to a variety of type constructs is strong evidence for its robustness. Therefore, we 
expect that these ideas will naturally extend to other language design efforts in progress, such as [CM88]. 
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