
Department of Computer & Information Science

Technical Reports (CIS)

University of Pennsylvania Year 

Denotational Semantics for Subtyping

Between Recursive Types

Val Tannen Carl A. Gunter
University of Pennsylvania, University of Pennsylvania,

Andre Scedrov
Stanford University,

University of Pennsylvania Department of Computer and Information Science Techni-
cal Report No. MS-CIS-89-63.

This paper is posted at ScholarlyCommons@Penn.

http://repository.upenn.edu/cis reports/855

Denotational Semantics For
Subtyping Between

Recursive Types

MS-CIS-89-63
LOGIC & COMPUTATION 12

V. Breazu-Tannen
C. A. Gunter
A. Scedrov

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

November 1989

DENOTATIONAL SEMANTICS FOR
SUBTYPING BETWEEN RECURSIVE TYPES

(Extended Abstract)

V. Breazu-Tannen C. A. Gunter

University of Pennsylvania
December 4, 1989

Abstract. Inheritance in the form of subtyping is considered in the framework of a polymorphic type
discipline with records, variants, and recursive types. We give a denotational semantics based on the
paradigm that interprets subtyping as explicit coercion. The main technical result gives a coherent
interpretation for a strong rule for deriving inheritances between recursive types.

1 Introduction

There have been several efforts recently to integrate the flexibility of object-oriented programming [GR83]
with rich type disciplines such as the polymorphic lambda calculus. Such reseach has dealt with semantics,
language design and type inference algorithms (see, for example, [Car88, CW85, Car, CM88, Wan87,
JM88, OB88, Rem89, Wan891). In [BCGS89] we proposed a semantic paradigm for typed languages
which feature inheritance in the form of subtyping. This paradigm sees the subtyping relation as indicating
the presence of a coercion function; we therefore refer to this as the "inheritance-as-implicit-coercion"
paradigm. We showed how these coercions could be compiled by making them explicit using definable
terms of a typed calculus without subtyping. For example, if a subtyping relation s < t is made explicit
as P : s + t , then an instance of the inheritance rule

is interpreted as

In this approach it must be shown that the obtained explicit coercions do not depend on the way in
which inheritance between complex type expressions is derived from the basic inheritance relations on
records and variants. It must also be shown that the typing information obtained by using the inheritance
rule in different ways at various stages of type-checking is coherent. In other words, the meaning of
typing information a : r in a context should not depend on the way in which the typing is derived.
These coherence properties were established in [BCGS89] for a calculus in which interaction between
inheritance and recursive types is (basically) trivial. Using this paradigm, we showed how various models
of parametric polymorphism and recursive types could be seen as models for calculi with inheritance in

'~uthor 's addresses. Breazu-Tannen and Gunter: Department of Computer and Information Sciences. University of Pem-
sylvania, Philadelphia PA 19104, USA. Scedrov: Department of Mathematics, University of Pennsylvania.

the form of subtyping, even though these models have no relevant concept of type incusion. However,
the problem of subtyping between recursive types was left open.

The work which we discuss in this abstract extends the inheritance-as-implicit-coercion paradigm and
the related coherence properties to a system which has a strong form of subtyping between recursive
types. In [BCGS89] we suggested the rule

where A is an inheritance context and the variable a has onlypositive occurrences in the types s and t. This
restriction rules out unwanted inheritance judgements which have no clear computational or mathematical
interpretation. For example, if this restriction were relaxed, we could derive such inheritances as pa.a +

s < pa.a + t for types s and t which satisfy s < t. We see no reasonable coercion between these
two types. On the other hand, there are instances in which this rule seems too restrictive. Consider, for
example, the following recursive ML datatype declarations

datatype small = Int2 of int I Rec2 of {l:small};

and the declaration

datatype large = Intl of int I Recl of {l:large, m:large->large};

There is an evident coercion from large into small. Indeed, this coercion is definable as a (recursive)
ML program:

fun f (Intl n) = Int2 (n)

I f (Recl {l=y, m=-}) = Rec2 {l=f (y)};

which has type large -> small.
In this paper we consider the following rule

which is strong enough to derive inheritances such as the one between the ML recursive type examples
in the paragraph above.3

Once the inheritance-as-implicit-coercion paradigm is adopted, it is straightforward to see what the
explicit coercions corresponding to such inheritances ought to be:

(The precise syntax is given in section 2; in particular one cannot quite use P in the coercion between
the recursive types because the type of f is not right.)

The problem, as in general with this paradigm, is to show that such an interpretation is coherent. The
need for coherence arises because interpretations are given to typing derivations, rather than typed terms.
Since we consider the typed t e r n as the syntactic entities to which meaning is to be assigned, we need

3We thank Jim O'Toole for bringing this rule to our attention. Subsequently, we learned that this rule was already included
in Cardelli's Amber [Car86].

to show that the interpretation of different typing derivations of the same typed term is actually the same.
This coherence result is the main technical point of the paper.

In section 2, we begin by describing the syntax of a polymorphic lambda calculus with records,
variants, recursive types and subtyping. In particular, we give give type-checking rules in the style
of [CW85] for a language we call F++. We indicate how to translate typing derivations of FU into terms
of F+, an extension of the polymorphic lambda calculus with variants, records, and recursive types, and
we prove the semantic coherence of this translation. In section 3 we present some directions for further
research.

2 Technical results

We describe our calculus F++ which features inheritance in the form of subtyping, records, variants,
recursive types, and parametric polymorphism. The type expressions of the language are given by the
following abstract syntax:

The inheritance relation. In order to give the rules for deriving inheritance between types in our calculus,
we utilize a meta-linguistic notational convention indended to minimize the use of subscripts. Lower case
letters a, b, al, etc from the beginning of the alphabet are used for type variables. An upper case letter
A, B, A', etc from the beginning of the alphabet will denote a list of distinct type variables al, . . . ,a,.
Appending of lists is denoted by juxtaposition. For example, if A is the list a17 . . . , a, and B is the list
bl, . . . , b,, then AB is the list al, . . . , a,, bl, . . . , b,. Moreover, we denote the list al, . . . , a,, a by Aa.
If n = m for the lists A and B, we will write A < B for the set of subtypings {al < bl, . . . ,a, < b,).
In particular, Aa < Bb represents the set {al < bl, . . . ,a, < b,, a < b). We use s, t, sf, etc for type
expressions and S, T, Sf, etc for lists of type expressions and follow conventions such as those given
above for lists of variables.

An inheritance judgement is a sequent of the form A < B I- s < t, where A and B are disjoint. (As it
will be apparent from the subtyping rules, the assumptions a < b are used for deriving subtypings between
recursive types.) Given lists S = sl, . . . ,s, and T = t17.. . , t,, a sequent of the form A < B I- S < T
abbreviates the set of sequents A < B I- s; < ti where 1 5 i 5 n. The axioms and rules for inferring
inheritance judgements are given as follows:

where c does not occur in AB

provided a is not free in t and b is not free in s

where c does not occur in AB.

Proposition 1 The transitiviv rule

is derivable.

Terms Variables will be denoted by lower case letters x, y, XI, f, g, etc and lists of variables by upper
case letters X , Y, XI, F , etc. Given a list X = 21,. . . , x, of variables and a list S = s l , . . . , s, of types,
we write X : S for the set of typings {xl : sl, . . . , x, : s,). Terms are denoted by e, el, etc and lists of
terms by E, El, etc. A typing judgement is a sequent r t- e : s where r is a pairs of sets A < B, X : S.
A sequent r I- E : T abbreviates a set of such judgements. Terms are given by the following abstract
syntax :

e ::= x : s 1 intro[pa.s]e (elim[pa.t]e (
Ax : s . e I e (e l) I
{ L = E) I e l l I
[I = el I case e o f L F I
Aa. e I e (t)

The axiom and rules for infemng typing judgements are given as follows:

1 Parametric Polymorphism

Figure 1: F++ is projected onto the calculus F+.

I' I- e : {LZ : S s)
I ' I - e l l : s

T I - e : s
I' I- [I = e] : [L I : S s]

I ' I - e : [L : S] I ' t F : S + s
I ' I - c a s e e o f L + F : s

where F : S + s abbreviates a set of typings fi : sl + s , . . . , f, : s, + s

wliere c does not occur free in AB or S

The translation. Our paradigm offers an interpretation for F++ via a translation that eliminates the
subtyping in favor of definable explicit coercion terms. For the purposes of this abstract, the target of
this translation is simply the syntax of the Girard-Reynolds polymorphic lambda calculus, extended with
records, variants, and recursive types. We will call this target syntax F+. Figure 1 might be helpful in
visualizing the basic idea behind this interpretation.

It would take too much space to write out the full translation here. We will give details in the full
paper. [BCGS89] already discusses many cases not mentioned here. We focus only on the subtyping rule

for recursive types. As we mentioned in the introduction, this represents the main new feature that we
treat here:

A < B I- pa.s < pb.t

is translated using a recursively defrned coercion:

F f : A a + B b k P : s - t t
F : A + B k (pg : pa.^ + pb.t). Ax : (pa . s) . intr~[pb.t](Q(elim[~a.~](x)))) : pa.s + pb.t

where Q is the term ([p a . s / a , pb.t/b](A f : a -t b . P)) (g) For a concrete example, the reader can check
that this describes exactly the coercion derived for the ML types discussed in section 1.

We can now state precisely what our coherence result says: for each of a number of domain-theoretic
models of F+, the translations of any two F++ typing derivations that yield the same judgement have, as
F+ terms, the same denotation. To be specific, we state the theorem for one such model, namely Scott
domains and continuous maps [CGW].

Recall that a continuous map is strict iff it preserves bottom. Because variants are interpreted as
separated sums, and because the coherence property requires certain identities [BCGS89] about these
sums which hold only for strict maps, we need to make sure that coercions are always interpreted as strict
maps:

Lemma 2 Let F : A -t B I- P : s -t t be the translation in F + of an F++ inheritance judgement. Then,
whenever F is interpreted by strict maps, the meaning of P is also a strict map.

Theorem 3 (Coherence for Typing Judgements) The translations of any m o F++ typing derivations
that yield the same judgement have, as F + t e r n , the same denotation.

Almost any of the known interpretations of the polymorphic lambda calculus with recursive types
will also suffice. For example, algebraic lattices with continuous functions and the usual domain-theoretic
interpretation of recursive types have the desired property [7T87, HP871. Universal domains [CGW,
ABL861 and approaches using stable functions [Gir87, CGW871 also validate the theorem (in the latter
case, coercions are linear maps). It would take too much space to state abstractly the precise properties
required of such models in general. We will postpone this to a fuller version of this paper. However,
we must mention that the key point is to use continuous (respectively stable) interpretations of function
types and to interpret recursive definitions as least fixed points.

3 Directions for Further Investigations

So far, both in [BCGS89] and in the present paper, the technical results have been concerned only with
denotational aspects. We believe, however, that our inheritance-as-implicit-coercion paradigm is a full-
fledged semantic paradigm. We intend to substantiate this claim through an analysis of the connection
between our interpretation and operational semantics.

Moreover, we hope that this paradigm will also yield in a natural fashion proof principles for verifying
program equivalences for the kind of languages we interpret.

The fact that in [BCGS89] and in the present paper we were able to apply the inheritance-as-implicit-
coercion paradigm to a variety of type constructs is strong evidence for its robustness. Therefore, we
expect that these ideas will naturally extend to other language design efforts in progress, such as [CM88].

Acknowledgements.
We would like to acknowledge many useful discussions with Thierry Coquand.
Breazu-Tannen's research was partially supported by ONR Grant N00014-88-K-0634. Gunter's

research was supported by ONR Grant N00014-88-K-0557. Scedrov's research was partially supported
by NSF Grant CCR-87-05596, by ONR Grant N00014-88-K-0635, and by the 1987 Young Scientist
Award from the Natural Sciences Association of the University of Pennsylvania.

References

[ABL86] R. Amadio, K. B. Bruce, and G. Longo. The finitary projection model for second order
lambda calculus and solutions to higher order domain equations. In A. Meyer, editor, Logic
in Computer Science, pages 122-130, IEEE Computer Society Press, 1986.

[BCGS89] V. Breazu-Tannen, T. Coquand, C. A. Gunter, and A. Scedrov. Inheritance and explict c o e ~ i o n
(preliminary report). In R. Parikh, editor, Logic in Computer Science, IEEE Computer Society,
June 1989.

[Carl L. Cardelli. A Quest preview. Preprint.

[Car861 L. Cardelli. Amber. In G. Cousineau, P.-L. Curien, and B. Robinet, editors, Combinators
and Functional Programming Languages, pages 21-47, Lecture Notes in Computer Science,
Vol. 242, Springer-Verlag, 1986.

[Car881 L. Cardelli. A semantics of multiple inheritance. Information and Computation, 76:138-164,
1988.

[CGW] T. Coquand, C. A. Gunter, and G. Winskel. Domain theoretic models of polymorphism.
Information and Computation. To appear.

[CGW87] T. Coquand, C. A. Gunter, and Glynn Winskel. Di-domains as a model of polymorphism.
In M. Main, A. Melton, M. Mislove, and D. Schmidt, editors, Mathematical Foundations
of Programming Language Semantics, pages 344-363, Lecture Notes in Computer Science
vol. 298, Springer, April 1987.

[CM88] L. Cardelli and J. C. Mitchell. Semantic methods for object-oriented languages. Unpublished
lecture notes for a tutorial given at the Conference on Object-Oriented Programming Systems,
Languages, and Applications. September 1988.

[CW85] L. Cardelli and P. Wegner. On understanding types, data abstraction and polymorphism. ACM
Computing Surveys, 17, 1985.

[Gir87] J. Y. Girard. Linear logic. Theoretical Computer Science, 50: 1-102, 1987.

[GR83] A. Goldberg and D. Robson. Smalltalk-80: the language and its implementation. Addison-
Wesley, Reading, MA, 1983.

[HP87] J. M . E. Hyland and A. Pitts. The theory of constructions: categorical semantics and topos-
theoretic models. In Proceedings of the AMS Conference on Categories in Computer Science
and Logic, Boulder, June 1987, 1987. To appear in Contemporary Mathematics.

[JM88] L. Jategaonkar and J. C. Mitchell. M1 with extended pattern matching and subtypes. In R.
Cartwright, editor, Symposium on LISP and Functional Programming, pages 198-21 1, ACM,
1988.

[OB88] A. Ohori and P. Buneman. Type inference in a database programming language. In R.
Cartwright, editor, Symposium on LISP and Functional Programming, pages 174-183, ACM,
1988.

[Rem89] D. R6my. Typechecking records and variants in a natural extension of ML. In Symposium on
Principles of Programming Languages, pages 77-88, ACM, 1989.

[TT87] T. Coquand and T. Ehrhard. An equational presentation of higher-order logic. In D. H. Pitt, A.
PoignC, and D. E. Rydeheard, editors, Category Theory and Computer Science, pages 40-56,
Lecture Notes in Computer Science vol. 283, Springer, 1987.

[Wan871 M. Wand. Complete type inference for simple objects. In D. Gries, editor, Symposium on
Logic in Computer Science, pages 37-46, IEEE Computer Society Press, Ithaca, New York,
June 1987.

[Wan891 M. Wand. Type inference for record concatenation and multiple inheritance. In Proceedings
of the Symposium on Logic in Computer Science, IEEE, June 1989. To appear.

